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Lift forces on a cylindrical particle in plane Poiseuille flow of shear thinning fluids are investigated
by direct numerical simulation. Previous works on this topic for Newtonian fluids show that the
two-dimensional channel can be divided into alternating regions defined by the stability of the
particle’s equilibrium. We observe stability regions with the same pattern in flows of shear thinning
fluids and study the effects of shear thinning properties on the distribution of the stability regions.
Joseph and Ocandd. Fluid Mech.454, 263 (2002] analyzed the role of the slip velocity
=U;—U, and the angular slip velocit2s= () ,— ¢ on migration and lift in plane Poiseuille flow

of Newtonian fluids. They concluded that the discrepaficy- ()., where(l, is the angular slip
velocity at equilibrium, changes sign across the equilibrium position. In this paper we verify that this
conclusion holds in shear thinning fluids. Correlations for lift forces may be constructed by analogy
with the classical lift formuld.=CUI" of aerodynamics and the proper analog&JoandI in the
present context arddg and Qs— Q.. Using dimensionless parameters, the correlation is a power
law near the wall and a linear relatigwhich can be taken as a power law with the power of)one
near the centerline. The correlations are compared to analytical expressions for lift forces in the
literature and we believe that the correlations capture the essence of the mechanism of the lift force.
Our correlations for lift forces can be made completely explicit provided that the correlations
relatingUg and Q¢ to prescribed parameters are obtained.2@3 American Institute of Physics.
[DOI: 10.1063/1.1589483

I. INTRODUCTION seuille flow, it is 0.6 of the channel half-width from the cen-
terline which is in good agreement with Segand
Different analytical expressions for the lift force on a Silberberg>®
particle in a shear flow can be found in the literature. Aiton Choi and Joseph,Patankar, Huang, Ko, and Joseph,
gave a formula for the lift on a particle in an inviscid fluid in and Joseph and Ocarldstudied particle lift in plane Poi-
which uniform motion is perturbed by a weak shear.seuille flows by direct numerical simulation. They showed
Brethertor found an expression for the lift per unit length on that multiple equilibrium states exist for heavy particles in
a cylinder in an unbounded linear shear flow at small valueplane Poiseuille flows. These equilibrium states can be stable
of Reynolds number. Saffmdgave an expression for the lift or unstable and the distinction leads to division of the chan-
on a sphere in an unbounded linear shear flow. Saffman’sel into alternating stability regions in the following order:
equation is in the form of the slip velocity multiplied by a wall-stable—unstable—stable—unstable—center(see Fig.
factor, which can be identified as a density multiplied by a2).
circulation as in the famous formuj@JI" for aerodynamic Joseph and ocanﬂﬂjanawzed the role of the slip veloc-
lift. A number of formulas like Saffman’s exist and a review ity and the angular slip velocity on migration and lift. The
of such formulas can be found in McLaughfifformulas  slip velocity is Us=U;—U, whereU, is the translational
like Saffman’s cannot explain the experiments by Sere velocity of the particle andJ; is the fluid velocity. The an-
Silberberg>® They studied the migration of dilute suspen- gular slip velocity is defined agl,=0Q,—Q;=0Q,+ /2,
sions of neutrally buoyant spheres in pipe flows and foundvhere (- ¥/2) is the angular velocity of the fluid at a point
the particles migrate away from both the wall and the cenwhere the shear rate ig and ), is the angular velocity of
terline and accumulate at a radial position of about 0.6 timeshe particle. BotHJ; and(; are evaluated at the location of
the pipe radius. There is nothing in formulas like Saffman’sthe particle center in the undisturbed flgwithout the par-
to account for the migration reversal near 0.6 of the radiusticle). Joseph and Ocando showed that the discrep&hgy
The effect of the curvature of the undisturbed velocity — Q¢., whereQ . is the angular slip velocity at equilibrium,
profile was found to be important to understand the Segrés the quantity that changes sign across the equilibrium po-
and Silberberg effect. Ho and Léadnalyzed the motion of a sition. Thus, this discrepancy can be used to account for the
neutrally buoyant particle in both simple shear flows andmigration from both the wall and the centerline to the equi-
plane Poiseuille flows. They found that for simple shear flowlibrium position.
the equilibrium position is the centerline; whereas for Poi-  Power law correlations are frequently observed in stud-
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ies of solid-liquid flows. A famous example is the N |
Richardson—Zaki correlatiolt, which is obtained by pro- _ Poiseuille

cessing the data of fluidization experiments. The Channel width " flow -
Richardson—Zaki correlation describes the complicated dy- max

namics of fluidization by drag and is widely used for mod- iy Particle of diameter d

Correlations can also be drawn from numerical data; for ex-

eling the drag force on particles in solid—liquid mixtures. \_i
[\
ample, power law correlations for single particle lift and for -

v

the bed expansion of many patrticles in slurries were obtained Channel length /
by processing simulation datéPatankaret al;® Choi and _ )
Josepfﬁ Patankar, Ko, Choi, and Joséﬁh The prediction of FIG. 1. The 2D rectangular computational domain.

power laws from numerical data suggests that the same type

correlations could be obtained from experimental data as was

done by Patankar, Joseph, Wang, Barree, Conway, andains the fluid pressure is split as follows:

Asadi® and Wang, Joseph, Patankar, Conway, and Béfree.

