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In this paper we derive an accurate composite friction factor versus Reynolds number
correlation formula for laminar, transition and turbulent flow in smooth and rough pipes.
The correlation is given as a rational fraction of rational fractions of power laws which
is systematically generated by smoothly connecting linear splines in log-log coordinates
with a logistic dose function algorithm. We convert Nikuradse’s (1933) (J. Nikuradse,
1933 Stromungsgesetz in rauhren rohren, vDI Forschungshefte 361. (English transla-
tion: Laws of flow in rough pipes). Technical report, NACA Technical Memorandum
1292. National Advisory Commission for Aeronautics (1950), Washington, DC.) data
for six values of roughness into a single correlation formula relating the friction factor
to the Reynolds number for all values of roughness. Correlation formulas differ from
curve fitting in that they predict as well as describe. Our correlation formula describes
the experimental data of Nikuradse’s (1932, 1933) (J. Nikuradse, Laws of turbulent
flow in smooth pipes (English translation), NASA (1932) TT F-10: 359 (1966).) and
McKeon et al. (2004) (B.J. Mckeon, C.J. Swanson, M.V. Zaragola, R.J. Donnelly, and
J.A. Smits, Friction factors for smooth pipe flow, J. Fluid Mech. 511 (2004), 41–44.) but
it also predicts the values of friction factor versus Reynolds number for the continuum
of sand-grain roughness between and beyond those given in experiments. Of particular
interest is the connection of Nikuradse’s (1933) data for flow in artificial rough pipes
to the data for flow in smooth pipes presented by Nikuradse (1932) and McKeon et al.
(2004) and for flow in smooth and effectively smooth pipes. This kind of correlation
seeks the most accurate representation of the data independent of any input from theo-
ries arising from the researchers ideas about the underlying fluid mechanics. As such,
these correlations provide an objective metric against which observations and other
theoretical correlations may be applied. Our main hypothesis is that the data for flow in
rough pipes terminates on the data for smooth and effectively smooth pipes at a definite
Reynolds number Rσ (σ ); if λ = f (Re, σ ) is the friction factor in a pipe of roughness
parameter σ then λ = f (Rσ (σ ), σ ) is the friction factor at the connection point. An
analytic formula giving Rσ (σ ) is obtained here for the first time.

Keywords: friction factor; sand-grain roughness; artificial rough pipe; Nikuradse’s data;
smooth and effectively smooth pipes

1. Introduction

Here we convert Nikuradse’s data into explicit analytic correlation formulas by smoothly
connecting different power laws with logistic dose functions. The complicated data set with
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multiple pieces of spline-like distribution is correlated by the roughness parameter σ in the
full range of Reynolds number Re. The correlation formulas are rational fractions of rational
fractions of power laws. The method leads to a tree-like structure with many branches that
we call a correlation tree. Curves relating friction factors to the Reynolds number for a fixed
value of the roughness ratio can be found from formulas on the correlation tree. Formulas
predicting the values of the Reynolds number and friction factor for which the effects of
roughness first appear are derived here for the first time. Many obscure features of turbulent
flow in rough pipes are embedded in the correlation tree. The flow of fluids in rough pipes
has been a topic of great interest to engineers for over a century. The landmark experiments
of Nikuradse [11] are the gold standard for work on this topic even today. Understanding
the fluid mechanics of turbulent flow in rough pipes is still subject to controversy because
mathematically rigorous approaches are not known and theoretical ideas must rest on the
interpretations of the data. The problem discussed in this paper is related to how flows in a
rough pipe connect to flows which are effectively smooth in the same rough pipe. We call
this the connection problem. Virtual Nikuradse is a consequence of our hypothesis that the
transition from rough flow to effectively smooth flow in the same rough pipe occurs at a
definite Reynolds number located on the bottom envelope of rough pipe data given in the
famous plot of experiments in six pipes with different values of sand-grain roughness given
by Nikuradse [11]. Other ideas about the nature of the connection are also discussed in this
paper.

Our particular interest is the connection of Nikuradse’s [11] data for flow in rough
pipes to the data for flow in smooth pipes presented by Nikuradse [10] and McKeon
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Figure 1. Friction factor vs. Reynolds number. The data from Nikuradse [10] for flow in smooth
pipes, the data from Nikuradse [11] for effectively smooth turbulent flow in rough pipes and data
the from the Princeton super pipe coincide. Data in the transition region is influenced strongly by
instabilities that depend on many parameters and is better described as data cloud rather than a data
curve.
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Figure 2. Data fit λ = f (Re, σ ) for laminar, transition and turbulent regimes in smooth and rough
pipes. The solid lines are calculated from Equation (1). When σ = σj , λ = f (Re, σ ) describes the
fit for Nikuradse’s data with six values of roughness. For nominally smooth pipe, the roughness ap-
proaches to zero and therefore λ = f (Re, σ ) reduces to λ = f (Re) in which the roughness parameter
does not play a role.

