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The cross-stream migration of a single neutrally buoyant rigid sphere in tube flow
is simulated by two packages, one (ALE) based on a moving and adaptive grid
and another (DLM) using distributed Lagrange multipliers on a fixed grid. The two
packages give results in good agreement with each other and with experiments. A
lift law L = CUs(Ωs − Ωse) analogous to L = ρUΓ which was proposed and validated
in two dimensions is validated in three dimensions here; C is a constant depending
on material and geometric parameters, Us is the slip velocity and it is positive, Ωs

is the slip angular velocity and Ωse is the slip angular velocity when the sphere is
in equilibrium at the Segré–Silberberg radius. The slip angular velocity discrepancy
Ωs − Ωse is the circulation for the free particle and it changes sign with the lift.
A method of constrained simulation is used to generate data which is processed
for correlation formulas for the lift force, slip velocity, and equilibrium position.
Our formulae predict the change of sign of the lift force which is necessary in
the Segré–Silberberg effect. Our correlation formula is compared with analytical
lift formulae in the literature and with the results of two-dimensional simulations.
Our work establishes a general procedure for obtaining correlation formulae from
numerical experiments. This procedure forms a link between numerical simulation
and engineering practice.

1. Introduction
Migration and equilibrium of solid particles in shear flows have always been of great

interest. Segré & Silberberg (1961, 1962) studied the migration of dilute suspensions
of neutrally buoyant spheres in tube flows and found the particles migrate away from
both the wall and the centreline and accumulate at a radial position of about 0.6
times the tube radius. This remarkable Segré–Silberberg effect has been verified by
many experimental works on the same kind of problem. For example, Goldsmith &
Mason (1962) observed that a rigid particle stayed at the initial radial position at very
small Reynolds numbers and migrated to intermediate positions at finite Reynolds
numbers. Karnis, Goldsmith & Mason (1966) reported that neutrally buoyant particles
stabilized midway between the centreline and the wall, closer to the wall for larger
flow rates and closer to the centre for larger particles.

In an attempt to explain the Segré–Silberberg effect, different analytical expressions
for the lift force which causes the particle to migrate transversely were obtained
in the literature (Rubinow & Keller 1961; Bretherton 1962; Saffman 1965, 1968;
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McLaughlin 1991; Auton 1987 among others). These analytical expressions are based
on perturbing Stokes flow with inertia or on perturbing potential flow with a little
vorticity. They are explicit and valuable; however, the restrictions on the perturbation
analyses make it difficult to apply these expressions to practical problems where the
Reynolds number is finite and viscosity is important.

Schonberg & Hinch (1989) analysed the lift on a neutrally buoyant small sphere
in a plane Poiseuille flow, with the channel Reynolds number Rc = U ′

ml/ν less than
approximately 100, using matched asymptotic methods. Here, U ′

m is the maximum
velocity of a channel flow, and l is the channel width. The same problem for neutrally
buoyant and non-neutrally buoyant small spheres has been studied by Asmolov (1999).
He considered the Reynolds number based on the particle size to be asymptotically
small, while the channel Reynolds number is finite. He computed the lift force on
a sphere as a function of the distance from the wall to the sphere centre for flows
with Rc up to 3000; the results show that the equilibrium position moves towards the
wall as Rc increases. When the particle Reynolds number is small, the disturbance
flow due to the particle is governed by creeping-flow equations to leading order;
one can compute the transverse component of the velocity at the particle centre and
use the Stokes drag law to calculate the lift. The analysis takes the effect of inertia
(u · ∇)u into account only in an Oseen linear system. The analysis is heavy and explicit
formulae for the lift are not obtained.

Feng, Hu & Joseph (1994) performed numerical simulations of the motion of
a two-dimensional circular particle in Couette and Poiseuille flows. Patankar et al.
(2001a) and Joseph & Ocando (2002) simulated the motion of a two-dimensional
circular particle in plane Poiseuille flows perpendicular to gravity in Newtonian
and viscoelastic fluids. They showed that multiple equilibrium states exist for
particles with intermediate densities; these equilibrium states can be stable or un-
stable.

Relative motions between the fluid and the particle, which may be characterized
by slip velocities, are essential to understand the lift force on the particle. We use Up

and Ωp to denote the translational and angular velocities of the particle at steady
state and the slip velocities are defined as:

Us = Uf − Up, the slip velocity, (1.1)

Ωs = Ωp − Ωf = Ωp + γ̇ /2, the slip angular velocity, (1.2)

where Uf and γ̇ are the fluid velocity and local shear rate evaluated at the location
of the particle centre in the undisturbed flow. Joseph & Ocando (2002) found that the
discrepancy Ωs − Ωse, where Ωse is the slip angular velocity at equilibrium, changes
sign across the equilibrium position just as the lift force does. Thus, this discrepancy
can be used to account for the migration toward the intermediate equilibrium position
from the centreline and the wall (the Segré–Silberberg effect).

Following Joseph & Ocando’s analysis, Wang & Joseph (2003) constructed
correlations for the lift force by analogy with the classical lift formula L = ρUΓ

of aerodynamics; they showed that the proper analogues of U and Γ were Us

and Ωs − Ωse. Their correlations apply to a freely rotating two-dimensional circular
particle without accelerations in a plane Poiseuille flow. They also demonstrated that
the correlations for lift force could be made completely explicit provided that the
correlations relating Us and Ωs to prescribed parameters were obtained.