The existence of such power laws is an expression of self- P=p+p;g:-Xx—pe:x=—VP=—-Vp—pig+pe,,

similarity, which has not yet been predicted from analysis or ) . , o . .

physics. The flow of dispersed matter appears to obey thoskheree. is the unit vector inx direction, x is the position

self-similar rules to a large degréBarenblatt9). vector of any pomt in the domain argj|s t.he grgwtaﬂonal
Most of studies on migration and lift are for Newtonian accelerationp is periodic an'd solved in simulations. o

fluids. However, in many of the applications the fluids used We use the Carreau—Bird model for the shear thinning

are not Newtonian and shear thinning is one of the mosgfects:

important non-Newtonian properties. Papers treating migra-

tion of particles in shear flows of shear thinning fluids were

done by Huang, Feng, Hu, and Joséptjuang, Hu, and 0™ 7

Joseph' and especially by Huang and JoséBfihe numeri- hare % is the shear rate defined in terms of the second

cal methods used by these authors are used in this work anghariant of the rate of strain tens@. The shear thinning
will not be described here. Suffice to say that the method i?ndexn is in the range of 01 angy, 7.., A5 are prescribed

based on unstructured body-fitted moving gridaLE parameters.

methpd. All these authors use the Carreau—Bird viscosity  \ye consider cylindrical particles of diametmwith the
function (1) but only Huang and JosePhstudy the case mass per unit lengtm=p,wd?4 and the moment of inertia
when there is shear thinning but no normal stresses. _per unit length = p,md*/32. A dimensionless description of

In the present paper, we extend previous studies of lifye governing equations can be constructed by introducing

on a smgle cylmdncal partlc_le in plaqe Poiseuille flows of g-5jes: the particle size for length, V for velocity, d/V for
Newtonian fluids to shear thinning fluids. We show that theyje v/d for angular velocity andy,V/d for stress and pres-
pattern of the stability regions in shear thinning fluids is theg e Wwe choos® =pW2/(127,), which is the average ve-

same as that in Newtonian fluids. The effects of shear thinfiy of the undisturbed Poiseuille flow in Newtonian fluids.
ning on the distribution of the stability regions are discussedy; can pe related to the shear rate at the wal)

We verify that the angular slip velocity discrepancy changes:HW/(znO):
sign across the equilibrium position for both neutrally buoy-

T _[14 (hgy)?] 02, &

ant and heavy particles. We derive power law correlations for W
the lift force in terms of the slip velocity and angular slip V:27w1_2:27wd- @
velocity discrepancy and demonstrate that these correlations
can be made completely explicit. Hat variables are dimensionless in the following part. The
dimensionless governing equations are
Il. GOVERNING EQUATIONS AND NUMERICAL @,0:0
METHODS ’
) | 3
The 2D computational domain is shown in Fig.l land l3_U e - - & ST
W are the length and width of the channel, respectively, and R A +(0-V)a ) =—Vp+ Wex+V~[®(Vu+Vu )]

d is the diameter of the particle. The simulation is performed
with a periodic boundary condition in the direction. The  for the velocity( and pressur@ of the fluid and
geometric parameters av#/d=12 andl/d=22. The values

of these parameters are taken from Patarétaal® where d0 d
they justified that the channel lendths sufficiently large so -2 R—Ap =—Gg+ —eg
that the solutions are essentially independenit of Pt dt W
A constant pressure gradientp gives rise to the Poi-
s_euille flow and the glirec_tion of the grqvity f_orce i_s perpen- + i 3€ {—p1+ @(§0+§0T)}, n df, (4)
dicular to the flow direction. In simulations in periodic do- T
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pp dQ, 32 [ X Ao .
“PR—L== @ (K= X)X ([~ p1+O(Va+Va")]-n)dl
pt dt T

(5)

for the veIocityLAJp and angular velocit)ﬂp of the particle

whose center of mass has the coordinéten Eqgs.(3)—(5)
we use

R Pde,
7o
oo (pp—p1)gd?
oV ’
and
0= 4| 1- T+ (200 T V2,
7o 7o

The no-slip condition is imposed on the particle boundaries

0=Up+ Q,x (X X). (6)

Following is a list of the dimensionless parameters:

pplps, density ratio;
W/d, aspect ratio;
./ 1mg, Viscosity ratio;

A?=(2\3¥,)% shear rate parameter;

n, shear thinning index;
R— piVd _ 2piynd? _ pWdPp

70 70 n5

Reynolds number;

(Pp—p)9d _ d (pp—p1)g
7oV w [J '

Instead ofG, we use the gravity Reynolds number

G=

gravity parameter.

pi(pp—p1)gd?

RG:RG: 2
7o

W/d=12 and #../79=0.1 are constant throughout our

simulations; the parameters for fluid properties drate also
constant and lead td =R in our simulations, se\ does not
provide more information. Thus,/p;, R, n, andRg are the

R and shear thinning index together, characterize an undis-
turbed Poiseuille flow. We define an average Reynolds nu
ber R=p;uqad/ 79 whereug is the average velocity of the
undisturbed Poiseuille flow. In Table I, we list the average,

Reynolds numberR for flows characterized byn( R) pairs.
R increases significantly with decreasing at a fixeR.

IIl. UNDISTURBED FLOW

Lift forces on a cylindrical particle 2269

TABLE I. Average Reynolds numbeR for flows characterized byn{ R)
pairs.

n R R
1.0 20 20.00
0.9 20 24.28
0.8 20 30.48
0.7 20 39.70
1.0 40 40.00
0.9 40 51.84
0.8 40 69.97
0.7 40 97.89
1.0 80 80.00
0.9 80 110.72
0.8 80 160.06
0.7 80 237.60
d d (@ dG) 7
W dyl o dy) ™

An analytical solution for the Poiseuille flow of a
Carreau—Bird fluid is not known. However, a nhumerical so-
lution can be achieved by an iterative method. Fir)) is
assumed to be the shear rate of the Poiseuille flow of a New-
tonian fluid and®(3°(9)) is obtained. A new shear rate
profile ;1(9) is then computed and the steps are repeated
until }(y) converges. The velocit§i({) is obtained by inte-
grating the shear rate.

The velocity profiles of the Poiseuille flows of shear
thinning fluids are qualitatively similar to the parabolic pro-
files seen in flows of Newtonian fluids. However, the maxi-
mum velocity in the channel increases significantlynade-
creases at a fixeR. The viscosity profiles have their
minimums at the wallcorresponding to the maximurp),
and their maximums at the centerlif@rresponding to zero
7).