et al. [8] and for effectively smooth flow in the same rough pipes. The data sets from
real experiments are shown in Figure 1. In Figure 2 we have fit this data to linear splines
smoothly connected by the five-point rule of logistic dose curves (see Joseph and Yang [8]).
In this paper, we extend this method to convert Nikuradse’s [10, 11] data for smooth pipe
and artificial rough pipes with six values of roughness into a single formula (see Equation
(5)) relating the friction factor to the Reynolds number for all values of roughness. The
graph of Equation (5) is shown in Figure 3. We call this figure “Virtual Nikuradse” because
it predicts experiments for all values of the roughness parameter which have not yet been
done from the six values which have been done. Equation (5) extrapolates between and
beyond experimental data. The data between is well supported by Nikuradse’s six curves
but the data beyond has no experimental support as yet. The kind of correlation achieved
in Equation (5) seeks the most accurate representation of the data independent of any input
from theories arising from the researchers ideas about the underlying fluid mechanics. As
such, these correlations provide an objective metric against which observations and other
theoretical correlations may be applied. Our main hypothesis is that the data for flow in
rough pipes terminates on the data for smooth and effectively smooth pipes at a definite
Reynolds number function Rσ (σ ) where σ = a/k is the roughness ratio, a is the pipe
radius and k is the average depth of roughness. If λ = f (Re, σ ) is the friction factor in a
pipe of roughness σ then λ = f (Rσ (σ ), σ ) is the friction factor at the connection point.
Nikuradse [11] presented his data for six values of roughness σj (j = 1, 2, 3, 4, 5, 6)
= (15, 30.6, 60, 126, 252, 507). A formula giving Rσ (σ ) is obtained here for the first
time.
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Figure 3. Virtual Nikuradse. Correlations λ = f (Re, σ ) for values of σ are up to 105, computed
from Equation (5). Nikuradse’s [11] data for rough pipes and (1932) data for smooth pipe are included
for comparison. The solid green lines are the data fits shown in Figure 2. The dotted curves between
and beyond the data fits are virtual curves obtained from Equation (5) predicting the results of
experiments not yet done.

2. Turbulent flow in smooth and effectively smooth pipes

Joseph and Yang [8] showed that data for the friction factor versus Reynolds number
in turbulent flow in the smooth pipes studied by Nikuradse [10] coincide with data for
effectively smooth flows in rough pipes studied by Nikuradse [11] (see Figure 1).

Figure 1 suggests that the connection between rough and effectively smooth pipe data
occurs at definite Reynolds number. Unfortunately deductions from data involve value
judgments; it is not a science. Borrowing from mathematics where we can have a high
degree of comfort, we imagine that the data for rough pipes connects with the smooth pipe
data smoothly with a continuous first and discontinuous second derivative. It is not possible
to read the coordinates of these connections from experimental data. We admit that our
estimates of the connection values are not accurate but these estimates are all the better
because they involve a progression of six values.

In analyzing the effect of surface roughness on flow in pipes, the ratio of the roughness
dimension to the thickness of the viscous sublayer has long been accepted as the governing
factor. Thus, if the roughness elements are so small that the viscous sublayer enclosing
them is stable against the perturbation, the roughness will have no drag increasing effect.
This is called the “effectively smooth” case. On the other hand, if the size of the roughness
is so large as to disrupt the viscous sublayer completely, the surface resistance will then be
independent of the viscosity. This is called the case of fully developed roughness action.
Between these two extremes there exists an intermediate region in which only a fraction of
the roughness elements disturbs the viscous sublayer. Consequently, the resistance law in
this intermediate region depends upon both the roughness magnitude and the thickness of the
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viscous sublayer. In Figure 1, to the right, each pipe with a unique roughness has a constant
friction factor indicating that completely rough conditions have been reached, whereas to
the left all curves converge towards that for smooth or effectively smooth surfaces.

In Figure 2 we have displayed a data fit for the data displayed in Figure 1. These fits are
generated by fitting the data with logistic dose curves following procedures described in the
appendix. In the present case, the complicated multiple spline-like data sets are correlated
by the roughness parameter σ in the full ranges of Re for both smooth and rough pipes. All
the solid curves in Figure 2 are calculated from the single Equation (5). The virtual curves
generated from correlating the fits in Figure 2 are shown in Figure 3 and the methods used
to obtain the correlations are described in Section 5 and the appendix.

3. Colebrook and Moody

Colebrook [2] used the data from Colebrook and White [3] to develop a function which
gives a practical form for the transition curve between rough and smooth pipes which
agrees with the two extremes of roughness and gives values in very satisfactory agreement
with actual measurements on most forms of commercial piping and usual pipe surfaces.
The Colebrook correlations were used by Moody [9] to create the Moody diagram to be
used in computing the loss of head in clean new pipes and in closed conduits running
full with steady flow. Moody diagrams are collections of friction factor versus Reynolds
number curves for different values of commercial roughness. The variations of the fits of
λ versus Re in the Moody diagrams is monotonic; they do not exhibit dips and bellies of
Nikuradse data shown, for example in Figures 4 and 5. This difference is due to the fact
that commercial or natural roughness is different from controlled sand-grain roughness.

Shockling, Allen and Smits [13] studied roughness effects in turbulent pipe flows with
honed roughness. They showed that in the transitionally rough regime where the friction
factor depends on roughness height and Reynolds number λ = f (Re, σ ), the friction factor

Figure 4. Friction factor curves produced by the analytic model of Gioia and Chakraborty [4] (see
Figure 5).
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Figure 5. [After Gioia and Chakraborty (2006)] Nikuradse’s [11] data for the friction factor vs.
Reynolds number emphasizing the Blausius’ 1/4 law and Strickler’s σ−1/3 correlation at large Reynolds
numbers. Our processing of the Nikuradse’s data does not lead to Strickler’s correlation (see Equation
(5)) and it does not lead to the Blasius law (see Equation (4)).

for honed surfaces follows the Nikuradse [11] form with dips and bellies rather than the
monotonic relations seen in the Moody diagram.

