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Potential flows of incompressible fluids admit a pressure (Bernoulli) equation when the
divergence of the stress is a gradient as in inviscid fluids, viscous fluids, linear viscoelastic
fluids and second-order fluids. We show that the equation balancing drag and acceleration
is the same for all these fluids independent of the viscosity or any viscoelastic parameter
and that the drag is zero in steady flow. The unsteady drag on bubbles in a viscous
(and possibly in a viscoelastic) fluid may be approximated by evaluating the dissipation
integral of the approximating potential flow because the neglected dissipation in the
vorticity layer at the traction-free boundary of the bubble gets smaller as the Reynolds
number is increased. Using the potential flow approximation, the drag D on a spherical
gas bubble of radius a rising with velocity U(t) in a linear viscoelastic liquid of density
ρ and shear modules G(s) is given by

D =
2
3
πa3ρU̇ + 12πa

t∫

−∞
G(t− τ)U(τ)dτ

and in a second-order fluid by

D = πa

(
2
3
a2ρ + 12α1

)
U̇ + 12πaµU

where α1 < 0 is the coefficient of the first normal stress and µ is the viscosity of the
fluid. Because α1 is negative, we see from this formula that the unsteady normal stresses
oppose inertia; that is, oppose the acceleration reaction. When U(t) is slowly varying,
the two formulas coincide. For steady flow, we obtain D = 12πaµU for both viscous and
viscoelastic fluids. In the case where the dynamic contribution of the interior flow of the
bubble cannot be ignored as in the case of liquid bubbles, the dissipation method gives an
estimation of the rate of total kinetic energy of the flows instead of the drag. When the
dynamic effect of the interior flow is negligible but the density is important, this formula
for the rate of total kinetic energy leads to D = (ρa − ρ) VBg · ex − ρaVBU̇ where ρa is
the density of the fluid (or air) inside the bubble and VB is the volume of the bubble.

Classical theorems of vorticity for potential flow of ideal fluids hold equally for viscous
and viscoelastic fluids. The drag and lift on two-dimensional bodies of arbitrary cross
section in viscoelastic potential flow are the same as in potential flow of an inviscid fluid
but the moment M in a linear viscoelastic fluid is given by

M = MI + 2

t∫

−∞
[G(t− τ)Γ(τ)] dτ

where MI is the inviscid moment and Γ(t) is the circulation, and

M = MI + 2µΓ + 2α1
∂Γ
∂t

in a second-order fluid. When Γ(t) is slowly varying, the two formulas for M coincide.
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For steady flow, they reduce to

M = MI + 2µΓ

which is also the expression for M in both steady and unsteady potential flow of a viscous
fluid.

Potential flows of models of a viscoelastic fluid like Maxwell’s are studied. These models
do not admit potential flows unless the curl of the divergence of the extra-stress vanishes.
This leads to an over-determined system of equations for the components of the stress.
Special potential flow solutions like uniform flow and simple extension satisfy these extra
conditions automatically but other special solutions like the potential vortex can satisfy
the equations for some models and not for others.
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1. Introduction
Potential flows arise from the kinematic assumption that the curl of the velocity van-

ishes identically in some region of space, ω
def
= curlu = 0. In this case, the velocity is given

by the gradient of a potential, u = ∇φ. If, in addition, the material is incompressible,
then divu = 0 and ∇2φ = 0. None of this depends on the constitutive equation of the
fluid. In fact most constitutive equations are not compatible with the assumption that
curlu = 0, in general. For example, if the viscosity µ of a Newtonian fluid varies from
point to point, then

ρ curl
(

du

dt

)
= curl [−∇p + div (µA)] = curl

(
µ∇2u

)
+ curl (A∇µ) , (1.1)

where A
def
= L + LT and L

def
= ∇u, ρ is the density which only depends on time and,

p is a to-be-determined scalar field called the pressure. All the terms except the last
vanish when u = ∇φ. This term amounts to a “torque” which generates vorticity. Most
constitutive equations will generate vorticity because the curl of the divergence of the
stress produces such a torque.

There are special irrotational motions which satisfy the equations of motion even for
fluids which will not generally accommodate potential flows. For example, since the
stress must be Galilean invariant, uniform motion is a potential flow which satisfies the
equations of motion independent of the constitutive equation. Another such potential
flow, greatly loved by rheologists, is pure extensional or elongational flow which leads to
the concept of extensional viscosity.

In general, potential flows will not satisfy the boundary conditions at solid walls or free
surfaces. This is why potential flows are almost impossible to achieve exactly in practice.
In particular, this feature is probably at the bottom of the apparent disagreement of the
different instruments which claim to measure extensional viscosity. None of them achieve
the irrotational flows necessary for backing out the rheology. However, we know how
to use potential flows in viscous fluid mechanics, where we were instructed by Prandtl.
Perhaps we may also learn how to use potential flow to study the fluid dynamics of
viscoelastic liquids.

There are some special constitutive equations which are compatible with the assump-
tion that curlu = 0, in general. Among these are inviscid fluids, viscous fluids with
constant viscosity (Joseph, Liao and Hu [1993]), second-order fluids (Joseph [1992]) and
linear viscoelastic fluids which perturb rest or uniform flow (Liao and Joseph [1992]).
The second-order fluid arises asymptotically from the class of simple fluids by the slow-
ing of histories which Coleman and Noll [1960] called a retardation. The retardation can
be said to arise on slow and slowly varying motions, where slow variations mean spatial
gradients are small when the velocity is small and time derivatives of order n scale with
|u|n. In viscous fluid mechanics we generally associate potential flows with high Reynolds
numbers, i.e. fast flows. The constitutive equation (6.1) for a linear viscoelastic liquid
is the appropriate asymptotic form for simple fluids in motions which perturb uniform
flows which need not be slow. We should show that second-order fluids also arise as per-
turbations of fast uniform flows when the perturbations are slowly varying (cf. (6.2) and
(6.7)). We have worked out the consequences of the second-order theory in a mathemati-
cally rigorous way without considering the domain of deformations in which second-order
fluids are valid. In fact this theory should not be expected to give good results for rapidly
varying flows or in other motions outside of its domain of applicability.

In sections 2 and 9 we consider the possibility that more general models of a viscoelastic
fluid could support special irrotational flows even if they do not have a pressure function
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in general. Such special solutions can be found; some are universal and others work for
some models and not for others. The conclusion that viscoelastic liquids will not admit
potential flows is too sweeping, but if you are not within the class of deformations that
give rise to second-order or linear viscoelastic fluids the chances that a special potential
flow can be achieved are slight.

2. Drag and dissipation in potential flow
The stress in an incompressible liquid can be written as

T = −pI + S (2.1)

where p is a to-be-determined scalar field and S is the part of the stress which is related
to the deformation by a constitutive equation. We are going to write S = S[u], meaning
S is functional of the history of u. The formulas relating drag and dissipation do not
require that we choose a constitutive equation.

Consider the motion of a solid body or bubble in a liquid in three dimensions. Suppose
that the body B moves forward with a velocity Uex and that it neither rotates nor
changes shape or volume. The absolute velocity u and the relative velocity v of the fluid
are then related by

u = Uex + v (2.2)

with

v · n|∂B = 0, (2.3)

where n is the inward normal on the boundary ∂B of B. The fluid outside B is unbounded.
We assume that the flow is irrotational far from the body, since the volume V of the fluid
outside B is a material volume (because no mass crosses ∂B), we apply the Reynolds
transport theorem to the kinetic energy E of the fluid in V to obtain

dE

dt
=

d
dt

∫

V (t)

ρ
|u|2
2

dV =
∫

V (t)

ρu · du

dt
dV,

where the integrals converge because u = O(r−3) as r →∞ in irrotational flow. For the
types of constitutive equations to be considered in this paper, it can be shown that, as
r →∞, T = O(r−2). Therefore, using divu = 0 and ρdu/dt = divT + ρg, we obtain

dE

dt
=

∫

V (t)

u · (divT + ρg) dV

=
∫

∂B

u · (T · n + (ρg · x)n) dS −
∫

V (t)

L[u]:S[u]dV,

where T ·n is the negative of the traction vector expressing the force exerted by the fluid
on the body and x is the position vector. We may rewrite this, using (2.2) and (2.3), as

dE

dt
= UD +

∫

∂B

v · (T · n) dS −
∫

V (t)

L[u]:S[u]dV, (2.4)

where

D
def
=

∫

∂B

ex · (T · n) dS − ρVBg · ex (2.5)

is the drag exerted on the fluid by the body and VB is the volume of the body. According
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to (2.3), because pv · n = 0 at each point of ∂B, we have
∫

∂B

v · (T · n) dS =
∫

∂B

v · (S[u] · n) dS.

There are two standard situations, neither of which holds in potential flow, in which

v · (T · n) |∂B ≡ 0. (2.6)

If B is a rigid solid, v|∂B ≡ 0. If B is a bubble, the tangential component of the traction
vector vanishes, i.e.,

τ · (T · n) |∂B = 0, for all τ⊥n. (2.7)

Since v⊥n by (2.3), we obtain (2.6). Thus, for steady flows, (2.4) becomes

D =
1
U

∫

V (t)

L[u]:S[u]dV. (2.8)

In general, potential flow fails to satisfy (2.6) or (2.7) and therefore (2.8). However, many
flows are approximately irrotational outside thin vorticity layers, so that (2.8) might be
used to obtain approximate values of the drag. In fact, Levich [1949] used (2.8) and
u = ∇φ to approximate the drag in the steady ascent of a bubble in a viscous fluid,
obtaining good agreement with experiments.