IV. STABLE AND UNSTABLE EQUILIBRIUM REGIONS

An equilibrium is achieved for a freely moving and ro-
tating cylindrical particle with a given density in a Poiseuille
flow when the particle migrates to a positign of steady
rectilinear motion in which the acceleration and angular ac-

unconstrained simulation and constrained simulation. In un-

m_

constrained simulations, a particle is allowed to move and
rotate freely to migrate to its equilibrium position. The initial
translational and angular velocities of the particle are pre-
scribed and initial-value problems are solved to obtain the
equilibrium state. In constrained simulations, the position of
the particle in they directiony,, is fixed and the particle is
allowed to move in the direction and rotate. The solution of
the flow evolves dynamically to a steady state at which the
lift force per unit lengthL on the particle is computed. Such

We refer to Poiseuille flow without particles as undis- a steady state will be an equilibrium aty, if the density
turbed flow. The dimensionless momentum equation inxthe of the particle is selected so thatjust balances the buoyant

direction for the undisturbed flow is

weight per unit length, satisfying
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FIG. 2. A plot of L vs y/d for a flow with n=0.8 andR=20 from con-

strained simulations. The stable and unstable branches and three turnifigG- 4. Near-the-wall part ot vsy/d curves of the Poiseduille flows with

points are illustrated. Unstable branches are indicated by dotted lines. TwB=20 andn=0.7, 0.8, 0.9, and 1.GNewtonian fluid. The unstable
stable equilibrium points for a particle witty, /p;=1.01 are shown.

branches are indicated by dotted lines and their starting and ending points
are marked by pairs of short vertical lines. With the shear indebecreas-

ing, the stable branch near the wall decreases in size and the unstable branch

near the wall moves closer to the wall.
def L

L= Po

pgnda = p, - ®

whereL is a dimensionless lift force and represents the ratiothn?e "turning pmn_t;" (see Fig. 2 The “turAnlng point™is
between the hydrodynamic lift forde and the buoyant force defined as the position where the slope oflthes y/d curve
pigmwd?/4.

is zero. On the first and third branches of steady solutions,
From the steady state values which evolve in constrainethe slope ofL vs y/d curve is negative, and the equilibrium

simulations, we are able to obtain on the particle at any points on these branches are stable. On the second and fourth
positiony/d in the channel. We can divide the curvelofs ~ branches of steady solutions, the slopd.ofsy/d curve is
y/d from the wall to the centerline into four branches by posmve, and the equilibrium points are unstable. We will

indicate the unstable branches by dotted lines in the figures.

From thel vsy/d curve, the equilibrium position for a
\ FJipVaa?k? particle with a certairp, can be determined. The lift force
\ required to balance the buoyant weight of a particle can be
\ 10.0 — computed from(8). If we draw a line on which. equals to
\ - this required lift force, the points of intersections between
| — /'\\ this line and the vsy/d curve are the equilibrium points for
\ — / \ this particle. For heavier-than-fluid particles with intermedi-
] — / \ ate densities, there exist multiple stable equilibrium positions
| L/ from the wall to the centerlinésee Fig. 2 where two stable
5.0 \ 9
\‘ _// \ equilibrium points for a particle withp,/p;=1.01 are
H \
\ ! \
\\ [ \\ 0.005
| { I | | | 1
0.1 “ 03 04,]\ 0.6 07 \\ 0.9 0.003 |
\ t \ 0.001
\
\ l/_ \ {3 0.001 A
\\ [ 7]-50 | 0.003 -
\ ol \\ 20.005 f-----------m--mmmmmmmmooo oS
\\// ] \
\ -0.007
— \ 45 5 5.5 6
— -10.0 \ v
|

FIG. 5. Near-the-centerline part afvs y/d curves of the Poiseuille flows

with R=80 andn=0.7, 0.8, 0.9, and 1.0Newtonian fluid. The unstable
FIG. 3. Lateral force as a function of lateral position, both in dimensionlessbranches are indicated by dotted lines and short vertical lines are used to
form. —, simple shear flow;- — —, 2D Poiseuille flow]Adapted from Ho mark the starting points of these unstable branches. With the shearnndex
and Leal(Ref. 7.]

decreasing, the unstable branch near the centerline decreases in size.
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TABLE II. The steady state values af and Qs— Q. in dimensionless form at fixed positions slightly above
(Yp>Ye) and below §,<y,) the equilibrium positions of a neutrally buoyant particle in the flow with
=0.7 andR=20. The stable equilibrium position jg /d=4.35 withQ ./ (2%,,) = 1.25x 10~ 2. For the particle
fixed below §/,/d=4.33),Q— Q>0 andL>0; for the particle fixed abovey(,/d=4.36),{— Q<0 and
L<0. The unstable equilibrium position is the centerline withd= 6.0 andQ./(2y,,) =0. For the particle
fixed below f/,/d=5.95), Qs—Qg.>0 butL <0; for the particle fixed abovey(,/d=6.05), s— Q<0 but

L>0.
yeld 4.35 6.0
Q! (2%) 1.25x10°? 0.0
fixedy,/d 4.33 4.36 5.95 6.05
L/(psgmd?/4) 8.2x10°° —1.4x10°° —7.9x10°° 7.7X107°
(Qs— Q) (2%y) 2.5x10°¢ —45x10°* 5.8x107° —5.3x107°

shown. However, for a neutrally buoyant particlé(=0), to the centerline. In the range of the Reynolds number and
only one stable equilibrium point exists from the wall to the shear thinning index we simulated, the unstable branch at the
centerline. centerline never vanishes. Patanktal? reported that in 2D

