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Abstract

Choi & Joseph (2001) reported a two-dimensional numerical investigation of the lift-off

of 300 circular particles in plane Poiseuille flows of Newtonian fluids. We perform

similar simulations. Particles heavier than the fluid are initially placed in a closely packed

ordered configuration at the bottom of a periodic channel. The fluid-particle mixture is

driven by an external pressure gradient. The particles are suspended or fluidized by lift

forces that balance the buoyant weight perpendicular to the flow. Pressure waves

corresponding to the waves at the fluid-mixture interface are observed. During the initial

transient, these waves grow, resulting in bed erosion. At sufficiently large shear Reynolds

numbers the particles occupy the entire channel width during the transient. The particle

bed eventually settles to an equilibrium height which increases as the shear Reynolds

number is increased. Heavier particles are lifted to a smaller equilibrium height at the

same Reynolds number. A correlation for the lift-off of many particles is obtained from

the numerical data. The correlation is used to estimate the critical shear Reynolds number

for lift-off of many particles. The critical shear Reynolds number for lift-off of a single

particle is found to be greater than that for many particles. The procedures used here to

obtain correlations from direct simulations in 2D and the type of correlations that emerge

should generalize to 3D simulations presently underway.
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1. Introduction

Lift plays a central role in the suspension of particles in the flow of slurries. In the oil

industry we can consider the removal of drill cuttings in horizontal drill holes and sand

(or proppant) transport in fractured reservoirs. A force experienced by a particle moving

through a fluid with circulation (or shearing motion for a viscous fluid) is referred to as

the lift force in the present work.

Modeling of solid-liquid mixtures has been approached in two ways. The first

approach is to consider the solid-liquid mixture as an effective fluid medium. Bulk

properties (such as the effective viscosity) of the composite mixture are then modeled. In

the second approach the solid and the fluid are considered as inter-penetrating mixtures

which are governed by conservation laws. Interaction between the inter-penetrating

phases is modeled. This is the mixture theory approach. Models for drag and lift forces

on the particles must be used in mixture theories. Models for the drag force on particles

in solid-liquid mixtures is a complicated issue and usually rely on the well-known

Richardson-Zaki (1954) correlation. Models for lift forces in mixtures are much less well

developed than models for drag.

Joseph (2001) proposed that ideas analogous to the Richardson-Zaki correlation must

come into play in problems of slurries, which are fluidized by lift rather than by drag.

Various models for the lift on single particles have been proposed (see e.g. Joseph 2001,

N. Patankar, Huang, Ko & Joseph 2001, Ko, N. Patankar & Joseph 2001 and references

therein) but the dependence of the lift on solids fraction and other many particle

parameters is not known. Direct numerical simulations or experiments can be done to

develop a suitable engineering correlation for lift.

Morris & Brady (1998) studied the migration of non-neutrally buoyant spheres in

pressure driven flows of Newtonian fluids. They performed Stokesian dynamic

simulations of a monolayer of spheres. These studies are valid in the creeping flow limit.

In applications such as the transport of slurries or proppants, the effect of Reynolds
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number on the lift force is important. Choi & Joseph (2001) (hereafter referred to as CJ)

reported a two-dimensional numerical investigation of fluidization by lift of 300 circular

particles in a Poiseuille flow of a Newtonian fluid. Their results are valid at finite shear

Reynolds numbers. They observed that the fluidization of circular particles first involves

bed inflation in which liquid is driven into the bed. The bed inflation was observed even

at very low shear Reynolds numbers but it took more time for the bed to inflate as the

Reynolds number was reduced. Pressure waves corresponding to the waves at the fluid-

mixture interface were observed. CJ used a Chorin (1968) type fractional-step scheme

developed by Choi (2000) to perform the numerical simulations. We use the same

numerical method for the simulations reported in this paper. This method is closely

related to the Arbitrary-Lagrangian-Eulerian (ALE) numerical method, using body-fitted

unstructured finite element grids to simulate particulate flows, reported by Hu, Joseph &

Crochet (1992), Hu (1996), Hu & N. Patankar (2001) and Hu, N. Patankar & Zhu (2001).

In these simulations the distance between the particles cannot be equal to zero. We have a

small zone around each particle, which we call the security zone. Overlap of the security

zones gives rise to a repulsive force that keeps the particles apart.

In this paper an engineering type correlation for the lift-off of many particles is

obtained using the numerical data from our simulations and from the simulations of CJ.

