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Abstract

In this paper we study the lift-off of a single circular particle in an Oldroyd-B fluid by

two-dimensional direct numerical simulation. A heavy particle, placed on the bottom of

the channel, is driven forward by a plane Poiseuille flow. At a certain critical shear

Reynolds number the buoyant weight of the particle just balances the upward thrust from

the hydrodynamic force. As the Reynolds number is increased beyond the critical value,

the particle attains an equilibrium position away from the wall. The aim of the calculation

is to study the critical condition of lift-off. A correlation for the critical condition of lift-

off is obtained assuming a surface roughness (or the particle separation from the wall) of

0.001d. It is seen that the fluid elasticity reduces the critical shear Reynolds number for

lift-off. The effect of the gap size between the particle and the wall, on the lift force, is

also studied. The lift force on the particle is seen to be singular as the gap size approaches

zero. We also investigate the presence of multiple steady equilibrium positions, so far

observed only for Newtonian fluids, when the Reynolds number is greater than the

critical value. We find that multiple equilibrium positions are observed even in Oldroyd-

B fluids. This is due to the presence of two turning points of the equilibrium solution. The

location of the turning point is shifted due to the elasticity of the fluid as compared to the

Newtonian results.

________________________________________________________________________

1. Introduction
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Lift on a particle plays a central role in several applications e.g. in the oil industry we

can consider the removal of drill cuttings in horizontal drill holes and sand transport in

fractured reservoirs. A polymer solution is often used in these applications. Other

problems include the cleaning of particles from surfaces, fines mobilization in porous

media etc. The theory of lift for these particle applications is undernourished and in most

simulators no lift forces are modeled. A force experienced by a particle moving through a

fluid with circulation (or shearing motion for a viscous fluid) shall be referred to as the

lift force in the present work.

The problem of inertial lift on a moving sphere near a plane wall in shear flow of a

Newtonian fluid has been analyzed as a perturbation of Stokes flow with inertia by

Leighton & Acrivos (1985), Cherukat & McLaughlin (1994) and Krishnan & Leighton

(1995). These studies lead to specific and useful analytic results expressed in terms of the

translational and rotational velocities of the sphere and the shear-rate.

The lift force on a sphere in a shear flow of a second-order fluid was studied by Hu &

Joseph (1999). Their analysis is valid for slow and slowly varying flows. The sphere was

allowed to rotate and translate. They found that, due to the normal stress effect, the flow

gives rise to a positive elastic lift force on the sphere when the gap between the sphere

and the wall is small. They concluded that smaller particles would be easier to suspend

due to the elastic lift in contrast to the inertial lift, which does not suspend small particles.

The lift force was found to be singular when the minimum gap between the sphere and

the wall approaches zero.

Direct two-dimensional simulations of the motion of circular particles in wall

bounded Couette and Poiseuille flows of a Newtonian fluid was done by Feng, Hu &

Joseph (1994). Feng, Huang & Joseph (1995) numerically studied the lift force on an

elliptic particle in pressure driven flows of Newtonian fluids. Numerical investigation of

the motion of circular particles in Couette and Poiseuille flows of an Oldroyd-B fluid was
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done by Huang, Feng, Hu & Joseph (1997). Zhu (2000) studied the lift-off of particles

from the bottom of a horizontal channel by simple shear (Couette) flow.

N. Patankar, Huang, Ko & Joseph (2001) studied the lift-off of a single particle in

Newtonian and viscoelastic fluids by direct numerical simulation. They considered a

particle heavier than the fluid driven forward on the bottom of a channel by a plane

Poiseuille flow. After a certain critical Reynolds number the particle rises from the wall

to an equilibrium height at which the buoyant weight just balances the upward thrust

from the hydrodynamic force. A correlation for the critical shear Reynolds number for

lift-off was obtained for a particle in a Newtonian fluid. In this paper we study the critical

condition of lift-off of a circular particle close to the wall in a plane Poiseuille flow of an

Oldroyd-B fluid. The results are compared to the corresponding correlation for the

Newtonian case reported by N. Patankar et al. (2001). Beyond the critical Reynolds

number the particle attains an equilibrium height away from the wall. We also investigate

the presence of multiple equilibrium positions of the particle in an Oldroyd-B fluid.