Nikuradse’s [11] experiments measured the flow through uniformly roughened pipes
and found comparatively abrupt transition from “smooth” law at slow speeds to “rough” law
at high speeds. Other experimenters using natural surfaces, obtained results which can only
be explained by a much more gradual transition between the two resistance laws. Colebrook
and White [3] carried out systematical experiments for artificial pipes with five different
types of roughness, which were formed from various combinations of two sizes of sand
grain (0.035 cm and 0.35 cm diameters). They found that with non-uniform roughness, the
transition between two resistance laws is gradual, and in extreme cases so gradual that the
whole working range lies within the transition zone. The experiments of Colebrook and
White [3] closed the gap between Nikuradse’s artificial roughness, and roughness normally
found in natural pipes. Their results demonstrated that the nature of the effect of surface
roughness in the intermediate region depends as well on the geometrical characteristics
of the roughness pattern; i.e. the spacing between sand grains and the composition of
grain sizes. Bradshaw [1] noted that “. . . an unrigorous but plausible analysis suggests
that the concept of a critical roughness height, below which roughness does not affect a
turbulent wall flow, is erroneous.” They use the Oseen approximation to construct their
ad hoc argument. Their conclusion apparently is not applicable to sand-grain roughness in
Nikuradse’s experiments where the concept of effectively smooth flows in rough pipes is
completely supported by experiments (see Figure 1).

4. The work of Gioia and Chakraborty [4]

An impressive theoretical study of turbulent flow in rough pipes by Gioia and Chakraborty
[4] gives rise to curves with bellies and valleys (Figure 4) which resemble the shape of
the Nikuradse’s data (Figure 5). They use the phenomenological theory of Kolmogorov to
model the shear that a turbulent eddy imparts to a rough surface. However, their model does
not resemble the way that the friction factor for flow in rough pipes connects with the data
for effectively smooth flow in rough pipes (Figure 1); in fact, their model does not connect
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flow in rough pipes to effectively smooth flows in the same rough pipes. Their roughness
curves start in a cluster at one and the same point in the region of transition from laminar
to turbulent flow and then separate into curves with different roughness values which do
not connect to smooth flow or each other.

Goldenfeld [5] discussed the scaling of turbulent flow in rough pipes in the
frame of a theory of critical phenomenon. He constructs the form of a formula λ =
Re−1/4g(Re3/4(r/D)) with gundetermined but such that the correlation reduces to Strick-
ler’s on the left and Blausius’ on the right. When plotted in the reduced variables, the spread
of the six curves for turbulent flow in rough pipes are greatly reduced and a partial collapse
of the data is achieved.

Mehrafarin and Pourtolami [7] modified Goldenfeld’s [5] formula to take into account
effects associated with intermittency. They achieve a better collapse of data but their
correlation no longer reduces to Strickler’s on the left or Blausius’ on the right.

5. Construction of friction factor correlation for Nikuradse’s [10, 11] data for flow
in smooth and rough pipes

Joseph and Yang [8] have illustrated a simple sequential construction procedure for corre-
lating friction factor to Reynolds number in smooth pipes using logistic dose functions. In
this section, we introduce a much more complicated sequential construction procedure for
processing Nikuradse’s [10, 11] data for smooth and rough pipes. A correlation tree is used
in this procedure (Figure 6), which includes one chain on the left for flow in smooth pipes
and six chains on the right for flow in rough pipes with six values of roughness.
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Figure 6. Correlation tree for smooth and rough pipes. Pi and Pi,j are power laws, Fi and Fi,j are
rational fractions of power laws. Ri are branch points for smooth pipe and Ri,j are branch points
for rough pipes. At each branch point, two assembly member functions are merged into a rational
fraction of power laws by processing data with the logistic dose function algorithm. The chain on the
left is for smooth pipes and leads to a rational fraction correlation F4. The six chains on the right are
for rough pipes and lead to six rough pipe correlations F4,j (j = 1, 2, 3, 4, 5, 6). In the correlation
tree, λS = λS (Re) = F4 (Re) and λR = λR (Re, σ ) = F4,j

(
Re, σj

)
. These correlations are merged

into a single composite correlation λ = f (Re, σ ).
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In Figure 6, the power laws for rough pipes are Pi,j = ai,jRebi,j (i = 1, 2, 3, 4,
5; j = 1, 2, 3, 4, 5, 6). In the construction of our correlations, the prefactors ai,j and
exponents bi,j of power laws and the branch points Ri,j in the correlation tree for rough
pipes are all correlated by power law functions or rational fractions of power laws of
the roughness ratio σ and do not depend on j . The power law formulas obtained here
by processing the data for straight-line segments in log-log coordinates converts the
six data points in Nikuradse’s data into continuous functions of σ . These functions re-
duce to the original data at six values of σ . We may imagine that the range of these
functions extend well beyond the range of the six data points. These correlations al-
low us to introduce the explicit dependence of the final correlation on the roughness
ratio σ .

