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Lift forces on a cylindrical particle in plane Poiseuille flow of shear
thinning fluids
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Lift forces on a cylindrical particle in plane Poiseuille flow of shear thinning fluids are investigated
by direct numerical simulation. Previous works on this topic for Newtonian fluids show that the
two-dimensional channel can be divided into alternating regions defined by the stability of the
particle’s equilibrium. We observe stability regions with the same pattern in flows of shear thinning
fluids and study the effects of shear thinning properties on the distribution of the stability regions.
Joseph and Ocando@J. Fluid Mech.454, 263 ~2002!# analyzed the role of the slip velocityUs

5U f2Up and the angular slip velocityVs5Vp2V f on migration and lift in plane Poiseuille flow
of Newtonian fluids. They concluded that the discrepancyVs2Vse, whereVse is the angular slip
velocity at equilibrium, changes sign across the equilibrium position. In this paper we verify that this
conclusion holds in shear thinning fluids. Correlations for lift forces may be constructed by analogy
with the classical lift formulaL5CUG of aerodynamics and the proper analogs ofU andG in the
present context areUs andVs2Vse. Using dimensionless parameters, the correlation is a power
law near the wall and a linear relation~which can be taken as a power law with the power of one!
near the centerline. The correlations are compared to analytical expressions for lift forces in the
literature and we believe that the correlations capture the essence of the mechanism of the lift force.
Our correlations for lift forces can be made completely explicit provided that the correlations
relatingUs andVs to prescribed parameters are obtained. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1589483#
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I. INTRODUCTION

Different analytical expressions for the lift force on
particle in a shear flow can be found in the literature. Auto1

gave a formula for the lift on a particle in an inviscid fluid
which uniform motion is perturbed by a weak she
Bretherton2 found an expression for the lift per unit length o
a cylinder in an unbounded linear shear flow at small val
of Reynolds number. Saffman3 gave an expression for the lif
on a sphere in an unbounded linear shear flow. Saffm
equation is in the form of the slip velocity multiplied by
factor, which can be identified as a density multiplied by
circulation as in the famous formularUG for aerodynamic
lift. A number of formulas like Saffman’s exist and a revie
of such formulas can be found in McLaughlin.4 Formulas
like Saffman’s cannot explain the experiments by Segre` and
Silberberg.5,6 They studied the migration of dilute suspe
sions of neutrally buoyant spheres in pipe flows and fou
the particles migrate away from both the wall and the c
terline and accumulate at a radial position of about 0.6 tim
the pipe radius. There is nothing in formulas like Saffma
to account for the migration reversal near 0.6 of the radi

The effect of the curvature of the undisturbed veloc
profile was found to be important to understand the Se`
and Silberberg effect. Ho and Leal7 analyzed the motion of a
neutrally buoyant particle in both simple shear flows a
plane Poiseuille flows. They found that for simple shear flo
the equilibrium position is the centerline; whereas for P
2261070-6631/2003/15(8)/2267/12/$20.00

Downloaded 03 Mar 2006 to 128.101.143.113. Redistribution subject to A
.

s

’s

d
-
s

s
.

re

d
,
-

seuille flow, it is 0.6 of the channel half-width from the ce
terline which is in good agreement with Segre` and
Silberberg.5,6

Choi and Joseph,8 Patankar, Huang, Ko, and Joseph9

and Joseph and Ocando10 studied particle lift in plane Poi-
seuille flows by direct numerical simulation. They show
that multiple equilibrium states exist for heavy particles
plane Poiseuille flows. These equilibrium states can be st
or unstable and the distinction leads to division of the ch
nel into alternating stability regions in the following orde
wall–stable–unstable–stable–unstable–centerline~see Fig.
2!.

Joseph and Ocando10 analyzed the role of the slip veloc
ity and the angular slip velocity on migration and lift. Th
slip velocity is Us5U f2Up where Up is the translational
velocity of the particle andU f is the fluid velocity. The an-
gular slip velocity is defined asVs5Vp2V f5Vp1ġ/2,
where (2ġ/2) is the angular velocity of the fluid at a poin
where the shear rate isġ andVp is the angular velocity of
the particle. BothU f andV f are evaluated at the location o
the particle center in the undisturbed flow~without the par-
ticle!. Joseph and Ocando showed that the discrepancyVs

2Vse, whereVse is the angular slip velocity at equilibrium
is the quantity that changes sign across the equilibrium
sition. Thus, this discrepancy can be used to account for
migration from both the wall and the centerline to the eq
librium position.

Power law correlations are frequently observed in st
7 © 2003 American Institute of Physics
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ies of solid–liquid flows. A famous example is th
Richardson–Zaki correlation,11 which is obtained by pro-
cessing the data of fluidization experiments. T
Richardson–Zaki correlation describes the complicated
namics of fluidization by drag and is widely used for mo
eling the drag force on particles in solid–liquid mixture
Correlations can also be drawn from numerical data; for
ample, power law correlations for single particle lift and f
the bed expansion of many particles in slurries were obtai
by processing simulation data~Patankaret al.;9 Choi and
Joseph;8 Patankar, Ko, Choi, and Joseph12!. The prediction of
power laws from numerical data suggests that the same
correlations could be obtained from experimental data as
done by Patankar, Joseph, Wang, Barree, Conway,
Asadi13 and Wang, Joseph, Patankar, Conway, and Barre14

The existence of such power laws is an expression of s
similarity, which has not yet been predicted from analysis
physics. The flow of dispersed matter appears to obey th
self-similar rules to a large degree~Barenblatt15!.