For strict potential flows, the momentum equation may be written as

divS [∇φ] = ∇ψ, (2.9)

provided that the body force field is conservative. Obviously (2.9) holds for Newtonian
fluids of constant viscosity with ψ = 0; it also holds for linear viscoelastic fluids with
ψ = 0 (see (6.5)); and less trivially for second-order fluids with ψ = β̂γ2/2, where β̂ is

the climbing constant and γ2 =
1
2
tr

(
A2

)
(see Joseph [1992]). For models like Jeffreys’,

S = SN + SE , where SN = µA [u], (2.9) need only be checked for SE . Generally, (2.9)
and the constitutive equations lead to an over-determined system of differential equations
for the components of S. Special solutions of this over-determined system can be found
even for models that do not admit potential flow generally (see section 9). Using (2.9),
we obtain∫

∂B

v · S [u] · ndS =
∫

V (t)

div (v · S [u]) dV =
∫

V (t)

v ·∇ψdV +
∫

V (t)

L [u] :S [u] dV.

The first integral on the right-hand side vanishes when divv = 0 and v · n|∂B = 0, and
(2.4) reduces to

dE

dt
= UD. (2.10)

In a potential flow of the type under consideration, one has (see Batchelor [1967], page
403)

E =
1
2
eρVBU2, (2.11)

where e is a constant depending only on the shape of the body. For spheres, it can be

shown that e =
1
2
. Using (2.11), (2.10) becomes

eρVB
dU

dt
= D.



6 Daniel D. Joseph and Terrence Y. Liao

This equation shows that the drag in potential flow is independent of the constitutive
equation of liquids satisfying (2.9) and vanishes when the flow is steady.

3. Potential flow approximations for the terminal velocity of rising
bubbles

The idea that viscous forces in regions of potential flow may actually dominate the
dissipation of energy seems to have been first advanced by Lamb [1924] who showed that
in some cases of wave motion the rate of dissipation can be calculated with sufficient
accuracy by regarding the motion as irrotational. The computation of the drag D on a
sphere in potential flow using the dissipation method seems to have been given first by
Bateman [1932] and repeated Ackeret [1952]. They found that D = 12πaµU where µ is
the viscosity, a the radius of the sphere and U its velocity. This drag is twice the Stokes
drag and is in better agreement with the measured drag for Reynolds numbers in excess
of about 8.

The same calculation for a rising spherical gas bubble was given by Levich [1949].
Measured values of the drag on spherical gas bubbles are close to 12πaµU for Reynolds
numbers larger than about 20. The reasons for the success of the dissipation method in
predicting the drag on gas bubbles have to do with the fact that vorticity is confined
to thin layers and the contribution of this vorticity to the drag is smaller in the case of
gas bubbles, where the shear traction rather than the relative velocity must vanish on
the surface of the sphere. A good explanation was given by Levich [1962] and by Moore
[1959, 1963]; a convenient reference is Batchelor [1967]. Brabston and Keller [1975] did
a direct numerical simulation of the drag on a gas spherical bubble in steady ascent at
terminal velocity U in a Newtonian fluid and found the same kind of agreement with
experiments. In fact, the agreement between experiments and potential flow calculations
using the dissipation method are fairly good for Reynolds numbers as small as 5 and
improves (rather than deteriorates) as the Reynolds number increases.

The idea that viscosity may act strongly in the regions in which vorticity is effec-
tively zero appears to contradict explanations of boundary layers which have appeared
repeatedly since Prandtl. For example, Glauert [1943] says (p.142) that

“...Prandtl’s conception of the problem is that the effect of the viscosity is im-
portant only in a narrow boundary layer surrounding the surface of the body and
that the viscosity may be ignored in the free fluid outside this layer.”

According to Harper [1972], this view of boundary layers is correct for solid spheres but
not for spherical bubbles. He says that

“For R À 1, the theories of motion past solid spheres and tangentially stress-
free bubbles are quite different. It is easy to see why this must be so. In either
case vorticity must be generated at the surface because irrotational flow does not
satisfy all the boundary conditions. The vorticity remains within a boundary layer of
thickness δ = O(aR−1/2), for it is convected around the surface in a time t of order
a/U , during which viscosity can diffuse it away to a distance δ if δ2 = O(νt) =
O(a2/R). But for a solid sphere the fluid velocity must change by O(U) across
the layer, because it vanishes on the sphere, whereas for a gas bubble the normal
derivative of velocity must change by O(U/a) in order that the shear stress be zero.
That implies that the velocity itself changes by O(Uδ/a) = O(UR−1/2) = o(U)...

In the boundary layer on the bubble, therefore, the fluid velocity is only slightly
perturbed from that of the irrotational flow, and velocity derivatives are of the
same order as in the irrotational flow. Then the viscous dissipation integral has the
same value as in the irrotational flow, to the first order, because the total volume
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of the boundary layer, of order a2δ, is much less than the volume, of order a3, of
the region in which the velocity derivatives are of order U/a. The volume of the
wake is not small, but the velocity derivatives in it are, and it contributes to the
dissipation only in higher order terms...”

For flows in which the vorticity is confined to narrow layers the kinetic energy E should
be well approximated by potential flow (even if the dissipation in not). Then using (2.3),
(2.7), and (2.11), (2.4) becomes

eρVB
dU

dt
∼= D − 1

U

∫

V (t)

L[∇φ]:S[∇φ]dV. (3.1)

In the problem of the rising bubble where the contribution from the flow inside the
bubble cannot be neglected we get

dE

dt
=

dE1

dt
+

dE2

dt
=

∫

∂B

(u2 · T2 − u1 · T1) · ndS

+
∫

∂B

g · x (ρ2u2 − ρ1u1) · ndS − Φ(x, t) (3.2)

where the region 1 is inside the bubble and 2 is outside, n is the normal vector on the
surface which points into the bubble and

Φ(x, t)
def
=

∫

B

L[u1] : S[u1]dV +
∫

V (t)

L[u2] : S[u2]dV

is the total rate of energy dissipation. On the surface of the bubble the normal velocity
and the shear stress are continuous; that is,

(u2 − u1) · n = 0 on ∂B

and

τ · (T2 −T1) · n = 0 on ∂B for all τ⊥n. (3.3)

Since the bubble is neither rotating nor deforming, we can decompose the velocity as
in (2.2) and (2.3). Then inserting (2.2) into (3.2), we find, after using a recent result of
Hesla, Huang and Joseph [1993] which says the mean value of the jump of the traction
vector vanishes on the closed surface of a drop

∫

∂B

ex · (T2 −T1) · ndV = 0, (3.4)

that
dE

dt
= −U [(ρ2 − ρ1) VB ] g · ex +

∫

∂B

(v2 · T2 − v1 · T1) · ndS − Φ(x, t). (3.5)

Moreover, if v1 = v2, then, after applying (2.3) and (3.3), (3.5) reduces to

dE

dt
= −U [(ρ2 − ρ1) VB ] g · ex − Φ(x, t). (3.6)

Equation (3.6) can be used to form an unsteady extension of the drag formula introduced
by Levich [1949]. We first assume that the air bubble does not exert a shear traction on
the liquid outside. This implies that a vorticity layer is required in the liquid to adjust
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the potential flow stress to its zero shear traction value on the free surface. This vorticity
layer is much weaker than the layer required on a moving solid, or on a viscous bubble,
in which the velocity of the potential flow rather than its derivative must be adjusted to
its no-slip value. If the dissipation in the bubble is neglected, then the kinetic energy of
the gas becomes

ρ1VBUU̇ =
dE1

dt
= −U

∫

∂B

(ex · T1) · ndS − U

∫

∂B

(ρ1g · x) ex · ndS,

where
∂

∂t
is denoted by a superposed dot. This implies that

∫

∂B

(ex · T1) · ndS = ρ1VB

(
g · ex − U̇

)
.

Using this equation, (3.4), and (2.5), we find that the drag induced by the flow outside
the body is

D = (ρ1 − ρ2) VBg · ex − ρ1VBU̇ .

This approximate formula for drag is independent of the constitutive equation of the
fluid.

