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Abstract
Lift forces acting on a fluidized particle plays a central role in many important applications, such
as the removal of drill cuttings in horizontal drill holes, sand transport in fractured reservoirs,
sediment transport and cleaning of particles from surfaces. The problem of lift is studied using
direct numerical simulations. Lift formulas which respect the fact that the lift must change sign on
either side of the "Segré-Silberberg" radius are discussed. An accurate analytical expression for
the slip velocity of circular particles in Poiseuille flow is derived. We show that the lift-off of
single particles and many particles in horizontal flows follow laws of similarity, power laws,
which may be obtained by plotting simulation data in 2D on log-log plots. Data from slot
experiments on bed erosion for fractured reservoirs is processed (for the first time) in log-log
plots. Power laws with a parameter dependent power emerge as in the case of Richardson-Zaki
correlations for bed expansion.
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Preface
My collaborators on studies of lift are H. Choi, H. Hu, P. Huang, T. Ko, D. Ocando, N. Patankar and P.
Singh. This is but one aspect of a concentrated NSF supported study of direct numerical simulations of
solid-liquid flow. The results of such studies are collected at the project web site
http://www.aem.umn.edu/Solid-Liquid_Flows. The whole field is reviewed in the monograph under
preparation "Interrogation of Direct Numerical Simulations of Solid-Liquid Flow,” which can be
downloaded from the web site http://www.aem.umn.edu/Solid-Liquid_Flows/papers/abs_Interrogation.html.

Direct numerical simulation (DNS) of solid-liquid flow.

The current popularity of computational fluid dynamics is rooted in the perception that information
implicit in the equations of fluid motion can be extracted without approximation using direct numerical
simulation (DNS). A similar potential for solid-liquid flows, and multiphase flows generally, has yet to be
fully exploited, even though such flows are of crucial importance in a large number of industries.

We have taken a major step toward the realization of this potential by developing two highly efficient
parallel finite-element codes called particle movers for the direct numerical simulation of the motions of
large numbers of solid particles in flows of Newtonian and viscoelastic fluids. One of the particle movers
is based on moving unstructured meshes (arbitrary Lagranian-Eulerian or ALE) and the other on a
structured mesh (distributed Lagrange multiplier or DLM) using a new method involving a distribution of
Lagrange multipliers to ensure that the regions of space occupied by solids are in a rigid motion. Both
methods use a new combined weak formulation in which the fluid and particle equations of motion are
combined into a single weak equation of motion from which the hydrodynamic forces and torques on the
particles have been eliminated. Several different kinds of code have been developed and tried on a variety
of applications. See the project Web site, http://aem.umn.edu/Solid-Liquid_Flows/. To our knowledge we
are the only group to compute fully resolved particulate flow at Reynolds numbers in the thousands
occurring in the applications.

Richardson and Zaki (RZ) correlations.

The correlations of Richardson and Zaki (1954) (see also Pan, Joseph, Bai, Glowinski and Sarin 2001) are
an empirical foundation for fluidized bed practice. They did very many experiments with different liquids,
gases, particles and fluidization velocities. They plotted their data in log-log plots; miraculously this data
fell on straight lines whose slope and intercept could be determined. This showed that the variables follow
power laws; a theoretical explanation for this outstanding result has not been proposed. After processing
the data Richardson and Zaki found that

V(φ) = V(0) (1-φ)n

where V(φ) is the composite velocity which is the volume flow rate divided by the cross-section area at
the distributor when spheres of volume fraction f are fluidized by drag. V(0) is the "blow out" velocity,
when φ = 0; when V > V(0) all the particles are blown out of the bed. Clearly V(φ) < V(0). The RZ
exponent n(R) depends on the Reynolds number R = V(0)d/ν; n = 2.39 when 500 < R < 7000.
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(a) (b) (c)

Figure 1.  (Pan, Joseph, Bai, Glowinski and Sarin 2001). Snapshots of fluidization of 1204 spheres comparing
experiment (right) and simulation (left) (a) V = 2, (b) V = 3.5, (c) V = 4.5.

We carried out DNS simulations of 1204 balls in a slit bed whose dimensions exactly match a real
experiment. The simulation is compared with a matched real experiment and they give rise to essentially
the same results (see figure 1). This simulation is presently at the frontier of DNS; it is a 3D computation
of 1204 spheres at Reynolds numbers based on the sphere diameter of the order of 103 and the agreement
with experiment is excellent. The details and animation of the computation (Pan, et al 2001) can be found
at http://www.aem.umn.edu/Solid-Liquid_Flows.