Most of studies on migration and lift are for Newtonia
fluids. However, in many of the applications the fluids us
are not Newtonian and shear thinning is one of the m
important non-Newtonian properties. Papers treating mig
tion of particles in shear flows of shear thinning fluids we
done by Huang, Feng, Hu, and Joseph,16 Huang, Hu, and
Joseph17 and especially by Huang and Joseph.18 The numeri-
cal methods used by these authors are used in this work
will not be described here. Suffice to say that the metho
based on unstructured body-fitted moving grids~ALE
method!. All these authors use the Carreau–Bird viscos
function ~1! but only Huang and Joseph18 study the case
when there is shear thinning but no normal stresses.

In the present paper, we extend previous studies of
on a single cylindrical particle in plane Poiseuille flows
Newtonian fluids to shear thinning fluids. We show that t
pattern of the stability regions in shear thinning fluids is t
same as that in Newtonian fluids. The effects of shear th
ning on the distribution of the stability regions are discuss
We verify that the angular slip velocity discrepancy chang
sign across the equilibrium position for both neutrally buo
ant and heavy particles. We derive power law correlations
the lift force in terms of the slip velocity and angular sl
velocity discrepancy and demonstrate that these correlat
can be made completely explicit.

II. GOVERNING EQUATIONS AND NUMERICAL
METHODS

The 2D computational domain is shown in Fig. 1.l and
W are the length and width of the channel, respectively,
d is the diameter of the particle. The simulation is perform
with a periodic boundary condition in thex direction. The
geometric parameters areW/d512 andl /d522. The values
of these parameters are taken from Patankaret al.9 where
they justified that the channel lengthl is sufficiently large so
that the solutions are essentially independent ofl .

A constant pressure gradient2 p̄ gives rise to the Poi-
seuille flow and the direction of the gravity force is perpe
dicular to the flow direction. In simulations in periodic do
Downloaded 03 Mar 2006 to 128.101.143.113. Redistribution subject to A
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mains the fluid pressureP is split as follows:

P5p1r fg"x2 p̄ex"x⇒2¹P52¹p2r fg1 p̄ex ,

whereex is the unit vector inx direction, x is the position
vector of any point in the domain andg is the gravitational
acceleration.p is periodic and solved in simulations.

We use the Carreau–Bird model for the shear thinn
effects:

h2h`

h02h`
5@11~l3ġ !2#~n21!/2, ~1!

where ġ is the shear rate defined in terms of the seco
invariant of the rate of strain tensorD. The shear thinning
indexn is in the range of 0–1 andh0 , h` , l3 are prescribed
parameters.

We consider cylindrical particles of diameterd with the
mass per unit lengthm5rppd2/4 and the moment of inertia
per unit lengthI 5rppd4/32. A dimensionless description o
the governing equations can be constructed by introduc
scales: the particle sized for length,V for velocity, d/V for
time,V/d for angular velocity andh0V/d for stress and pres
sure. We chooseV5 p̄W2/(12h0), which is the average ve
locity of the undisturbed Poiseuille flow in Newtonian fluid
V can be related to the shear rate at the wallġw

5 p̄W/(2h0):

V52ġw

W

12
52ġwd. ~2!

Hat variables are dimensionless in the following part. T
dimensionless governing equations are

¹̂•û50,
~3!

RS ]û

] t̂
1~ û•¹̂ !ûD 52¹̂ p̂1

d

W
ex1¹̂•@Q~¹̂û1¹̂ûT!#

for the velocityû and pressurep̂ of the fluid and

rp

r f

R
dÛp

d t̂
52Gey1

d

W
ex

1
4

p
R $2 p̂11Q~¹̂û1¹̂ûT!%•n dĜ, ~4!

FIG. 1. The 2D rectangular computational domain.
IP license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2269Phys. Fluids, Vol. 15, No. 8, August 2003 Lift forces on a cylindrical particle
rp

r f

R
dV̂p

d t̂
5

32

p
R ~ x̂2X̂!3~@2 p̂11Q~¹̂û1¹̂ûT!#•n!dĜ

~5!

for the velocityÛp and angular velocityV̂p of the particle
whose center of mass has the coordinateX̂. In Eqs.~3!–~5!
we use

R5
r fVd

h0
,

G5
~rp2r f !gd2

h0V
,

and

Q5
h`

h0
1S 12

h`

h0
D @11~2l3ġw!2ĝ̇2#~n21!/2.

The no-slip condition is imposed on the particle boundar

û5Ûp1V̂p3~ x̂2X̂!. ~6!

Following is a list of the dimensionless parameters:

rp /r f , density ratio;

W/d, aspect ratio;

h` /h0 , viscosity ratio;

L25~2l3ġw!2, shear rate parameter;

n, shear thinning index;

R5
r fVd

h0
5

2r f ġwd2

h0
5

r fWd2p̄

h0
2 , Reynolds number;

G5
~rp2r f !gd2

h0V
5

d

W

~rp2r f !g

p̄
, gravity parameter.

Instead ofG, we use the gravity Reynolds number

RG5R•G5
r f~rp2r f !gd3

h0
2 .

W/d512 andh` /h050.1 are constant throughout ou
simulations; the parameters for fluid properties andd are also
constant and lead toL5R in our simulations, soL does not
provide more information. Thusrp /r f , R, n, andRG are the
four dimensionless parameters at play. The Reynolds num
R and shear thinning indexn together, characterize an undi
turbed Poiseuille flow. We define an average Reynolds n
ber R̄5r fu0d/h0 where u0 is the average velocity of the
undisturbed Poiseuille flow. In Table I, we list the avera
Reynolds numbersR̄ for flows characterized by (n, R) pairs.
R̄ increases significantly withn decreasing at a fixedR.

III. UNDISTURBED FLOW

We refer to Poiseuille flow without particles as und
turbed flow. The dimensionless momentum equation in thx
direction for the undisturbed flow is
Downloaded 03 Mar 2006 to 128.101.143.113. Redistribution subject to A
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5

d

dŷ S Q
dû

dŷD . ~7!

