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Abstract 

The lateral migration of a single spherical particle in tube Poiseuille flow is 

simulated by ALE scheme, along with the study of the movement of a circular 

particle in plane Poiseuille flow with consistent dimensionless parameters. 

These particles are rigid and neutrally buoyant. A lift law � �
sess

CUL ����  

analogous to �� UL �  is validated in both two dimensions and three 

dimensions here. A method of constrained simulation is used to generate data 

which is processed for correlation formulas for the lift force, slip velocity, and 

equilibrium position. Our formulas predict the change of sign of the lift force 

which is necessary in the Segrè-Silberberg effect. Correlation formulas are 

compared between tube and plane Poiseuille flows by fixing the 

dimensionless size of particle and the Reynolds number. Our work provides a 

valuable reference for a better understanding of the migration of particle in 

Poiseuille flows and the Segrè-Silberberg effect. 

Introduction 

The literature on the migration of rigid particles in shear flow has been 

reviewed by Yang, Wang, Joseph, Hu, Pan and Glowinski (2005) and else 

where and will not be reviewed here. Yang et al. (2005) used the ALE scheme 



to study the lift force on a neutrally buoyant sphere in tube Poiseuille flow. 

They validated the lift law in three dimensions and established a general 

procedure for obtaining correlation formulas from numerical experiments. 

Their correlation formulas and predictions obtained good agreement with the 

literature. 

The main goal of this work is to correlate the lift laws in two dimensions 

and three dimensions simultaneously by fixing some important dimensionless 

parameters such as Reynolds number and the dimensionless size of particle. 

Another goal is to study the analog and the difference between the migration 

of a spherical particle in tube Poiseuille flow and that of a circular particle in 

plane Poiseuille flow by analyzing the results obtained from the same 

procedure of data interrogation. 

Governing equations and dimensionless parameters 
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Fig. 1. Sketches for the problem of (a) a rigid spherical particle in tube Poiseuille 

flow and (b) a rigid circular particle in plane Poiseuille flow. 

The fluid-particle system is governed by the Navier-Stokes equations for the 

fluid and Newton’s equations for rigid body motions. The dimensionless 

governing equations in a general three dimensional case are  
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The dimensionless parameters are 
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fp �� / , the density ratio.                                    (5) 

It is convenient to carry out the analysis of correlations in terms of 

dimensionless forms of correlating parameters. The ratio of the particle radius 

a  to tube radius R  and the dimensionless radial position r  are defined by 

Raa /� , Rrr /� .                                       (6) 

The dimensionless lift is given by 
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Relative motions between the fluid and the particle, which may be 

characterized by slip velocities, are essential to understand the lift force on the 

particle. We use 
p

U  and 
p

�  to denote the translational and angular velocities 

of the particle at steady state. The slip velocities are defined as: 

 
pfs

UUU �� ,  the slip velocity;                              (8) 

2/���������� pfps
,  the slip angular velocity,             (9) 

where 
f

U  and ��  are the fluid velocity and the local shear rate evaluated at the 

location of the particle center in the undisturbed flow. 

We express the flow quantities 
m

U , 
s

U , 
s

� , 
se

�  in the form of Reynolds 

numbers. A flow Reynolds number is given by 

2
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Slip velocity Reynolds numbers are defined as  

� � �� /2aUU sfs �
,  � � �� /2

2

asfs ��� , � � �� /2
2

asefse ��� .    (11) 

A dimensionless form of the product � �
sess

U ���  which enters into our lift 

law is given as the product � �
sess

U ��� . 

We call the reader’s attention to the fact that the flow is in the negative x 

direction in our three dimensional simulation (see figure 1(a)). The symbol 

m
U  in (3) and (10) should be understood as the magnitude of the fluid velocity 

at the tube centerline. Similarly, we use the magnitude of 
fU  and 

p
U  to 

calculate the slip velocity 
s

U  defined in (8). We shall focus on the steady state 

flow of a neutrally buoyant spherical particle, in which the left side of (2) and 

the term 
g

Ge  in (2) vanish. Thus, 
e

R  and a  are the two parameters at play. 

Here, we do not describe again the equations and parameters in two 

dimensions. Interested readers are referred to Wang and Joseph (2003) or 

Joseph and Ocando (2002) or Patankar, Huang, Ko and Joseph (2001) for 

details. The only change is that the coordinate is at the centerline of channel in 

this paper. 

In the plane Poiseuille flow, the Reynolds number is 
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where p  is the constant pressure gradient. We also introduce the 

dimensionless parameter r  to the two dimensional cases,  

2/W

y

R

y
r ��

,                                        (13) 

where W  is the width of channel and R  is half of the channel width. The 

dimensionless lift is given by 
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Other dimensionless quantities, such as 
s

U , 
s

�  and 
se

� , are in the same 

expressions to those in the three dimensions. 