The simulation of 1204 spheres was carried out in the bed [depth, width, height] = [0.686, 20.30,
70.22] cm. Snapshots comparing the animation with the experiment, in a frontal view are shown in figure
1. Figure 2 shows the fluidizing velocity vs. liquid fraction ε=in a log-log plot; one line is for the
simulation and another for the experiment. We draw a straight line with slop n = 2.39 through both sets of
data. The fit is not perfect but we think rather encouraging. From the straight lines we determine the
blow-out velocities Vs(0) = 8.131 cm/s for the simulation and Ve(0) = 10.8 cm/s for the experiment, and
find the power laws

Vs(φ) = 8.131ε=2.39 cm/s (1)

Pan, et al (2001) presented arguments that the discrepancy is due to the difference in the diameter
0.635cm of the sphere in the simulation and the average diameter 0.6398cm of the 1204 spheres uses in
the experiments.

Ve(φ) = 10.8ε=2.39 cm/s .
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Figure 2(a). (Pan, et al 2001) The bed height vs. fluidizing velocity for both experiment and simulation.
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Figure 2(b). Data from Figure 2(a) plotted in a log-log plot. The slopes of the straight line are given by the
Richardson-Zaki n = 2.39. The blow-out velocities Vs(0) and Ve(0) are defined as the intercepts at ε = 1.

Single particle lift off and levitation to equilibrium.

The problem of lift off and levitation to equilibrium of a single circular particle in a plane Poiseuille flow
was simulated using an ALE particle mover in Patankar, Huang, Ko and Joseph (2001). The principal
features of lift off and levitation to equilibrium are listed in the caption of figure 3. Heavier particles are
harder to lift off. The critical lift off Reynolds number increases strongly with the density ratio. The
height, velocity and angular velocity of the particle at equilibrium is given as a function of prescribed
parameters in tables and trajectories from lift-off to equilibrium in graphs shown in Patankar, et al (2001).
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Figure 3. Lift off and levitation to equilibrium. The pressure gradient in the flow and on the particle is increased.
The heavier than liquid particle slides and rolls on the bottom of the channel. At a critical speed the particle
lifts off. It rises to a height in which the lift balances the buoyant weight. It moves forward without acceleration
at a steady velocity and angular velocity.

The channel height is W, particle diameter d, density of fluid ρf and particle ρp, viscosity η, kinematic
viscosity η/ρf . The equation of motion of fluid and particles made dimensionless with [d,w,d/v, wγη � ]
where wγ�  is the wall shear rate and p  is the applied pressure gradient that drives the flow, are in the
form
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where R is the shear Reynolds number and RG is a Reynolds number based on the sedimentation velocity
in Stokes flow. The terms with the factor ex come from the pressure gradient; the pressure gradient
(2dex/w in (3)) drives the particle forward and the forward motion is resisted by the integral of the shear
tractions.

Freely moving particles in steady flow have zero acceleration. The density ratio ρp/ρf vanishes when
the particle accelerations are zero.

The critical value of the Reynolds number for lift-off increases with density of the particle from zero
for neutrally buoyant ρp = ρp circular particles to R = 25 for particles 1.4 times heavier than water ρp =
1.4 ρf. After the particle lifts off it rises to an equilibrium height in which the buoyant weight equals the
hydrodynamic lift. The equilibrium height for neutrally buoyant particles is called a “Segré-Silberberg”
radius; it is determined by a balance of wall and shear gradient effects. The equilibrium height for heavy
particles is lower than the Segré-Silberberg height. The rise to equilibrium is shown in figure 4.

DNS results given in Patankar, Huang, Ko and Joseph (2001) show that a circular particle will rise
higher when the rotation of the particle is suppressed and least when the slip angular velocity is put to
zero; the freely rotating zero torque case lies between. DNS allows such a comparison, which would be
difficult or impossible to carry out in an experiment.

Solid {
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Figure 4. (Patankar, Huang, Ko and Joseph 2001.) Rise vs. time for Rw = 16.2 and 5.4. Compare rise of freely
rotating and nonrotating particles. Nonrotating ones rise more. A neutrally buoyant, freely rotating particle
rises closer to the center line than the “Segré-Silberberg” experiment; the nonrotating one rises even more.
Models which ignore particle rotation overestimate lift. A yet smaller lift is obtained when the slip velocity is
entirely suppressed (Ωs = 0), but the particle does rise. The greater the slip angular velocity, the higher the
particle will rise.