Ho and Leal studied the equilibrium position of a neu- Poiseuille flows of an Oldroyd-B fluid at high Deborah num-
trally buoyant freely moving and rotating sphere betweerbers, the centerline can be a stable equilibrium position and
plane bounding walls. They assumed that the walls were sthe Segreand Silberberg effect does not occur. We did not
closely spaced that the lift could be obtained by perturbingPbserve the same phenomenon in shear thinning fluids.
Stokes flow with inertia. They calculated dimensionless lat-
eral force vs lateral position curvésquivalent to oull vs V- ANGULAR SLIP VELOCITY DISCREPANCY AND
y/d curve for simple shear flow and two-dimension@D) NET LIFT FORCE

Poiseuille flow which are shown in Fig. 3. Comparing the  joseph and Ocantfbstudied slip velocities and particle
dashed line in Fig. 3 which is fo2D) Poiseuille flow and it in 2D Poiseuille flows of Newtonian fluids. The slip ve-
theL vsy/d curve in Fig. 2, one can see that both of the twolocity is Us=U;—U, and the angular slip velocity i§)¢
plots imply the centerline is an unstable equilibrium position.=Q,—Q¢, whereU; and ;= —y/2 are the translational
However, the dashed line in Fig. 3 indicates that there areelocity and angular velocity of the undisturbed Poiseuille
two branches from the wall to the centerline: wall-stable—flow at the position of the particle and is the local shear
unstable—centerline, whereas four branches exist accordirrgte. The net lift force is
to Fig. 2. Ho and Leal only considered neutrally buoyant
particle and did not include the gravity term in the governing | = — (pp—pf)ardzg/4:>£n=f_— Po_ 1) ) (9)
equation used in their calculation. The frame of their work Pt
did not enable them to study the multi-equilibrium positions Joseph and Ocando found that the angular slip velocity dis-
of heavier-than-fluid particles. The results shown in Figs. ZrepancyQ)— .., whereQ, is the angular slip velocity at
and 3 are not strictly comparable; Ho and Leal studied 3Dequilibrium, changes sign across the equilibrium position.
spheres between plane walls at indefinitely srRaWhereas  Furthermore, they showed that across a stable equilibrium
our calculation is for 2D cylinders at much higher Reynoldsposition, the net lift force, has the same sign as the dis-
numbers. crepancyQ— Qg.; whereas across an unstable equilibrium
The distribution of the equilibrium branches is affected position, the net lift forceL, has the opposite sign as the
by the shear thinning effects. Thevs y/d curves are com- discrepancy)s— Q.. In this section, we verify that these
puted for the flows wittR= 20, 40, and 80 and=0.7, 0.8, conclusions hold in shear thinning fluids.
0.9, and 1.0Newtonian fluid. Two groups of typical curves We fix a particle at positions slightly above>y.) and
are plotted in Figs. 4 and 5. below (y,<ye) its equilibrium positions and compute the
We find that when the shear thinning effects becomesteady state lift force and angular slip velociiy,. For a
stronger, the stable branch near the wall decreases in size; theutrally buoyant particle, both stable and unstable equilib-
unstable branch near the wall moves closer to the wall; theium positions are investigated; for a heavy particle, both of
stable branch near the centerline increases in size; the uiis two stable equilibrium positions are investigated. Table Il
stable branch at the centerline decreases in size. The shringkhows the results for a neutrally buoyant particle and Table
age of the unstable branch at the centerline implies that Hl shows those for a heavy patrticle.
particle could be lifted to a equilibrium position closer to the Tables Il and Il verify the conclusions about the dis-
centerline if shear thinning effects are stronger. A closerlcrepancyQ¢—Q¢., summarized as followingf);— Q<0
equilibrium position to the centerline could also be achievedvhen y,>y.; Qs—Q3.>0 wheny,<y.. With a stable
when the pressure gradient is higher, as shown first in Pataequilibrium as the reference state, negative- () leads to
kar et al? and confirmed in our simulations. It seems that anegativel ,, positiveQ;— Q. leads to positive,; with an
higher pressure gradient and stronger shear thinning botiinstable equilibrium position as the reference state, negative
lead to stronger inertia effects and could lift a particle close)— Q. leads to positivel,,, positive Q,— g, leads to
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TABLE lll. The steady state values of the net lift fortg and (2;— (). in dimensionless form at fixed positions abowg%y.) and below ¢,<y,) the
equilibrium positions of a heavy particle(/p;=1.024) in the flow withn=0.9 andR=40. Two stable equilibrium positions exist, /d=0.918 with
O/ (2%,)=7.16x1072 andy,/d=2.26 with Q4./(2%,)=4.95x 10 2. For either one of the equilibrium position®,—Q,.>0 andL,>0 when the
particle is fixed below{);—Q..<0 andL,<0 when the patrticle is fixed above.

ye/d 0.918 2.26
Q! (29) 7.16x102 4.95x<10 2
fixed y,/d 0.9 1.0 2.25 25
L, /(psgmd?/4) 1.88<10°2 —6.4x10°° 2.58<10°4 —3.26x10°3
(Qs— Q) (2%y) 4.88<1074 —1.44x10°3 1.50x10°° —5.50x10°3
negativeLn. (Ly=L i_n the case of a neutrally buoyant par- B 4pfd[L(y)—(pp—pf)gwd2/4] B 4ped
ticle.) These conclusions are for the steady state values of the(Y)= 2 = zLn(y).
: . ) wn(y) m(y)
lift force and slip velocity and do not hold generally for a (10)

moving particle with accelerations.
Two local Reynolds numbers are based bR and Qg