An analytical solution for the Poiseuille flow of
Carreau–Bird fluid is not known. However, a numerical s

lution can be achieved by an iterative method. Firstĝ̇0( ŷ) is
assumed to be the shear rate of the Poiseuille flow of a N

tonian fluid andQ( ĝ̇0( ŷ)) is obtained. A new shear rat

profile ĝ̇1( ŷ) is then computed and the steps are repea

until ĝ̇( ŷ) converges. The velocityû( ŷ) is obtained by inte-
grating the shear rate.

The velocity profiles of the Poiseuille flows of she
thinning fluids are qualitatively similar to the parabolic pr
files seen in flows of Newtonian fluids. However, the ma
mum velocity in the channel increases significantly asn de-
creases at a fixedR. The viscosity profiles have thei
minimums at the wall~corresponding to the maximumġ),
and their maximums at the centerline~corresponding to zero
ġ).

IV. STABLE AND UNSTABLE EQUILIBRIUM REGIONS

An equilibrium is achieved for a freely moving and ro
tating cylindrical particle with a given density in a Poiseuil
flow when the particle migrates to a positionye of steady
rectilinear motion in which the acceleration and angular
celeration vanish and the hydrodynamic lift just balances
buoyant weight. Two types of simulations are performe
unconstrained simulation and constrained simulation. In
constrained simulations, a particle is allowed to move a
rotate freely to migrate to its equilibrium position. The initi
translational and angular velocities of the particle are p
scribed and initial-value problems are solved to obtain
equilibrium state. In constrained simulations, the position
the particle in they direction yp is fixed and the particle is
allowed to move in thex direction and rotate. The solution o
the flow evolves dynamically to a steady state at which
lift force per unit lengthL on the particle is computed. Suc
a steady state will be an equilibrium aty5yp if the density
of the particle is selected so thatL just balances the buoyan
weight per unit length, satisfying

TABLE I. Average Reynolds numbersR̄ for flows characterized by (n, R)
pairs.

n R R̄

1.0 20 20.00
0.9 20 24.28
0.8 20 30.48
0.7 20 39.70
1.0 40 40.00
0.9 40 51.84
0.8 40 69.97
0.7 40 97.89
1.0 80 80.00
0.9 80 110.72
0.8 80 160.06
0.7 80 237.60
IP license or copyright, see http://pof.aip.org/pof/copyright.jsp
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L̂5
def L

r fgpd2/4
5

rp

r f
21, ~8!

whereL̂ is a dimensionless lift force and represents the ra
between the hydrodynamic lift forceL and the buoyant force
r fgpd2/4.

From the steady state values which evolve in constrai
simulations, we are able to obtainL̂ on the particle at any
positiony/d in the channel. We can divide the curve ofL̂ vs
y/d from the wall to the centerline into four branches

FIG. 2. A plot of L̂ vs y/d for a flow with n50.8 andR520 from con-
strained simulations. The stable and unstable branches and three tu
points are illustrated. Unstable branches are indicated by dotted lines.
stable equilibrium points for a particle withrp /r f51.01 are shown.

FIG. 3. Lateral force as a function of lateral position, both in dimensionl
form. —, simple shear flow; , 2D Poiseuille flow.@Adapted from Ho
and Leal~Ref. 7!.#
Downloaded 03 Mar 2006 to 128.101.143.113. Redistribution subject to A
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three ‘‘turning points’’~see Fig. 2!. The ‘‘turning point’’ is
defined as the position where the slope of theL̂ vs y/d curve
is zero. On the first and third branches of steady solutio
the slope ofL̂ vs y/d curve is negative, and the equilibrium
points on these branches are stable. On the second and f
branches of steady solutions, the slope ofL̂ vs y/d curve is
positive, and the equilibrium points are unstable. We w
indicate the unstable branches by dotted lines in the figu

From theL̂ vs y/d curve, the equilibrium position for a
particle with a certainrp can be determined. The lift force
required to balance the buoyant weight of a particle can
computed from~8!. If we draw a line on whichL̂ equals to
this required lift force, the points of intersections betwe
this line and theL̂ vs y/d curve are the equilibrium points fo
this particle. For heavier-than-fluid particles with intermed
ate densities, there exist multiple stable equilibrium positio
from the wall to the centerline~see Fig. 2 where two stabl
equilibrium points for a particle withrp /r f51.01 are

ing
o

s

FIG. 4. Near-the-wall part ofL̂ vs y/d curves of the Poiseuille flows with
R520 and n50.7, 0.8, 0.9, and 1.0~Newtonian fluid!. The unstable
branches are indicated by dotted lines and their starting and ending p
are marked by pairs of short vertical lines. With the shear indexn decreas-
ing, the stable branch near the wall decreases in size and the unstable b
near the wall moves closer to the wall.

FIG. 5. Near-the-centerline part ofL̂ vs y/d curves of the Poiseuille flows
with R580 andn50.7, 0.8, 0.9, and 1.0~Newtonian fluid!. The unstable
branches are indicated by dotted lines and short vertical lines are use
mark the starting points of these unstable branches. With the shear indn
decreasing, the unstable branch near the centerline decreases in size.
IP license or copyright, see http://pof.aip.org/pof/copyright.jsp
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TABLE II. The steady state values ofL andVs2Vse in dimensionless form at fixed positions slightly abov
(yp.ye) and below (yp,ye) the equilibrium positions of a neutrally buoyant particle in the flow withn
50.7 andR520. The stable equilibrium position isye /d54.35 withVse /(2ġw)51.2531022. For the particle
fixed below (yp /d54.33),Vs2Vse.0 andL.0; for the particle fixed above (yp /d54.36),Vs2Vse,0 and
L,0. The unstable equilibrium position is the centerline withye /d56.0 andVse /(2ġw)50. For the particle
fixed below (yp /d55.95),Vs2Vse.0 butL,0; for the particle fixed above (yp /d56.05),Vs2Vse,0 but
L.0.

ye /d 4.35 6.0

Vse /(2ġw) 1.2531022 0.0
fixed yp /d 4.33 4.36 5.95 6.05

L/(r fgpd2/4) 8.231025 21.431025 27.931025 7.731025

(Vs2Vse)/(2ġw) 2.531026 24.531024 5.831025 25.331025
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shown!. However, for a neutrally buoyant particle (L̂50),
only one stable equilibrium point exists from the wall to t
centerline.