The results from two-dimensional simulations presented by Feng et al. (1994),
Patankar et al. (2001a), Joseph & Ocando (2002) and Wang & Joseph (2003) are
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difficult to compare with experimental results because the majority of the experiments
are for spherical particles in circular tube flows. The lift force correlations by Wang
& Joseph are for circular particles and cannot be rigorously compared to analytical
lift expressions for spheres. All the above mentioned authors used a two-dimensional
finite-element scheme based on unstructured body-fitted moving grids first developed
by Hu, Joseph & Crochet (1992). Hu & Zhu extended the two-dimensional scheme
to three-dimensional and performed simulations of the migration of spheres in tube
Poiseuille flows (see Zhu 2000). We call this scheme the ALE code because an
arbitrary Lagrangian–Eulerian moving mesh technique has been adopted to deal
with the motion of the particles. The three-dimensional ALE scheme is used in the
current work to study the lift force on a neutrally buoyant sphere in tube Poiseuille
flow.

Another approach to simulate the solid–liquid flow initiated by us is based on
the principle of embedded or fictitious domains. In this approach, the Navier–Stokes
equations are solved everywhere, including inside the particles. The flow inside the
particles is forced to be a rigid-body motion by a distribution of Lagrange multipliers –
thus we call this scheme the DLM code. Detailed descriptions of the DLM method
can be found in Glowinski, Pan & Periaux (1998), Glowinski et al. (1999a, b, 2001),
Singh et al. (2000) and Glowinski (2003). The two quite different schemes, the ALE
code and the DLM code, are both employed to simulate the motion of a neutrally
buoyant sphere in tube Poiseuille flow in the current work. We shall show that the
results of the two codes are in good agreement, which provides strong support for the
credibility of our numerical simulation.

The main goal of this work is to extend the correlation of the lift force in
terms of Us and the discrepancy Ωs − Ωse to three-dimensional cases, which would
give a more convincing explanation for the Segré–Silberberg effect. The lift force
correlations represent efforts to draw explicit formulae from numerical simulation
data. There is no reason why ‘empirical’ formulae of the type used in engineering
which correlate experimental data cannot be generated from the data produced by
numerical simulations. Correlations have already been obtained for single particle lift
(Patankar et al. 2001a; Wang & Joseph 2003) and for the bed expansion of many
particles (Choi & Joseph 2001; Patankar et al. 2001b) by processing numerical data.
Our works have established general rules for the interrogation of data from numerical
simulation to be used in developing models for complex fluid dynamics problems such
as the fluidization by lift or drag.

2. Governing equations and dimensionless parameters
The governing equations for the incompressible Newtonian fluid are

∇ · u = 0, ρf

(
∂u
∂t

+ (u · ∇)u
)

= −∇ P + ρf g + µ∇2u, (2.1)

where u(x, t) is the fluid velocity, ρf is the fluid density, P (x, t) is the pressure, g is
the acceleration due to gravity, and µ is the fluid viscosity. We can absorb the gravity
term in the Navier–Stokes equations into the pressure by decomposing the pressure
as

P = p + ρf g · x. (2.2)
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The equations of motion of the solid particles in a general three-dimensional case
are

m
dUp

dt
= mg +

∫
[−P1 + τ ] · n dΓ,

d(I · Ωp)

dt
=

∫
(x − Xp) × ([−P1 + τ ] · n) dΓ,

(2.3)

where m is the mass of the particle, Up is the translational velocity, Ωp is the angular
velocity, 1 is the unit tensor, I is the moment of inertia tensor and Xp is the coordinate
of the centre of mass of the particle. We consider a solid sphere with a radius a and
m = ρp4πa3/3, I= diag(2ma2/5). The no-slip condition is imposed on the particle
boundaries

u = Up + Ωp × (x − Xp) (2.4)

and on the tube wall u =0. The velocity profile at the inlet of the tube is prescribed
by

u = Um(1 − r2/R2), (2.5)

where Um is the maximum velocity at the centreline of the tube; r is the radial position
and R is the radius of the tube. The traction-free boundary condition is imposed at
the outlet of the tube:

fn ≡ n · T · n = 0; uy = 0; uz = 0, (2.6)

where T = −P1 + τ is the total stress tensor and n is the norm at the outlet of the
tube.

The undisturbed tube Poiseuille flow without particles is given by (2.5). The shear
rate at the wall (r = R) is given by γ̇w = 2Um/R. To non-dimensionalize the governing
equations, we use the velocity V = 2aγ̇w as the characteristic velocity, 2a for length,
2a/V for time, µV/2a for stress and pressure, and γ̇w for angular velocity. The
dimensionless equations are (we use the same symbols for dimensionless variables)

∇ · u = 0, (2.7)

Re

(
∂u
∂t

+ (u · ∇)u
)

= −∇p + ∇2u, (2.8)

ρp

ρf

Re
dUp

dt
= Geg +

6

π

∫
[−p1 + τ ] · n dΓ,

ρp

ρf

Re
dΩp

dt
=

60

π

∫
(x − Xp) × ([−p1 + τ ] · n) dΓ,

(2.9)

where eg is the unit vector in the direction of the gravity. The dimensionless parameters
are

Re =
ρf V (2a)

µ
=

ρf γ̇w(2a)2

µ
=

8a2ρf Um

µR
, the Reynolds number, (2.10)

G =
(ρp − ρf )g(2a)2

µV
, the gravity number, (2.11)

ρp/ρf , the density ratio. (2.12)

It is convenient to carry out the analysis of correlations in terms of dimensionless
forms of correlating parameters. The ratio of the sphere radius a to pipe radius R
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Figure 1. Sketch for the problem of a rigid sphere in a tube Poiseuille flow. The sphere is
neutrally buoyant and the orientation of the gravity is irrelevant.

and the dimensionless radial position r̄ are defined by

ā = a/R, r̄ = r/R. (2.13)

The dimensionless lift is given by

L̄ =
6ρf L

πµ2
. (2.14)

The flow quantities Um, Us , Ωs , Ωse are expressed in the form of Reynolds numbers.
A flow Reynolds number is given by

Ūm =
ρf UmR

µ
=

Re

8ā2
. (2.15)

Slip velocity Reynolds numbers are defined as

Ūs = ρf Us(2a)/µ,

Ω̄s = ρf Ωs(2a)2/µ,

Ω̄se = ρf Ωse(2a)2/µ.