We also study the effect of various parameters on the flow features. Both the transient

and the steady state behavior will be discussed.

The governing equations, various parameters of the problem and a discussion of the

lift models for solid-liquid flows will be presented in section 2. Results will be presented

in section 3 and conclusions in section 4.
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2. Governing equations and the parameters of the problem

The two-dimensional computational domain for our simulations is shown in Figure 1.

We perform simulations in a periodic domain (Figure 2). The applied pressure gradient is

given by p− , where p  is considered to be positive.
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Figure 1. Computational domain for the numerical simulation of lift-off of particles in a

plane Poiseuille flow. The wall shear rate wγ�  is calculated from the parabolic velocity

profile in the absence of the particles.
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Figure 2. Unstructured mesh in a periodic domain.
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where P(x,t) is the total fluid pressure, ρf is the fluid density, g is the acceleration due to

gravity, x is the position vector and ex is the unit vector in the x-direction. We solve for

the ‘dynamic’ pressure p in our simulations. The external pressure gradient term then
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appears as a body force like term in the fluid and particle equations (3). The value of p

is specified during the simulations.

The particles are free to rotate and translate. Particles heavier than the fluid are

initially placed in a closely packed ordered configuration at the bottom of the channel.

Gravity acts in the negative y-direction. A parabolic velocity profile corresponding to p

is specified in the clear fluid region as the initial condition. This reduces the time of the

initial transient significantly. At t = 0+ the fluid in the channel is driven by an external

pressure gradient along the x-direction. The particles are suspended or fluidized by lift

forces that balance the buoyant weight perpendicular to the flow.

2H

The particle bed

Figure 3. Particles fluidized in a Poiseuille flow.

The average height H  of the particle bed reaches an equilibrium value after the

initial transient. We define this state as the ‘statistical steady state’. The average height

represents the height of the center of gravity of the bed if the distribution of the particles

in the bed is uniform. The average fluid fraction ε of the bed is given by

lH
dN

8
1

2πε −= , (2)

where N is the number of particles in the domain and d is the diameter of the particles.
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The governing equations in non-dimensional form are:
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where u(x,t) is the fluid velocity, ρp is the particle density, T is the extra-stress tensor,

A = ( ∇ u + ∇ uT )  is two times the deformation-rate tensor, Up is the translational velocity

of the particle, ΩΩΩΩp is the angular velocity of the particle, I is the particle moment of

inertia tensor, X is the coordinate of the center of mass of the particle and ey is the unit

vector in the y-direction. We have used g = -gey. Equation (3) and the corresponding

initial and boundary conditions define an initial boundary value problem that can be

solved by direct numerical simulation. The parameters in this problem are:

ε , average fluid fraction in the particle bed,

Nd/l , number of particles per unit dimensionless length,

p
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where ( )
η

2gdρρV fp
g

−=  is the velocity scale of a particle sedimenting in a viscous

fluid and L is the buoyant weight (or lift) on a particle in the absence of any other

particles. The dimensionless channel length l/d, which is also a parameter of the problem,
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is chosen large enough so that the solution is only weakly dependent on its value. A

dimensionless description of the governing equations is constructed by introducing the

following scales: the particle diameter d for length, V for velocity, d/V for time, ηV/d for

stress and pressure and V/d for angular velocity of the particle where η is the viscosity of

the fluid. We have chosen dγV w�= , where wγ�  is the shear-rate at the wall (in the absence

of the particles) corresponding to the applied pressure gradient p  as shown in Figure 1.

In our multi-particle simulations we have N = 300, ρp/ρf = 1.01, W/d = 12 and l/d = 63.

We take d = 1 cm, ρp = 1.01 g/cc and ρf = 1 g/cc.

A gravity parameter G, which represents the ratio of Vg and V, is given by RG/R. The

ratio ( )( )gρργdGR fpw 12 −= � , which measures the ratio of inertia to buoyant weight, is

a generalized Froude number.

Assuming the channel length to be long, the gravity Reynolds number at the

‘statistical steady state’ depends on the parameters listed above and
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where εmax is the maximum possible fluid fraction in the channel and φmin is the

corresponding value of the minimum particle fraction. The parameter ρp/ρf arises only in

the particle acceleration terms in the governing equations (3). At steady state the average

acceleration of the particles is zero. Hence ρp/ρf is not included as a parameter in (4).