Ho and Leal7 studied the equilibrium position of a neu
trally buoyant freely moving and rotating sphere betwe
plane bounding walls. They assumed that the walls were
closely spaced that the lift could be obtained by perturb
Stokes flow with inertia. They calculated dimensionless
eral force vs lateral position curves~equivalent to ourL̂ vs
y/d curve! for simple shear flow and two-dimensional~2D!
Poiseuille flow which are shown in Fig. 3. Comparing t
dashed line in Fig. 3 which is for~2D! Poiseuille flow and
the L̂ vs y/d curve in Fig. 2, one can see that both of the tw
plots imply the centerline is an unstable equilibrium positio
However, the dashed line in Fig. 3 indicates that there
two branches from the wall to the centerline: wall–stabl
unstable–centerline, whereas four branches exist accor
to Fig. 2. Ho and Leal only considered neutrally buoya
particle and did not include the gravity term in the governi
equation used in their calculation. The frame of their wo
did not enable them to study the multi-equilibrium positio
of heavier-than-fluid particles. The results shown in Figs
and 3 are not strictly comparable; Ho and Leal studied
spheres between plane walls at indefinitely smallR whereas
our calculation is for 2D cylinders at much higher Reyno
numbers.

The distribution of the equilibrium branches is affect
by the shear thinning effects. TheL̂ vs y/d curves are com-
puted for the flows withR520, 40, and 80 andn50.7, 0.8,
0.9, and 1.0~Newtonian fluid!. Two groups of typical curves
are plotted in Figs. 4 and 5.

We find that when the shear thinning effects beco
stronger, the stable branch near the wall decreases in size
unstable branch near the wall moves closer to the wall;
stable branch near the centerline increases in size; the
stable branch at the centerline decreases in size. The sh
age of the unstable branch at the centerline implies th
particle could be lifted to a equilibrium position closer to t
centerline if shear thinning effects are stronger. A clo
equilibrium position to the centerline could also be achiev
when the pressure gradient is higher, as shown first in Pa
kar et al.9 and confirmed in our simulations. It seems tha
higher pressure gradient and stronger shear thinning
lead to stronger inertia effects and could lift a particle clo
 2006 to 128.101.143.113. Redistribution subject to A
n
so
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e
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to the centerline. In the range of the Reynolds number
shear thinning index we simulated, the unstable branch a
centerline never vanishes. Patankaret al.9 reported that in 2D
Poiseuille flows of an Oldroyd-B fluid at high Deborah num
bers, the centerline can be a stable equilibrium position
the Segre` and Silberberg effect does not occur. We did n
observe the same phenomenon in shear thinning fluids.

V. ANGULAR SLIP VELOCITY DISCREPANCY AND
NET LIFT FORCE

Joseph and Ocando10 studied slip velocities and particl
lift in 2D Poiseuille flows of Newtonian fluids. The slip ve
locity is Us5U f2Up and the angular slip velocity isVs

5Vp2V f , whereU f and V f52ġ/2 are the translationa
velocity and angular velocity of the undisturbed Poiseu
flow at the position of the particle andġ is the local shear
rate. The net lift force is

Ln5L2~rp2r f !pd2g/4⇒L̂n5L̂2S rp

r f
21D . ~9!

Joseph and Ocando found that the angular slip velocity
crepancyVs2Vse, whereVse is the angular slip velocity a
equilibrium, changes sign across the equilibrium positi
Furthermore, they showed that across a stable equilibr
position, the net lift forceLn has the same sign as the di
crepancyVs2Vse; whereas across an unstable equilibriu
position, the net lift forceLn has the opposite sign as th
discrepancyVs2Vse. In this section, we verify that thes
conclusions hold in shear thinning fluids.

We fix a particle at positions slightly above (yp.ye) and
below (yp,ye) its equilibrium positions and compute th
steady state lift force and angular slip velocityVs . For a
neutrally buoyant particle, both stable and unstable equi
rium positions are investigated; for a heavy particle, both
its two stable equilibrium positions are investigated. Table
shows the results for a neutrally buoyant particle and Ta
III shows those for a heavy particle.

Tables II and III verify the conclusions about the di
crepancyVs2Vse, summarized as following:Vs2Vse,0
when yp.ye ; Vs2Vse.0 when yp,ye . With a stable
equilibrium as the reference state, negativeVs2Vse leads to
negativeLn , positiveVs2Vse leads to positiveLn ; with an
unstable equilibrium position as the reference state, nega
Vs2Vse leads to positiveLn , positive Vs2Vse leads to
IP license or copyright, see http://pof.aip.org/pof/copyright.jsp
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TABLE III. The steady state values of the net lift forceLn andVs2Vse in dimensionless form at fixed positions above (yp.ye) and below (yp,ye) the
equilibrium positions of a heavy particle (rp /r f51.024) in the flow withn50.9 andR540. Two stable equilibrium positions exist:ye /d50.918 with
Vse /(2ġw)57.1631022 and ye /d52.26 with Vse /(2ġw)54.9531022. For either one of the equilibrium positions,Vs2Vse.0 and Ln.0 when the
particle is fixed below;Vs2Vse,0 andLn,0 when the particle is fixed above.

ye /d 0.918 2.26

Vse /(2ġw) 7.1631022 4.9531022

fixed yp /d 0.9 1.0 2.25 2.5
Ln /(r fgpd2/4) 1.8831023 26.431023 2.5831024 23.2631023

(Vs2Vse)/(2ġw) 4.8831024 21.4431023 1.5031025 25.5031023
r-
f t
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e
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negativeLn . (Ln5L in the case of a neutrally buoyant pa
ticle.! These conclusions are for the steady state values o
lift force and slip velocity and do not hold generally for
moving particle with accelerations.