 (2.16)

A dimensionless form of the product Us(Ωs − Ωse) which enters into our lift law is
given as the product

Ūs(Ω̄s − Ω̄se). (2.17)

Note that the flow is in the negative x-direction in our simulation (see figure 1). The
symbol Um in (2.10) and (2.15) should be understood as the magnitude of the fluid
velocity at the tube centreline. Similarly, we use the magnitude of Uf and Up to
calculate the slip velocity Us defined in (1.1).

We shall focus on the steady-state flow of a neutrally buoyant sphere, in which the
left-hand side of (2.9) and the term Geg in (2.9) vanish. Thus, Re and ā are the two
parameters in play.

3. Comparison of results
We study the behaviour of a neutrally buoyant sphere suspended in tube Poiseuille

flows. A comparison of the numerical results using the ALE code with the experiments
by Karnis et al. (1966) was presented by Zhu (2000). Karnis et al. performed a large



114 B. H. Yang and others

0.1

0 500

t (s)

–r

1000 1500 2000

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 2. Comparison of migration trajectories of a neutrally buoyant sphere calculated
numerically by Zhu (2000) (−−) with those measured in the experiments of Karnis et al.
(1966) (�, r̄ = 0.21; �, 0.68). The fluid properties are ρf = 1.05 g cm−3 and µ= 1.2 poises, the

flow rate is Q = 7.11 × 10−2 cm3 s−1, the tube diameter is D = 0.4 cm, and the sphere diameter
is d = 0.122 cm.

number of experiments on the migration of spheres, rods and disks in a Poiseuille flow
in a capillary tube. Zhu (2000) compared the trajectories of spheres released at two
radial positions r̄ =0.21 and 0.68 to the trajectories measured by Karnis et al. Figure 2
shows that the numerical results are in excellent agreement with the experimental
ones.

An equilibrium for a free neutrally buoyant particle is achieved when the particle
migrates to a radial position r̄e of steady rectilinear motion in which the acceleration
and angular acceleration vanish and the hydrodynamic lift force is zero. We perform
two types of simulation, unconstrained and constrained simulations, to find the
equilibrium position. In unconstrained simulation, the particle moves freely until it
reaches its equilibrium position, just as it would do in experiments. In constrained
simulation, the particle is only allowed to move along a line parallel to the axis of
the tube and rotate freely; its lateral migration is suppressed and radial position is
fixed. When such a constrained motion reaches a steady state in which the particle
accelerations vanish, a hydrodynamic lift force L in the radial direction can be cal-
culated. This lift force L is a function of the radial position; the position where L = 0
is the equilibrium position r̄e. In our constrained simulation, we place the sphere
centre at (y = r , z = 0) (see figure 1), so that the lift force at steady state is in the
y-direction, and the z-direction is the neutral direction. The only component of the
particle translational velocity at steady state is Ux , and Ωz is the only component of
the angular velocity.

We compare the results of the unconstrained and constrained simulations obtained
using the ALE code and the DLM code. In the ALE code, the typical mesh used in
most of our simulations consists of 1.05×105 elements, 1.46×105 nodes and 1.9×104

vertices. The number of nodes for velocity is about 2.22 × 106 in the DLM code.
We consider a case in which the radii of the particle and the tube are 0.375 cm and
2.5 cm, respectively (the radius ratio ā = 0.15), the density of the particle and the
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r̄e Ux(cm s−1) Ωz (s−1)

ALE 0.601 12.4 4.65
DLM 0.606 12.2 4.63

Table 1. The equilibrium position r̄e and particle velocities Ux and Ωz at equilibrium calculated
from the unconstrained simulation. The results of the ALE and DLM codes are almost the
same.

fluid is 1 g cm−3, the viscosity of the fluid is 1 poise, and Um = 20 cm s−1 (Re = 9). We
compare the equilibrium position r̄e and velocities Ux and Ωz at equilibrium calculated
from the unconstrained simulation in table 1. We compare the lift force L(r̄), velocities
Ux (r̄) and Ωz(r̄), calculated from the constrained simulation in figure 3.

Figures 3(a) and 3(b) show that the particle translational and angular velocities
obtained from the DLM and ALE codes are almost the same. The agreement of the
lift forces from the two codes in figure 3(c) is not as good as the velocities. The lift
force curve from the DLM code is not quite smooth since this method was intended
to simulate the dynamics of the interaction of fluid and many particles and not to
compute the hydrodynamic forces explicitly. Nevertheless, we regard the agreement
in figure 3(c) acceptable, considering the challenging nature of the three-dimensional
simulation. Because of mesh adaptivity, the ALE code is more suited to accurate
computation of lift. We will use the data from the ALE code to construct the lift
correlations in the following section.

Our two different codes give results in good agreement with each other and with
experiments, which demonstrates that our numerical simulation is credible.

4. Correlations from the numerical simulation
Numerical experiments using constrained simulation provide us with the distri-

bution of the lift force and particle velocity in the tube and the position and velocity
of the particle at equilibrium. We develop correlations for these quantities in this
section. The key correlation is for the lift force, which shows the dependence of the
lift force on the slip angular velocity discrepancy Ωs − Ωse. The lift force correlation
predicts the change of sign of the lift force, which is necessary to explain the two-way
migration in the Segré–Silberberg effect. The correlations for the equilibrium state of
the particle are also of interest, because they may be used to predict the position and
the velocities of the particle at equilibrium.