The correlation formula obtained from the correlation tree for smooth and rough pipes
is

λ = f (Re, σ ) = λS + λR − λS[
1 + (

Re
Rσ

)m5
]n5

= F4 + F4,j − F4[
1 + (

Re
R5,j

)m5
]n5

, (j = 1, 2, . . . , 6), (1)

where λS(Re) = F4(Re) is the friction factor correlation for smooth and effectively smooth
pipes and λR(Re, σ ) = F4,j (Re, σj ) is the correlation for rough pipes. This formula is
generated in the following sequence

Fi = Fi−1 + Pi+1 − Fi−1[
1 + (

Re
Ri

)si
]ti

(i = 1, 2, . . . , 4), F0 = P1, (2)

Fi,j = Pi+1,j + Fi−1,j − Pi+1,j[
1 + (

Re
Ri,j

)mi
]ni

(i = 1, 2, . . . , 4; j =1, 2, . . . , 6), F0,j = P1,j . (3)

where Ri , si , ti , mi , ni (i = 1, 2, 3, 4), ai , bi (i = 1, 2, 3, 4, 5) are all constants and ai,j , bi,j

and Ri,j are all power law functions or rational fractions of power laws of the roughness
ratio σ (see Tables A1 and A2 in Appendix).

The correlation

R5,j = 45.196502σ 1.2369807 + 1891 = Rσ (σ ) (4)

is very important. It correlates the six branch points where the flow in smooth pipes are
joined to six points for flow in rough pipes into a continuous power law function of σ with
a constant correlation term. This function predicts the Reynolds numbers on the smooth
pipe curve at which the effects of roughness commence between and beyond the six values
given in Nikuradse’s experiments. That is to say, Rσ (σ ) identifies the minimum Reynolds
number at which the roughness σ first appears. For any pipe flow with a given equivalent
sand-grain roughness σ and Reynolds number Re, the friction factor can be calculated
explicitly by Equation (1) for a wide and extended range of roughness and for all fluid-flow
regimes including laminar, transition and turbulent flows.

The final composite data fit (1) is shown by the heavier solid lines in Figure 2. This
formula gives the friction factor as a function of the Reynolds number and roughness ratio
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for Nikuradse’s [10, 11] data for smooth and rough pipes and the Princeton data for smooth
pipes. Equation (1) is valid for continuous σ and R5,j does not depend on j . The solid
lines in Figure 2 show the fits of λ versus Re for flows in smooth pipes and in rough pipes
with six different values of roughness. Given a smooth pipe or one of roughness parameter
σ , the friction factor can be explicitly calculated from Equation (1). The friction factor λ

reduces to λS for smooth pipe and λR for rough pipes. For continuous roughness σ > 15,
Equation (1) can sweep the huge area between the curve for σ = 15 and the one for smooth
pipe.

6. Conversion of Nikuradse’s and Princeton experimental data to a continuous
family of virtual curves between and beyond the original data as described by
one explicit formula

Our main results are presented in the previous section and this section. Figure 3 shows the
curves for virtual experiments that arise from correlation of data leading to the long but
explicit Equation (5) which miraculously describes Nikuradse’s real experiments and the
virtual extension.

Substituting all the data in Tables A1 and A2 into Equations (2), (3) first and then
Equation (1), we can obtain the explicit composite correlation for λ as a function of
σ and Re for laminar, transition and turbulent flow in smooth and sand-grain rough
pipes.

λ = f (Re, σ ) = λS + λR − λS[
1 + (

Re
Rσ

)m5
]n5

= λS + λR − λS[
1 + (

Re
45.196502σ 1.2369807+1891

)−5]0.5
, (5)

where λS and λR are given by Equations (6) and (7). The Reynolds numbers R5,j are the
six branch points where λS and λR are joined.

We can also write out λS and λR explicitly. For flow in smooth pipes, λS = λS (Re) =
F4 (Re) is an explicit rational power law function of Re given by

λS = F4 (Re) = F3 + P5 − F3[
1 +

(
Re
R4

)s4
]t4

= F3 + 0.0753Re−0.136 − F3[
1 + (

Re
2000000

)−2
]0.5

, (6)

where F3 = F2 + P4 − F2[
1 +

(
Re
R3

)s3
]t3

= F2 + 0.1537Re−0.185 − F2[
1 + (

Re
70000

)−5
]0.5

,

F2 = F1 + P3 − F1[
1 +

(
Re
R2

)s2
]t2

= F1 + 0.3164Re−0.25 − F1[
1 + (

Re
3810

)−15
]0.5

,

F1 = F0 + P2 − F0[
1 +

(
Re
R1

)s1
]t1

= F0 + 0.000083Re0.75 − F0[
1 + (

Re
2320

)−50
]0.5

,
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F0 = P1 = 64

Re
.

For flow in rough pipes, we have

λR = F4,j (Re, σj ) = P5,j + F3,j − P5,j[
1 + (

Re
R4,j

)m4
]n4

= P5,j + F3,j − P5,j[
1 + (

Re
783.39696σ 0.75245644

)−5]0.5
, (7)