VI. LIFT CORRELATIONS

Motivated by the conclusion thatVs2Vse has the same
sign asLn across a stable equilibrium position, we seek
correlations betweenLn and Vs2Vse. Such correlations
may be constructed by analogy with the classical lift form
L5CUG of aerodynamics. The proper analogs ofU andG in
the present context areUs and Vs2Vse as first propsed in
Joseph and Ocando.10 We proceed as follows to obtain th
correlations. First we computeL, Us , andVs as functions of
y by constrained simulations in a flow characterized
(R, n). Then we correlate dimensionless parameters ba
on L andUs (Vs2Vse) to power law formulas. These step
are repeated for different flows identified by (R, n) pairs and
lead to correlations for each flow. The coefficients in su
correlations are functions ofR andn which can be obtained
by data fitting analyses. Finally we obtain correlations b
tween dimensionlessL andUs (Vs2Vse) with coefficients
expressed as functions ofR andn.

Figure 6 shows the relative values ofL, Us , and Vs

obtained from constraint simulations in the flow withR
520 andn50.9.

Dimensionless parameters based on local quantities
used to express the correlations. The local dimensionless
force is

FIG. 6. The relative values ofL, Us and Vs in the flow with R520 and
n50.9.
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l~y!5
4r fd@L~y!2~rp2r f !gpd2/4#

ph~y!2 5
4r fd

ph~y!2 Ln~y!.

~10!

Two local Reynolds numbers are based onUs and Vs

2Vse, respectively,

RU~y!5
r fUs~y!d

h~y!
,

~11!

RV~y!5
r f@Vs~y!2Vse#d

2

h~y!
.

The product ofRU andRV is defined asF,

F~y!5RU•RV5
r f

2Us~y!@Vs~y!2Vse#d
3

h~y!2 . ~12!

To computeF(y) from ~12!, it is necessary to specify
the equilibrium angular slip velocityVse5Vs(ye) whereye

is the position at which the lift equals the buoyant weig
The L̂ vs y/d curve~Fig. 2! shows that each and every valu
of y/d on the stable branches is a possible equilibrium po
tion (y5ye) for some particlerp . The range of possibleye

may be covered by varying the density of the particle. On
ye is selected,Vse is given asVs (ye). The dependence o
Vse andLn on rp makes the correlations betweenl(y) and
F(y) particle-density dependent. However, the steady s

FIG. 7. The power law correlations betweenl(y) and F(y) on the stable
branch near the wall for the flows withR520 andn50.7, 0.8, 0.9, and 1.0
~Newtonian fluid!.
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values ofL do not depend on particle density. If we deriv
the correlations betweenl(y) andF(y) for onerp , the lift
force is essentially obtained and can be applied to parti
with different densities. We present the correlations with
single equilibrium position of a neutrally buoyant particle
the reference. There are two advantages of this choice:
complexity of multiequilibrium positions of a heavy partic
is avoided; the correlations are in simple forms which ar
power law for the stable branch near the wall and a lin
relation for the stable branch near the centerline.

For a neutrally buoyant particle, a single equilibrium p
sition exists aty5ye

N ~the superscript is for ‘‘neutral’’! with
L(ye

N)50 and Vs(ye
N)5Vse

N . Thus the dimensionless pa
rameters have the following form:

l~y!5
4r fdL~y!

ph~y!2

and

F~y!5
r f

2Us~y!@Vs~y!2Vse
N #d3

h~y!2 .

The correlations are in the following forms:

l~R,n,y/d!5a~R,n!F~R,n,y/d!m(R,n) ~13!

on the stable branch near the wall;

FIG. 8. The linear correlation betweenl(y) andF(y) on the stable branch
near the centerline for the flows with (R520,n50.7) and (R580,n
50.8).
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l~R,n,y/d!5k~R,n!F~R,n,y/d! ~14!

on the stable branch near the centerline.
We obtain the correlations for flows withn50.7, 0.8,

0.9, and 1.0~Newtonian fluid!. In Fig. 7, the correlations on
the stable branch near the wall are plotted for the flows w
R520. The power law correlations along with the corre
tion coefficientss2 are shown in the figure. In Fig. 8, two
examples of the linear correlation betweenl(y) andF(y) on
the stable branch near the centerline are plotted for the fl
with (R520,n50.7) and (R580,n50.8). It can be seen
that our correlations describe the data faithfully.

The prefactora, the exponentm and the slopek in ~13!
and ~14! are functions ofR and n. In Table IV, the coeffi-
cientsa, k, andm are listed along withR, n, and the aver-
age Reynolds numberR̄ which can be viewed roughly as
parameter for the combined effects ofR andn. Coefficients
a, m, andk are also plotted againstR̄ in Figs. 9–11.