— 0., respectively,

VI. LIFT CORRELATIONS (y)= piUs(y)d
U - L
: . (y)
Motivated by the conclusion th& — Q. has the same Y (11)
sign asL., across a stable equilibrium position, we seek the (y)= Pl Qg(y) — Qgld?
aly)=

correlations betweer.,, and Qs—Q¢.. Such correlations
may be constructed by analogy with the classical lift formula
L=CUTI of aerodynamics. The proper analoggoéndI" in
the present context atds and (23—, as first propsed in pPUL(Y)[Q4y) — Qgeld®
Joseph and OcandB.We proceed as follows to obtain the F(y)=Ry-Rq= 70y)2
correlations. First we computg, Ug, and{)4 as functions of o _
y by constrained simulations in a flow characterized by ~ T0 computeF(y) from (12), it is necessary to specify
(R, n). Then we correlate dimensionless parameters baséfl€ equilibrium angular slip velocitfse={2(ye) whereye
onL andU; (Q— Q) to power law formulas. These steps S th? position at which the lift equals the buoyant weight.
are repeated for different flows identified bg,(n) pairs and  TheL vsy/d curve(Fig. 2) shows that each and every value
lead to correlations for each flow. The coefficients in suchof y/d on the stable branches is a possible equilibrium posi-
correlations are functions & andn which can be obtained tion (y=y,) for some particlep,. The range of possiblg,
by data fitting analyses. Finally we obtain correlations bednay be covered by varying the density of the particle. Once
tween dimensionless and U, (24— Q¢ With coefficients Y. is selected(). is given as()s (y.). The dependence of
expressed as functions Bf andn. Qe andL, on p, makes the correlations betweg(y) and
Figure 6 shows the relative values bf Ug, and Qg F(y) particle-density dependent. However, the steady state
obtained from constraint simulations in the flow with
=20 andn=0.9.
Dimensionless parameters based on local quantities ar
used to express the correlations. The local dimensionless ne S SS————————
force is

7(y)
The product ofR, andR, is defined ag-,

(12

the stable branch near the wall

A =37.322F 4
P=1

2 = 28,049F *422¢
100 -7 GTIUeessTT T T

A= 21.589F 04004

Ay)

i
-
3

2 o?=0.9907

“w
2 10 e T Rt
Dv’ 2 = 17.937F 04003 & n=1(Newtonian)

3 & =0.9988 #n=0.9

5 An=08
Q x n=0.7

0.1 1 10 100

F(y)

FIG. 7. The power law correlations betwekfly) andF(y) on the stable
FIG. 6. The relative values df, Ug and Qg in the flow with R=20 and branch near the wall for the flows wifR=20 andn=0.7, 0.8, 0.9, and 1.0
n=0.9. (Newtonian fluid.
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FIG. 8. The linear correlation betwearfy) andF(y) on the stable branch FIG. 9. The prefactoa vs the average Reynolds numiger

near the centerline for the flows withRE20,n=0.7) and R=80,n
=0.8).

NR,n,y/d)=k(R,n)F(R,n,y/d) (14)

values ofL do not depend on particle density. If we derive On the stable branch near the centerline.

the correlations betweex(y) andF(y) for onep,, the lift We obtain the correlations for flows with=0.7, 0.8,
force is essentially obtained and can be applied to particle8-9 @nd 1.QNewtonian fluid. In Fig. 7, the correlations on
with different densities. We present the correlations with th¢€ Stable branch near the wall are plotted for the flows with
single equilibrium position of a neutrally buoyant particle asR=20- The Power law correlations along with the correla-
the reference. There are two advantages of this choice: tH#Pn coefficientso” are shown in the figure. In Fig. 8, two
complexity of multiequilibrium positions of a heavy particle €xamples of the linear correlation betweefy) andF(y) on

is avoided: the correlations are in simple forms which are a{h_e stable branch near the centerline are plotted for the flows
power law for the stable branch near the wall and a linea?Vith (R=20,n=0.7) and R=80,n=0.8). It can be seen
relation for the stable branch near the centerline. that our correlations describe the data faithfully. -

For a neutrally buoyant particle, a single equilibrium po- 1€ prefactom, the exponenin and the slopé in (13)
sition exists alyzyg (the superscript is for “neutral’ with a_nd (14) are functions .oiR andn. In_TabIe IV, the coeffi-
L(yM)=0 and O (yN)=QN. Thus the dimensionless pa- cientsa, k, andm are listed along wittR, n, and the aver-
rameters have the following form: age Reynolds numbd® which can be viewed roughly as a

parameter for the combined effectsRfandn. Coefficients

Ay)= M a, m, andk are also plotted again& in Figs. 9—11.
T7(y) Figures 9 and 10 reveal that the power law correlation
and (13) on the stable branch near the wall has two regimes.
2 (y)[ O )—QNe]d3 Flows of Newtonian fluids and weak shear thinning ﬂows
F(y)= Pios YL s yz e fall into regime 1 where the prefact@r increases withR
7(y) increasing and the exponent is in the range of 0.4—0.5.
The correlations are in the following forms: Regime 2 has three flowsn&0.7,R=40), (h=0.7,R
B m(R.n) =80), and 6=0.8,R=280) and can be identified as a strong
MR,n,y/d)=a(R,n)F(R,n,y/d)™" (13 shear thinning regime where the prefactodecreases with
on the stable branch near the wall, R increasing and the exponemtis in the range of 0.77-0.9.