Correlations from the numerical simulation 

Numerical experiments using constrained simulation provide us with the 

distribution of the lift force and particle velocity in the tube and the position 

and velocity of the particle at equilibrium. We develop correlations for these 

quantities in this section. The key correlation is for the lift force, which shows 

the dependence of the lift force on the slip angular velocity discrepancy 

ses
��� . The lift force correlation predicts the change of sign of the lift force, 

which is necessary to explain the two-way migration in the Segrè-Silberberg 

effect. The correlations for the equilibrium state of the particle are also of 

interest, because they may be used to predict the position and the velocities of 

the particle at equilibrium. 

Correlation for the lift force 

The steady state values of the lift forces on a particle at different radial 

positions computed in constrained simulation are plotted in figure 2 for a 

spherical particle with the radius ratio a  = 0.15 in three-dimensional tube 

Poiseuille flow. The same correlations for the migration of a circular particle 

in two-dimensional plane Poiseuille flow are also given in this figure. The 

positive direction of the lift force is in the negative 
r
e  direction. In other 

words, L  is positive when pointing to the centerline and negative when 

pointing away from the centerline. 
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Fig. 2. The dimensionless lift force L  at different radial positions for a particle 

with the radius ratio a  = 0.15. The curves in (a), (c) and (e) are for the migration 

of a circular particle in plane Poiseuille flow with different Reynolds numbers; 

the curves in (b), (d) and (f) are for the migration of a spherical particle in tube 

Poiseuille flow. 

The equilibrium positions of a neutrally buoyant particle are the points 

where L  = 0. The stability of the equilibrium at a zero-lift point can be 

determined from the slope of the L  vs. r  curve. The centerline is on a 

negative-slope branch of the L  vs. r  curve. When a particle is disturbed away 

from the centerline, the lift force is negative and drives the particle further 

away from the centerline. Therefore the centerline is an unstable equilibrium 

position. The other zero-lift point is between the centerline and the wall and it 

is on a positive-slope branch of the curve. When the particle is disturbed away 

from this point, the lift force tends to push the particle back. Thus the zero-lift 

point between the centerline and the wall is a stable equilibrium position.  It is 

a surprise to see that the stable equilibrium position 
e
r  moves towards the wall 

(a) (b) 

(e) 

(c) (d) 

(f) 



as the Reynolds numbers increases for the three-dimensional cases but away 

from the wall for the two-dimensional cases. 

We discuss the three-dimensional cases with the radius ratio a = 0.15. 

When the Reynolds number is small (
e

R  = 1, 2, 9 or 18), only one stable 

branch and one unstable branch can be observed in the L  vs. r  curves (figure 

2(b), 2(d)). For higher Reynolds numbers, the distributions of the lift force as 

a function of the radial position become more complicated (figure 2(f)). A 

refined mesh was necessary to obtain converged results at high 
e

R .  

We seek expressions for the lift force in terms of the slip velocities. The slip 

velocity Reynolds numbers have been defined in (11). We plot 
ses

���  at 

different radial positions in figure 3 for a particle with a  = 0.15 for both the 

two-dimensional and the three-dimensional cases. Comparison of figure 2 and 

figure 3 shows that the quantity 
ses

���  always changes sign above and 

below the equilibrium position for either the two dimensions or the three 

dimensions. 
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Fig. 3. The dimensionless slip angular velocity discrepancy at different radial 

positions for a particle with a  = 0.15. The curves in (a), (c) and (e) are for the 

migration of a circular particle in plane Poiseuille flow with different Reynolds 

numbers; the curves in (b), (d) and (f) are for the migration of a spherical particle 

in tube Poiseuille flow. 

The lift L  changes sign with the discrepancy 
ses

���  near the stable 

equilibrium position at all the Reynolds numbers. The lift correlation is 

developed in the region near the stable equilibrium position. 

We seek correlations between the lift force L  and the product  

� �
sess

UF ���� .                                       (15) 

From our data, we noted that in the vicinity of the stable equilibrium position, 

the relation between L  and F may be represented by a linear correlation: 

� � � � � �aRrFaRkaRrL
eee
,,,,, � ,                            (16) 

where k is the proportionality coefficient which depends on the Reynolds 

number and the radius ratio a . Some examples of the linear correlation 

between L  and F are plotted in figure 4. The linear correlation (16) is not 

valid far away from the equilibrium position.  
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Fig. 4. The linear correlation between L  and F in the vicinity of the stable 

equilibrium position of a neutrally buoyant particle. (a) 
e

R  = 1, a  = 0.15, plane 

Poiseuille flow; (b) 
e

R  = 9, a  = 0.15, plane Poiseuille flow; (c) 
e

R  = 18, a  = 0.15, 

plane Poiseuille flow; (d) 
e

R  = 1, a  = 0.15, tube Poiseuille flow; (e) 
e

R  = 9, a  = 

0.15, tube Poiseuille flow; (f) 
e

R  = 18, a  = 0.15, tube Poiseuille flow. 