However, the effect of ρp/ρf can be important in characterizing the transient and the

‘mixing’ behavior of the mixture. In our multi-particle simulations, W/d and Nd/l (or εmax)

are fixed. The gravity Reynolds number RG is therefore a function of R and ε.
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3. Results

3.1 Numerical simulation of lift-off

The gravity Reynolds number, RG, is varied by changing the viscosity of the

suspending fluid. For the given choice of parameters, RG = 9.81/η2. At a given value of

RG, the shear Reynolds number R is varied by changing the applied pressure gradient p .

CJ reported simulations with η = 1 poise and 0.2 poise. In this paper we perform

simulations with η = 0.1 poise and 0.05 poise. The primary objective is to obtain more

data to develop a correlation for lift.

Figure 4 shows the contour plot of the axial velocity for a typical simulation.

Snapshots of the pressure distribution for several cases are shown in Figure 5. Light

colors indicate high values of pressure. The particles are initially placed in a closely

packed ordered configuration. At early times the pressure has vertical stratification. From

these figures we observe that the top layer of the particles ‘disturbs’ the flow thus giving

rise to regions of high pressure at the front and low pressure at the back of each particle.

This disturbance causes a horizontal wave of the dynamic pressure with a periodic length

of few particle diameters in the clear fluid region. The fluid-mixture interface forms

troughs and crests corresponding to the pressure wave. These interfacial waves, which are

more prominent at higher shear Reynolds numbers, grow in amplitude resulting in bed

erosion. Similar observation was reported by CJ.

Figure 4 and Figures 5.6, 5.7, 5.12 and 5.13 exhibit intense vortex motion in the early

transients prior to the final bed expansion. Drag forces are important in the transients but

the final bed height is determined by balance of buoyant weight and lift.
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Figure 4. Lift-off of 300 heavy particles in a plane Poiseuille flow of a Newtonian fluid;

R = 1800, RG = 981 and the variables are in CGS units. A contour plot of the horizontal

velocity component is shown. Lighter shades indicate higher velocity.
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Figure 5.1. Fluidization of 300 particles (RG = 981, R = 120). The flow is from left to

right. The bed height rises slightly.
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Figure 5.2. Fluidization of 300 particles (RG = 981, R = 180). The bed has eroded more

(t = 106 s).
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Figure 5.3. Fluidization of 300 particles (RG = 981, R = 300).
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Figure 5.4. Fluidization of 300 particles (RG = 981, R = 420). The bed height increases

with R.
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Figure 5.5. Fluidization of 300 particles (RG = 981, R = 600).
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Figure 5.6. Fluidization of 300 particles (RG = 981, R = 1200). The bed rises at t = 3.5s

to the top wall. The bed settles to its final steady equilibrium height. Interfacial waves

corresponding to the pressure waves at the final state are not significant since the

particle fraction is not very high.
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Figure 5.7. Fluidization of 300 particles (RG = 981, R = 1800). Interfacial waves at the

final state are not significant.
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Figure 5.8. Fluidization of 300 particles (RG = 3924, R = 240).
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Figure 5.9. Fluidization of 300 particles (RG = 3924, R = 480).
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Figure 5.10. Fluidization of 300 particles (RG = 3924, R = 960).
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Figure 5.11. Fluidization of 300 particles (RG = 3924, R = 1200).
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Figure 5.12. Fluidization of 300 particles (RG = 3924, R = 1680).
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Figure 5.13. Fluidization of 300 particles (RG = 3924, R = 2400).

Figure 6 shows the average height H  of the particle bed for the additional cases

reported here. We observe that the increase in H  is monotonous at lower shear Reynolds

numbers. The graph of H  eventually levels off to a constant steady value. At higher

shear Reynolds numbers (R > 300) there is an overshoot in the bed height during the

transient. At sufficiently high shear Reynolds numbers the overshoot is large enough for
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the particles to occupy the entire channel during the transient (Figures 4, 5.6, 5.7, 5.10-

5.13). The bed finally settles to the steady equilibrium height. The amplitude of the

waves formed on the fluid-mixture interface increases during the transient to cause bed

erosion. At high shear Reynolds numbers the interfacial waves are more unstable

resulting in the waves reaching the upper wall of the channel. The average lift on the

particles increases with the particle fraction. At the peak height the average lift on the

particles is not sufficient. Hence, they settle to a lower equilibrium height with larger

particle fraction resulting in greater average lift. Another interpretation is that the shear at

the top wall drives the particles near it towards the channel center thus reducing the

average height (CJ).
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Figure 6.1.Rise curves for the average height of 300 circular particles fluidized by lift (η  =

0.1 poise, R = 600 p , RG = 981, p is in dynes/cm2). Notice the overshoot at early times. The final

bed height is an increasing function of p . The bed at steady state when the rise curve levels off.