TABLE IV. The prefactora, the exponentn and the slopd as functions of the shear indexand the Reynolds
numberR.

n R R a m k

1 20 20 17.937 0.4003 53.171
0.9 20 24.28 21.589 0.4004 34.685
0.8 20 30.48 28.049 0.423 27.348
0.7 20 39.7 37.322 0.439 19.458

1 40 40.0 27.288 0.410 30.739
0.9 40 51.84 36.38 0.427 25.591
0.8 40 69.97 40.808 0.481 22.166
0.7 40 97.89 9.664 0.774 11.759

1 80 80.0 38.009 0.448 24.35
0.9 80 110.72 53.729 0.450 21.066
0.8 80 160.06 9.570 0.779 8.879
0.7 80 237.6 2.710 0.898 7.698

1 120 120 43.83 0.472 21.54

1 160 160 41.48 0.496 16.39
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From the values of the exponemt, we can tell that in re-

gime 2 the dependence of the lift force on the product of slip
velocities is stronger than that in regime 1. It is noted that the

two flows (n=1.0,R=160) and (=0.8,R=80) have very
close values oR but substantially different coefficients,
m, andk (see Table 1V; this indicates that particle lift in

J. Wang and D. D. Joseph
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FIG. 11. The slopék vs the average Reynolds numtRr
A (y) = 5.34RO428F (y/) (0.000R+0.386)
on the stable branch near the wall; (18
M(y)=232.R" % (y)
on the stable branch near the centerline. (19

strong shear thinning flows is different with that in flows of Replacing\ (y) andF(y) in (18) and(19) with their dimen-
Newtonian fluids at high Reynolds number. Figure 11 exhibsional forms and re-arrange, we obtain the equations in the
its one regime of the linear correlatigb4) where the slop& following form:

decreases witlR increasing. Figures 9—11 also suggest that L:4.20?0_4281)?.0014?70.2277760.0014?+1.227

power law or linear functions dR could be used to approxi-
mate the prefactos and the exponemh in regime 1 and the
slopek. However, the error of such approximations would be
considerable. The reason of such error is thak, andm
depend on both andR; one single paramet& cannot fully
describe the dependence of the coefficients on the flow.

We cannot fully determine the coefficieras m, andk
as functions ofR andn because of insufficient data. If we
focus on flows of Newtonian fluidsn&1), R is the only
active parameter and we expect to get satisfaca(i),
k(R), andm(R) approximations by data fitting analyses. The
coefficientsa, k, andm in flows of Newtonian fluids are
listed as functions oR in Table V.

Data fitting analyses yield

a=5.3R"4?%  52=0.94, (15)
m=0.000R+0.386, ¢2=0.99, (16)
k=232.R 9515 42=0.96. (17

Inserting (15)—(17) into the correlationg13) and (14), we
obtain correlations which apply to flows of Newtonian fluids
with a Reynolds number in the range of 20—160:

TABLE V. The prefactora, the exponenin and the slopé as functions of
the Reynolds numbeR for flows of Newtonian fluids. Data are consistent
with those in Table IV.

R a m k

20 17.94 0.400 53.17
40 27.29 0.410 30.74
80 38.01 0.448 24.35
120 43.83 0.472 21.54
160 41.48 0.496 16.39

X [ U S(QS_ QSNE)]O.OOO'R-%— 0.386d0.0022R+ 0.159

on the stable branch near the wall; (20)
L=182.R 251U (Q— QN)d?
on the stable branch near the centerline. (21

Note that for Newtonian fluidsy(y) reduces tor,.

Although correlation$20) and(21) are derived using the
equilibrium of a neutrally buoyant particle as the reference,
they can be applied to heavy particles. To demonstrate this,
we first obtainUg and Q¢ for heavy particles at their equi-
librium states from unconstrained simulations; these values
are then inserted int(20) and(21) to calculate the lift forces
which should match the values of the buoyant weight of the
heavy particles. Two examples are shown in Table VI: a par-
ticle with p,/p¢=1.016 in a flow withR=40 and a particle
with p,/p;=1.045 in a flow withR==80. In both cases two
stable equilibrium positions exist. The lift force fgg close
to the wall is computed usin@20) and the lift force fory,
close to the centerline is computed usi2g). It can be seen
that the computed dimensionless lift forces are close to the
values of the dimensionless buoyant weighf fpos—1) of
the particles. In this way we demonstrate that the correlations
derived for neutrally buoyant particles can be applied to
heavy particles.

Correlations(20) and (21) apply to 2D motion of a par-
ticle in a Poiseuille flow. They may be compared to well-
known lift expressions for a particle in a linear shear flow
with shear ratey. The comparisons are at best tentative be-
cause the linear shear neglects the effects of the shear gradi-
ent which is a constant in the Poiseuille flow and not small;
also because the lift expressions in linear shear flows are for
indefinitely small Reynolds number perturbing Stokes flow
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TABLE VI. Computation of the lift forces on heavy particles using the correlati@® and (21). The com-
puted dimensionless lift forces are close to the values of the dimensionless buoyant wgight«(1) of the

particles.
R QIS\IJ(Z')’W) pp/pf71 Yeld Qs /(2yw) Us/(2y,d) |:
1.093 3.941072 7.17x10°8 0.018
40 5.24<10°3 0.016
2.377 2.96¢10°? 1.35x10°2 0.014
0.9476 5.4%10 2 5.66x10° 3 0.046
80 5321073 0.045
2.705 3.4X%10°? 1.03x10°?2 0.047

on an unbounded domain. Brethetidound that the lift per in Eq. (21): R=p;Vd/ 5,—R=p¢yd?/ 7, the power of
unit length on a cylinder at small values Bf=p;yd?/7is R (—0.515)—(—0.5), and usel=2a, Eq.(21) becomes

given by L=365.20%7°%U5 % Q— ON)a. (24)
L= 21.16pUs _ (22) Comparing(24) and the leading term i23), we note that
(0.679-In(\/R/4))?>+0.634 both expressions are linearlih; both have a similar depen-

dence onp;, 7, anda after noting that(24) is for the lift
force per unit length. However, the dependencejoand
Q- QY is greatly different.