Figures 9 and 10 reveal that the power law correlat
~13! on the stable branch near the wall has two regim
Flows of Newtonian fluids and weak shear thinning flow
fall into regime 1 where the prefactora increases withR̄
increasing and the exponentm is in the range of 0.4–0.5
Regime 2 has three flows (n50.7,R540), (n50.7,R
580), and (n50.8,R580) and can be identified as a stron
shear thinning regime where the prefactora decreases with
R̄ increasing and the exponentm is in the range of 0.77–0.9

FIG. 9. The prefactora vs the average Reynolds numberR̄.
TABLE IV. The prefactora, the exponentm and the slopek as functions of the shear indexn and the Reynolds
numberR.

n R R̄ a m k

1 20 20 17.937 0.4003 53.171
0.9 20 24.28 21.589 0.4004 34.685
0.8 20 30.48 28.049 0.423 27.348
0.7 20 39.7 37.322 0.439 19.458
1 40 40.0 27.288 0.410 30.739

0.9 40 51.84 36.38 0.427 25.591
0.8 40 69.97 40.808 0.481 22.166
0.7 40 97.89 9.664 0.774 11.759
1 80 80.0 38.009 0.448 24.35

0.9 80 110.72 53.729 0.450 21.066
0.8 80 160.06 9.570 0.779 8.879
0.7 80 237.6 2.710 0.898 7.698
1 120 120 43.83 0.472 21.54
1 160 160 41.48 0.496 16.39
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From the values of the exponentm, we can tell that in re-
gime 2 the dependence of the lift force on the product of s
velocities is stronger than that in regime 1. It is noted that
two flows (n51.0,R5160) and (n50.8,R580) have very
close values ofR̄ but substantially different coefficientsa,
m, and k ~see Table IV!; this indicates that particle lift in
strong shear thinning flows is different with that in flows
Newtonian fluids at high Reynolds number. Figure 11 exh
its one regime of the linear correlation~14! where the slopek
decreases withR̄ increasing. Figures 9–11 also suggest t
power law or linear functions ofR̄ could be used to approxi
mate the prefactora and the exponentm in regime 1 and the
slopek. However, the error of such approximations would
considerable. The reason of such error is thata, k, and m

depend on bothn andR; one single parameterR̄ cannot fully
describe the dependence of the coefficients on the flow.

We cannot fully determine the coefficientsa, m, andk
as functions ofR and n because of insufficient data. If w
focus on flows of Newtonian fluids (n51), R is the only
active parameter and we expect to get satisfactorya(R),
k(R), andm(R) approximations by data fitting analyses. T
coefficientsa, k, and m in flows of Newtonian fluids are
listed as functions ofR in Table V.

Data fitting analyses yield

a55.34R0.428, s250.94, ~15!

m50.0007R10.386, s250.99, ~16!

k5232.5R20.515, s250.96. ~17!

Inserting ~15!–~17! into the correlations~13! and ~14!, we
obtain correlations which apply to flows of Newtonian flui
with a Reynolds number in the range of 20–160:

FIG. 10. The exponentm vs the average Reynolds numberR̄.

TABLE V. The prefactora, the exponentm and the slopek as functions of
the Reynolds numberR for flows of Newtonian fluids. Data are consiste
with those in Table IV.

R a m k

20 17.94 0.400 53.17
40 27.29 0.410 30.74
80 38.01 0.448 24.35
120 43.83 0.472 21.54
160 41.48 0.496 16.39
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l~y!55.34R0.428F~y!(0.0007R10.386)

on the stable branch near the wall; ~18!

l~y!5232.5R20.515F~y!

on the stable branch near the centerline. ~19!

Replacingl(y) andF(y) in ~18! and~19! with their dimen-
sional forms and re-arrange, we obtain the equations in
following form:

L54.20R0.428r f
0.0014R20.227h0

20.0014R11.227

3@Us~Vs2Vse
N !#0.0007R10.386d0.0021R10.159

on the stable branch near the wall; ~20!

L5182.6R20.515r fUs~Vs2Vse
N !d2

on the stable branch near the centerline. ~21!

Note that for Newtonian fluids,h(y) reduces toh0 .
Although correlations~20! and~21! are derived using the

equilibrium of a neutrally buoyant particle as the referen
they can be applied to heavy particles. To demonstrate
we first obtainUs and Vs for heavy particles at their equi
librium states from unconstrained simulations; these val
are then inserted into~20! and~21! to calculate the lift forces
which should match the values of the buoyant weight of
heavy particles. Two examples are shown in Table VI: a p
ticle with rp /r f51.016 in a flow withR540 and a particle
with rp /r f51.045 in a flow withR580. In both cases two
stable equilibrium positions exist. The lift force forye close
to the wall is computed using~20! and the lift force forye

close to the centerline is computed using~21!. It can be seen
that the computed dimensionless lift forces are close to
values of the dimensionless buoyant weight (rp /r f21) of
the particles. In this way we demonstrate that the correlati
derived for neutrally buoyant particles can be applied
heavy particles.

Correlations~20! and ~21! apply to 2D motion of a par-
ticle in a Poiseuille flow. They may be compared to we
known lift expressions for a particle in a linear shear flo
with shear rateġ. The comparisons are at best tentative b
cause the linear shear neglects the effects of the shear g
ent which is a constant in the Poiseuille flow and not sm
also because the lift expressions in linear shear flows are
indefinitely small Reynolds number perturbing Stokes flo

FIG. 11. The slopek vs the average Reynolds numberR̄.
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TABLE VI. Computation of the lift forces on heavy particles using the correlations~20! and ~21!. The com-
puted dimensionless lift forces are close to the values of the dimensionless buoyant weight (rp /r f21) of the
particles.

R Vse
N /(2ġw) rp /r f21 ye /d Vs /(2ġw) Us /(2ġwd) L̂

40 5.2431023 0.016
1.093 3.9431022 7.1731023 0.018

2.377 2.9631022 1.3531022 0.014

80 5.3231023 0.045
0.9476 5.4231022 5.6631023 0.046

2.705 3.4231022 1.0331022 0.047
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on an unbounded domain. Bretherton2 found that the lift per
unit length on a cylinder at small values ofR5r f ġd2/h is
given by

L5
21.16hUs

~0.6792 ln~AR/4!!210.634
. ~22!