4.1. Correlation for the lift force

The steady-state values of the lift forces on a sphere at different radial positions
computed in constrained simulation are plotted in figure 4 for a sphere with the
radius ratio ā = 0.15. The positive direction of the lift force is in the negative er

direction. In other words, L̄ is positive when pointing to the centreline and negative
when pointing away from the centreline.

The equilibrium positions of a neutrally buoyant sphere are the points where L̄= 0.
The stability of the equilibrium at a zero-lift point can be determined from the slope
of the L̄ vs. r̄ curve. The centreline is on a negative-slope branch of the L̄ vs. r̄

curve. When a particle is disturbed away from the centreline, the lift force is negative
and drives the particle further away from the centreline. Therefore, the centreline is
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Figure 3. The steady-state values of the particle velocities (a) Ux and (b) Ωz and (c) the lift
force L, from the constrained simulation at different radial positions. The �, ALE and �,
DLM results are in good agreement.
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Figure 4. The dimensionless lift force L̄ at different radial positions for a sphere with the
radius ratio 0.15. The two curves in (a) correspond to Re = 1 and 2, and the four curves in
(b) correspond to Re = 9, 13.5, 18 and 22.5, respectively. The magnitude of the lift force
increases with the Reynolds number.

an unstable equilibrium position. The other zero-lift point is between the centreline
and the wall and it is on a positive-slope branch of the curve. When the particle is
disturbed away from this point, the lift force tends to push the particle back. Thus
the zero-lift point between the centreline and the wall is a stable equilibrium position.
Figure 4 shows that this stable equilibrium position r̄e moves towards the wall as the
Reynolds number increases.

We seek expressions for the lift force in terms of the slip velocities. The slip velocity
Reynolds numbers have been defined in (2.16). We plot Ω̄s − Ω̄se at different radial
positions in figure 5 for a sphere with ā = 0.15. Comparison of figures 4 and 5 shows
that the discrepancy Ω̄s − Ω̄se changes sign across the equilibrium position, as does
the lift force L̄.

If we fix the radius ratio ā =0.15 and continue to increase the Reynolds number,
the distribution of the lift force as a function of the radial position becomes more
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Figure 5. The dimensionless slip angular velocity discrepancy at different radial positions for
a sphere with ā = 0.15. The two curves in (a) correspond to Re = 1 and 2, and the four curves
in (b) correspond to Re = 9, 13.5, 18 and 22.5, respectively.

complicated. We plot the L̄ vs. r̄ curves for Re = 27, 36 and 45 in figure 6. There is
a change of convexity in the curves and a local minimum of the lift force exists at
approximately r̄ =0.55. On each of the curves, there exist two branches on which the
slope of the curve is negative. The first negative-slope branch is at the centreline; the
second negative-slope branch is in the middle between the centreline and the wall.
The second negative-slope branch does not exist when the Reynolds number is small
(Re = 1, 2, 9, 13.5, 18 or 22.5). The exact range of the second negative-slope branch
varies with the Reynolds number; we may say that the range 0.5 � r̄ � 0.65 covers the
second negative-slope branches of the curves for Re =27, 36 and 45. We found that it
was difficult for the constrained simulations in this range at high Reynolds numbers
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Figure 6. The dimensionless lift force L̄ at different radial positions for a sphere with ā = 0.15.
The three curves corresponds to Re = 27, 36 and 45, respectively. On each of the curve, there
exist two branches on which the slope of the curve is negative.

to converge to a steady state; a refined mesh was necessary to obtain converged
results in these simulations. For example, when Re =1, the typical mesh used in our
simulations consists of 9.09 × 104 elements, 1.28 × 105 nodes and 1.68 × 104 vertices;
when Re =45, the typical mesh consists of 9.86 × 104 elements, 1.39 × 105 nodes and
1.82 × 104 vertices.

Similar complicated distributions of the lift force can be observed in Asmolov’s
(1999) calculation of the lift force on a small neutrally buoyant sphere in a plane
Poiseuille flow. In his figure 8, the lift is plotted as a function of d/l, where d is
the distance from the wall to the particle centre and l is the channel width. Five
curves for five channel Reynolds numbers Rc (defined in § 1) = 15, 100, 300, 1000 and
3000 are plotted. There is only one negative-slope branch on the curves for Rc =15
and 100, which is at the centreline. There are two negative-slope branches on the
curves for Rc = 300, 1000 and 3000. One of the branches is at the centreline and
the other is between the centreline and the wall. Both our numerical simulation and
Asmolov’s (1999) calculation using matched asymptotic methods show that at high
Re, there exists a local minimum of the lift force between the centreline and the
stable equilibrium position. This observation prompts us to consider the possibility
of multiple equilibrium positions for neutrally buoyant particles in Poiseuille flows.

Matas, Morris & Guazzelli (2004) measured lateral migration of dilute suspensions
of neutrally buoyant spheres in pipe flows; they observed single equilibrium positions
when Ūm is low (60, 350) and multiple equilibrium positions when Ūm is high (760).
In their experiments using spheres with ā = 0.06875 in flows with Ūm =760, they
observed a first equilibrium position close to the wall and a second equilibrium
position at r̄ = 0.5 ± 0.2. They also reported that when Ūm is increased to 1500, the
first equilibrium position close to the wall disappeared and the second equilibrium
position became the only equilibrium position. Matas et al. proposed to explain the
second equilibrium position using the change of convexity in the lift force profiles
obtained from the matched asymptotic methods. They argued that the particles could
accumulate in the region near the local minimum of the lift force.
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a sphere with ā = 0.15. The three curves correspond to Re = 27, 36 and 45, respectively.