2. Governing equations and the parameters of the problem

The two-dimensional computational domain for our simulations is shown in figure 1.

We perform simulations in a periodic domain. The applied pressure gradient is given by

p− .
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Figure 1. Computational domain for the lift-off of a single particle in plane Poiseuille

flow.
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where P(x,t) is the pressure, ρf is the fluid density, g = -gey is the acceleration due to

gravity, x is the position vector at a point and ex and ey are the unit vectors in the x– and

y-  directions, respectively. We solve for the ‘dynamic’ pressure p in our simulations. The

external pressure gradient term then appears as a body force like term in the fluid and

particle equations.

During simulations, the particle is free to rotate and translate in the axial (x-)

direction. The height, h, of the particle center from the bottom wall of the channel is fixed

so that it does not translate in the transverse direction. The gap δ between the particle and

the bottom wall is 2d/h − . There is no external body force in the axial direction and no

external torque is applied. The particle is initially at rest and eventually reaches a state of

steady motion. At steady state the particle translates in the axial direction at a constant

velocity and rotates at a constant angular velocity. At the prescribed height, these

velocities are such that there is no net hydrodynamic drag (force along the axial direction)

or torque but the particle can experience a hydrodynamic lift force.
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The governing equations in non-dimensional form are:
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where u(x,t) is the fluid velocity, ρp is the particle density, T is the extra-stress tensor,

A = (∇u + ∇uT )  is two times the deformation-rate tensor, λ1 and λ2 are the constant

relaxation and retardation times, respectively, Up is the translational velocity of the

particle in the axial direction, ΩΩΩΩp is the angular velocity of the particle, X is the

coordinate of the center of mass of the particle and we consider circular particles of

diameter d.  The non-dimensional parameters of the problem are listed below. We assume

that gravity acts along the –ve y–direction. Note that only the axial and angular motion

equations of the particle are solved in our simulations since the particle height is fixed.

Therefore, the y-momentum equation for particle motion is not represented in equation 2.

Equation 2 and the corresponding initial and boundary conditions define an initial

boundary value problem that can be solved by direct numerical simulation.

The steady state translational and angular velocities as well as the hydrodynamic lift

force on a particle freely rotating and translating (along the axial direction), at a

prescribed height, are obtained from the solution. These values are independent of the

particle density used in our simulations (note that the particle acceleration term which has

the particle density as its coefficient drops out at steady state, see equation 2). Only the

transient solution, which is not the focus of this paper, depends on the choice of the
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particle density used in the simulations but the final steady state is the same. A

hydrodynamic lift force L, obtained from the numerical solution, would balance the

buoyant weight of a particle of density ρp given by

gV
Lρρ
p

fp += , (3)

where Vp is the volume per unit length of the particle. The prescribed height can then be

considered as an equilibrium position of a particle of density ρp given by equation 3.

Therefore, when we present the results we interpret the lift force L to be equal to the

buoyant weight of this particle (equation 3) and the prescribed height as its equilibrium

height.

The parameters in this problem at steady state are (N. Patankar et al. 2001):
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where De is the Deborah number and a dimensionless description of the governing

equations is constructed by introducing the following scales: the particle size d for length,

V for velocity, d/V for time, ηV/d for stress and pressure and V/d for angular velocity of

the particle where η is the viscosity of the fluid. We have chosen dγV w�= , where wγ�  is
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the shear-rate at the wall (in the absence of the particle) as shown in figure 1. The

elasticity of the fluid increases with the elasticity number whereas λ2/λ1 = 1 corresponds

to a Newtonian fluid and λ2/λ1 = 0 corresponds to a highly elastic Maxwell fluid.

The channel length l is chosen large enough so that the solution is only weakly

dependent on its value. An Arbitrary Lagrangian-Eulerian (ALE) moving mesh technique

with the EVSS (Elastic-Viscous-Stress-Split) scheme for the Oldroyd-B constitutive

model is used to solve the governing equations. More details of this numerical scheme are

given by Hu (1996), Hu & N. Patankar (2001) and Hu, N. Patankar & Zhu (2001).