4. Momentum, circulation, and vorticity equations for a second-order
fluid

The constitutive equation of a second-order fluid is

S = µA + α1B + α2A2, (4.1)

where A = L + LT is twice the rate-of-strain tensor D which is the symmetric part of

the velocity-gradient tensor L = ∇u, B
def
=

∆

A
def
= ∂A/∂t + (u ·∇)A + AL + LT A is the

lower convected invariant derivative of A, µ is the zero-shear viscosity, α1 = −n1/2 and
α2 = n1 + n2, where ni = lim

κ→0
Ni (κ) /κ2 for i = 1 and 2 are constants obtained from the

first and second normal stress differences. In Appendix A we show that

∇ · S = µ∇2u + α1

[
d∇2u

dt
+ LT · (∇2u

)]
+ (α1 + α2)

[
A · (∇2u

)
+∇Ω · A]

+
β̂

2
∇γ2,

(4.2)

where β̂ = 3α1 + 2α2 is the climbing constant, γ2 =
1
2
tr

(
A2

)
, and Ω

def
= L− LT = −ε · ω

where ε is the alternating unit tensor and ω
def
= ∇∧ u is the vorticity. From (4.2) it follows

that the momentum equation for a second order fluid can be written as

ρ
du

dt
= −∇p + µ∇2u + ρg + α1

[
d∇2u

dt
+ LT · (∇2u

)]

+(α1 + α2)
[
A · (∇2u

)
+∇Ω · A]

+
β̂

2
∇γ2. (4.3)

For potential flow, u = ∇φ, ∇2u and Ω vanish and du/dt = ∇(∂φ/∂t + |u|2 /2), so that
(4.3) may be written as

∇
[
p + ρ

∂φ

∂t
+ ρ

|u|2
2

− β̂

2
γ2 − ρg · x

]
= 0.
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Hence

p = −ρ
∂φ

∂t
− ρ

|u|2
2

+
β̂

2
γ2 + ρg · x + C(t). (4.4)

Lumley [1972] derived a Bernoulli equation for a dilute polymer solution on the centerline
of an axisymmetric contraction. He notes that

“Recent measurements of cavitation in dilute polymer solutions indicate that ob-
served differences from cavitation in Newtonian media may be due to local pressure
differences resulting from the non-Newtonian constitutive relation governing these
dilute solutions. No convenient means of estimating the departure of the pressure
from the Newtonian (inertial) value presently exists, and, of course, no general
expression is possible...”

Inserting (4.1) and (4.4) into (2.1), we obtain, using index notation, that

Tij = σij − ρg · xδij

where

σij
def
= −

[
C(t) + β̂φ,ilφ,il − ρφ,t − ρ

|u|2
2

]
δij + 2

[
µ + α1

(
∂

∂t
+ u ·∇

)]
φ,ij

+4 (α1 + α2) φ,ilφ,lj

is the active dynamic stress.
Some criticisms of the notion of extensional viscosity follow easily from this analysis.

The potential flow of a fluid near a point (x1, x2, x3) = (0, 0, 0) of stagnation is a purely
extensional motion with

[u1, u2, u3] =
UṠ

L
[2x1,−x2,−x3] ,

where Ṡ is the dimensionless rate of stretching. In this case,



σ11 0 0
0 σ22 0
0 0 σ33


 =

ρU2

2

[
Ṡ2

L2

(
4x2

1 + x2
2 + x2

3

)− 1

] 


1 0 0
0 1 0
0 0 1




+2µ
UṠ

L




2 0 0
0 −1 0
0 0 −1


 + 2

(
UṠ

L

)2


−α1 + 2α2 0 0

0 −7α1 − 4α2 0
0 0 −7α1 − 4α2


 .

At the stagnation point the extensional stress is

σ11 = −ρ

2
U2 + 4µ

UṠ

L
+ 2 (2α2 − α1)

(
UṠ

L

)2

(4.5)

and the extensional stress difference is

σ11 − σ22 = 6µ
UṠ

L
+ 12 (α1 + α2)

(
UṠ

L

)2
def
= 2η̃

UṠ

L
, (4.6)

where η̃ = 3µ + 6 (α1 + α2)
U

L
Ṡ is the extensional viscosity of a second-order fluid. Since

2α2 − α1 =
5
2
n1 + n2 > 0 and α1 + α2 =

1
2
n1 + n2 > 0, both the normal stress term in

(4.5) and the normal stress difference term in (4.6) are positive independent of the sign
of Ṡ. From (4.5) it follows that inertia and normal stresses are in competition. But
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you cannot see the effects of inertia in the formula (4.6) for the normal stress difference.
Certainly this formula, or the associated extensional viscosity, could not be used to assess
the force on bodies.

Let Γ
def
=

∮
u · dl be the circulation and suppose that ρg is derivable from a potential as

is true when g is gravity. Then, using (4.3) and ∇2u = −∇∧ω, we obtain the circulation
equation:

dΓ
dt

= −
∮ (

µ

ρ
(∇∧ ω) +

α1

ρ

[
d (∇∧ ω)

dt
+ LT · (∇∧ ω)

])
· dl

+
∮

(α1 + α2)
ρ

[−A · (∇∧ ω) +∇Ω · A] · dl. (4.7)

On the other hand, after taking curl of (4.3) and replacing ∇2u by −∇∧ω, we obtain
the vorticity equation:

dω

dt
= ω ·∇u +

µ

ρ
∇2ω − α1

ρ
∇∧

[
d (∇∧ ω)

dt
+ LT · (∇∧ ω)

]

+
(α1 + α2)

ρ
∇∧ [−A · (∇∧ ω) +∇Ω · A] . (4.8)

When α1 and α2 are zero, (4.7) and (4.8) reduce to

dΓ
dt

= −µ

ρ

∮
(∇∧ ω) · dl and

dω

dt
= ω ·∇u +

µ

ρ
∇2ω.

These equations govern the circulation and vorticity in a Newtonian fluid (see Batchelor
[1967] page 267 and 269). When ω ≡ 0,

dΓ
dt

= 0 and
dω

dt
= 0. (4.9)

This leads to the classical vorticity theorems, Kelvin’s circulation theorem and the
Cauchy-Lagrange theorem. The same conclusions (4.9) hold when ω = 0, and Γ and
ω satisfy the vorticity equations (4.7) and (4.8) for a second-order fluid. It follows that
the classical theorems of vorticity hold for potential flow of a second-order fluid inde-
pendent of the values of the material parameters µ, α1 and α2. Thus, the discussion of
potential flow in no way requires us to turn to the theory of ideal fluids.

Since the boundary conditions at a solid or free surface cannot generally be satisfied
by potential flow, potential flow cannot hold up to the boundary and at the very least a
vorticity boundary layer will be required. Outside this boundary layer we get potential
flow but the viscous and viscoelastic stresses are not zero. In the case of viscous fluids
with α1 = α2 = 0, viscosity may or may not be important outside the vorticity layer. For
solid bodies the dissipation in the vorticity layer will dominate the drag and the viscous
stresses in the exterior potential flow will be negligible at high Reynolds numbers. But
for rising bubbles where the vorticity layer is weak the viscous stresses in the exterior
potential flow will dominate the drag and the dissipation of the vorticity layer will be
negligible at high Reynolds numbers. We can hope that a similar result will hold for a
second-order fluid.
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5. Motion of a spherical gas bubble in a second-order fluid using the
dissipation method

For a spherical bubble of radius a moving with speed U through a viscous fluid the
flow outside the boundary layer and a narrow wake is given approximately by potential
flow

φ = −U

2
a3

r2
cos θ. (5.1)

We can assume that this approximation is valid for a second-order fluid and see where
it leads. The radial and tangential components of velocity are given by

ur =
∂φ

∂r
= U

a3

r3
cos θ and uθ =

1
r

∂φ

∂θ
=

U

2
a3

r3
sin θ.

To complete the unsteady drag formula (3.1), we need L and S. Since in potential flow
A = 2L, we have

B =
∆

A =
∂A
∂t

+ (u ·∇)A + A2. (5.2)

Using (5.1), we find, in spherical coordinates (r, θ, ϕ), that

A =




Arr Arθ Arϕ

Arθ Aθθ Aθϕ

Arϕ Aθϕ Aϕϕ


 ,

where Arϕ = Aθϕ = 0, Arr = 2
∂ur

∂r
= −6U

a3

r4
cos θ, Aθθ = 2

(
∂uθ

r∂θ
+

ur

r

)
= +3U

a3

r4
cos θ,

Aϕϕ = 2
(ur

r
+

uθ

r
cot θ

)
= +3U

a3

r4
cos θ, and Arθ = r

∂

∂r

(uθ

r

)
+

1
r

∂ur

∂θ
= −3U

a3

r4
sin θ.

Hence, (4.1) with (5.2) gives

S = −3
(

µU + α1
∂U

∂t

)
a3

r4




2 cos θ sin θ 0
sin θ − cos θ 0

0 0 − cos θ




+3α1U
2 a3

r5



−12 cos2 θ + 4 −8 cos θ sin θ 0
−8 cos θ sin θ 7 cos2 θ − 3 0

0 0 5 cos2 θ − 1




+3α1U
2 a6

r8




15 cos2 θ + 5 5 cos θ sin θ 0
5 cos θ sin θ 3−5 cos2 θ

2 0
0 0 − 1+cos2 θ

2




+9α2U
2 a6

r8




3 cos2 θ + 1 cos θ sin θ 0
cos θ sin θ 1 0

0 0 cos2 θ




and (4.4) becomes (see Appendix B)

p =
ρ

2
∂U

∂t

a3

r2
cos θ − ρ

2
U2 a3

r3

{(
1− 3 cos2 θ

)
+

a3

4r3

(
1 + 3 cos2 θ

)}

+9β̂U2 a6

r8

(
cos2 θ +

1
2

)
+ ρg · x.
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We may also write the dissipation integral as
∫

V

L [∇φ] :S [∇φ] dV =
1
2

∫

V

A:
[
µA + α1

∂A
∂t

]
dV

+
1
2

∫

V

A:
[
α1 (u ·∇)A + (α1 + α2)A2

]
dV

where dV = 2πr2 sin θdθdr, 0 6 θ 6 π. The last integral vanishes after integrating over
θ. Noting next that

∂A
∂t

=
U̇

U
A

where U̇ ≡ ∂U/∂t, we find that
∫

V

L:SdV =
1
2

(
µ + α1

U̇

U

)∫

V

A:AdV = 12πaU
(
µU + α1U̇

)
. (5.3)

After putting (5.3) into (3.1) with e =
1
2

and VB =
4
3
πa3, we obtain

D = πa

(
2
3
a2ρ + 12α1

)
U̇ + 12πaµU. (5.4)

The main result of this section is (5.4). Since α1 is negative, we see that the elastic
term has a different sign than the acceleration reaction (added mass) term. This then
is yet another manifestation of the competition between elasticity and inertia. Elasticity
will dominate when

−18α1

ρa2
> 1.