Slip velocities, circulation and lift.

In commercial packages for slurry flow in pipes, conduits and fractured oil and gas reservoirs, lift
forces are not modeled, and in academic studies they are not modeled well. Possibly the best known and
most used formula for lift is the Rayleigh Formula L = ρf U=Γ=for aerodynamic lift. Here U is the forward
velocity in still air that is produced by an external agent like a rocket engine, and Γ is the circulation,
which is a complicated quantity determined by boundary layer separation. The lift on a free body in a
shear flow is analogous and the lift formulas that have been proposed are in the form of Us, the slip
velocity, times ρf Γ,=where=Γ=is a different quantity for different modelers. The slip velocity is the fluid
velocity at the particle center when there is no particle minus the particle velocity. Since it is the fluid
motion rather than an external agent which drives the motion of the particle, it might be expected that
Us > 0. Since free particles in shear flow migrate to an equilibrium radius, the associated =Γ=ought to
change sign at this radius; in fact none of the lift formulas that have been proposed do change sign; if they
are right at one side of the equilibrium they are wrong on the other. The slip angular velocity discrepancy
defined as the difference between the slip angular velocity of a migrating particle and the slip angular
velocity at its equilibrium position is positive below the position of equilibrium and negative above it.
This discrepancy is the quantity that changes sign above and below the equilibrium position for neutrally
buoyant particles, and also above and below the lower equilibrium position for heavy particles. On the
other hand the slip velocity discrepancy Us - Use does not change sign Joseph, Ocando and Huang (2001).

Model of slip velocity.

A long particle model was proposed in Joseph, Ocando and Huang (2001), which leads to an explicit
expression for the particle velocity Up of a circular particle in a Poiseuille flow. Referring to Figure 5 we
find that

UA  = φ + ψ=hA d,   UB  = φ + ψ=hB d (6)

R = 16.2
ρp = 1.01 ρf R = 5.4
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Figure 5. (Joseph, Ocando and Huang 2001.) The circular particle is replaced with a long rectangle where short
side is d. The rectangle is so long that we may neglect the effects of the ends of the rectangle at sections near
the rectangle's center. The rectangle is sheared at the shear rate of the circular particle 2/γ�≅Ω p  (see Figure
4). The velocity profile is Poiseuille flow on either side of the particle and UA and UB determined by requiring
that the pressure gradient p balance the shear stress.

A comparison of the velocity profile of the long particle model with the velocity profile through
the center of the circular particle computed by direct numerical simulation is given in Figure 6. Such a
good agreement is surprising.
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Figure 6. (Joseph, Ocando and Huang 2001.) Comparison of the velocity profiles (Figure 5.) for the long particle
model with the velocity profile on a line through the circular particle center computed by DNS for constrained
motion at R = 20. In a constrained motion the y position of the particle is fixed, lateral motion is suppressed,
but the particle is otherwise free to translate and rotate under the action of the hydrodynamic forces and
torques.

Bifurcation.

A turning point bifurcation of steady forward flow of a single particle at equilibrium was found in direct
simulations of rise trajectories reported in Choi and Joseph (2001); the height and particle velocity change
strongly at such a point. A computational method advanced in Patankar, Huang, Ko and Joseph (2001)
looks for the points on lift vs. height curve at which lift balances buoyant weight. This gives both stable
and unstable solutions and leads to the "bifurcation" diagram shown in Figure 7, which shows there are
two turning points, hysteresis, but no new branch points.
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Figure 7.  (Patankar, Huang, Ko and Joseph 2001.) Turning point "bifurcations" shown in the height vs. Reynolds
number curve. There are two stable branches separated by an unstable branch.

Similar turning point bifurcations have been found also in computations of levitation to equilibrium
of viscoelastic fluids of Oldroyd-B type. Similar instabilities have been found at yet higher Reynolds
numbers. Bifurcations of sedimenting particles, including Hopf bifurcations to periodic motions, have
been reported in the literature. It is probable that all the phenomena known for general dynamic systems
occur also for particulate flows.

Levitation to equilibrium of 300 circular particles.

The transport of a slurry of 300 heavier than liquid particles in a plane pressure driven flow was studied
using DNS in Choi and Joseph (2001). Time histories of fluidization of the particles for three viscous
fluids with viscosities η = 1, 0.2 and 0.01 (water) were computed at different pressure gradients. The
study leads to the concept of fluidization by lift in which all the particles are suspended by lift forces
against gravity perpendicular to the flow.