The time to steady state is longer when the Reynolds number is smaller.
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Figure 6.2. Rise curves for the average height of 300 circular particles fluidized by lift

(η = 0.05 poise, R =2400 p , RG = 3924, p is in dynes/cm2).

Figure 5 shows that in the final state there are internal pressure waves which

propagate horizontally. The pressure waves cause compression and rarefaction in the

particle bed when the average equilibrium height is large. The waves of horizontal

stratification of the particle fraction propagate with the pressure wave. Similar

observations were reported by CJ. At lower values of the equilibrium height, the particles

are close to one another and cannot be pushed together without driving some vertically

upwards. This results in waves on the fluid-mixture interface, similar to those formed

during the initial transient, which propagate with the pressure waves. In contrast to the

waves formed during the transient phase, the waves in the final state are smaller in

amplitude and do not grow.

Wave formation in sediment transport by water has been observed before in various

scenarios (Kennedy 1969, Graf 1971, Bagnold 1973). Wind generated ripples and dunes

were discussed by Bagnold (1941). Wavelike motion in pneumatic transport was studied
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by Wen & Simons (1959) and Tomita, Jotaki & Hayashi (1981) among others. Wavelike

slugs which resemble solitary waves in an open channel are observed in pneumatic

transport (Wen & Simons 1959). Similar plugs are observed during the transient phase in

our simulations (Figure 5.4, t = 12s). The plug is unstable and eventually breaks to settle

to the final equilibrium height. Three different modes of transport of particles in water

have been observed (Abbott & Francis 1977) – rolling, saltation and suspension. Kern,

Perkins & Wyant (1959) reported similar modes for proppant transport in fractured

reservoirs. All these modes are observed in our simulations. We observe rolling when the

bed is not eroded at low Reynolds numbers. Waves are observed during the initial

transient and the final steady state at relatively low equilibrium heights (Figure 5). The

suspension of particles without interfacial waves is observed when the particle fraction at

steady state is low (Figures 5.6 & 5.7).

Previous investigations of the fluidization of many particles by shear have focused on

the creeping flow limit (see Morris & Brady 1998 and references therein) and on particle

dispersion due to turbulence (Bagnold 1941, Graf 1971). In the creeping flow limit the

hydrodynamic interaction between the particles tend to disperse them into regions of

lower concentrations. This shear induced diffusivity balances gravitational settling. In

turbulent flows, the solids are suspended against gravity by random eddy currents. The

results of our simulations are valid for a range of Reynolds numbers.

The maximum value of R in our simulations is 2400 (Figure 5.13). We can also

define a Reynolds number RW = ρfVmaxW/η based on the channel width, where Vmax is the

maximum velocity in the channel. For the case depicted in Figure 5.13, RW = 86400 if

Vmax is the maximum velocity in the absence of the particles whereas RW = 14640 for the

same case if Vmax is obtained from the simulation. The length scale (channel width) used

in defining the Reynolds number RW may be inappropriate. More appropriate length scale

could be the spacing between the particles in the particle bed or the height of the clear

fluid region in the upper part of the channel. Using height of the clear fluid region as the
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length scale, the calculated Reynolds number for the case in Figure 5.13 is 5490. One

might expect results, unlike those from our simulations, with turbulent flow features at

these Reynolds numbers. The effect of large particles on fluid turbulence at high particle

fractions is not well understood. Particles can enhance or suppress turbulence. It has been

suggested that large particles can cause enhancement of turbulence due to wake shedding

(Hetsroni 1989). In our simulations wake shedding is not significant (Figure 5). The

difference between the average fluid and particle velocities (slip velocity) is very small

(also see CJ). The presence of the particles increases the resistance to the flow; this

increased resistance can be interpreted as an increase of apparent viscosity. This may lead

to turbulence suppression in cases such as in our simulations where the particle fraction is

relatively high. However, the upper part of the channel is often free from particles and

not subjected to turbulence suppression. The lack of turbulence there may be an effect of

two-dimensionality.