We use power laws to fit the expressions for k  in terms of the Reynolds 

number and then obtain the linear correlations between L  and F  by equation 

(a) (b) (c)

(d) (e) (f)



(16). To reveal the dependence of the lift force on the slip velocities explicitly, 

we substitute the definitions of L  and F  into these correlations and then 

obtain the lift laws in table 2. 

Circular particle migrates in plane Poiseuille flow 

 1.0�a  15.0�a  

range of 
e

R  181 ��
e

R  451 ��
e

R  

FLk /�  
757.0

619
�

�
e

Rk  609.0

272
�

�
e

Rk  

� �
L

a
L

f 24

2

�

��
�

 
� �� �2757.0

2486 aURL sessfe ����
�

�  � �� �2609.0

2214 aURL sessfe ����
�

�  

Spherical particle migrates in tube Poiseuille flow 

 1.0�a  15.0�a  

range of 
e

R  121 ��
e

R  5.221 ��
e

R  

FLk /�  
604.0

809
�

�
e

Rk  658.0

450
�

�
e

Rk  

LL

f�

��
2

6
�

 
� �� �3604.0

2424 aURL sessfe ����
�

�  � �� �3658.0

2236 aURL sessfe ����
�

�  

Table 1. Lift laws for the migration of a single neutrally-buoyant particle with a = 

0.1 and a = 0.15 in plane and tube Poiseuille flows.  

The lift force in our correlation is on a freely rotating particle translating at 

steady velocity. Thus correlations in table 1 apply to particles with zero 

acceleration. For a migrating particle with substantial acceleration, these 

correlations may not be valid. 

Correlations for slip velocity Us and slip angular velocity �s  

Besides the lift force on the particle, the translational and the angular 

velocities of the particle at steady state are also of interest. We use power laws 

to fit the correlations between the slip velocities and the Reynolds number. All 

of coefficients in the power law correlations can be explicitly expressed in 

terms of r . Details about the construction of the correlations for the slip 

velocity 
s

U  and the slip angular velocity 
s

�  can be found in Yang et al. 

(2005) and will not be shown here. The final correlations for 
s

U  and 
s

�  and 

the corresponding applicable ranges are listed in table 2. 

 



Table 2. Correlations of slip velocity and slip angular velocity for the migration of 

a single neutrally-buoyant particle with a = 0.1 and a = 0.15 in plane Poiseuille 

flow and tube Poiseuille flow. 

Correlations for parameters at equilibrium 

The equilibrium state of a particle is always the focus of the study of 

particle migration. We obtain the particle parameters at stable equilibrium, 

such as the equilibrium position 
e
r , the slip velocity U

se
 and the slip angular 

velocity �
se

 by unconstrained simulation and find that they may be correlated 

to the Reynolds number. We summarize the particle parameters at stable 

equilibrium in table 3.  

 