The time history of the rise of the mean height of particles at a given pressure gradient is monitored
and the rise eventually levels off when the bed is fully inflated. The time taken for full inflation decreases
as the pressure gradient (or shear Reynolds number) increases (see Figure 8). At early times, particles are
wedged out of the top layer by high pressure at the front and low pressure at the back of the particle in the
top row (t = 1 in Figure 8a, t = 0.9 in Figure 8b).

The dynamic pressure at early times basically balances the weight of the particles in the rows defining
the initial cubic array. This vertical stratification evolves into a horizontally stratified propagating wave of
pressure, which tracks waves of volume fraction. The pressure wave is strongly involved in the lifting of
particles. For low viscosity fluids like water where RG is large the particle-laden region supports an
"interfacial" wave corresponding to the wave of pressure. If R2/RG is large the interface collapses since the
stronger lift forces push wave crests into the top of the channel, but the pressure waves persist (Figure 9).
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(a)

   

(b)

Figure 8. (Choi and Joseph 2001.) (a) Snapshots of the fluidization of lift of 300 circular particles ρp = 1.01 g/cm3

when η = 1 poise (R = 5.4, R2/RG  = 1.82). The flow is from left to right. The gray scale gives the pressure
intensity and dark is for low pressure. At early times particles are wedged out of the top layer by high pressure
at the front and low pressure at the back of each and every circle in the top row. The vertical stratification of
pressure at early times develops into a "periodic" horizontal stratification, a propagating pressure wave. The
final inflated bed has eroded, rather tightly packed at the bottom with fluidized particles at the top. (b)
Fluidization of 300 particles (R = 120, R2/RG  = 0.08). The conditions are the same as in 9(a) but the ratio of
lift to buoyant weight is greater and the fluidization is faster and the particle mass center rises higher than in
the previous Figures.

    

(a)

    

(b)

Figure 9.  (Choi and Joseph 2001.) (a) Fluidization of 300 particles (η = 0.2 poise, R = 150, R2/RG  = 1.63). The
final state of the fluidization at t = 25 sec has not fully eroded. The particles that lift out of the bed can be
described as saltating. A propagating "interfacial" wave is associated with the propagating pressure wave at
t = 25. (b). Fluidization of 300 particles (η = 0.2 poise, R = 450, R2/RG  =0.54). The flow is from left to right.
The particles can be lifted to the top of the channel.

We did correlations in numerical experiments in 2D. Correlations work. We studied the levitation of
300 particles in a Poiseuille flow, Patankar, Ko, Choi and Joseph (2000), Choi and Joseph (2001), and
created a data bank which when plotted on a log-log plot give rise to straight lines; this is to say that lift
results for fluidized slurries are power laws in appropriate dimensionless parameters. This shows that
fluidization of slurries by lift also falls into enabling correlations of the RZ type. The method of
correlations is a link between direct simulation and engineering application.
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Correlations allow generalizations from 20 or 30 data points into a continuum of points reaching even
beyond where we can compute. Because you get so much from correlations even expensive calculations
are cheap.

The correlation we found for lift-off of a single particle is in the form

RG = aRn ,    a = 2.36,         n = 1.39 (8)

where R and RG are defined by (5); a and n are obtained by plotting about 25 data points in a log R vs. log
RG plane (Patankar, Huang, Ko and Joseph (2001), Figure 10). The straight lines that come out are
amazing; they show that self-similarity lies at the foundation of solid-liquid flows. Similar correlations
were found for lift-off in viscoelastic fluids Ko, Patankar and Joseph (2001), Patankar, et al (2001)
(Figure 11).

For 300 particles in Poiseuille flow we processed simulation data for the rise of the center of gravity
of particles in the slurry; from the height rise we can compute the solid fraction φ. Processing data in log-
log plots (Figure 12) we got

RG = 3.27 × 10-4 (1-φ)-9.05 R1.249 (9)

This could be called a Richardson-Zaki type of correlation for fluidization by lift Patankar, Ko, Choi and
Joseph (2001).
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Figure 10. (Patankar, Huang, Ko and Joseph 2001.) The plot of RG vs. the critical shear Reynolds number R for lift-
off on a logarithmic scale at different values of the channel width/diameter ratio W/d. This has evidently
reached its asymptotic W/d → ∞ value when W/d = 12.
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Figure 11.  (Ko, Patankar and Joseph 2001.) RG vs. R for lift-off of an Oldroyd B fluid with different relaxation/
retardation time ratios in a log-log plot (W/d = 12, elasticity E = l1h/rfd2.)
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Figure 12. (Patankar, Huang, Ko and Joseph 2001.) An engineering correlation (9) for lift-off from numerical
simulations of 300 circular particles in plane Poiseuille flows of Newtonian fluids (W/d = 12).