3.2 Correlation for lift-off

We obtain a correlation for the average equilibrium height of the particles based on

the data from our simulations and those reported by CJ. Since W/d and Nd/l (or εmax) are

fixed, the gravity Reynolds number RG is a function of R and ε.

The effective weight of a particle in a suspension is (πd2/4)(ρp - ρc)g = ε(πd2/4)

(ρp - ρf)g (Foscolo & Gibilaro 1984, Joseph 1990), where ρc is the effective or composite

density of the fluid-particle mixture. Consequently, the net buoyant weight (or lift) Ls on

a particle in a suspension is given by

Ls = εL =  ε(πd2/4)(ρs - ρf)g . (5)

We therefore plot εRG vs. R in Figure 7 at different values of fluid viscosities. At a given

viscosity the value of RG is a constant in our simulations. The fluid fraction or the

equilibrium height of the particle bed increases as the shear Reynolds number is

increased. Heavier particles are lifted to a smaller equilibrium height at the same shear
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Reynolds number. We observe that the data at each viscosity (or RG) can be represented

by a power law equation of the form εRG = cRm, where the values of c and m are given in

the figure. The value of c varies significantly with respect to RG whereas the value of m

does not show large variation. Figure 8 shows the plot of c vs. RG on a logarithmic scale.

The functional dependence of c on RG is represented in terms of a power law equation.

Combining this result with that in Figure 7 we can arrive at a correlation for RG as a

function of R and ε. In Figure 9 we reduce all the data points to a single curve. The

prefactor in the expression for c is changed from 0.368 in Figure 8 to 0.4119 in Figure 9

for better agreement between the data and the correlation. The average value of the

exponent m is also obtained from the curve fit for all the data points. We obtain the

following correlation for RG as a function of R and ε

.1027.3

1027.3
249.105.84

249.105.94

RR
RR

G

G
−−

−−

×=�

×=

εε
ε

(6)

The data from which the correlation is derived had the following range of parameters: ε

between 0.29 and 0.69, RG ranging from 9.81 to 3924 and R ranging from 5.4 to 2400. It

is well-known that particles sedimenting in a suspension experience greater drag at higher

particle fractions. Similar behavior is observed for the hydrodynamic lift force on

particles in a suspension (6).
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Figure 7. The plot of εRG vs. the shear Reynolds number R on a logarithmic scale for 300

particles in plane Poiseuille flows of Newtonian fluids at different values of fluid

viscosities (or RG).
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Figure 8. The plot of c vs. RG on a logarithmic scale.
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Figure 9. Correlation for lift-off from numerical simulations of 300 circular particles

in plane Poiseuille flows of Newtonian fluids (W/d = 12). (a) Regular scale (b)

Logarithmic scale.

The ratio WH2 denotes the fraction of the channel width occupied by the fluid-

particle mixture. The correlation can be rewritten in terms of this parameter as
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The correlation in dimensional form is
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where, ν is the kinematic viscosity of the fluid. The effect of W/d and εmax on the

correlation is not investigated.

 The lift-off correlation above is valid for the average behavior of the suspension in a

channel. It accounts for the effect of the Reynolds number on the lift-off of many

particles. A similar correlation may also be developed based on the experimental data.

R G = 3.27*10 -4 ε -9.05 R 1.249
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The correlation can be used to estimate the critical Reynolds number for lift-off of

suspensions in a channel (for the given values of W/d and εmax). Let oH2  be the initial

height of the closely packed particle bed. Equation (7) implies
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It follows that
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For fluidization, we have oHH ≥  where the equality represents the critical condition

for lift-off. We also have
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where, φmax is the particle fraction in the initial closely packed configuration and φmin is

given in (4) as
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The condition for lift-off is then given by
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After replacing φmin with φmax, using (11), we find
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Combining now (9) and (12) we get
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where equality represents the critical shear Reynolds number Rcr for the lift-off of

particles from the bed.
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The correlation can also be used to estimate the smallest shear Reynolds number Rcf

at which the particles would occupy the entire channel width at steady state ( WH =2 ).

Following steps similar to those in (12) we get

[ ]
249.1

1
05.9

min4 1
1027.3

�
�

�
�
�

� −
×

= − φG
cf

RR . (13)

It cannot be predicted with certainty that the particles will occupy the entire channel

width at this Reynolds number. The effect of the upper wall may prevent such a

possibility. The estimated value of Rcf may also be within the turbulent regime.