In steady flow the drag on a spherical bubble rising in a second-order fluid is the same as
that on a similar bubble rising in a viscous fluid at high Reynolds numbers, independent
of the values of α1 and α2.

6. Motion of a spherical gas bubble rising in a linear viscoelastic fluid
using the dissipation method

If a gas bubble rises through a linear viscoelastic fluid at velocity U (t) ex which is
nearly steady, the induced flow will be a small perturbation of that for the steady case,
and the extra-stress is given by (see Joseph [1990], page 168)

S =

t∫

−∞
G (t− τ)A [u (χ, τ)] dτ (6.1)

where

χ = x− ex

t∫

τ

U(s)ds =




x−
t∫

τ

U(s)ds

y
z



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and G(s) =
η

λ
e−s/λ for the Maxwell model. Suppose that we represent the history of

u(χ, τ), for τ < t, as a Taylor series around the present value τ = t. Then

u (χ, τ) = u (x, t) +
[
∂u (x, t)

∂t
+ U(t)

∂u (x, t)
∂x

]
(τ − t) + O

(
|t− τ |2

)
.

Hence,

S = µA [u (x, t)] + α1

{
∂A [u (x, t)]

∂t
+ U(t)

∂A [u (x, t)]
∂x

}
+ O

(
|t− τ |2

)
(6.2)

where

µ
def
=

t∫

−∞
G(t− τ)dτ (6.3)

and

α1
def
= −

t∫

−∞
(t− τ)G(t− τ)dτ. (6.4)

If u = ∇φ is a potential flow now and in the past, then, from (6.1), divS = ∇ψ where

ψ =

t∫

−∞
G(t− τ)∇2φ(χ, τ)dτ = 0, (6.5)

and we get the same Bernoulli equation as in inviscid or viscous potential flow with

p = −ρ
∂φ

∂t
− ρ

|u|2
2

+ ρg · x + C(t) (6.6)

where C(t) is a constant of integration. Of course the pressure is not needed for the

dissipation calculation. We have by (3.1) with e =
1
2

and VB =
4
3
πa3 that

2
3
πa3ρU̇ = D − 1

2U

∫

V

A:SdV

where S is given by (6.1) and

A [u (χ, τ)] =
U (τ)
U (t)

A [u (x, t)] .

Following now the procedure used in section 5, we find that

D =
2
3
πa3ρU̇ + 12πa

t∫

−∞
G(t− τ)U(τ)dτ. (6.7)

Using (6.3) and (6.4), we can show that (6.7) reduces to (5.4) when U(τ) is slowly varying
but not necessarily slow. We again get the Levich drag D = 12πaµU for steady flow.

We intend to test the prediction that the rise velocity of bubbles in viscoelastic liquids,
for modest rise velocities, is determined by a balance of weight and drag

12πaµU =
4
3
πa3ρg

where ρ is the density of the liquid and g is gravity, independent of any viscoelastic



14 Daniel D. Joseph and Terrence Y. Liao

parameter. High frequency back and forth motions of spherical bubbles in viscoelastic
liquids might be well described by (6.7).

7. The irrotational motion of rigid bodies in viscoelastic liquids
It is of interest to consider the possibility that irrotational motions of viscoelastic liq-

uids could have an application to real flows in the presence of a solid. Irrotational flows
are important in viscous fluid mechanics at high Reynolds numbers, outside boundary
layers and separated regions to which the vorticity is effectively confined. There is dis-
sipation in the regions of potential flow, but at high Reynolds numbers this dissipation
is usually a negligible part of the total dissipation (see Harper [1972]). There may be
special cases of viscous and viscoelastic flows in the presence of solid bodies in which
good results can be obtained from potential flow.

The flow of a viscous fluid, which is at rest at infinity, outside a long cylinder of radius
a rotating with a steady angular velocity ω is an exact realization of viscous potential
flow valid even when the viscosity µ is very large. The exact solution of this problem is
given by

u =
ωa2

r
eθ (7.1)

and it is a potential flow solution of the Navier-Stokes equations with a circulation

Γ = −2πa2ω (7.2)

which satisfies the no-slip condition. The viscosity enters this problem through the couple

M = 2µΓ (7.3)

required to turn the cylinder.
The same solution (7.1) for the potential vortex holds for a second-order fluid (see

Joseph [1990], page 489) and for a linear viscoelastic fluid with U = 0 in the steady case.
Deiber and Schowalter [1992] have shown how the potential vortex flow (7.1) might be
used as a prototype for predictions of polymer behavior in unsteady and turbulent flow.
They point out that it is the rotation of the principal axis of stretch as one follows a fluid
particle in its circular orbit that distinguishes this flow from the pure stretching flows
familiar to polymer rheologists. Unfortunately, the potential vortex is not likely to exist
in a class of deformations more severe than ones for which a second order approximation
is valid (see section 9).

Joseph and Fosdick [1973] gave a theory of rod climbing based on a retarded motion
expansion of the stress for small ω. At first order they get (7.1), (7.2) and (7.3). If the
fluid is neutrally wetting with a flat horizontal contact at the rod, the motion vanishes at
second-order and the climb can be computed from the normal stress balance at second-
order. The same solution can be obtained by assuming that the flow is a potential vortex
solution of a second order fluid.

In another kind of application, uniform flow past a circular cylinder, Taneda [1977] has
shown that outside a narrow vorticity layer the potential flow solution (no separation)
with zero circulation can be achieved by oscillating the cylinder around its axis. The
calculation of Ackeret [1952], using the dissipation method, yields D = 8πµU as the drag
per unit length independent of radius a of the cylinder. The same drag per unit length
holds for steady uniform flow of a second-order fluid or a linear viscoelastic fluid past a
cylinder. Taneda’s experiments (his figure 54) were carried out a Reynolds number Re =
35, diameter = 0.5 cm, U = .33 cm/sec. The frequency of the torsional oscillation was 2Hz
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Figure 8.1. Figure 8.1. In two-dimensional space an arbitrary body B is enclosed by a
two-dimensional control volume Ω with outer boundary C and inner boundary ∂B. Here X
and Y are the components of the force exerted by the fluid on the body and M is the hydro-
dynamic couple. ex and ey are the base vectors in a Cartesian coordinate system with origin o
inside the body such that at infinity the flow velocity is u = Uex.

and the angle of oscillation 45◦. The oscillation periodically disrupts the boundary layer
producing a reverse flow at the top and then the bottom of the cylinder in each cycle.
We do not know if this periodic disruption of the boundary layer at Re = 35 is sufficient
to reduce the contribution to the drag of the vorticity boundary layer to relatively small
values and we have no idea of what might develop if Taneda’s experiments were to be
carried out in a viscoelastic fluid.

8. Force and moment on a two-dimensional body in the flow of a
viscous fluid, a second-order fluid and a linear viscoelastic fluid

The main results concerning force and moment of a two-dimensional body in the
potential flow of an ideal fluid can be obtained from the Blasius integral formulas. These
formulas have been extended to viscous potential flow by Joseph, Liao and Hu [1992].
Here we are seeking a different extension to viscoelastic potential flow of a second-order
fluid which contains the viscous fluid as a special case.

Let

Xex + Y ey
def
=

∮

∂B

n̂ · Tdl = −
∮

∂B

n · Tdl (8.1)

and

M
def
=

∮

∂B

x ∧ (n̂ · Tdl) = −
∮

∂B

x ∧ (n · Tdl) , (8.2)

where n̂ = −n is the outward unit normal to the body, x
def
= xex + yey is the posi-

tion vector from the origin o, X and Y are forces on the body, and M is the moment
about the origin o. The velocity of the flow is given by u

def
= uex + vey. Using the two-

dimensional control volume Ω in Figure 8.1, the balance of momentum and balance of
angular momentum can be expressed as

d
dt

∫∫

Ω

ρudS =
∫

∂Ω

n · Tdl −
∫

∂Ω

ρu (u · n) dl +
∫∫

Ω

ρgdS, (8.3)
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and

d
dt

∫∫

Ω

ρx ∧ udS =
∫

∂Ω

x ∧ (n · T) dl −
∫

∂Ω

ρx ∧ [u (u · n)] dl +
∫∫

Ω

ρx ∧ gdS (8.4)

where ∂Ω = C ∪ ∂B. Using (2.1) and (4.4), and applying (8.1) and (8.2), we find that
(8.3) and (8.4) can be written as

Xex + Y ey = XIex + YIey +
∮

C

n · Sdl −
∮

C

β̂
γ2

2
ndl (8.5)

and

M = MI +
∮

C

x ∧ (n · S) dl −
∮

C

(
β̂

γ2

2

)
x ∧ ndl, (8.6)

where

XIex + YIey =
∮

C

(
ρ
|u|2
2

− C(t)