Engineering correlations
We have already demonstrated that two-dimensional simulations of solid liquid flows give rise to

power laws. These power laws are in the form of engineering correlations; to use them in applications we
need rules for converting two- to three-dimensional results. The goal of our future work is to generate
power laws for engineering applications by processing results of simulations in 3D just as we have done
in 2D. The processing of data for the fluidization of 1204 spheres from a simulation and experiment
which leads to comparison in Figure 2 is an example of what can be done.
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We are presently doing 3D simulations for lift-off and levitation to equilibrium of single spheres and
enhancing our simulators for efficient computation of migration and lift of slurries of many spherical
particles. These simulators will be used to generate power laws for practical application to sand transport
in fractured reservoir, among others.

Sand transport in fractured reservoirs.

Hydraulic fracturing is a process often used to increase the productivity of a hydrocarbon well. A slurry of
sand in a highly viscous, usually elastic, fluid is pumped into the well to be stimulated, at sufficient
pressure to exceed the horizontal stresses in the rock at reservoir depth. This opens a vertical fracture,
some hundreds of feet long, tens of feet high, and perhaps an inch in width, penetrating from the well bore
far into the pay zone. When the pumping pressure is removed, the sand acts to prop the fracture open.
Productivity is enhanced because the sand-filled fracture offers a higher-conductivity path for fluids to
enter the well than through the bulk reservoir rock, and because the area of contact for flow out from the
productive formation is increased. It follows that a successful stimulation job requires that there be a
continuous sand-filled path from great distances in the reservoir to the well, and that the sand is placed
within productive, rather than non-productive, formations.

Upper Fracture BoundaryWell Bore

Fluid

Sand Injected
Early

Sand Injected
Late

In a slot problem a particle laden (say 20% solids) fluid is driven by a pressure gradient and the
particles settle to the bottom as they are dragged forward. Sand deposits on the bottom of the slot; a
mound of sand develops and grows until the gap between the top of the slot and the mound of sand
reaches an equilibrium value; this value is associated with a critical velocity. The velocity in the gap
between the mound and the top of the slot increases as the gap above the mound decreases. For velocities
below critical the mound gets higher and spreads laterally; for larger velocities sand will be washed out
until the equilibrium height and velocity are reestablished (see Figure 13). The physical processes
mentioned here are settling and washout. Washout could be by sliding and slipping; however, a more
efficient transport mechanism is by advection after suspension which we studied by direct simulation.

Despite many years of practice and experiments many of the most essential fluid dynamic properties
of proppant transport, other than fluidization by lift, are not well understood. To help our studies of these
properties be focused and practical, we have partnered with STIM-LAB, a research laboratory in Duncan,
OK, which is supported by a consortium of oil production and oil service companies. STIM-LAB has
been collecting data on sand transport in slots for 15 years. We have begun to process the data from
STIM-LAB's experiments for power laws in the same way we process data form numerical simulations.
An example is given just below.

Power law for bed erosion.

STIM-LAB carried out two types of experiments looking at the transport of proppants in thin fluids.
The first experiment can be described as a lift-off or erosion experiment. A somewhat simplified
description of the experiment is that a bed of proppant is eroded by the flow of water. Proppant is not
injected. The faster the flow of water the deeper is the channel above. We are seeking to predict the height
above the channel.

The evolution of the proppant bed in the experiments is well described in the diagram of Figure 13
with the caveat that experimental cell has a finite length. In the steady state there is an initial development

Figure 13. (Kern, Perkins and Wyant 1959)
Sand transport in a fractured reservoir is
different than the eroded bed of 300 particles in
Figure 9(a) and 10(a) because particles are
injected. The creation of algorithms to simulate
continuous injection is one of our simulation
projects.
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length followed by a flat bed that is divided into zones shown in Figure 14. The bottom of the bed is
immobile, it is a stationary porous media that supports liquid throughput that might be modeled by
Darcy's law. Above the immobile bed is a mobile bed in which particle slide and roll but do not lift. The
traction carpet is a fully fluidized bed in which particles move forward in free motion under a balance of
buoyant weight and lift. The lift off region lies between the stationary and fluidized bed.