where P5,j =
(

(0.92820419σ 0.03569244 − 1) − (
0.00255391σ 0.8353877 − 0.022

)
[
1 + (

σ
93

)−50
]0.5

+ (
0.00255391σ 0.8353877 − 0.022

)) · Re(7.3482780σ−0.96433953−0.2032),

F3,j = P4,j + F2,j − P4,j[
1 +

(
Re
R3,j

)m3
]n3

= P4,j + F2,j − P4,j[
1 + (

Re
406.33954σ 0.99543306

)−5
]0.5

,

P4,j = (
0.01105244σ 0.23275646

)
Re(0.62935712σ−0.28022284−0.191),

F2,j = P3,j + F1,j − P3,j[
1 +

(
Re
R2,j

)m2
]n2

= P3,j + F1,j − P3,j[
1 + (

Re
1451.4594σ 1.0337774

)−5
]0.5

,

P3,j = (
0.02166401σ−0.30702955 + 0.0053

)
Re(0.26827956σ−0.28852025+0.015),

F1,j = P2,j + F0,j − P2,j[
1 +

(
Re
R1,j

)m1
]n1

= P2,j + F0,j − P2,j[
1 + (

Re
295530.05σ 0.45435343

)−2
]0.5

,

P2,j = (
0.18954211σ−0.51003100 + 0.011

)
Re0.002,

F0,j = P1,j = (
0.17805185σ−0.46785053 + 0.0098

)
Re0

= 0.17805185σ−0.46785053 + 0.0098.
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7. Comparison with Strickler’s correlation in completely rough pipe flow

Strickler’s correlation for λ at high Re is given by λ ∼ σ−1/3 (see Figure 5). We have noted
that the points in the region of high Re, where the friction factor is independent of Re,
do not fit Strickler’s 1/3 law. The coordinates in Figure 5 are logarithmic and a very small
deviation from Strickler’s straight line can cause huge differences in the value of λ. Our
correlation (5) reduces to λ ≈ 0.17805185σ−0.46785053 + 0.0098 when Re > 1000000.

8. Discussion and prediction

The correlations derived in this paper allows one to analyze and predict the properties of fric-
tion factor in all fluid-flow regimes. Equation (5) shows that for any roughness σ , λ depends
on Re alone when Re is smaller than its threshold value Rσ = 45.196502σ 1.2369807 + 1891
but it depends on both Re and σ when Re is greater than Rσ . Rσ is the locus of points
where the curves for smooth and rough pipes are joined by a logistic dose function.
Rσ (σ ) identifies the minimum Reynolds number at which the roughness σ first appears.
Joseph and Yang [8] have noted that the transition from smooth to rough pipe flow in their
data fit seems to occur near a value of 13.6 × 106 in agreement with a similar, earlier
and independent analysis of McKeon et al. [8]. From Equation (4) we may compute that
when

Re = 13.6 × 106, σ = a/k = 2.68 × 104. (8)

For any pipe flow with a given roughness σ and Reynolds number Re, the friction factor
can be calculated explicitly by Equation (5) for an extended range of roughness and for all
fluid-flow regimes including laminar, transition and turbulent flows.

9. Summary and conclusion

Power law representations of physical data are ubiquitous in science and in fluid mechanics.
Very complicated data may be represented by piecewise power law coverings supplemented
by fitting transition regions with logistic dose function algorithms. In this way we go from
data to formulas.

Discrete data is converted by correlations into formulas, which allow one to fill gaps
in the data and to greatly extend the range of data for which prediction can be made. In
the case of Nikuradse’s data for laminar, transition and turbulent flow in pipes, we have
produced formulas from the data which track the data, fill in the gaps and greatly extend
the range of conditions to which friction factor predictions can be given. For example the
roughness inception function predicts the Reynolds number in very smooth pipes at which
the effects of roughness first appear.

Our method has produced formulas which track, interpolate and extend the data. In the
case of flow in pipes, we found formulas generated sequentially in branches with a tree-like
structure that we called a correlation tree. The formulas that we obtained are algebraic
and easily programmed. These formulas, produced from data, could never be derived by
mathematical analysis and could not now be produced by numerical analysis.

It is necessary to stress that some uncertainties cannot be avoided during the construction
of our correlation formula and the formula (Equation (5)) is not optimized. The quality
of our correlation formula is judged by the fitting error of the original data obtained in
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experiments. In the case of flow in smooth pipes considered by Joseph and Yang [8], the
fitting errors were evaluated and compared with the errors generated by other formulas.
In the present case, there are no other papers which attempt to do what we have done,
so comparisons are not possible. Here we judge the quality of the fits from the graphical
displays; a more precise evaluation of the errors can be done but it would be very time
consuming and of limited value.

In principle, this method is easy to use, and the computation is only related to two
forms of basic functions, logistic dose function and power law. In practice, good fits are
obtained by trial and error in adjusting the number of intervals covered by the splines and
by adjusting the five parameters of the logistic dose curve. It is not possible to get perfect
fits even to perfect unscattered data if for no other reason than five points cannot give a
perfectly accurate representation of the continuous data connecting power laws.

We have developed correlations of λ versus Re for flows in smooth and rough pipes
from Nikuradse’s [10, 11] data for smooth and rough pipes and the Princeton data for
smooth pipes. We found one formula, Equation (5), as a composition of power laws, which
give the friction factor versus Reynolds number as a family of curves with a continuous
dependence on the roughness ratio σ in all flow regimes.

For the fully rough wall turbulence at high Reynolds numbers, we have shown that
Strickler’s one-third scaling does not accurately describe Nikuradse’s data. Instead, our
equation λ = 0.17805185σ−0.46785053 + 0.0098 predicts the friction factor as a function of
roughness parameter σ in the high Reynolds number region where λ is independent of Re.
Our formula (4) for smooth flow in nominally smooth and rough pipes does not fit the
Blasius 1/4 law or the high Reynolds number Prandtl law over the whole range of data.