)
ndl−

∮

C

ρu (u · n) dl +
∮

∂B

ρ
∂φ

∂t
n̂dl−

∮

∂B

ρ (g · x) n̂dl

(8.7)
and

MI =
∮

C

(
ρ
|u|2
2

− C (t)

)
x ∧ ndl −

∮

C

ρx ∧ u (u · n) dl

+
∮

∂B

ρ
∂φ

∂t
x ∧ n̂dl −

∮

∂B

ρ (g · x) x ∧ n̂dl. (8.8)

We have used the condition u · n = 0 on ∂B to eliminate integrals
∮

∂B

ρu (u · n) dl and

∮

∂B

ρx ∧ u (u · n)dl. Notice that the last integrals in (8.7) and (8.8) can also be written

as ∮

∂B

ρ (g · x) n̂dl =
∫∫

B

∇ (ρg · x)dS = Mog (8.9)

and ∮

∂B

ρ (g · x) (x ∧ n̂)dl =
∫∫

B

x ∧∇ (ρg · x) dS = xcm ∧Mog (8.10)

where Mo
def
=

∫∫

B

ρdS is the mass of fluid per unit length displaced by the body and

xcm
def
=

1
Mo

∫∫

B

ρxdS. Substituting S from (4.1) and using the relations

ndl = (nxex + nyey) dl = dyex − dxey on C,

n̂dl = (n̂xex + n̂yey) dl = dyex − dxey on ∂B,

and the fact that the velocity potential φ satisfies Laplace’s equation, we find, using the
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definitions of β̂ and γ2, that (8.5) and (8.6) can be written as

X − ıY = XI − ıYI − 2ıµ

∮

C

(
dW

dz

)
dz

−2ıα1





∮

C

(
∂

∂t

[
dW

dz

])
dz +

∮

C

(
W

d2W

dz2

)
dz +

∮

C

∣∣∣∣
dW

dz

∣∣∣∣
2

dz



 (8.11)

and

M = MI + Re



2µ

∮

C

(
z
dW

dz

)
dz





+Re



2α1




∮

C

z
∂

∂t

[
dW

dz

]
dz +

∮

C

zW
d2W

dz2
dz +

∮

C

z

∣∣∣∣
dW

dz

∣∣∣∣
2

dz






 . (8.12)

Also, (8.7) and (8.8) become

XI − ıYI = ı
ρ

2

∮

C

W 2dz − ı

∮

∂B

ρ

(
g · x− ∂φ

∂t

)
dz (8.13)

and

MI = Re




−ρ

2

∮

C

zW 2dz +
∮

∂B

ρ

(
g · x− ∂φ

∂t

)
zdz



 , (8.14)

where W = u − ıv is the complex velocity, an analytic function of the complex variable
z = x + ıy and the overbar denotes a complex conjugate. (8.13) and (8.14) are the
classical Blasius integral formulas for the flow of an ideal fluid. (8.11) and (8.12) are the
generalized formulas for the flow of a second-order fluid.

Since we can always choose a coordinate system such that the flow has u = Uex at
infinity, the far-field form of the potential F (z) for flow past a finite body of arbitrary
shape is given by

F (z) = zU +
m + ıΓ

2π
ln z +

∞∑

k=1

ak + ıbk

zk
, (8.15)

where the Γ is the circulation, which is positive if clockwise, m is the volume flux across
the boundary of the cylinder, which vanishes for a solid body, and ak, bkare real time-
dependent constants which are determined by the shape of the body. The complex form
of the velocity at far-field is then given by

W =
dF

dz
= U +

m + ıΓ
2πz

−
∞∑

k=1

k
ak + ıbk

zk+1
.

Inserting (8.9), (8.10), (8.13) and (8.14) into (8.11) and (8.12) and letting the outer
boundary C approach infinity, we obtain, in view of the asymptotic behavior of W ,

Xex + Y ey = XIex + YIey = −ρmUex + ρΓUey +
∮

∂B

ρ
∂φ

∂t
n̂dl −Mog (8.16)
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and

M = MI + 2µΓ + 2α1
∂Γ
∂t

, (8.17)

where

MI = −2ρπUb1 +
ρmΓ
2π

+
∮

∂B

ρ
∂φ

∂t
x ∧ n̂dl − xcm ∧Mog.

The viscoelastic properties of the fluid do not enter into the expression (8.16) for the
forces. The parameter α2 of the second-order fluid does not enter into the expression

(8.17) for the moment and 2α1
∂Γ
∂t

vanishes in steady flow. The forces and moment on an
arbitrary simply connected body in two-dimensional steady potential flow of a second-
order fluid are the same as in potential flow of a viscous fluid with viscosity µ. Moreover,

(8.17) shows that there is moment M = 2µΓ + 2α1
∂Γ
∂t

even without a stream.
After carrying out calculations similar to the ones above using the two-dimensional

form of the extra-stress (6.1) and the Bernoulli equation (6.6), we find that the force on
a two-dimensional body in the flow of a linear viscoelastic fluid is

X − ıY = XI − ıYI − 2ı

t∫

−∞


G(t− τ)

∮

C

(
dW

dz

)
dz


dτ

and the moment is given by

M = MI + Re



2

t∫

−∞


G(t− τ)

∮

C

(
z
dW

dz

)
dz


dτ



 .

The far-field potential (8.15) holds here and shows that X − ıY = XI − ıYI and

M = MI + 2

t∫

−∞
[G(t− τ)Γ(τ)] dτ. (8.18)

Again, (8.18) reduces to (8.17) when Γ is slowly varying, in view of (6.3) and (6.4).

9. Special potential flow solutions of models like Maxwell’s
Most models of a viscoelastic fluid will not admit a Bernoulli equation in general. But

there are certain potential flows which satisfy the required conditions even for models
which do not generally have a Bernoulli equation. For example, uniform flow is a po-
tential flow solution for every model. So too is any motion for which div = 0, say S is
independent of x, as in extensional flow. A less trivial example, the potential vortex, is
more representative. Among all of the interpolated Maxwell models, only the upper con-
vected model (UCM) and lower convected model (LCM) can support a potential vortex.
The existence of a potential flow solution is a precise mathematical problem equivalent
to an examination of the conditions for the existence of solutions to an over-determined
problem. We can formulate this problem as follows. The six stress equations in the six
components of the extra-stress S can generally be solved when the flow is prescribed;
that is, for each and every potential flow. The compatibility condition for potential flow

∇∧ (∇ · S) = 0 (9.1)
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Model fσ fτ fγ

Interpolated Maxwell σ τ γ

Giesekus σ + α
G

`
σ2 + τ2

´
τ + α

G
(σ + γ) τ γ + α

G

`
γ2 + τ2

´

Phan-Thien and Tanner σ + ε
G

(σ + γ) σ τ + ε
G

(σ + γ) τ γ + ε
G

(σ + γ) γ

Table 9.1. Table 9.1. fσ, fτ , and fγ for different models

gives rise to three extra equations for the six components of the stress so that we have
three equations too many. In two dimensions we find four equations for three unknowns.
When this over-determined system of equations allows a solution, we may solve (2.9) for
ψ and the pressure is then given by

p = −ρ
∂φ

∂t
− ρ

|∇φ|2
2

+ ψ + C(t). (9.2)

Potential vortex and sink flow are used to illustrate the concept. And the constitutive
equations considered in this section are of the form

λ

(
∂S
∂t

+ (u ·∇)S− 1 + a

2

(
LS + SLT

)
+

1− a

2
(
SL + LT S

))
+ SF = 2ηD, (9.3)

where −1 6 a 6 1 and F = I (the unit tensor) for the interpolated Maxwell model,
F = I + (αλ/η)S for the Giesekus model and F = [1 + (ελ/η) trS] I for the Phan-Thien
and Tanner model, where α and ε are constants. It is convenient to study vortex and
sink flow in a plane polar coordinate system. The stress dyad then takes the form

S = σr̂⊗ r̂ + τ r̂⊗ θ̂ + τ θ̂ ⊗ r̂ + γθ̂ ⊗ θ̂ =
[

σ τ
τ γ

]
.

For plane potential flows, (9.1) and (9.3) may be expressed in component form as




−1
r
σ,θr − 1

r2
σ,θ + τ,rr − 1

r2
τ,θθ +

3
r
τ,r +

1
r2

γ,θ +
1
r
γ,θr = 0,

σ̇ +
fσ

λ
+ σ,rφ,r +

1
r2

σ,θφ,θ − 2aσφ,rr +
2(a− 1)

r2
τφ,θ − 2a

r
τφ,rθ = 2Gφ,rr,

τ̇ +
fτ

λ
+

(a + 1)
r2

σφ,θ − a

r
σφ,rθ + τ,rφ,r +

1
r2

τ,θφ,θ − a

r
γφ,rθ +

(a− 1)
r2

γφ,θ =
2G

r

(
φ,rθ − 1

r
φ,θ

)
,

γ̇ +
fγ

λ
+

2(a + 1)
r2

τφ,θ − 2a

r
τφ,rθ +

1
r2

γ,θφ,θ + γ,rφ,r − 2a

r2
γφ,θθ − 2a

r
γφ,r =

2G

r

(
1
r
φ,θθ + φ,r

)

(9.4)

where G = η/λ, and ġ
def
= ∂g/∂t. To distinguish between different models fσ, fτ , and fγ

are assigned according to Table 9.1.
Consider the potential vortex, φ(θ) = bθ, where b = ωr2

0, ω is a constant angular
velocity, and ωr2

0/r is the velocity (in circles). For steady, axisymmetric flow, (9.4) reduces
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to




τ,rr +
3
r
τ,r = 0,

fσ

λ
+

2(a− 1)b
r2

τ = 0,

fτ

λ
+

(a + 1)b
r2

σ +
(a− 1)b

r2
γ = −2Gb

r2
,

fγ

λ
+

2(a + 1)b
r2

τ = 0.