N. Patankar et al. (2001) obtained a correlation for the critical condition for lift-off of

a single circular particle in a plane Poiseuille flow of a Newtonian fluid. They assumed a

surface roughness of 0.001d and defined the critical condition as the minimum shear

Reynolds number required to lift a particle to an equilibrium height greater than 0.501d.

Their correlation is given by
39.1

1, 36.2
�
�

�
�
�

�= G
cr

R
R , (14)

where Rcr,1 is the critical shear Reynolds number for lift-off of a single particle. Equation

(14) is valid for 12≥dW .

Table 1 compares Rcr and Rcr,1 for the values of RG listed in Figure 7. In our

simulations we had φmax = 0.71 and φmin = 0.31. The values of Rcf are also listed.

RG Rcr Rcr,1 Rcf
9.81 0.461 2.787 256.62

245.25 6.061 28.24 3377.06
981 18.39 76.56 10246.4
3924 55.80 207.56 31088.9

Table 1. Comparison between the critical Reynolds numbers for lift-off of many particles

and a single particle at different values of RG. The smallest shear Reynolds numbers at

which the particles would occupy the entire channel width at steady state are also listed.

The shear Reynolds numbers in our computations are between Rcr and Rcf at all values of

RG. Due to the computational cost, many particle simulations were not performed to
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confirm the value of Rcr estimated from the correlation. The average bed height did not

increase after a long computation when the shear Reynolds number was less than Rcr for

some cases we tested. Table 1 shows that the critical shear Reynolds number for lift-off

of a single particle is greater than that for many particles at the same value of RG. This is

similar to the fluidization of particles by drag where the critical velocity for fluidization

of a single particle is more than that for many particles.

Previous investigation by Morris & Brady (1998) addresses the problem of lift-off of

many particles in the creeping flow limit. They considered the balance between

gravitational settling and Fickian diffusion of particles. The diffusivity in their

simulations was the shear-induced diffusivity driven by hydrodynamic interactions

between the particles. In their analysis the average height of the particle bed depends on a

dimensionless parameter B characterizing the relative strength of buoyancy to shearing. It

can be verified that their parameter B ~ �
�
�

�
�
�

Rd
WRO G . Therefore, in the creeping flow

limit, ( ) ,, d
W

l
NdεfR

RG =  instead of the general form at finite Reynolds numbers in

(4). At finite Reynolds numbers, inertia plays a role in the balance of the buoyant weight

and the hydrodynamic lift on the particles.

Models for the drag force on particles in solid-liquid mixtures, which rely on the

well-known Richardson-Zaki (1954) correlation, are usually obtained in terms of the

single particle drag formula, Reynolds number and the fluid fraction. Reduction of the

lift-off correlation in (6) in terms of the single particle lift formula is not straightforward.

This is because, more than one equilibrium positions are possible for a single particle in a

channel (CJ, N. Patankar et al. 2001). N. Patankar et al. (2001) have identified this as a

double turning point solution. We have not observed multiple equilibrium heights of the

particle bed in our many particle simulations.
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4. Conclusions

1. 2D numerical simulations of the lift-off of 300 circular particles in plane Poiseuille

flows of Newtonian fluids are performed.

2. Lift-off is initiated by the formation of horizontal pressure waves and the

corresponding waves at the fluid-mixture interface.

3. At low shear Reynolds numbers, there is a monotonous increase of the average height

of the particle bed to the final equilibrium value.

4. At higher shear Reynolds numbers (R > 300) there is an overshoot in the bed height,

with particles sometimes occupying the entire channel width, during the transient.

The bed finally settles to a lower equilibrium height for the cases considered here.

5. In the final state there are internal pressure waves which propagate horizontally.

There are corresponding waves in the particle bed.

6. The average fluid fraction of the particle bed increases as the shear Reynolds number

is increased. Heavier particles are lifted to a smaller equilibrium height at the same

Reynolds number.

7. A correlation for the lift-off of many particles in 2D is obtained from the numerical

data modeling procedures to be used in getting correlations that we think will emerge

from 3D simulations presently under way.

8. The correlation is used to estimate the critical shear Reynolds number for lift-off of

many particles and the smallest shear Reynolds number at which the particles would

occupy the entire channel width at steady state.