We must remember, the roughness presented in this paper is the equivalent sand-grain
roughness, and the natural roughness must be expressed in terms of the sand-grain roughness
which would result in the same friction factor. This is not easily achieved; in fact, the only
way it can be done is by comparison of the behavior of a naturally rough pipe with a
sand-roughened pipe. Moody [9] has made such comparisons, and his widely used chart
(Figure 2 of Moody [9]) gives the absolute and relative sand-grain roughness of a variety
of pipe-wall materials and can be used for reference.

The procedure described in this paper may be easily implemented in the age of computers
and it may find many applications in science and engineering.
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Appendix: Processing of Nikuradse’s [10, 11] data for constructing friction factor
correlations for flow in smooth and artificial rough pipes

(1) Construction of correlation trees using the logistic dose function algorithm
(LDFA)

The logistic function is one of the oldest growth functions and a best candidate for fitting
sigmoidal (also known as “logistic”) curves. In life sciences, logistic dose-response curves
are widely used to fit forward or backward S-shaped data sets with two plateau regions and
a transition region. In a companion paper of Joseph and Yang [8], we have showed how this
method could be generalized to the case in which a power law and a rational fraction of
power laws separated by a transition region could be assembled into a smooth function. To
construct these functions, we first identify the transition region from one to the other. Then,
we lay down the tangent of each function at the points of transition; there is a tangent to
the function on the left and a tangent to the function on the right side. We are working this
for the cases in which the two tangents intersect; in this the data in the transition region can
be processed in the wedge formed by the two tangents. When we work in log-log planes,
as is the case here, the tangents are power laws and can be fit smoothly as logistic dose
curves.

We now shall show how to create a logistic dose function f (x) for two arbitrary
functions fL (x) and fR (x)

y = f (x) = fL (x) + fR (x) − fL (x)

G (x)
= fL (x) + fR(x) − fL(x)

[1 + (x/xc)−m]n
, (A.1)

where m and n are positive constants, xc is the critical value of the independent variable (xc

is also called “branch point” or “connection point” in a correlation tree), fL (x) and fR (x)
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Figure A1. Three typical correlation trees leading to a rational fraction of five power laws Pi(i = 1,
2, 3, 4, 5). The construction of correlation starts from the top to the bottom.

can be power laws, rational fractions of power laws or other types of continuous functions.
The logistic function f (x) in Equation (A.1) describes a smooth connection of fL (x) and
fR (x). The shape of f (x) is related to the three constants m, n and xc.

There are three key steps for assembling logistic dose functions; these are (1) the
selection of two appropriate assembly members fL (x) and fR (x), the identification of the
transition region and the tangent extension of the assembly members, (2) the estimate of the
threshold value xc which identifies the point of intersection of fL (x) and fR (x), and (3) the
five-point sharpness control for fitting the transition between the two assembly members.
A main idea in the logistic dose-curve fitting is to force the denominator function G (x) in
Equation (2) to move towards +∞ or 1 rapidly on different sides of the threshold value xc

once the independent variable x deviates xc, so that the logistic dose function can approach
to fL (x) on the left side and fR (x) on the right side of xc.

In the present application, a logistic dose curve is always a rational fraction of power
laws. If the number of power laws is M , then the number of rational fractions is M − 1.
The logistic dose-fitting curve of two power laws gives rise to a rational function of power
laws. The logistic-fitting curve of a power law and a rational fraction of power laws leads
to a rational fraction of a rational fraction of power laws and so on. To simplify the writing,
all orders of rational fractions are called rational fractions. In this appendix, we use five
power laws and four rational fractions for smooth pipes and each of the six rough pipes
used in Nikuradse’s [10, 11] data. These elements are assembled sequentially as is shown
in Figure A1. The construction of a correlation tree is within a hierarchy system and starts
from branches to the trunk of the tree. In this system, element power laws may enter at
different levels for the assembly. The construction of the tree could be unidirectional, from
left to right or from right to left, or more complicated and not unidirectional. Three typical
tree structures are shown in Figure A1.

Branches of the correlation tree

Chords or tangents can be used to approximate any curve as in the construction of a circle
as a limit of interior or exterior polygons. The chords and tangents are straight lines in
log-log coordinates and power laws in regular coordinates. The application of these spline-
like approximations is especially powerful for the representation of physical phenomena
where log laws are so ubiquitous. Straight lines approximate the response curves in log-
log coordinates piecewise, and each straight line represents a power law. The points of
intersections of these straight lines are the locations where the branches of the tree are
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Figure A2. Nikuradse’s [10] and Princeton data for flow in smooth and effectively smooth pipes.
Five branches of power laws are identified in the graph. They are Pi (i = 1, 2, 3, 4, 5) in Equation
(A.2).

created. Each point of intersection is a branch point of the tree. The transition of the data
from one branch to another lies in the wedge defined at the branch point. Each branch point
identifies two adjacent power laws or rational fractions of power laws.