The dimensionless lift on the particle depends on the parameters listed above:
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3. Results and discussion

3(a). Critical condition of lift-off

Krishnan & Leighton (1995) calculated the lift force on a smooth sphere rotating and

translating in a simple shear flow in contact with a rigid wall. Hu & Joseph (1999)

extended their analysis to second-order fluids. Their results were valid at low Reynolds

numbers. The non-dimensional lift RG for a particle in an Oldroyd-B fluid is given by (Hu

& Joseph 1999)
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The above expression is valid in the limit of slow and slowly varying flows so that the

second-order fluid expansion is valid.

For a freely translating and rotating sphere, RU and RΩ are functions of R and the gap

size. The above calculations were performed for semi-infinite domains. Hence W/d is not

a parameter of the problem. Equation 5 is in agreement with the functional form in

equation 4.

The expression for the Newtonian case is obtained by substituting E = 0 in equation 5.

The resulting expression is valid in the limit of zero gap size. A heavy particle freely

translating and rotating in contact with a plane wall in simple shear flow of a Newtonian

fluid is lifted from the wall and suspended in the fluid if the shear Reynolds number R is

greater than a critical value. Beyond the critical shear Reynolds number the particle rises

from the wall to an equilibrium height at which the buoyant weight just balances the

upward thrust from the hydrodynamic force. In a Newtonian fluid the case of zero

separation distance corresponds to an infinite drag force due to the logarithmic

singularities in the lubrication equations for drag and torque. This results in zero

translational and rotational velocities of the particle (Krishnan & Leighton 1995). For a

particle in a viscoelastic fluid the elastic component of the lift force is also singular when

the gap between the sphere and the wall approaches zero. This is an important qualitative

feature that differentiates the lift force in a Newtonian and a viscoelastic fluid.

In practical applications the particle acquires some finite separation distance from the

wall due to the presence of surface roughness. This eliminates the lubrication singularity

in a Newtonian fluid (Krishnan & Leighton 1995, Smart, Beimfohr & Leighton 1993).

The additional non-hydrodynamic frictional force due to the surface roughness does not

significantly affect the lift force on the particle within a reasonable range of the

coefficient of friction for particles in a Newtonian fluid (Krishnan & Leighton 1995).

N. Patankar et al. (2001) investigated the lift-off of a circular particle in a plane

Poiseuille flow of a Newtonian fluid. Their results were not restricted to low Reynolds
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numbers. They performed two-dimensional numerical simulations where the gap between

the particle and the wall cannot be zero (Hu & N. Patankar 2001). Following Krishnan &

Leighton (1995) the minimum gap size (or surface roughness) was set to 0.001d. The

additional frictional force was assumed to be zero. The critical Reynolds number was

defined as the minimum shear Reynolds number required to lift a particle to an

equilibrium height greater than 0.501d. N. Patankar et al. (2001) reported that there was

no effect of the channel width on the critical shear Reynolds number for W/d > 12. They

obtained a correlation for RG as a function of R. Here we present results for a particle in

an Oldroyd-B fluid. To facilitate comparison we use W/d = 12 and ε = 0.001 in our

simulations.

Figures 1a and 1b show the plot of RG vs. the critical shear Reynolds number for lift-

off at different values of the elasticity number and λ2/λ1, respectively. It is seen that

larger R is required to lift a heavier particle. The fluid elasticity enhances the lift on the

particle. The data from the simulations can be represented by a power law equation given

by RG = aRn, where the values of a and n are given in the figures. We observe that the

slopes, n, for a Newtonian and an Oldroyd-B fluid are different. The prefactor a also

changes as E and λ2/λ1 changes. This is in agreement with equation 4.

In a three-dimensional low Reynolds number case, equation 5 predicts that the effect

of elasticity is represented by E(1-λ2/λ1). Figure 2a shows the plot of a vs. E(1-λ2/λ1). We

observe that a varies rapidly near the Newtonian limit (E(1-λ2/λ1) = 0) and tends to vary

linearly at higher values of E(1-λ2/λ1). Note that equation 5 predicts a linear variation of

RG with respect to E(1-λ2/λ1). Figure 2b shows the variation of n vs. E(1-λ2/λ1). Once

again we note that near the Newtonian limit the value of n changes rapidly and eventually

attains an almost constant value.