9. The critical shear Reynolds number for lift-off of a single particle is greater than that

for many particles at the same value of RG. This is similar to the fluidization of

particles by drag where the critical velocity for fluidization of a single particle is more

than that for many particles.



34

Acknowledgment

This work was partially supported by the National Science Foundation KDI/New

Computational Challenge grant (NSF/CTS-98-73236), by the US Army, Mathematics, by

the DOE, Department of Basic Energy Sciences, by a grant from the Schlumberger

foundation and from Stimlab Inc. and by the Minnesota Supercomputer Institute.

References

Abbott, J. & Francis, J. R. D. 1977 Saltation and suspension trajectories of solid grains in

a water stream. Philosophical Transactions of the Royal Soc. London Ser. A -

Mathematical and Physical Sci. 284, 225-254.

Bagnold, R. A. 1941 The physics of blown sands and desert dunes. Muthuen, London.

Bagnold, R. A. 1973 The nature of saltation and of ‘bed-load’ transport in water. Proc.

Royal Soc. London Ser. A – Mathematical & Physical Sci. 332, 473-504.

Choi, H. G. 2000 Splitting method for the combined formulation of fluid-particle

problem, Comput. Meth. Appl. Mech. Engrg. 190, 1367-1378.

Choi, H. G. & Joseph, D. D. 2001 Fluidization by lift of 300 circular particles in plane

Poiseuille flow by direct numerical simulation. to appear, J. Fluid Mech.

Chorin, A. J. 1968 Numerical solution of the Navier-Stokes equations. Math. Comput. 22,

745-762.

Foscolo, P. V. & Gibilaro, L. G. 1984 A fully predictive criterion for transition between

particulate and aggregate fluidization. Chem. Engng. Sci. 39, 1667-1675.

Graf, W. H. 1971 Hydraulics of sediment transport. McGraw Hill, New York.

Hetsroni, G. 1989 Particle-turbulence interaction. Int. J. Multiphase Flow 15, 735-746.

Hu, H. H. 1996 Direct simulation of flows of solid-liquid mixtures. Int. J. Multiphase

Flow 22, 335-352.

Hu, H. H., Joseph, D. D. & Crochet, M. J. 1992 Direct numerical simulation of fluid

particle motions. Theoret. Comput. Fluid Dynamics. 3, 285-306.



35

Hu, H. H. & Patankar, N. A. 2001 Simulation of particulate flows in Newtonian and

viscoelastic fluids, to appear, International Journal of Multiphase Flow.

Hu, H. H., Patankar, N. A. & Zhu, M.-Y. 2001 Direct numerical simulations of fluid-

solid systems using the Arbitrary-Lagrangian-Eulerian technique, to appear, Journal

of Computational Physics.

Joseph, D. D. 1990 Generalization of the Foscolo-Gibilaro analysis of dynamic waves.

Chem. Engng. Sci. 45, 411-414.

Joseph, D. D. 2001 Interrogations of direct numerical simulation of solid-liquid flow,

submitted to Phys. Fluids.

Kennedy, J. F. 1969 The formation of sediment ripples, dunes & antidunes. Ann. Rev.

Fluid Mech. 1, 147-168.

Kern, L. R., Perkins, T. K. & Wyant, R. E. 1959 The mechanics of sand movement in

fracturing. Petroleum Transactions, AIME. 216, 403-405.

Ko, T., Patankar, N. A. & Joseph, D. D. 2001 A note on the lift-off of a single particle in

viscoelastic fluids, submitted to Phys. Fluids.

Morris, J. F. & Brady, J. F. 1998 Pressure-driven flow of a suspension: buoyancy effects.

Int. J. Multiphase Flow. 24, 105-130.

Patankar, N. A., Huang, P. Y., Ko, T. & Joseph, D. D. 2001 Lift-off of a single particle in

Newtonian and viscoelastic fluids by direct numerical simulation, to appear, J. Fluid

Mech.

Richardson, J. F. & Zaki, W. N. 1954 Sedimentation and fluidization: Part I. Trans. Instn.

Chem. Engrs. 32, 35-53.

Tomita, Y., Jotaki, T. & Hayashi, H. 1981 Wavelike motion of particulate slugs in a

horizontal pneumatic pipeline. Int. J. Multiphase Flow. 7, 151-166.

Wen, C. Y. & Simons, H. P. 1959 Flow characteristics in horizontal fluidized solids

transport. AIChE J. 5, 263-267.