The two positive constants m and n in Equation (A.1) can be tuned to fit transition
data near the branch points. When m is large, the transition is sharp. When m is small, the
transition is smooth There is certain flexibility in selection of the points where the transition

4F

R4

 (R )Sλ 4e F e =     (R )

F P3 5

3R

F2 P4

PF 31

R2

P P1 2

1R

Figure A3. Correlation tree describing Nikuradse’s and Princeton data for flow in smooth and
effectively smooth pipes. The tree leads to the friction factor correlation λS = F4. The prefactors ai ,
exponents bi of five power laws, the branch points Ri and the sharpness control parameters si and ti
are listed in Table A1.
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Figure A4. Sequential construction of the correlation tree for smooth pipes. In each of the four
panels the straight lines are power laws fit to the data at five places. In panel (a), two power laws P1

and P2 are composed into a rational fraction F1. In panel (b), P3 is composed with F1 to get F2. In
panel (c), P4 is composed with F2 to get F3. In panel (d), P5 is composed with F3 to get F4 which gives
the final formula giving friction factors versus Reynolds numbers in smooth pipes (i.e. λS = F4).

from one power law or rational fraction of power laws begins. If you change the position of
these points you will change the slope of the tangent there. The parameter m may be used to
move these points. This type of tuning is needed when m is relatively small. The coefficient
n has only a weak influence on sharpness and it is often kept constant in the construction.
The sharpness control parameters m and n are bundled together with the position of the
branch point xc.

Table A1. Coefficients of power laws Pi = aiRebi (i = 1, 2, 3, 4, 5) for fitting λ vs. Re correlations
and branch points in the correlation tree for smooth pipes. Ri (i = 1, 2, 3, 4) are the Reynolds
numbers at the points of intersection of the power laws at the branch points shown in Figures 6 and
A3. si and ti (i = 1, 2, 3, 4) are sharpness control parameters for flow in smooth pipes.

I 1 2 3 4 5

ai 64 0.000083 0.3164 0.1537 0.0753
bi −1 0.75 −0.25 −0.185 −0.136
si −50 −15 −5 −2 —
ti 0.5 0.5 0.5 0.5 —
Ri 2320 3810 70,000 2,000,000 —
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Rules for constructing the correlation tree

(1) Two adjacent power laws can be assembled into a rational fraction of power laws. (2) A
rational fraction of power laws assembled with an adjacent power law gives rise to a new
rational fraction of power laws, and the number of power laws is increased by one. (3) The
direction of the assembly of adjacent members, from left to right, from right to left, or from
side to middle, is not important. The direction of assembling members does give rise to
different trees as shown in Figure A1 but the final fitting curves are almost the same, even
though the final expression of fitting curve may look very different.

The construction of the trees shown in Figure A1 starts from branches to the trunk of the
tree: (1) left to right, (2) side to middle and (3) right to left. λS , λ′

S and λ"S are correlation
formulas for the friction factor in laminar, transition and turbulent flow in smooth pipes.
Pi (i = 1, 2, . . . , 5) are power laws. Fi , F

′
i and F

′′
i (i = 1, 2, . . . , 4) are rational fractions

of power laws. The sharpness control parameters m and n are the same on each point of
intersection in all the three tree structures.

The logistic dose function f (x) cannot pass through any points exactly on the two
assembly member functions fL (x) and fR (x) except the point of intersection. In most
cases of smooth transitions, modifications of assembly members may be necessary so that
the logistic dose function of the modified assembly member functions can best fit the data
points on the transition segment. When the assembly member functions are power laws, the
prefactors and exponents can be easily modified. The point of intersection of the two power
laws must be located on the trend of the smooth transition region, so that the logistic dose
curve can automatically pass through that point. The details of modifications depend upon
the distribution of data points in the whole domain. An example of constructing a logistic
dose curve for two power laws is illustrated in Joseph and Yang [8].

(2) Correlation of data for friction factors vs. Reynolds number in smooth and
rough pipes

Smooth pipes

The Princeton data presented by McKeon et al. [8] includes a wide range of Reynolds
numbers from 3.131 × 104 to 3.554 × 107 and agrees well with Nikuradse’s [10, 11] data

4, jR

4, jF

5, jP F3, j

F

F2, jP4, j

3, jR

R2, j

3, jP 1, j

1, j

P
R

2, j P1, j

 (R , σ)eRλ e j4, jF =       (R , σ )

Figure A5. The correlation trees for λ vs. Re in each of the six rough pipes [j = 1, 2, 3, 4, 5, 6]
in Nikuradse’s experiments. There are six final correlations F4,j , 24 interim rational fractions and 30
power laws for fitting the data and listed in Table A2.
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ã

i,
j
,b̃

i,
j

an
d

R̃
i,
j

ar
e

co
rr

ec
ti

on
s

of
th

e
pr

ef
ac

to
rs

a
i,
j
,t

he
ex

po
ne

nt
s
b

i,
j

an
d

th
e

br
an

ch
po

in
ts

R
i,
j
,r

es
pe

ct
iv

el
y

(a
ls

o
se

e
Fi

gu
re

s
A

7,
A

8
an

d
A

9)
.

j
1

2
3

4
5

6
i

m
i

n
i

σ
j

15
30

.6
60

12
6

25
2

50
7

1
2

0.
5

a
i,
j

0.
05

99
6

0.
04

57
9

0.
03

59
5

0.
02

83
1

0.
02

32
4

0.
01

94
5

ã
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Figure A6. The construction of λ vs. Re correlations in rough pipes using Nikuradse’s data for six
values of the roughness ratio σ . The dotted line is the correlation for smooth pipe, and the heavier
solid lines are the correlations for rough pipes.

for smooth and effectively smooth pipes. Since the largest Reynolds number in Nikuradse’s
data is only 3.23 × 106, the Princeton data may be considered as an excellent extension of
Nikuradse’s [10] data for flow in smooth pipes.