(9.5)

A solution of (9.5) for the interpolated model is given by




τ = C1r
−2 + C0,

σ =
−2(a− 1)bλ

r2
τ,

τ =
−2Gbλ

r2 − 4 (a2 − 1) b2λ2r−2
,

γ =
−2(a + 1)bλ

r2
τ

(9.6)

where C1 and C0 are constants. Equating the first and third equations of (9.6), we get

(2Gbλ + C1)− 4C1

(
a2 − 1

)
b2λr−4 + C0r

2 − 4C0

(
a2 − 1

)
b2λr−2 = 0. (9.7)

Since (9.7) is true for all r > r0, the coefficients of different powers of r must vanish; this
implies C0 = 0, C1 = 2Gbλ and a2− 1 = 0. Thus, solutions exist only when a = 1 or −1.
When a = 1 (UCM), we have

S =
[

σ τ
τ γ

]
= 2G

λb

r2

[
0 −1
−1 4λb/r2

]
,

ψ =
2Gλ2b2

r4
+ C,

and

p(r) = −ρb2

2r2
+

2Gλ2b2

r4
+ C.

When a = −1 (LCM), we have

S =
[

σ τ
τ γ

]
= 2G

λb

r2

[ −4λb/r2 −1
−1 0

]
,

ψ = −6Gλ2b2

r4
+ C,

and

p(r) = −ρb2

2r2
− 6Gλ2b2

r4
+ C.

We next evaluate (9.5) for the Giesekus model. When τ = 0,

¦if α =
a− 1

2
then S =

[
σ τ
τ γ

]
=

[
0 0
0 −2G/(a− 1)

]
and α 6= 0 ⇒ a 6= 1,
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¦if α =
a + 1

2
then S =

[
σ τ
τ γ

]
=

[ −2G/(a + 1) 0
0 0

]
and α 6= 0 ⇒ a 6= −1,

¦if α = a then S =
[

σ τ
τ γ

]
= −G

a

[
1 0
0 1

]
and α 6= 0 ⇒ a 6= 0.

Since S is constant in this case, we have a constant ψ and the pressure is given by the
usual Bernoulli equation.

If, on the other hand, τ = C1r
−2 + C0 6= 0, which is the solution of the first equation

of (9.5), then we may solve the second and fourth equations of (9.5), and obtain

σ(r) = − G

2α
±

√
g(r)

2αr2
and γ(r) = − G

2α
±

√
h(r)

2αr2

where

g(r) = −4α2
(
C1 + C0r

2
)2

+ 8αbGλ
(
C1 + C0r

2
)
(1− a) + G2r4

and

h(r) = −4α2
(
C1 + C0r

2
)2 − 8αbGλ

(
C1 + C0r

2
)
(1 + a) + G2r4.

These solutions must satisfy the third equation, which, after some calculation, may be
written as

(2α− a)
Gλb

α
+ C0

±
√

g(r)
2G

+ C0
±

√
h(r)

2G
+

(
(a + 1)λbG

α
+ C1

) ±
√

g(r)
2Gr2

+
(

(a− 1)λbG

α
+ C1

) ±
√

h(r)
2Gr2

= 0

where the ± signs in front of
√

g(r) and
√

h(r) are independent. This equation holds
only when all the coefficients vanish, implying that a + 1 = a − 1 which is impossible.
Therefore, the only solutions are those with τ = 0. However, this is a strange potential
vortex without torque and constant normal stresses. It does not appear to be physically
acceptable.

If the Phan-Thien and Tanner model is adopted, we find that

S = G

[ −1 + (a− 1)/(2ε) 0
0 1− (a + 1)/(2ε)

]

for τ = 0. As mentioned before, this stress is unacceptable. When τ = C1r
−2 + C0 6= 0

we find two solutions for σ and γ
[

σ
γ

]
=

[
G(1− a)(1− q(r))/(4aε)
−G(1 + a)(1− q(r))/(4aε)

]

and [
σ
γ

]
=

[
G(1− a)(1 + q(r))/(4aε)
−G(1 + a)(1 + q(r))/(4aε),

]
(9.8)

where q(r) =
1
r2

√
r4 − C016abελr2/G− 16C1abελ/G. These solutions must also satisfy

the rate equation for τ which may be expressed as
[
(a + 1)λb + c

(
C1 + Cor

2
)]

σ+
[
(a− 1)λb + c

(
C1 + Cor

2
)]

γ+2λGb+
(
C1 + Cor

2
)

= 0.
(9.9)

Substituting σ and γ from (9.8) into (9.9), we obtain
(
1− a2

)
Gλb + 4aελGb + aεC1 + aεCor

2 ± q(r)
[(

1− a2
)
Gλb− aεC1 − aεCor

2
]

= 0.
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Hence, C0 = 0,
(
1− a2

)
Gλb + 4aελGb + aεC1 = 0 and

(
1− a2

)
Gλb− aεC1 = 0. The

last two equations imply a2 − 2εa− 1 = 0. So, we have a = ε±
√

ε2 + 1, C1 = −2Gλb

and q(r) = r−2
√

r4 + 32aεb2λ2. This q(r) is well-defined because the adjustable constant
ε is non-negative. Since −1 6 a 6 1, only one of the two solutions for a is acceptable.
The extra-stress is

S =



−G(1± 1

r2

√
r4 + 32aεb2λ2)/ [2(1 + a)] −2Gbλ/r2

−2Gbλ/r2 G(1± 1
r2

√
r4 + 32aεb2λ2)/ [2(1− a)]


 .

Tnis solution rules out the case when a = 1 or −1. We also have

ψ =
−G

2(1 + a)

(
1± 1

r2

√
r4 + 32aεb2λ2

)
− G

2 (1− a2)

[
log(r)±

∫ √
r4 + 32aεb2λ2

r3
dr

]

and

p(r) = C − ρb2

2r2
− G

2(1 + a)
(1± 1

r2

√
r4 + 32aεb2λ2)

− G

2 (1− a2)

[
log(r)±

∫ √
r4 + 32aεb2λ2

r3
dr

]
.

Potential vortex solutions of Maxwell models are possible only for the upper and lower
convected models. The Giesekus and Phan-Thien and Tanner models replace the linear
term S/λ with a nonlinear term, chosen so as to fix up the fluid response, to avoid unpleas-
ant singularities and other maladies. The potential vortex solutions of these nonlinear
models are not unique. One of the two solutions is unphysical and the other requires
non-generic relations among the material parameters. The FENE-P model does not even
produce a solution (see Appendix C).

We next examine the possibility of superposing a potential vortex and sink, confining
our study to the interpolated Maxwell model. The reader may verify that the potential
φ = m log (r) for a sink of constant strength m satisfies (9.4) for steady, axisymmetric
flow when τ = 0,

σ(r) = r−2a exp
(
− r2

2mλ

)
·




∞∫

r

[
2Gr(2a−1) exp

(
r2

2mλ

)]
dr + C1



 ,

and

γ(r) = −r2a exp
(
− r2

2mλ

)
·




∞∫

r

[
2Gr(−2a−1) exp

(
r2

2mλ

)]
dr + C2





for all values of a ∈ [−1, 1]. Moreover,

ψ = −2G log(r)−
∞∫

r

1
λm exp [r2/(2λm)]

{
C1r

−1−2a
(
λm− 2aλm− r2

)

−C2λmr−1+2a + 2λmGr−1+2a

∞∫

r

s−1−2a exp
[
s2/(2λm)

]
ds
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−2Gr−1−2a(−λm + 2aλm + r2)

∞∫

r

s−1+2a exp
[
s2/(2λm)

]
ds



 dr

and

p(r) = −ρb2

2r2
+ C − 2G log(r)−

∞∫

r

1
λm exp [r2/(2λm)]

{
C1r

−1−2a
(
λm− 2aλm− r2

)

−C2λmr−1+2a + 2λmGr−1+2a

∞∫

r

s−1−2a exp
[
s2/(2λm)

]
ds

−2Gr−1−2a
(−λm + 2aλm + r2

) ∞∫

r

s−1+2a exp
[
s2/(2λm)

]
ds



 dr.

Since (9.1) and the constitutive equations are nonlinear, the superposition of two po-
tential flow solutions is not automatically a solution. Consider the superposition of the
sink flow and the potential vortex under the assumption that the components of stress
only depend on r. We find that (9.4) reduces to





τ,rr +
3
r
τ,r = 0,

σ

λ
+ σ,r

m

r
+ 2aσ

m

r2
+

2(a− 1)b
r2

τ = −2Gm

r2
,

τ

λ
+

(a + 1)b
r2

σ +
m

r
τ,r +

(a− 1)b
r2

γ = −2Gb

r2
,

γ

λ
+

2(a + 1)b
r2

τ + γ,r
m

r
− 2am

r2
γ =

2Gm

r2
.