Saffman3 derived an expression for the lift on a sphere in
linear shear flow

L56.46r f
0.5h0.5Usġ

0.5a21 lower order terms ~23!

wherea is the radius of the sphere.
For a neutrally buoyant particle at equilibrium,L50 and

from ~22! and~23!, Us50. The Bretherton and Saffman fo
mulas thus predict that the slip velocity is zero for a neutra
buoyant particle at equilibrium in an unbounded linear sh
flow. Patankaret al.9 argued that zero slip velocity is alway
one solution for a neutrally buoyant particle freely moving
an unbounded linear shear flow, but it may not be the o
solution and it can be unstable under certain conditions
yet understood. Feng, Hu and Joseph19 showed that a neu
trally buoyant particle migrates to the centerline in a Coue
flow whereUs50. From our simulations for 2D Poiseuill
flows, UsÞ0 at the equilibrium position of a neutrally buoy
ant particle~see Fig. 6!; whereasVs5Vse at equilibrium
gives rise to zero lift.

We find that our expression for the lift on the stab
branch near the centerline~21! is similar to the leading term
in Saffman’s expression~23!. If we make following changes

FIG. 12. A comparison of the lift forces computed from the direct numer
simulation and from the lift expressions~21!, ~22!, ~23!, and ~25!. The lift
forces on the stable branch near the centerline in a flow of Newtonian
with R580 are plotted.
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in Eq. ~21!: R5r fVd/h0→R5r f ġd2/h, the power of
R (20.515)→(20.5), and used52a, Eq. ~21! becomes

L5365.2r f
0.5h0.5Usġ

20.5~Vs2Vse
N !a. ~24!

Comparing~24! and the leading term in~23!, we note that
both expressions are linear inUs ; both have a similar depen
dence onr f , h, and a after noting that~24! is for the lift
force per unit length. However, the dependence onġ and
Vs2Vse

N is greatly different.
Another formula for the lift on a particle in an invisci

fluid in which uniform motion is perturbed by a weak she
was derived by Auton1 and a more recent satisfying deriva
tion of the same result was given by Drew and Passman.20 In
a plane flow they find

L5 4
3 pa3rUsV f52 2

3 pa3rUsġ, ~25!

which is similar to our correlation~21! but differs from~21!
in several ways:~25! has a constant prefactor for invisci
fluids whereas viscous effects enter into~21! throughR; the
lift force depends onV f-‘‘spin’’ of the fluid in ~25! but on
the angular velocity discrepancyVs2Vse

N in ~21!; ~25! is for
3D spheres and~21! is for 2D cylinders.

We compare the lift forces computed from the dire
numerical simulation and from the lift expressions~21!, ~22!,
~23!, and ~25! in Fig. 12. Our correlation~21! and Brether-
ton’s expression~22! are for 2D cylinders and the dimension
less lift L̂ is computed asL̂5L/(r fgpd2/4); the Saffman
and Auton expressions~23! and~25! are for spheres andL̂ is

computed asL̂5L/(r fg
4
3 pa3). The slip velocityUs , which

l

idFIG. 13. The steady state values of the dimensionless angular slip vel
Vs /(2ġw) in flows of Newtonian fluids as a function ofy/d.
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is a functional of the solution, is prescribed in the Brethert
Saffman, and Auton expressions and undetermined in t
theories. To calculate the lift forces from these expressio
we use the values ofUs obtained from our DNS. The value
of Us , Vs , andVse

N obtained from the DNS are used in th
calculation of~21!.

We draw the readers attention to the fact that the
expressions~21!, ~22!, ~23!, and~25! apply to different sce-
narios and are not strictly comparable. Our correlation~21! is
for a freely rotating 2D cylinder without accelerations in
plane Poiseuille flow. Bretherton’s expression~22! and Saff-
man’s expression~23! are both for the lift on a particle in an
unbounded linear shear flow with an indefinitely small Re
nolds number; the difference is that the former applies t
nonrotating 2D cylinder while the latter applies to a rotati
3D sphere. Auton’s expression~25! applies to a fixed 3D
sphere in an inviscid fluid in which uniform motion is pe
turbed by a weak shear. Expressions~22!, ~23!, and ~25!
cannot predict the change of sign across the equilibrium
sition; whereas our correlation~21! reproduces the DNS re
sults faithfully.

Our correlations provide explicit expressions for the
force on a particle in terms of the slip velocityUs and the
angular slip velocity discrepancyVs2Vse. We emphasize
that the relative angular motion is characterized byVs

2Vse rather thanVs or V f . By using the discrepancy, w
are able to account for the Segre` and Silberberg effect. Ou
correlations cover the whole channel except the unstable
gions. We believe that our correlations capture the essenc
the mechanism of the lift force.

Correlations~20! and ~21! are derived for the stead
state values ofL, Us , andVs , i.e., they apply to particles
with zero acceleration. For a migrating particle, correlatio
~20! and ~21! are not valid, although they might give goo

FIG. 14. Power law correlations betweenVs /(2ġw) andR at five values of
y/d.
Downloaded 03 Mar 2006 to 128.101.143.113. Redistribution subject to A
,
ir
s,

t

-
a

o-

e-
of

s

approximations when the acceleration of the particle is sm
The application of such correlations is to determine para
eters of a particle at equilibrium, e.g., the equilibrium po
tion, translational velocity and angular velocity. For this en
correlations which relateUs andVs to prescribed parameter
are needed. We will show derivation of such correlations
feasible in the next section.

VII. CORRELATIONS FOR SLIP VELOCITY AND
ANGULAR SLIP VELOCITY

To make correlations~20! and ~21! completely explicit,
we need correlations which relateUs andVs to R andy/d in
steady flows of Newtonian fluids. We illustrate the procedu
for Vs . In Fig. 13, the steady state values ofVs /(2ġw)
obtained in constrained simulations are plotted againsty/d
for five values ofR. If these data are plotted on a log–lo
plot of Vs /(2ġw) versusR, we obtain straight lines one fo
each value ofy/d from the wall to the centerline~five of
which are shown in Fig. 14!, leading to power law correla
tions:

Vs~y/d,R!

2ġw
5b~y/d!Rr (y/d)⇒Vs~y/d,R!