In numerical simulations, Patankar et al. (2001a) reported multiple equilibrium
positions for particles heavier than the fluid in plane Poiseuille flows perpendicular
to the gravity. We have not obtained multiple equilibrium positions in simulations
for a neutrally buoyant sphere in pipe flows. We are not able to run simulations
matching the experimental conditions under which multiple equilibrium positions
were observed. From figure 6, it seems possible that a second stable equilibrium
position appears near r̄ = 0.55 at higher Re. It is also possible that the second
equilibrium position arises from particle interaction in the experiments. The existence
of multiple equilibrium positions for a single neutrally buoyant particle in a pipe flow
is still an open question.

The Ω̄s − Ω̄se vs. r̄ curves for the cases with ā = 0.15 and Re = 27, 36 or 45 are
plotted in figure 7. Our assertion that the lift force changes sign with the discrepancy
Ω̄s −Ω̄se remains true for Re = 27 and 36 but not for Re = 45. When Re =45, Ω̄s −Ω̄se

changes sign twice in the range 0 < r̄ < 0.5 (figure 7); however, the lift force remains
negative in the same range (figure 6). Our assertion is true in the vicinity of the stable
equilibrium position at all the Reynolds numbers, which will be the region in which
the lift correlation is developed.

We seek correlations between the lift force L̄ and the product

F = Ūs(Ω̄s − Ω̄se). (4.1)

From our data, we noted that in the vicinity of the stable equilibrium position, the
relation between L̄ and F may be represented by a linear correlation:

L̄(r̄ , Re, ā) = k(Re, ā)F (r̄ , Re, ā), (4.2)

where k is the proportionality coefficient which depends on the Reynolds number
and the radius ratio ā. Some examples of the linear correlation between L̄ and F are
plotted in figure 8 and the values of k are given in table 2. The linear correlation
(4.2) is not valid far away from the equilibrium position; we also list the range of the
radial position in which the linear correlation is valid in table 2.

The value of k decreases as Re increases when the Reynolds number is low.
However, k increases as Re increases when Re � 27. This change is possibly related
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to the emergence of the second negative-slope branch on the L̄ vs. r̄ plot at high
Reynolds numbers. We shall focus on the low-Reynolds-number cases and data-fitting
analyses lead to expressions for k in terms of the Reynolds number:

k = 809Re−0.604 for ā = 0.1, 1 � Re � 12, (4.3)

k = 450Re−0.658 for ā = 0.15, 1 � Re � 22.5. (4.4)
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ā Re k Equilibrium position r̄e Range of the linear correlation

0.1 1 742 0.603 0.2 � r̄ � 0.7
2 620 0.608 0.3 � r̄ � 0.7
4 325 0.638 0.4 � r̄ � 0.75
6 268 0.661 0.55 � r̄ � 0.75
8 254 0.674 0.6 � r̄ � 0.75

10 201 0.684 0.6 � r̄ � 0.75
12 169 0.708 0.65 � r̄ � 0.8

1 369 0.573 0.3 � r̄ � 0.6
0.15 2 346 0.573 0.3 � r̄ � 0.6

9 130 0.601 0.4 � r̄ � 0.65
13.5 77.2 0.623 0.45 � r̄ � 0.7
18 62.5 0.642 0.5 � r̄ � 0.7
22.5 53.5 0.657 0.55 � r̄ � 0.7
27 56.5 0.670 0.6 � r̄ � 0.75
36 69.8 0.691 0.65 � r̄ � 0.75
45 85.2 0.700 0.67 � r̄ � 0.75

Table 2. The values of the proportionality coefficient k and the equilibrium position r̄e as
functions of the radius ratio ā and Re. The range of the radial position in which the linear
correlation (4.2) is valid is also listed.

Inserting the expression of k into the linear correlation (4.2), we can obtain the
correlations between L̄ and F. To reveal the dependence of the lift force on the slip
velocities explicitly, we substitute the definitions of L̄ and F into the linear correlation
and it follows that

L = 424Re−0.604ρf Us(Ωs − Ωse)(2a)3 for ā = 0.1, (4.5)

L = 236Re−0.658ρf Us(Ωs − Ωse)(2a)3 for ā = 0.15. (4.6)

Both of these correlations are analogous to the lift correlation we obtained in the
two-dimensional cases (Wang & Joseph 2003):

L = 182.6Re−0.515ρf Us (Ωs − Ωse) (2a)2 , (4.7)

which is for the lift force per unit length on a cylindrical particle whose diameter is
1/12 of the channel width. It is noted that the exponent of the Reynolds number is
−0.604 in (4.5) and it is closer to the value −0.515 in (4.7).

The lift force in our correlation is on a freely rotating particle translating at steady
velocity. Thus, correlations (4.5) and (4.6) apply to particles with zero acceleration.
For a migrating particle with substantial acceleration, correlations (4.5) and (4.6) may
not be valid.

4.2. Correlations for the slip velocity Us and slip angular velocity Ωs

Besides the lift force on the particle, the translational and angular velocities of the
particle at steady state are also of interest. We shall construct correlations for the slip
velocity Us and slip angular velocity Ωs from constrained simulations; the particle
velocities can then be easily computed using (1.1) and (1.2). The correlations for
Us and Ωs are necessary to compute the lift force, because they appear in the lift
correlations (4.5) and (4.6).