(9.10)

When τ = 0, (9.10) gives




a(a + 1)σ = G

(
1− 1

2mλ
r2 + a

)
,

a(a− 1)γ = G

(
1− 1

2mλ
r2 − a

)
.

(9.11)

We have to verify that (9.11) will satisfy the second and fourth equations of (9.10).
Multiplying the second equation of (9.10) by r2a(a + 1)/m and using (9.11), we get

ra(a + 1)σ,r +
(

1
mλ

r2 + 2a

)
a(a + 1)σ

= rG

(
− 1

mλ
r

)
+

(
1

mλ
r2 + 2a

)
G

(
1− 1

2mλ
r2 + a

)

= 2G

(
a(a + 1)− 1

4m2λ2
r4

)
6= −2a(a + 1)G.

Hence, there is no solution when τ = 0.
When τ = C1r

−2 + C0 6= 0, we may solve for σ and γ from the second and fourth
equations of (9.10) and obtain

σ =
C2

r2a exp [r2/(2λm)]
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+
2

mr2a exp [r2/(2λm)]

∫
r2a−1 exp

[
r2/(2λm)

] {
b(1− a)

(
C1r

−2 + C0

)−Gm
}

dr

(9.12)

and

γ =
r2aC3

exp [r2/(2λm)]

− 2r2a

m exp [r2/(2λm)]

∫
r−2a−1 exp

[
r2/(2λm)

] {
b(1 + a)

(
C1r

−2 + C0

)−Gm
}

dr.

(9.13)

After substituting (9.12) and (9.13) into the third equation of (9.10), we obtain

C0m

λ
r2 exp

[
r2/(2λm)

]
+

(
C1

λ
+ 2Gb− C1

2m

r2

)
m exp

[
r2/(2λm)

]

+C2m(a + 1)br−2a + C3r
2am(a− 1)b

+C12r−2a(1− a2)b2

∫
r2a−3 exp

[
r2/(2λm)

]
dr

+C12r2a(1− a2)b2

∫
r−2a−3 exp

[
r2/(2λm)

]
dr

+C02r−2a(1− a2)b2

∫
r2a−1 exp

[
r2/(2λm)

]
dr

+C02r2a(1− a2)b2

∫
r−2a−1 exp

[
r2/(2λm)

]
dr

−2r2a(1− a)bGm

∫
r−2a−1 exp

[
r2/(2λm)

]
dr

−2r−2a(a + 1)bGm

∫
r2a−1 exp

[
r2/(2λm)

]
dr = 0.

(9.14)

We find that (9.14) can be satisfied only when a = 1 (UCM) or a = −1 (LCM). When
a = 1, (9.14) reduces to

C0

λm
r2 +

2bC2

mr2 exp (r2/(2λm))
+ (2Gλb + C1)

(
1

λm
− 2

r2

)
= 0.

This implies that C0 = 0, C2 = 0, and C1 = −2Gλb = −2ηb. Hence

τ =
−2Gλb

r2
,

σ = −2Gλm

r2
,

γ =
C3r

2

exp (r2/(2mλ))
− 2Gλb2

mr2
− G

(
b2 + m2

)

m2

(
1− r2Ei

[
r2/(2mλ)

]

2λm exp [r2/(2mλ)]

)
,

ψ = −Gλ
(
m2 + b2

)

mr2
+ log [r]

G
(
b2 + m2

)

m2

−C3

(
mλ− mλ

exp [r2/(2mλ)]

)
+

G
(
b2 + m2

)

2λm3

∞∫

r

rEi
[
r2/(2mλ)

]

exp [r2/(2mλ)]
dr,

and

p = C − (ρm + 2Gλ)
(
m2 + b2

)

2mr2
+ log [r]

G
(
b2 + m2

)

m2
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−C3

(
mλ− mλ

exp [r2/(2mλ)]

)
+

G
(
b2 + m2

)

2λm3

∞∫

r

rEi
[
r2/(2mλ)

]

exp [r2/(2mλ)]
dr

where C3 is a constant and Ei[z] is an exponential integral function defined by

Ei[z]
def
= −

∞∫

−z

e−t

t
dt.

When a = −1, (9.14) reduces to

C0

λm
r2 − 2bC3

mr2 exp (r2/(2λm))
+ (2Gλb + C1)

(
1

λm
− 2

r2

)
= 0

which implies that C0 = 0, C3 = 0 and C1 = −2Gλb = −2ηb. Hence

τ =
−2Gλb

r2
, (9.15)

σ =
C2r

2

exp (r2/(2mλ))
− 2Gλb2

mr2
+

G(b2 + m2)
m2

(
1− r2Ei

[
r2/(2mλ)

]

2λm exp (r2/(2mλ))

)
, (9.16)

γ =
2Gλm

r2
, (9.17)

ψ =
Gλ

(
m2 − b2

)

mr2
+

G
(
b2 + m2

)

m2
(1 + log[r]) + C2

(
r2 −mλ

exp (r2/(2mλ))
+ mλ

)

−G
(
b2 + m2

)

2λm3


r2Ei

[
r2/(2mλ)

]

exp (r2/(2mλ))
−

∞∫

r

rEi
[
r2/(2mλ)

]

exp (r2/(2mλ))
dr


 , (9.18)

and

p =
2Gλ

(
m2 − b2

)− ρm
(
m2 + b2

)

2mr2
+

G
(
b2 + m2

)

m2
(1 + log[r])

+C2

(
r2 −mλ

exp (r2/(2mλ))
+ mλ

)

−G
(
b2 + m2

)

2λm3


r2Ei

[
r2/(2mλ)

]

exp (r2/(2mλ))
−

∞∫

r

rEi
[
r2/(2mλ)

]

exp (r2/(2mλ))
dr


 + C, (9.19)

where C2 is a constant. Equations (9.15) through (9.16) define potential flow fields which
are generated by a superposed sink and potential vortex.

We turn next to three dimensions and look for a solution for the components of the
extra-stress in the interpolated Maxwell model for sink flow, φ = m/r, using (9.1) and
(9.3) (such solutions are incompletely discussed by Joseph [1990]). The general formulas
for (9.1) and (9.3) with F = I in spherical coordinates (r, θ, ϕ) are given in Appendix
C. Substituting φ = m/r into those formulas and assuming that the components of S
depend only on r, we obtain nine equations for the six components of the extra-stress

S = σr̂⊗ r̂ + γθ̂ ⊗ θ̂ + βϕ̂⊗ ϕ̂ + τ
(
r̂⊗ θ̂ + θ̂ ⊗ r̂

)
+ δ

(
θ̂ ⊗ ϕ̂ + ϕ̂⊗ θ̂

)

+κ (r̂⊗ ϕ̂ + ϕ̂⊗ r̂) .
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These equations take the following form:

cot θ

r
τ,r − 2

r2
δ +

3 cot θ

r2
κ = 0,

1
r
τ,r + τ,rr +

2 cot θ

r
δ,r +

3
r
κ,r = 0,

cot θ

r
γ,r − cot θ

r
β,r +

1
r2 sin2 θ

τ +
4
r
τ,r + τ,rr = 0,

1
λ

σ − m

r2
σ,r − 4am

r3
σ =

4Gm

r3
,

1
λ

γ − m

r2
γ,r +

2am

r3
γ = −2Gm

r3
,

1
λ

β − m

r2
β,r +

2am

r3
β = −2Gm

r3
,

1
λ

τ − m

r2
τ,r − am

r3
τ = 0,

1
λ

δ − m

r2
δ,r +

2am

r3
δ = 0,

and
1
λ

κ− m

r2
κ,r − am

r3
κ = 0

where first three equations come from (9.1) and the last six equations come from the
constitutive equation. Solving these nine equations, we find that

S =




σ τ κ
τ γ δ
κ δ β


 =




σ 0 0
0 γ 0
0 0 β




= diag




r−4a exp
[
r3/ (3λm)

] ·
{

4G
∞∫
r

r(−1+4a) exp
[−r3/ (3λm)

]
dr + C1

}

−r2a exp
[
r3/ (3λm)

] ·
{

2G
∞∫
r

r(−1−2a) exp
[−r3/ (3λm)

]
dr + C2

}

−r2a exp
[
r3/ (3λm)

] ·
{

2G
∞∫
r

r(−1−2a) exp
[−r3/ (3λm)

]
dr + C2

}



(9.20)

where C1 and C2 are constants, and obtain

ψ = C1r
−4a exp

[
r3/ (3λm)

]− 2C1

∞∫

r

r−4a−1 exp
[
r3/ (3λm)

]
dr

−2C2

∞∫

r

r2a−1 exp
[
r3/ (3λm)

]
dr

+4Gr−4a exp
[
r3/ (3λm)

] ∞∫

r

r(−1+4a) exp
[−r3/ (3λm)

]
dr
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n− 8G

∞∫

r



r−4a−1 exp

[
r3/ (3λm)

] ∞∫

r

s(−1+4a) exp
[−s3/ (3λm)

]
ds



dr

−4G

∞∫

r



r2a−1 exp

[
r3/ (3λm)

] ∞∫

r

s(−1−2a) exp
[−s3/ (3λm)

]
ds



dr (9.21)

and

p = C − ρm2

2r4
+ C1r

−4a exp
[
r3/ (3λm)

]− 2C1

∞∫

r

r−4a−1 exp
[
r3/ (3λm)

]
dr

−2C2

∞∫

r

r2a−1 exp
[
r3/ (3λm)

]
dr

+4Gr−4a exp
[
r3/ (3λm)

] ∞∫

r

r(−1+4a) exp
[−r3/ (3λm)

]
dr

−8G

∞∫

r



r−4a−1 exp

[
r3/ (3λm)

] ∞∫

r

s(−1+4a) exp
[−s3/ (3λm)

]
ds



dr

−4G

∞∫

r



r2a−1 exp

[
r3/ (3λm)

] ∞∫

r

s(−1−2a) exp
[−s3/ (3λm)

]
ds



dr. (9.22)

The formulas (9.20) through (9.22) define the fields generated by a sink (or source) flow
of an interpolated Maxwell model in three dimensions.