Circular particle migrates in plane 

Poiseuille flow 

Spherical particle migrates in tube 

Poiseuille flow a  
e

R  

m
U  

e
r  

se
�  

se
U  

m
U  

e
r  

se
�  

se
U  

0.05 2 - - - - 100 0.731 0.00710 0.0247 

1 1.25 0.478 0.00210 0.0155 12.5 0.603 0.00188 0.0219 

2 2.5 0.478 0.00460 0.0317 25 0.608 0.00509 0.0444 

4 5 0.476 0.0124 0.0661 50 0.638 0.0209 0.0901 

6 - - - - 75 0.661 0.0498 0.152 

8 10 0.456 0.0406 0.134 100 0.674 0.0901 0.470 

10 - - - - 125 0.684 0.139 0.712 

12 15 0.413 0.0724 0.194 150 0.708 0.202 0.296 

18 22.5 0.357 0.110 0.276 - - - - 

80 100 0.222 0.499 1.01 - - - - 

0.1 

180 225 0.174 1.09 2.12 - - - - 

Circular particle migrates in plane Poiseuille flow 

 1.0�a  15.0�a  

range of r  85.010.0 �� r  80.010.0 �� r  

s
U  � � 1.145.03

2.3exp103.4
���

��
r

es
RrU  � � 1.127.03

0.3exp108.6
���

��
r

es
RrU  

s
�  � � 9.195.05

3.7exp104.6
���

���
r

es
Rr  � � 6.169.04

3.7exp103.1
���

���
r

es
Rr  

Spherical particle migrates in tube Poiseuille flow 

 1.0�a  15.0�a  

range of r  85.005.0 �� r  80.010.0 �� r  

s
U  � � 9.14.13

1.2exp104.7
���

��
r

es
RrU  � � 7.11.12

2.2exp101.1
���

��
r

es
RrU  

s
�  � � 9.33.36

6.9exp108.6
���

���
r

es
Rr  � � 8.21.25

2.9exp101.2
���

���
r

es
Rr  



1 0.556 0.463 0.00419 0.0225 5.56 0.573 0.00354 0.0338 

2 1.11 0.463 0.00849 0.0452 11.1 0.573 0.00765 0.0675 

9 5 0.464 0.0491 0.214 50 0.601 0.0861 0.306 

13.5 - - - - 75 0.623 0.197 0.482 

18 10 0.454 0.145 0.439 100 0.642 0.342 0.730 

22.5 - - - - 125 0.657 0.513 0.785 

27 - - - - 150 0.670 0.705 1.07 

36 20 0.388 0.368 0.799 200 0.691 1.16 1.18 

45 25 0.359 0.455 0.967 250 0.700 1.67 1.74 

180 100 0.234 1.70 3.14 - - - - 

0.15 

360 200 0.190 3.21 5.62 - - - - 

0.2 32 - - - - 100 0.598 0.793 1.74 

0.25 50 - - - - 100 0.567 1.49 2.84 

Table 3. Particle parameters at stable equilibrium: the equilibrium position 
e
r , 

the dimensionless slip angular velocity � � �� /2
2

asefse ���  and the dimensionless 

slip velocity � � �� /2aUU sefse �
. 

The correlations for the equilibrium position 
e
r  are shown in figure 5. In 

two dimensions, multiple power law fittings are used in different ranges of 

Reynolds numbers (figure 5(b)). As mentioned before, 
e
r  moves closer to the 

wall as the Reynolds number increases for the three dimensional cases but 

moves to the centerline for the two dimensional cases.  
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Fig. 5. The stable equilibrium position 
e
r  of a neutrally buoyant particle as a 

function of the Reynolds number in (a) tube Poiseuille flow and (b) plane 

Poiseuille flow. 

Figure 6 shows that power law correlations also exist between the 

dimensionless slip angular velocity at equilibrium 
se

�  and the Reynolds 

(a) (b)



number R
e
 for either the two dimensions or the three dimensions. These 

correlations are important because they give explicitly the slip angular 

velocity when the particle is at stable equilibrium.   
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Fig. 6. The correlations between 
se

�  and the Reynolds number 
e

R  for the 

migration of (a) a spherical particle in tube Poiseuille flow and (b) a circular 

particle in plane Poiseuille flow. 

The correlations for parameters at equilibrium are summarized in table 4.  

 Circular particle migrates in plane 

Poiseuille flow 

Spherical particle migrates in tube 

Poiseuille flow 

se
�  

21.1

0031.0
ese

R��  

(for 15.010.0 �� a ) 

72.1

0023.0
ese

R��  

(for 25.005.0 �� a ) 

se
�  

� �221.1

4/0031.0 aR fese ����  

(for 15.010.0 �� a ) 

� �272.1

4/0023.0 aR fese ����   

(for 25.005.0 �� a ) 

e
r  

0210.0

482.0
�

�
ee

Rr  

(for 1.0�a  and 81 ��
e

R ); 

3147.0

888.0
�

�
ee

Rr  

(for 1.0�a  and 1808 ��
e

R ); 

0049.0

464.0
�

�
ee

Rr  

(for 15.0�a  and 181 ��
e

R ); 

0869.0

099.1
�

�
ee

Rr  

(for 15.0�a  and 36018 ��
e

R ). 

0644.0

591.0
ee

Rr �  

(for 1.0�a  and 121 ��
e

R ); 

0546.0

555.0
ee

Rr �  

(for 15.0�a  and 451 ��
e

R ). 

(a) (b) 



Table 4. Correlations of particle parameters at equilibrium for the migration of a 

single neutrally-buoyant particle with a = 0.1 and a = 0.15 in plane Poiseuille flow 

and tube Poiseuille flow.  

Conclusion 

● A lift law � �
sess

CUL ����  analogous to �� UL � �of the classical aero-

dynamics is valid in both two dimensions and three dimensions. 

● Equilibrium may be identified at the Segré-Silberberg radius at which the 

lift vanishes (for a neutrally buoyant particle).  

● The slip angular velocity discrepancy 
ses

���  is the circulation for the free 

particle and it is shown to change sign at the equilibrium position where the 

lift reaches zero on its stable branch. The behaviors of L  and 
ses

���  are 

very similar between the two dimensions and the three dimensions at 

comparatively low Reynolds numbers.  

● The equilibrium position (the Segré-Silberberg radius) moves towards the 

wall as 
e

R  increases at each fixed a  for the migration of a spherical particle 

in tube Poiseuille flow but moves away from the wall for the migration of a 

circular particle in plane Poiseuille flow. 
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