We illustrate the correlation construction for a particle with the radius ratio ā =0.15.
We plot the Reynolds number Ω̄s on log–log plots versus Re; straight lines for each
value of r̄ are obtained. Similar straight lines on log–log plots are obtained when we
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Figure 9. Power law correlations of (a) Ω̄s vs. Re and (b) Ūs vs. Re at different values of r̄
for a sphere with ā = 0.15.

plot Ūs versus Re. Examples of such plots are shown in figures 9(a) and 9(b) for Ω̄s

vs. Re and Ūs vs. Re, respectively.
Power law correlations arise from the straight lines in log–log plots for Ω̄s and Ūs

Ūs(r̄ , Re, ā) = b(r̄ , ā)Rem(r̄ ,ā), (4.8)

Ω̄s(r̄ , Re, ā) = c(r̄ , ā)Ren(r̄ ,ā). (4.9)

The coefficients b, m, c and n are obtained for a particle with ā = 0.15 in the range
0.1 � r̄ � 0.8 and plotted in figure 10. Exponential fitting and linear fitting may
give reasonable approximations to the prefactors b and c and exponents m and n,
respectively:

b = 1.1 × 10−2 exp(2.2r̄), c = 2.1 × 10−5 exp(9.2r̄), (4.10)

m = −1.1r̄ + 1.7, n = −2.1r̄ + 2.8. (4.11)
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a particle with ā =0.15 in the range 0.1 � r̄ � 0.8.

Substitution of (4.10) and (4.11) into (4.8) and (4.9) leads to explicit expressions for
Ūs and Ω̄s

Ūs = 1.1 × 10−2 exp(2.2r̄)Re−1.1r̄+1.7, (4.12)

Ω̄s = 2.1 × 10−5 exp(9.2r̄)Re−2.1r̄+2.8, (4.13)

which apply to a particle with ā = 0.15 in the range 0.1 � r̄ � 0.8. Correlation (4.12)
and (4.13) are generally valid in the range of 1 � Re � 45. However, correlation (4.12)
is not in good agreement with the data for Ūs on the second negative-slope branch
on the L̄ vs. r̄ curve (0.5 � r̄ � 0.65) at high Reynolds numbers (Re =27, 36 and 45).
Thus, correlation (4.12) in the range 0.5 � r̄ � 0.65 is valid only for 1 � Re � 22.5.

Correlations for Ūs and Ω̄s for ā =0.1 are developed using the same procedure as
for ā = 0.15. We omit the details of derivation and give only the final formulae for Ūs

and Ω̄s

Ūs = 8.3 × 10−3 exp(1.8r̄)Re−1.4r̄+1.9, (4.14)

Ω̄s = 7.7 × 10−6 exp(9.0r̄)Re−3.3r̄+3.8, (4.15)

which apply to a particle with ā = 0.1 in the range 0.05 � r̄ � 0.85. The range of the
Reynolds number in which (4.14) and (4.15) is valid is 1 � Re � 12.
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ā Re Ūm r̄e Ω̄se Ūse

0.05 2 100 0.731 0.00710 0.0247

1 12.5 0.603 0.00188 0.0219
2 25 0.608 0.00509 0.0444
4 50 0.638 0.0209 0.0901

0.1 6 75 0.661 0.0498 0.152
8 100 0.674 0.0901 0.470

10 125 0.684 0.139 0.712
12 150 0.708 0.202 0.296

1 5.56 0.573 0.00354 0.0338
2 11.1 0.573 0.00765 0.0675
9 50 0.601 0.0861 0.306

13.5 75 0.623 0.197 0.482
0.15 18 100 0.642 0.342 0.730

22.5 125 0.657 0.513 0.785
27 150 0.670 0.705 1.07
36 200 0.691 1.16 1.18
45 250 0.700 1.67 1.74

0.2 32 100 0.598 0.793 1.74

0.25 50 100 0.567 1.49 2.84

Table 3. Particle parameters at stable equilibrium: the equilibrium position r̄e , the dimen-
sionless slip angular velocity Ω̄se = ρf Ωse(2a)2/µ and the dimensionless slip velocity Ūse =
ρf Use (2a) /µ.

4.3. Correlations for the particle parameters at equilibrium

The equilibrium state of a particle is always the focus of the study of particle
migration. We obtain the particle parameters at stable equilibrium, such as the
equilibrium position r̄e, the slip velocity Use and the slip angular velocity Ωse by
unconstrained simulation and find that they may be correlated to the Reynolds
number. We summarize the particle parameters at stable equilibrium in table 3.

We can correlate the stable equilibrium position of a neutrally buoyant sphere with
the Reynolds number (see figure 11):

r̄e = 0.591Re0.0644 for ā = 0.1, (4.16)

r̄e = 0.555Re0.0546 for ā = 0.15. (4.17)

The equilibrium position r̄e moves closer to the wall as the Reynolds number increases.
We also observe that when the flow Reynolds number Ūm is fixed, the larger particle
finds its equilibrium position closer to the centreline than the smaller particle. The
above observations are in agreement with the experiments by Karnis et al. (1966),
who reported that neutrally buoyant particles stabilized closer to the wall for larger
flow rates and closer to the centre for larger particles.