L=6.4607°7"Usy*%a%+ lower order terms (23 Another formula for the lift on a particle in an inviscid
fluid in which uniform motion is perturbed by a weak shear

was derived by Autchand a more recent satisfying deriva-

For a neutrally buoyant particle at equilibriuin=0 and : .
from (22) and(23), Ug=0. The Bretherton and Saffman for- tion of the same re_sult was given by Drew and Passfham.
a plane flow they find

mulas thus predict that the slip velocity is zero for a neutrally
buoyant particle at equilibrium in an unbounded linear shear | = 4 723U Q= 27apU.y, (25)
flow. Patankaet al® argued that zero slip velocity is always ) )

one solution for a neutrally buoyant particle freely moving in Which is similar to our correlatiof21) but differs from(21) -
an unbounded linear shear flow, but it may not be the only" .several ways(25) has a constant_prefactor for inviscid
solution and it can be unstable under certain conditions nofuids whereas viscous effects enter i) throughR; the
yet understood. Feng, Hu and JosEpshowed that a neu- lift force depends_ oer— spin” of the L'U_'d in (25 b_Ut on
trally buoyant particle migrates to the centerline in a Couettdn® angular velocity discrepanéys— Qg in (21); (25 is for
flow whereU,=0. From our simulations for 2D Poiseuille 3D Spheres an@1) is for 2D cylinders.

Saffmari derived an expression for the lift on a sphere in a
linear shear flow

wherea is the radius of the sphere.

flows, Us#0 at the equilibrium position of a neutrally buoy- e compare the lift forces computed from the direct
ant particle(see Fig. 6 whereasQ.=Q., at equilibrium numerical simulation and from the lift expressid24), (22),
gives rise to zero lift. (23), and(25) in Fig. 12. Our correlation21) and Brether-

We find that our expression for the lift on the stable ton’s expiressiom22) are forA2D cylinders and the dimension-
branch near the centerlir@l) is similar to the leading term less lift L is computed ad =L/(p¢gmd?/4); the SaffAman
in Saffman’s expressio(23). If we make following changes and Auton expression®3) and(25) are for spheres and is

computed ag = L/(psg%ma®). The slip velocityU, which

0.06 - mmmmmmmmmmmmmmmmmm oo — & —DNS
-- @ --Correlation (21) 0.12 -
0.08 -~ &~ T —&— Saffman ’
~
004 4-crmmeme o P —>— Bretherton 0.1
\\.\ N ——%— Auton
003 f---- X2 DI N PEPS 008
&« .~ _
002 Fommmom A 3
\t\ & 0.06 -
0.01 y----- S SR SRk 3 oos
< :
R
-0.01 T T T T T T 1 0.02 -
2 25 3 35 4 45 5 5.5
y/d 0 T T T
0 1 2 3 4 5 6
FIG. 12. A comparison of the lift forces computed from the direct numerical Wall yid Centerline

simulation and from the lift expressiori&l), (22), (23), and(25). The lift
forces on the stable branch near the centerline in a flow of Newtonian fluidFIG. 13. The steady state values of the dimensionless angular slip velocity
with R=80 are plotted. QO./(2%,) in flows of Newtonian fluids as a function gfd.
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R e S h bttt approximations when the acceleration of the particle is small.

oyid=1.0 The application of such correlations is to determine param-

Ayid=2.0 eters of a particle at equilibrium, e.g., the equilibrium posi-

x y/d=3.0 tion, translational velocity and angular velocity. For this end,

Oy/d=4.0 """~ correlations which relate) g and() ¢ to prescribed parameters

*yld=5.0 are needed. We will show derivation of such correlations is
feasible in the next section.

2:027u)

0.001

10 160 10'00 VIl. CORRELATIONS FOR SLIP VELOCITY AND
R ANGULAR SLIP VELOCITY
FIG. 14. Power law correlations betwe8n /(2%,,) andR at five values of To make cor_relati0n§20) and(21) completely expligit,
y/d. we need correlations which reldte; and() ¢ to R andy/d in

steady flows of Newtonian fluids. We illustrate the procedure
for Q. In Fig. 13, the steady state values Qt/(2%,,)
is a functional of the solution, is prescribed in the Brethertonpbtained in constrained simulations are plotted agaphdt
Saffman, and Auton expressions and undetermined in thefor five values ofR. If these data are plotted on a log—log
theories. To calculate the lift forces from these expressionsplot of )./(27%,,) versusR, we obtain straight lines one for
we use the values df obtained from our DNS. The values each value ofy/d from the wall to the centerlingfive of
of U, Qg, andQY, obtained from the DNS are used in the which are shown in Fig. 24 leading to power law correla-
calculation of(21). tions:
We draw the readers attention to the fact that the lift

expressiong21), (22), (23), and(25) apply to different sce- w:b(y/d)R‘(y’d)zﬂ (y/d,R)

narios and are not strictly comparable. Our correlatizi) is 2w ° ’

for a freely rotating 2D cylinder without accelerations in a R

plane Poisedille flow. Bretherton’s expressi@2) and Saff- =b(y/d)RV/D 3 (26)
man’s expressiol23) are both for the lift on a particle in an pid

unbounded linear shear flow with an indefinitely small Rey-  The prefactob and exponent in these power law cor-
nolds number; the difference is that the former applies to aelations, which are functions of/d, are plotted in Fig. 15.
nonrotating 2D cylinder while the latter applies to a rotatingWith more data points, these functions could be fitted to
3D sphere. Auton’s expressidi25) applies to a fixed 3D splines, making26) completely explicit.