Qp

QL

Clean Fluid
(open channel layer)

Traction carpet moves forward

Fluidized bed the height of
1-2 grains; rolls and bounces

Mobile bed; moving at a
very low velocity Immobile bed

.

H1 H2

Figure 14. Proppant transport in thin fluid at steady state conditions. In the erosion experiments only fluid is
pumped, QP = 0, H1 = H2, the particles don't move and H2 is determined by QP.

The slot used in the erosion experiments was 8' long, 2' high and 3/16" wide; friction from the close
side walls is most important in the slot and in real fractures. The open channel zone is defined by the
presence of a channel, or proppant-free conduit, above the proppant pack.  This zone comprises most of
the length of the model and probably is also the dominant zone in a fractured well. Proppant moves in
response to the shear stress generated by the moving fluid in the channel.  In summary, the channel base
is eroded until an equilibrium height is reached for a given velocity.  If velocity decreases, the channel is
stable.  If velocity increases, the channel depth increases. Most sand erosion and transport is from this
zone.

In the experiment, flow was established through the slot, causing proppant to erode from the top of
the pack and a channel to form. Once a channel formed above the proppant it was allowed to equilibrate
at least until the lower plane bedforms dominated the length of the slot. If necessary, the flow rate was
then reduced until no there was no movement of proppant in the channel.  When no proppant movement
was detected along the channel base, the flow rate, channel height, differential pressures, and
temperatures were recorded. The flow rate was then increased and the procedure repeated to generate the
data in Table 1; the nomenclature for this table is given just below.

The processing for power laws in our 2D simulations were framed in terms of a Reynolds number for
the forward flow

R = Vd/η (10)

and a sedimentation “Reynolds number” based on the settling velocity 
η
ρρρ 2)( gdfpf −

  in Stokes flow.

RG = 
( )

2

3

η
ρρ

ρ
gdfp

f
−

(11)

The fluid velocity V is related to the pressure drop across the flow cell.
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Proppants d (cm) H2

(cm)

η
(gm/cm•s)

fρ

(gm/cc) υ
(cm2/s)

Q

(cc/s)

pρ

(gm/cc) RG

V~

(cm/s) R~ H2 /W

0.034212 1.7 0.01115 0.999 0.011161 36.778 2.65 521.1645 58.37416 178.9337 2.141732

0.034212 2.3 0.01115 0.999 0.011161 58.289 2.65 521.1645 92.51649 283.5899 2.897638

0.034212 5.6 0.01115 0.999 0.011161 133.295 2.65 521.1645 211.5662 648.512 7.055118

60/40

Brady

0.034212 7.8 0.01115 0.999 0.011161 232.588 2.65 521.1645 369.1644 1131.596 9.826772

0.056043 2.3 0.01115 0.999 0.011161 46.556 2.65 2290.822 73.89383 371.0382 2.897638

0.056043 5.2 0.01115 0.999 0.011161 133.106 2.65 2290.822 211.2663 1060.817 6.55118120/40

Ottawa 0.056043 8.2 0.01115 0.999 0.011161 227.542 2.65 2290.822 361.1554 1813.446 10.33071

0.06 1.4 0.01115 0.999 0.011161 7.885 1.05 86.83778 12.5151 67.27847 1.76378

0.06 2 0.01115 0.999 0.011161 10.409 1.05 86.83778 16.5212 88.8144 2.519685

0.06 3.9 0.01115 0.999 0.011161 31.92 1.05 86.83778 50.66353 272.3562 4.913386

0.06 8.5 0.01115 0.999 0.011161 128.438 1.05 86.83778 203.8572 1095.892 10.70866

20/40

Light

Beads

0.06 12 0.01115 0.999 0.011161 226.217 1.05 86.83778 359.0523 1930.188 15.11811

0.094946 1.5 0.01 0.998 0.01002 31.542 2.73 14513.72 50.06356 474.3833 1.889764

0.094946 2.2 0.01 0.998 0.01002 50.467 2.73 14513.72 80.10138 759.0103 2.77165416/20

Carbolite 0.094946 9.9 0.01 0.998 0.01002 258.642 2.73 14513.72 410.5174 3889.907 12.47244

0.094946 1.7 0.00378 0.972 0.003889 36.778 2.73 100415.8 58.37416 1425.188 2.141732

0.094946 2.3 0.00378 0.972 0.003889 58.289 2.73 100415.8 92.51649 2258.763 2.897638

0.094946 5.6 0.00378 0.972 0.003889 133.295 2.73 100415.8 211.5662 5165.329 7.055118