5b~y/d!Rr (y/d)
Rh0

r fd
2 . ~26!

The prefactorb and exponentr in these power law cor-
relations, which are functions ofy/d, are plotted in Fig. 15.
With more data points, these functions could be fitted
splines, making~26! completely explicit.

A similar procedure forUs leads to

Us~y/d,R!

2ġwd
5c~y/d!Rq(y/d)⇒Us~y/d,R!

5c~y/d!Rq(y/d)
Rh0

r fd
. ~27!

As for b andr in ~26!, c andq could be fit to splines if more
data points were available. Unlike correlation~26! which can
be found at values ofy/d from the wall to the centerline
correlation~27! can only be found at values ofy/d on stable
branches of steady solutions. It does not correlate well w
the data for the unstable branches; in fact for some value
R, Us is slightly negative at some values ofy/d on the
unstable branch near the wall, which is incompatible with
power law in the form~27!.

In addition to~26! and ~27!, we also need a correlatio
betweenVse

N , the angular slip velocity of a neutrally buoyan
FIG. 15. The prefactorb and exponent
r in correlation ~26! as functions of
y/d.
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TABLE VII. The dimensionless angular slip velocity of a neutrally buoyant particle at equilibrium is essen
a constant in flows of Newtonian fluids withR520– 160.

R 20 40 80 120 160

Vse
N /(2ġw) 5.0631023 5.2431023 5.3231023 5.2431023 5.2131023
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particle at equilibrium, andR, in order to make~20! and~21!
completely explicit. Table VII shows thatVse

N /(2ġw) is es-
sentially constant independent ofR. Using the average o
these values, we obtain

Vse
N ~R!

2ġw
55.2131023⇒Vse

N ~R!55.2131023
Rh0

r fd
2 . ~28!

If we now insert~26!–~28! into ~20! and~21!, we obtain
completely explicit~assuming sufficient data points forb, r ,
c, andq to be fit to splines! correlations for the lift force

L54.20R0.0014R11.2

3H cS y

dDRq(y/d)FbS y

dDRr (y/d)25.21

31023G J 0.0007R10.386
h0

2

r fd

on the stable branch near the wall; ~29!

L5182.6R1.485cS y

dDRq(y/d)

3FbS y

dDRr (y/d)25.2131023G h0
2

r fd

on the stable branch near the centerline. ~30!

These formulas allow us to calculateL for any value ofy/d
on the stable branches of theL̂ vs y/d curve ~Fig. 2!, obvi-
ating the need for further numerical simulations.

The equilibrium positionye /d of a particle of densityrp

can be found as the value ofy/d at which the lift force
equals the buoyant weight

L~ye /d,R!5~rp2r f !g
pd2

4
;

the slip velocities at equilibrium can then be calculated
insertingye /d into ~26! and ~27!,

Vse5Vs~ye /d,R!5b~ye /d!Rr (ye /d)
Rh0

r fd
2 ,

Use5Us~ye /d,R!5c~ye /d!Rq(ye /d)
Rh0

r fd
.

The corresponding translational velocityUp and angular ve-
locity Vp of the particle at equilibrium may then be calc
lated asUp5U f(ye)2Use andVp5Vse2ġ(ye)/2.

VIII. CONCLUSIONS

We study lifting of a cylindrical particle in plane Po
seuille flows of shear thinning fluids. It is known that certa
regions in a channel are unstable and a particle cannot eq
 2006 to 128.101.143.113. Redistribution subject to A
y

ili-

brate in an unstable region. For example, Ho and Le7

pointed out that the centerline is an unstable equilibrium
sition in a 2D Poiseuille flow. Our studies show that t
domain from the wall to the centerline in a 2D Poiseui
flow can be divided into four regions with the followin
order: wall–stable–unstable–stable–unstable–center
The distribution of these regions is affected by shear th
ning. Our results show that when shear thinning effects
come stronger, the unstable region at the centerline shri
indicating that the equilibrium position of a particle could b
closer to the centerline.

The conclusion that the angular slip velocity discrepan
Vs2Vse changes sign across an equilibrium position est
lished by Joseph and Ocando10 in Newtonian fluids is con-
firmed in shear thinning fluids. Across a stable equilibriu
position,Vs2Vse has the same sign as the net lift forceLn ;
across an unstable equilibrium position,Vs2Vse has the
opposite sign as the net lift forceLn .

Correlations for the lift force on a particle in terms of th
slip velocity Us and the angular slip velocity discrepanc
Vs2Vse are derived. The correlations are a power law n
the wall and a linear relation~which can be taken as a powe
law with the power of one! near the centerline. The correla
tions apply to both neutrally buoyant and heavy particles a
cover the whole channel except the unstable regions. T
regimes, one with no or weak shear thinning effects and
other with strong shear thinning effects, are identified for
power law correlation~13! whereas only one regime is foun
for the linear correlation~14!. It is noted that particle lift in
strong shear thinning flows is different with that in flows
Newtonian fluids at high Reynolds number.

We are able to obtain correlations betweenL and
Us(Vs2Vse) with coefficients expressed as functions ofR;
these correlations cover the flows of Newtonian fluids w
the Reynolds number in the range of 20–160. The corre
tion is compared to well-known analytical expressions
lift force in shear flows and similarities between them a
revealed. The major difference between them is that the
gular slip velocity discrepancyVs2Vse is used in our cor-
relations instead of the shear rate orVs . We also demon-
strate that correlations which relateUs andVs to prescribed
parameters can be constructed and will make the correlat
for L completely explicit. Thus the lift force in steady flow
can be calculated using correlations at any value ofy/d on
stable branches from the prescribed parameters; the equ
rium position of a particle with a certain density can then
determined by the balance between the lift force and
buoyant weight.
IP license or copyright, see http://pof.aip.org/pof/copyright.jsp
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