The smooth pipe data is enormously important for the description of turbulent flow
in rough pipes. The idea pursued here is that the smooth pipe data is an envelope for the
initiation of effects of roughness. The effects of roughness for the friction factor in a pipe
of fixed roughness is not felt for Reynolds numbers smaller than those in a smooth pipe and
they begin to be felt at a critical Reynolds number at a point on the friction factor curve for
smooth pipes.

Five element power laws Pi were chosen for fitting the λ vs. Re correlations of Niku-
radse’s and Princeton data for smooth and effectively smooth pipes. We use one power law
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for fitting the data in laminar regime and another for transition regime. To best represent
the data in turbulent regime, in which roughnesses start to be effective, we choose three
power laws for Reynolds number ranging from 3.81 × 103 to 3.55 × 107. The five power
laws, which were chosen to construct the λ vs. Re correlation for flow in smooth pipes, are
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σ for the power law coefficients ai,j (see Table A2). The five power law functions are: (1)
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P 1: λ = 64/Re,

P2: λ = 8.3 × 10−5Re0.75,

P3: λ = 0.3164Re−0.25,

P4: λ = 0.1537Re−0.185,

P5: λ = 0.0753Re−0.136,

(A.2)

respectively (see Figure A2). The chain for the sequential construction of λ vs. Re corre-
lation for smooth pipes is shown in Figure A3. The curve which emerges after processing
power laws with the logistic dose function algorithm is shown in panel (d) of Figure A4.

We have compared the three rational fractions F4, F
′
4 and F "

4 shown in Figure 1, which are
corresponding to the power laws λ = 64/Re, λ = 8.3 × 10−5Re0.75, λ = 0.3164Re−0.25,
λ = 0.1537Re−0.185 and λ = 0.0753Re−0.136. The results indicate that the correlation tree
for flow in smooth pipes exhibited in Figure A3 is largely independent of the way that
the branches of the tree are assembled. The power laws coefficients, branch points and
sharpness-control parameters for the smooth pipe correlation are shown in Table A1.

Rough pipes

Nikuradse [11] is responsible for the most comprehensive studies of turbulent flow in pipes
of well-defined roughness, prepared by cementing sand grains to the inside of the walls.
The relative roughness is defined as r = k/a, where k is the average depth of roughness
and a is the radius of the pipe. The reciprocal of the relative roughness, σ = 1/r , is often
used as the dimensionless parameter to represent roughness. Nikuradse (1933) presented
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0.26827956σ−0.28852025; (4) b̃4,j = 0.62935712σ−0.28022284; (5) b̃5,j = 7.3482780σ−0.96433953.
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his rough pipe data for six values of the roughness

σj [j = 1, 2, . . . , 6] = [15, 30.6, 60, 126, 252, 507]. (A.4)

The structure of the correlation tree for rough pipes is shown in Figure A5.
Figures A7, A8 and A9 show that ai,j , bi,j , and Ri,j are power law functions or rational

fractions of power laws of the roughness ratio σ defined in Table A2 and do not depend on
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Figure A10. The merge of the final correlations for smooth pipe and rough pipes with six values of
roughnesses. λS and λR are merged to be λ = f (Re, σ ) for “Virtual Nikuradse”.
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j . The power law formulas obtained here by processing the data for straight lines in log-log
coordinates converts the six data points in Nikuradse’s [11] data into continuous functions
of σ . These functions reduce to the original data at six discrete points. We may imagine
that the range of these functions extend well beyond the range of the six data points. These
correlations allow us to introduce the explicit dependence of the final correlation on the
roughness ratio σ . These power law based functions are listed in Table A3.

Joining correlation curves for flows in smooth and rough pipes

Using the correlations derived in above sections, we can merge the two final correlations
for smooth and rough pipes and join them together at Re = R5,j to get the final formula
λ = f (Re, σ ) for λ vs. Re correlations in all fluid flow regimes. The correlation tree for
this merge is shown in Figure 6. The merge procedures for the rough pipes with six values
of roughnesses are plotted in Figure A10.

The correlation formula for rough pipes is

λ = f (Re, σ ) = λS + λR − λS[
1 + (

Re

Rσ

(
σ

))m5
]n5

= F4 + F4,j − F4[
1 + (

Re
R5,j

)m5
]n5

, (j = 1, 2, . . . , 6),

(A.5)

This formula is generated in the following sequence

Fi = Fi−1 + Pi+1 − Fi−1[
1 +

(
Re
Ri

)si
]ti

(i = 1, 2, . . . , 4) , F0 = P1,

Fi,j = Pi+1,j + Fi−1,j − Pi+1,j[
1 +

(
Re
Ri,j

)mi
]ni

(i = 1, 2, . . . , 4; j = 1, 2, . . . , 6) , F0,j = P1,j .

where Ri , si , ti , mi , ni (i = 1, 2, 3, 4), ai , bi (i = 1, 2, 3, 4, 5) are all constants and ai,j ,
bi,j and Ri,j are all power law functions or rational fraction of power laws of the roughness
ratio σ (see Table A3).

The final composite correlation (A.5) is shown by the heavier solid lines in Figure 2.
This formula gives the friction factor as a function of the Reynolds number and roughness
ratio for Nikuradse’s data for smooth and rough pipes and the Princeton data for smooth
pipes.