 In the above simulations the critical shear Reynolds number for lift-off is defined for

a equilibrium height corresponding to ε = 0.001. Equations 4 and 5 predict that in general

RG is also a function of the gap size. Figures 3a and 3b show the plot of RG vs. the shear
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Reynolds number for a Newtonian and an Oldroyd-B fluid, respectively, at different gap

sizes. The parameters are as defined in the figure. The slope n does not significantly

change with the gap size whereas the value of a does depend on ε. Figure 4 compares the

variation of a vs. ε for the given parameters for a Newtonian and an Oldroyd-B fluid. It is

seen that the value of a increases rapidly as the gap size tends to zero in an Oldroyd-B

fluid; in qualitative agreement with the theoretical predictions of equation 5. Such

behavior is not observed for the Newtonian case.

3(b). Turning point bifurcation of the equilibrium position

Beyond the critical shear Reynolds number the particle acquires an equilibrium

position away from the wall. We investigate the presence of multiple steady equilibrium

positions, so far observed only for Newtonian fluids (N. Patankar et al. 2001), when the

Reynolds number is greater than the critical value. As before we perform simulations

with fixed height of the particle and calculate the hydrodynamic lift on it.

Figure 5 shows the plot of L as a function of the height of the particle center from the

bottom wall at different values of shear Reynolds number. We have W/d = 12, E = 0.05

and λ2/λ1 = 0.125. This plot can be used to find the equilibrium height of a particle of

given density at different values of R. As an example we consider a particle of density

1.01 g/cc. This particle will be in equilibrium when L = 7.705 dyne/cm (from equation 3,

ρf = 1 g/cc and d = 1 cm). The equilibrium heights at a given shear Reynolds number are

identified as the points of intersection between the curve of L vs. h/d and L = 7.705 in

figure 6. The intersection points where the slope of the L vs. h/d curve is positive are

unstable equilibrium points whereas a negative slope represents a stable equilibrium point

(figure 6). Figure 7 shows the plot of equilibrium height of the particle of density 1.01

g/cc vs. R. We observe that multiple equilibrium positions are obtained for particles in

Oldroyd-B fluids. This is due to the presence of two turning points in equilibrium

solution. The equilibrium height plot for Oldroyd-B fluids is compared to the
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corresponding graph for particles in Newtonian fluids. We see that the fluid elasticity

increases the equilibrium height for the same Reynolds number. We also observe that the

fluid elasticity shifts the turning points towards lower Reynolds numbers. Equilibrium

height plots at higher elasticity numbers, that exhibited multiple solutions, were not

computed due to numerical convergence issues. Implications of multiple steady states for

single particle lifting on the flow of dilute suspensions in pipes and on models of lift-off

in slurries should be a subject of future investigation. To our knowledge multiple

equilibrium positions have not be reported experimentally.

4. Conclusions

In this note we study the critical condition for lift-off of a circular particle from a wall

in a plane Poiseuille flow of an Oldroyd-B fluid. Two-dimensional numerical simulations

are performed. A correlation for the critical condition for lift-off is obtained assuming a

surface roughness (or the particle separation from the wall) of 0.001d. It is seen that the

fluid elasticity reduces the critical shear Reynolds number for lift-off. The effect of the

gap size, between the particle and the wall, on the lift force is also studied. The lift force

on the particle is seen to be singular as the gap size approaches zero; in qualitative

agreement with previous theoretical predictions. Beyond the critical Reynolds number we

observe multiple equilibrium positions for particles in Oldroyd-B fluids. This is due to

two turning points in equilibrium solution. The location of the turning point is shifted due

to the elasticity of the fluid as compared to the Newtonian results.
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Figure 5. The hydrodynamic lift force on the particle as a function of the height of its center from the
bottom wall at different shear Reynolds numbers. The bottom wall is

h/d = 0 and the channel centerline is h/d = 6.

h/d

H
yd

ro
dy

na
m

ic
lif

tf
or

ce
(d

yn
e/

cm
)

0 1 2 3 4 5 6

0

50

100

150

Reynolds number increases
from 1 to 30



19

Figure 6. Finding the equilibrium height of a particle of a given density at different values of shear
Reynolds number.
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Figure 7. Equilibrium height as a function of shear Reynolds number

for a particle of density 1.01 g/cm3.
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