16/20

Carbolite

0.094946 7.8 0.00378 0.972 0.003889 232.588 2.73 100415.8 369.1644 9013.043 9.826772

0.088437 0.4 0.01115 0.999 0.011161 10.535 3.45 13363.76 16.72119 132.4925 0.503937

0.088437 0.6 0.01115 0.999 0.011161 13.878 3.45 13363.76 22.02721 174.5354 0.755906

0.088437 1.3 0.01115 0.999 0.011161 29.145 3.45 13363.76 46.25904 366.5394 1.637795

0.088437 3.5 0.01115 0.999 0.011161 100.681 3.45 13363.76 159.8012 1266.205 4.409449

16/30

Banrite

0.088437 8.3 0.01115 0.999 0.011161 261.796 3.45 13363.76 415.5234 3292.454 10.45669

0.109021 1.3 0.01015 0.998 0.01017 28.955 2.65 20342.9 45.95747 492.643 1.637795

0.109021 2.5 0.01015 0.998 0.01017 62.137 2.65 20342.9 98.62404 1057.205 3.149606

0.109021 5.8 0.01015 0.998 0.01017 155.185 2.65 20342.9 246.3101 2640.332 7.307087

12/20

Badger

0.109021 9 0.01015 0.998 0.01017 290.814 2.65 20342.9 461.5809 4947.936 11.33858

Table 1: Data set for lift-off experiments from Table 4.9.4.9-1 in Appendix 2

Nomenclature and scaling parameters
ρp density of the particles, gm/cm3

d mean diameter of the particles, cm
ρf density of the fluid, gm/cm3

η dynamic viscosity of the fluid, gm/cm-s
p average pressure gradient applied in the flow direction (if available), gm/(cm-s)2

Qf volumetric flow rate of the fluid, cm3/s
 (continues on next page)



Printed Tuesday, February 27, 2001 16 • DDJ/2001/papers/LiftCorrelations/correlaLift.doc

Nomenclature and scaling parameters (continued)
Mp mass flow rate of the proppants, gm/s
Qp volumetric flow rate of the proppants = Mp/ρp, cm3/s
QT total volumetric flow rate (fluid + proppant) = Qf + Qp, cm3/s
h open channel height cm; (H2)
H1 see Figure 14, cm
H2 see Figure 14, cm
W channel width 0.79375cm
Α area cc; (A = W * H2)

υ kinematic viscosity c2/s; 
fρ
ηυ =

V  fluid velocity cm/s; 
2WH

Q
A
QV ==  ;

V~  fluid velocity cm/s; 2
~

W
QV =  ;

R  Reynolds number (based on V); 
υ

VdR = ;

R~  Reynolds number (based on V~ );  
W

RHdVR 2
~~ ==
υ

;

G  gravity parameter; 
V

gd
G fp

η
ρρ 2)( −

= ;

RG gravity Reynolds number; GR
gd

R fpf
G =

−
= 2

3)(
η
ρρρ

;

S  Shields parameter is defined as:
gd

S
fp )( ρρ

τ
−

= ;

      If we take wγητ �=  and dV wγ�= , then 2)( gd
VS

fp ρρ
η
−

= =
G
1

.

It is important to do correlations in terms of dimensionless parameters; this leads to maximum
generality. To see this consider power laws, which we found, that are of the form

RG = aRn (12)

for lift-off. For R larger than (RG)1/n /a, the particle of radius d and density ρp will levitate. This equation
(12) may be written as

( ) n
fp

f
Vda

gd �
��
�

�
=

−
ηη

ρρ
ρ 2

3

(13)

Suppose we did experiments for lift-off in a certain fluid with a given proppant of different size. We
would find a correlation of the form

V = bdm (14)

We wouldn't know that m = 3/n – 1 or how all the other parameters enter into the correlation.
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Erosion experiments; for these experiments H1 = H2 and only water is moving.

STIM-LAB did experiments on bed erosion. These are essentially lift-off experiments since the flow
rate is dropped to a critical lift-off value below which particles are not eroded from the bed.

In Table 1 we reformulate the data from the STIM-LAB experiments for processing in terms of RG
and

ν
dVR

~~ = (15)

where

2
~

W
QV = (16)

and Q is the volume flow rate. We use V~ because Q and W are prescribed data.

There are seven groups in the data shown in Table 1; each one corresponds to a value of RG. The data
corresponding to a given RG is ordered by increasing H2; the larger R corresponds to a larger H2 more or
less, but there are exceptions.

Power fit: H2/W vs. R~ in a log-log plot.