Matas et al. (2004) reported that for neutrally buoyant spheres with a diameter
d = 900 µm in the pipe of diameter D = 8 mm, the equilibrium position is r̄e = 0.64 ±
0.04 for Ūm = 60 and r̄e = 0.78 ± 0.04 for Ūm = 350. The value of ā is close to
0.1 in these experiments, thus we can compare correlation (4.16) to the experimental
results. Equations (4.16) and (2.15) predict r̄e =0.654, 0.732 for Ūm = 60, 350,
respectively, in good agreement with the experimental results. Matas et al. (2004)
stated that the matched asymptotic calculation (Schonberg & Hinch 1989; Asmolov
1999) predicts that r̄e =0.71, 0.85 for Ūm =60, 350, respectively, in both cases larger
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Figure 11. The stable equilibrium position r̄e of a neutrally buoyant sphere as a function of
the Reynolds number. The two power law curves are for spheres with ā = 0.1 and ā = 0.15,
respectively. �, r̄e = 0.555 Re0.0546; �, r̄e = 0.591 Re0.0644. All the points on the dotted line are
for the same flow Reynolds number Ūm = 100; the dotted line shows that when Ūm is fixed,
the equilibrium position becomes closer to the centreline as ā increases.

than the experimental value. They attributed this difference to the relatively large
size of the particles. They reported that when smaller particles (200 µm) were used in
the experiments, equilibrium positions were closer to the theoretical predictions. The
actual values of r̄e for 200 µm particles are not reported in their paper, but we can
infer that r̄e for 200 µm particles is larger than r̄e for 900 µm particles at the same Ūm.
This agrees with our conclusion that the larger particle finds its equilibrium position
closer to the centreline than the smaller particle at a fixed Ūm.

If we correlate the dimensionless slip angular velocity at equilibrium Ω̄se with the
Reynolds number Re, we obtain (see figure 12)

Ω̄se = 0.0023Re1.72, i.e. Ωse = 0.0023Re1.72µ/(ρf 4a2). (4.18)

This correlation appears to be applicable to a wide range of the radius ratios:
0.05 � ā � 0.25. Correlation (4.18) is important because it gives explicitly the slip
angular velocity when the particle is at stable equilibrium.

Now with all the correlations for k, Ūs, Ω̄s and Ω̄se available, we are in a position
to make the lift correlation (4.2) completely explicit. Take a particle with ā = 0.15, for
example,

L̄ = kŪs(Ω̄s − Ω̄se), (4.19)

where k, Ūs, Ω̄s and Ω̄se are given in (4.4), (4.12), (4.13) and (4.18), respectively.
Therefore, we are able to compute the lift force on a particle at different radial
positions from the Reynolds number and radius ratio. It should be noted that the lift
force applies to a freely rotating particle translating at a steady speed.

If we set L̄ in (4.19) to zero, we can solve for the equilibrium position r̄e. The value
L̄= 0 is given by Ω̄s = Ω̄se; this leads to a formula for the equilibrium position

r̄e =
4.6 − 0.98 ln Re

8.8 − 2.1 lnRe
(4.20)
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for a particle with ā = 0.15 which can be compared to correlation (4.17). Equ-
ations (4.17) and (4.20) give rise to similar values for r̄e in the range 1 � Re � 22.5
(see figure 13); (4.17) gives a better approximation to the simulation results because
it is directly developed for r̄e. When Re > 22.5, the agreement is not good between
(4.17) and (4.20).

A summary of our correlations is presented in table 4. Correlation of formulae
exhibiting the dependence of prefactors and exponents on ā requires more comput-
ation.

5. Comparison of lift expressions
Wang & Joseph (2003) compared the lift correlation (4.7) with analytical lift

expressions in the literature. Their comparison was limited because the correlation
(4.7) is for a two-dimensional cylindrical particle, whereas the lift expressions of
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L̄(r̄; ā, Re) = k(ā, Re)Ūs(Ω̄s − Ω̄se) Lift law
where k(ā, Re) = g(ā)Re−h(ā) ā g(ā) h(ā)

0.1 809 0.604
0.15 450 0.658

Ūs = b(r̄; ā)Rem(r̄;ā)

Ūs = 1.1 × 10−2 exp(2.2r̄)Re−1.1r̄+1.7 for ā = 0.15
Ūs = 8.3 × 10−3 exp(1.8r̄)Re−1.4r̄+1.9 for ā = 0.1
Ω̄s = c(r̄; ā)Ren(r̄;ā)

Ω̄s = 2.1 × 10−5 exp(9.2r̄)Re−2.1r̄+2.8 for ā = 0.15
Ω̄s = 7.7 × 10−6 exp(9.0r̄)Re−3.3r̄+3.8 for ā = 0.1
Ω̄se = 0.0023Re1.72 0.05 � ā � 0.25

applicable to a wide range of ā

r̄e = f (ā)Req(ā) ā f (ā) q(ā)
0.1 0.591 0.0644
0.15 0.555 0.0546

Table 4. Structure of the correlations for the lift law.

Saffman (1965, 1968) and Auton (1987) are for a sphere. A comparison between
correlations (4.5) and (4.6) with the aforementioned analytical lift expressions is more
sensible; though the comparison is still tentative because the analytical lift expressions
are for a particle in a linear shear flow on an unbounded domain whereas our three-
dimensional simulation is in a tube Poiseuille flow. We will compare the correlation
(4.5) to the analytical lift expressions with these caveats in mind.

Auton (1987) derived a lift expression for a fixed sphere in an inviscid fluid in which
uniform motion is perturbed by a weak shear:

L = 2
3
πa3ρ ω × (u − U). (5.1)

In the case under consideration, ω = ezγ̇ and u − U = exUs; the lift force in the y-dir-
ection is

L = 2
3
πa3ρUsγ̇ , (5.2)

which is similar to our correlation (4.5), but differs from it in several ways: (5.2) has a
constant prefactor for inviscid fluids, whereas viscous effects enter into (4.5) through
Re; the lift force depends on γ̇ in (5.2), but on the discrepancy Ωs − Ωse in (4.5); (5.2)
is for a fixed three-dimensional sphere while (4.5) is for a freely rotating sphere with
zero acceleration.