sphere in an inviscid fluid in which uniform motion is per- A similar procedure folJg leads to

turbed by a weak shear. Expressiof2®), (23), and (25

cannot predict the change of sign across the equilibrium po- wzc(y/qu(y/d):u (y/d,R)
sition; whereas our correlatiof21) reproduces the DNS re- 2yud ° '
sults faithfully. Ry
Our correlations provide explicit expressions for the lift :c(y/d)R‘*(y/d)p—do. (27)
f

force on a patrticle in terms of the slip velocity; and the
angular slip velocity discrepancf;— Q... We emphasize As forb andr in (26), c andq could be fit to splines if more
that the relative angular motion is characterized )y  data points were available. Unlike correlati@®) which can
—Q, rather thanQ)4 or Q. By using the discrepancy, we be found at values of/d from the wall to the centerline,
are able to account for the Seguad Silberberg effect. Our correlation(27) can only be found at values gfd on stable
correlations cover the whole channel except the unstable réranches of steady solutions. It does not correlate well with
gions. We believe that our correlations capture the essence tife data for the unstable branches; in fact for some values of
the mechanism of the lift force. R, Ug is slightly negative at some values gfd on the
Correlations(20) and (21) are derived for the steady unstable branch near the wall, which is incompatible with a
state values of., Ug, and(g, i.e., they apply to particles power law in the form27).
with zero acceleration. For a migrating particle, correlations  In addition to(26) and (27), we also need a correlation
(20) and (21) are not valid, although they might give good betweer)Y., the angular slip velocity of a neutrally buoyant

se’

A
| ]
| b
1 ' |
1 i : L
3 ! | ! | | |
3 X X X i : ! H :_ l FIG. 15. The prefactdo and exponent
< T 1 - ! ! ! ! : ! r in correlation (26) as functions of
! ! ! ! | ! 034+ ---~ :—-—-——1————+————+——-——-|———-—| y/d.
| | | | ! | : ! : ! ! !
| 1 1 1 | 1 02 T T T T T 1
0.0001 o 1 2 3 4 s 6 0 1 2 3 4 5 6
Wall yd Centerline Wall yd Centerline
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TABLE VII. The dimensionless angular slip velocity of a neutrally buoyant particle at equilibrium is essentially
a constant in flows of Newtonian fluids wifR=20-160.

R 20 40 80 120 160

Q5d(2)

5.06x10° 2 5.24x10°3 5.32x10°% 5.24x10°3 5.21x10°3

brate in an unstable region. For example, Ho and Leal
pointed out that the centerline is an unstable equilibrium po-
sition in a 2D Poiseuille flow. Our studies show that the
domain from the wall to the centerline in a 2D Poiseuille
flow can be divided into four regions with the following
order: wall—stable—unstable—stable—unstable—centerline.
The distribution of these regions is affected by shear thin-
ning. Our results show that when shear thinning effects be-
come stronger, the unstable region at the centerline shrinks,
indicating that the equilibrium position of a particle could be
closer to the centerline.

The conclusion that the angular slip velocity discrepancy
04— Q4 changes sign across an equilibrium position estab-
lished by Joseph and Ocarflon Newtonian fluids is con-
]0.000R+o.386 2 firmed in shear thinning fluids. Across a stable equilibrium

particle at equilibrium, an®, in order to makg20) and(21)
completely explicit. Table VII shows theﬁl’s\‘e/(Z'yW) is es-
sentially constant independent B. Using the average of
these values, we obtain
Q5dR) R0
_ -3 N/ py_ -3
2 5.21X10 3= QN (R)=5.21x 10 o
If we now insert(26)—(28) into (20) and(21), we obtain
completely explicittassuming sufficient data points for r,

¢, andq to be fit to splinescorrelations for the lift force

(28

L= 4.20?0.0014?-*— 1.2

X

c %) Rq(y’d{ b( %) RV 521

o position,Q)s— O has the same sign as the net lift follcg;
pid across an unstable equilibrium position;— Q. has the
on the stable branch near the wall; (29  opposite sign as the net lift forde, .
Correlations for the lift force on a particle in terms of the
slip velocity Ug and the angular slip velocity discrepancy
QO,— Qg are derived. The correlations are a power law near
77% the wall and a linear relatiofwhich can be taken as a power

x 1073

L= 182.621-48%(§ RAG/A)

y

X|b| = | R _521x10°3

prd

on the stable branch near the centerline. (30

law with the power of onenear the centerline. The correla-
tions apply to both neutrally buoyant and heavy particles and
cover the whole channel except the unstable regions. Two

These formulas allow us to calculdtefor any value ofy/d
on the stable branches of thevs y/d curve (Fig. 2), obvi-
ating the need for further numerical simulations.

The equilibrium positiory./d of a particle of density,
can be found as the value @fd at which the lift force
equals the buoyant weight

regimes, one with no or weak shear thinning effects and the
other with strong shear thinning effects, are identified for the
power law correlatiori13) whereas only one regime is found
for the linear correlatior{14). It is noted that particle lift in
strong shear thinning flows is different with that in flows of
Newtonian fluids at high Reynolds number.

L(yo/d.R)=(po—p )gW_Z_ We are aple to qb'tain correlations betweIEn and

' R U(Qs— Qo) with coefficients expressed as functionsRyf
the slip velocities at equilibrium can then be calculated bythese correlations cover the flows of Newtonian fluids with
insertingy./d into (26) and (27), the Reynolds number in the range of 20—160. The correla-
R7o tion is compared to well-known analytical expressions for

Qsezﬂs(ye/d:R)zb(Ye/d)Rr(ye/d)m’ lift force in shear flows and similarities between them are
revealed. The major difference between them is that the an-
gular slip velocity discrepancf);— Q.. is used in our cor-
relations instead of the shear rate @¢. We also demon-
strate that correlations which reldte, and ()¢ to prescribed
parameters can be constructed and will make the correlations
for L completely explicit. Thus the lift force in steady flows
can be calculated using correlations at any valug/adf on
Viil. CONCLUSIONS stable branches from the prescribed parameters; the equilib-

We study lifting of a cylindrical particle in plane Poi- rium position of a particle with a certain density can then be
seuille flows of shear thinning fluids. It is known that certain determined by the balance between the lift force and its
regions in a channel are unstable and a particle cannot equilbuoyant weight.

R
Usem Us(ye/dR) =e(y d) R0/ 70.
f

The corresponding translational velocltl, and angular ve-
locity ), of the particle at equilibrium may then be calcu-
lated asU,=U¢(Ye) —Use and Q= Qge— y(Ye)/2.
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