It is rather obvious that the height H2 will increase with Q at a fixed RG (for fixed proppant and fluid).
With RG fixed we can hope for a two-parameter correlation. In Figure 15 we show seven more or less
straight lines for the seven values of RG. The power law for these is given by

)(2 )( GRm
G RRa

W
H =  (17)

where a(RG) and m(RG) are listed in Table 2. The value of the exponent m(RG) ≈ 0.87 for all cases except
RG = 86.84 corresponding to nearly neutrally buoyant particles (ρp = 1.05 gm/cc).

RG a(RG) m(RG)

86.84 1.479E-1 0.6140

521.16 2.326E-2 0.8672

2290.822 1.700E-2 0.8600

13363.76 6.393E-3 0.9174

14513.72 6.40E-3 0.9170

20342.90 8.476E-3 0.8508

100415.72 3.847E-3 0.8672

Table 2.  The coefficients (as functions of RG) used in power fit for H2/W.
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Figure 15.   H2/W vs. R~ in log-log plot for different values of RG  (see Table 2).

Inspection of Table 2 shows that when RG ≥ 521

m(RG) ≈ 0.87 (18)

whereas when RG = 86.84 (ρp = 1.05) we get

m(RG) ≈ 0.61 . (19)

This shows that the exponent m does depend on and we may hope to describe this dependence in intervals
(as is true for the Richardson-Zaki n(R), which depends in intervals on the Reynolds number R). For
example, we could suppose that there is a certain value of RG = RGC for which the m(RG) take on the two
values, (18) if RG > RGC and (19) is RG < RGC  where 86.84 ≤ RGC ≤ 521.16.

Summarizing we may propose

)(2 )( GRm
G RRa

W
H =  (20)

where m(RG) are given approximately by (18) and (19).

The final correlation a(RG) as RG  in a log-log plot.

We plotted a(RG) as given in Table 2 against RG in a log-log plot. This plot is shown in Figure 16 and
gives rise to the formula

a = 0.8007 RG –0.4854 . (21)

For the coefficient a(RG)

a(RG) = b × Rk
G .
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Figure 16.  Power fit for a(RG ) vs. RG .

Combining now (20) and (21)

)(4854.02 ~8007.0 GRm
G RR

W
H ××= −

(22)

where 87.0)( ≈GRm for GCG RR > ,  where 50086 << GCR  and m ≈ 0.614 for RG < RGC.

We are proposing (22) as a widely applicable correlation for lift-off valid beyond where data has
already been taken. More experiments, testing (22) validity for different values of W under more extreme
conditions ought to be undertaken; of particular interest are light particles for which RG < RGC.

When RG > RGC we can write (22) as

( ) 87.0

2

4854.0

2

3
2 8007.0

�
�
�
�

��

�
�
�

� −
=

−

η
ρ

η
ρρρ

W
Qdgd

W
H ffpf (23)

Equation (23) gives the fracture height in terms of given quantities. Formula (22) can be expressed in

terms of the Shield’s parameter 1/G by writing 
GW

HRR G 2~ = .

Conclusions
We believe that research leading to optimal techniques of processing data for correlations from real

and numerical experiments is founded on the far from obvious property of self similarity (power laws) in
the flow of dispersions. The bases for this belief are the excellent correlations of experiments on
fluidization and sedimentation done by Richardson and Zaki and the correlations for lifting of slurries in
horizontal conduits obtained form numerical experiments described here. The method of correlations is a
new link between DNS and engineering practice.



Printed Tuesday, February 27, 2001 20 • DDJ/2001/papers/LiftCorrelations/correlaLift.doc

Results of two dimensional simulations of solid-liquid flows give rise to straight lines in log-log plots
of the relevant dimensionless Reynolds numbers. The extent and apparent universality of this property is
remarkable and shows that the flow of these dispersions are governed by a hidden property of self
similarity leading to power laws. These power laws make a powerful connection between sophisticated
high performance computation and the practical world of engineering correlations. The same methods for
processing data are applied to numerical and real experiments.

The Richardson-Zaki correlation is of great relevance in seeing the image of the future. The power
law in the RZ case is an example of what Barenblatt (1996) calls "incomplete self similarity" because the
power itself depends on the Reynolds number, a third parameter. The three parameter bed erosion
correlation (22) is an example of the kind of correlation we expect to emerge from 3D simulations. More
generally we expect that the processing of real data from both real and numerical experiments will lead to
families of straight lines in log-log plots connected by transition regions.
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