Saffman (1965, 1968) obtained an expression for the lift force on a rotating sphere
in an unbounded linear shear flow at indefinitely small Reynolds number:

L = 6.46ρ0.5
f µ0.5Usγ̇

0.5a2 + lower-order terms. (5.3)

If we make following changes in (4.5): Re = ρf γ̇w(2a)2/µ, the power of Re (−0.604) →
(−0.5), then (4.5) becomes

L = 1696ρ0.5
f µ0.5Usγ̇

−0.5
w (Ωs − Ωse)a

2. (5.4)

Comparing (5.4) and the leading term in (5.3), we note that both expressions are linear
in Us; both have a similar dependence on ρf , µ and a. However, the dependence on
γ̇ and Ωs − Ωse is greatly different.
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For a neutrally buoyant particle at equilibrium, L =0 and (5.2) and (5.3) imply
Us =0. The Auton and Saffman formulae thus predict that the slip velocity is zero
for a neutrally buoyant sphere at equilibrium.

McLaughlin (1991) generalized Saffman’s analysis to remove the restriction that
the Reynolds number Ūs based on slip velocity Us is much smaller than the square
root of the Reynolds number Re based on the shear rate and derived an expression
for the lift force:

L =
6.46

2.255
ρ0.5

f µ0.5Usγ̇
0.5a2J (ε), (5.5)

where

ε =

√
Re

Ūs

, Re =
ρf γ̇ (2a)2

µ
, Ūs =

ρf Us(2a)

µ
,

and J is a function of ε only and has a value of 2.255 as ε → ∞ (the Saffman limit).
Equation (5.5) shows that zero lift force is obtained when Us =0 or J (ε) = 0. The
solution provided by McLaughlin gives J (ε) = 0 at ε = 0.215, i.e. Ūs =

√
Re/0.215.

Hence, Us is not single valued for L = 0.
In the lift expressions given by Auton, Saffman and McLaughlin, zero lift force is

determined by the slip velocity Us . This is not the case in our simulation for a sphere
in tube Poiseuille flows; our results show that Ωs = Ωse gives rise to zero lift. The
difference may be because linear shear flow has a zero shear gradient whereas the
shear gradient in Poiseuille flow is a constant and not small.

6. Conclusion and discussion
(i) The motion of a single neutrally buoyant rigid sphere in tube Poiseuille

flow is simulated by two methods: an ALE arbitrary Lagrangian-Eulerian scheme
with a moving adaptive mesh; and a DLM distributed Lagrange multiplier/fictitious
domain method. The two methods give the same results, and the simulation agrees
with experiments.

(ii) A lift law L = CUs(Ωs − Ωse) analogous to L = ρUΓ of classical aerodynamics
which was proposed and validated in two dimensions is validated in three dimensions
here; Us is the slip velocity and it is positive, Ωs is the slip angular velocity and Ωse

is the slip angular velocity when the sphere is in equilibrium at the Segré–Silberberg
radius.

(iii) The slip angular velocity discrepancy Ωs − Ωse is the circulation for the free
particle and it is shown to change sign with the lift.

(iv) Numerical experiments using the method of constrained simulation generate
data for the lift force and velocities of a freely rotating sphere in steady flows arising
from initial-value problems in which the sphere is constrained to move at a fixed
radius.

(v) Constrained simulations are very efficient. The lift and all velocities are
obtained for different radii at each specified Reynolds number and radius ratio
ā = a/R.

(vi) Equilibrium may be identified at the Segré–Silberberg radius at which the lift
vanishes (for a neutrally buoyant particle). The equilibrium slip angular velocity is
the slip angular velocity at this equilibrium radius.

(vii) Data generated by constrained simulations are processed for straight lines in
log–log plots and give rise to explicit power-law formulae for all the quantities in the
lift law as a function of Re and ā. We go from data to formulae.
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(viii) The equilibrium position (the Segré–Silberberg radius) moves towards the
wall as Re increases at each fixed ā; it moves towards the centreline as ā increases at
a fixed flow Reynolds number Ūm.

(ix) Our correlations are compared with analytical lift formulae in the literature.
None of the analytic formulae for lift change sign at the Segré–Silberberg radius.
These formulae also leave the form of the slip velocity Us obscure.

The lift law we have proposed for free circular and spherical particles is analogous
to the aerodynamic lift law ρUΓ in the case of a rotating circle for which Γ = 2πa2Ω .
It is probable that the lift law for free bodies of more general shape is in the form
L =CUsΓs where C depends on fluid properties and geometric parameters and Γs

is unknown. The determination of Γ even in aerodynamic theory is a complicated
problem. In airfoil theory, Γ is strongly coordinated with the attack angle of the
airfoil. A similar coordination of the circulation with the attack angle is apparently
generated by the motion of a free ellipse in a plane Poiseuille flow (Feng, Huang &
Joseph 1995). This problem could be framed in terms of the equilibrium position and
orientation of an ellipse in a plane Poiseuille flow. As in the case of circular particles,
the equilibrium position is decided by a balance of buoyant weight and lift, where the
lift arises as a competition of forces arising from shear gradients and wall effects. This
problem ought to be studied by the technique of constrained simulation discussed
here. At each fixed y, the motion of the ellipse would evolve to a steady state with
a fixed angle of attack. This lift on the ellipse at this y could be computed and, of
course, as in the case of circular and spherical particles, this lift would balance the
buoyant weight, zero for neutrally buoyant particles, at equilibrium, with a certain
equilibrium attack angle. The lift must change sign with the attack angle discrepancy.

This paper aims at presenting a general procedure and data structure for the
interrogation of numerical simulation data. Our goal is to draw explicit formulae from
numerical data, which may be used to model complex problems, obviating further
expensive computation. The procedure involves identifying controlling dimensionless
groups and data-fitting analyses which lead to expressions for the quantities of interest
in terms of prescribed parameters. We believe when properly used, this procedure
may help to reveal the underlying physics of the problem and generate practically
useful formulae at the same time.
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