10. Discussion
The theory of potential flows of an inviscid fluid can be readily extended to a theory

of potential flow of viscoelastic fluids which admit a pressure (Bernoulli) function. We
have developed some of this theory for Newtonian fluids, linearly viscoelastic fluids and
second-order fluids. The unsteady drag on a body in potential flow is independent of
the viscosity and of the viscoelastic parameters for the models studied. However, there
are additional viscous and unsteady viscoelastic moments associated with circulation in
planar motions. These additional moments could play a role in the dynamics of flow
in doubly connected regions of three-dimensional space, e.g. in the dynamics of vortex
rings. It is evident that the various vorticity and circulation theorems which are at the
foundation of the theory of inviscid potential flow hold also when the viscosity and model
viscoelastic parameters are not zero. In addition, the theory of viscous and viscoelastic
potential flow admits approximations to real flows through the use of dissipation and
vorticity layer methods. For example, the dissipation theory predicts that the drag on a
rising spherical gas bubble in a viscoelastic fluid is the same as the (Levich) drag on this
bubble in a viscous fluid with the same viscosity and density when the rise velocity is
steady but not when it is unsteady. The pressure on solid bodies and bubbles in viscous
liquids is well approximated by potential flow when separation is suppressed even when,
as for the solid body, the drag is determined by the dissipation in the viscous vorticity
layer at the boundary. It is therefore not unreasonable to hope that the shapes of gas
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bubbles rising in viscoelastic fluids at moderate and perhaps moderately large speeds can
be predicted from forces associated with viscoelastic potential flows.

Concepts from the theory of viscous and viscoelastic potential flow have something to
say about the phenomenon of vortex inhibition. Gordon and Balakrishnan [1972] report
that “...remarkably small quantities of certain high molecular weight polymers inhibit the
tendency of water to form a vortex, as it drains from a large tank...” and they discuss
the phenomenon from a molecular point of view, noting that the same high molecular
weight polymers which are effective drag reducers also work to inhibit the “bathtub”
vortex. The “bathtub” vortex for an inviscid fluid is frequently modeled by superposing
a potential vortex and a sink subject to the condition that the pressure at the unknown
position of the free surface is atmospheric. In more sophisticated models account is taken
for the fact that the vortex core does not reduce its diameter indefinitely, but tends to
a constant value obtained by superposing a potential vortex and a uniform axial motion
subject to the same pressure condition. This asymptotic regime is in the long straight
part of the vortex tube near the drain hole shown in the sketch of Figure 1 of Gordon
and Balakrishnan [1972] and in the first panel of the photograph of the same experiment
shown as Figure 2.5-11 in Bird, Armstrong, and Hassager [1987]. We can imagine an
exact harmonic function which satisfies all the asymptotic limits which we have listed
and is such that the pressure in the Bernoulli equation is atmospheric at the free surface
z = h(r). Exactly the same solution satisfies the equations for viscous potential flow
with the added caveat that the vanishing of the shear stress at the free surface cannot be
satisfied by viscous potential flow. However, the “Levich type” vorticity layer which would
develop at the free surface to accommodate this missing condition can be expected to be
weak in the sense that its relative strength in an energy balance as well as its thickness
will decrease as the Reynolds number increases.

Obviously the aforementioned modeling fails dismally for most models and for some of
the currently most popular models of a viscoelastic fluid and if we think that the dilute
solutions used in the experiments of Gordon and Balakrishnan [1972] are viscoelastic,
then we should expect vortex inhibition even without the molecular arguments. Indeed,
molecular ideas seem to involve the idea of strong extensional flow, but the steady vortex
which drains from the hole is perhaps modeled by the superposition of a potential vortex
and a uniform axial flow which has no extensional component whatever.

The polymeric solutions used in the vortex inhibition experiments are in the same
range of extreme dilution, say 10 ppm, as in experiments on drag reduction (see Berman
[1978] for a review) or the anomalous transport of heat and mass in the flow across wires
(see Joseph [1990] for a review). It is apparent that in spite of the fact that the aqueous
polymeric liquids used in these experiments have surpassingly small weight fractions,
they are responding like viscoelastic liquids. In fact the usual ideas like those of Rouse
and his followers do not work since the drag reduction is never linear in the concentration,
no matter how small (see Berman [1978], p.56).

The theory of rod climbing is based on the potential vortex at the lowest order in an
expansion in which the second order fluid is the first nontrivial approximation to the

stress for slow motions. This theory shows that for small r <

√
4β̂/ρ, where β̂ = λη is

the climbing constant for Maxwell models, the effect of normal stresses is cause the free
surface to rise rather than sink. For aqueous drag reducers we may guess that η ≈ 10−2,
λ ≈ 2× 10−3 (Joseph [1990]) so that in the region r < 10−1 mm the vortex inhibition is
suppressed by normal stresses.

Our analysis has led us to definite conclusions about potential flows of viscous and
viscoelastic fluids. Some special fluids, like inviscid, viscous, linear viscoelastic and second
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order fluids, admit potential flow generally and give rise to Bernoulli functions. Other
fluids will not admit potential flows unless the compatibility condition (9.1) is satisfied.
This leads to an over-determined system of equations for the components of the stress.
Special potential flow solutions, like uniform flow and simple extension, satisfy these
extra conditions automatically and other special solutions can satisfy the equations for
some models and not for others. It appears that only very simple potential flows are
admissible for general models. This lack of general admissibility greatly complicates the
study of boundary layers for viscoelastic liquids.

Acknowledgments
This work was supported by the ARO (mathematics), the DOE (office of basic en-

ergy sciences), the NSF (fluid, particulate and hydraulic systems), AHPCRC, and the
University of Minnesota.

Appendix A. The divergence of the extra stress tensor
∇ · S in (4.2) is computed as follows:
First, ∇ · A, ∇ · B, and ∇ · A2 are calculated:

(∇ · A)i =
∂

∂xk
Aik = ui,kk + uk,ik =

(∇2u
)
i
+

∂

∂xi
(∇ · u) =

(∇2u
)
i
. (A 1)

Since
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we have

(∇ · B)i =
∂ (∇ · A)i

∂t
+ {∇ · [(u ·∇)A]}i +
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AL + LT A
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where Ωij ≡ ∂ui

∂xj
− ∂uj

∂xi
= Lij − Lji = −εijkωk, and ∇Ω =
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∂xk
Ωij î⊗ ϕ̂⊗ k̂. That is,
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2
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Combining (A.1), (A.2) and (A.3), we have

∇ · S = µ∇ · A + α1∇ · B + α2∇ · A2
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2
, and ∇ · A = ∇2u.

Appendix B. The pressure equation for a rising spherical bubble in a
second-order fluid

The computation of ∂φ/∂t is somewhat delicate because

φ = −1
2
U

a3

r2
cos θ (B 1)
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is computed relative to an origin moving with the sphere, so that even when U is constant
the motion is not steady. Following the analysis given in section 15.33 by Milne-Thomson
[1960] we find that

∂φ

∂t
= U2 a3

2r3

(
sin2 θ − 2 cos2 θ

)− U̇
a3

2r2
cos θ. (B 2)

To compute the pressure formula (4.4) we need to compute γ2 where A is calculated on
potential flow relative to spherical coordinates. Relative to this basis, we have
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Hence,
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The pressure now can be computed from (4.4) using (B.1), (B.2) and (B.4). We find that
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The pressure is not required for the dissipation calculation. Notice that, (B.2) is also used
to compute the time derivative in the tensor B which occurs in the extra stress tensor S.

Appendix C. The nonexistence of a potential vortex in a FENE-P
fluid

The constitutive equation of the FENE-P model is (see Bird, Armstrong, and Has-
sanger [1987], p. 410)

1
λ
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where G = η/λ, ε = 2/(b2 + 2b), b is a constant, and

Z = 1 +
(

3
b

)(
1 +

λtrS
3η

)
.

The compatibility condition for potential flow is

∇∧ (∇ · S) = 0. (C 2)
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In polar coordinates, (C.1) and (C.2), with stress S = σr̂⊗ r̂+τ
(
r̂⊗ θ̂ + θ̂ ⊗ r̂

)
+γθ̂⊗ θ̂

and velocity potential φ, can be written as
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where
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For potential vortex φ(θ) = βθ, where β = ωr2
0 and ω is a constant angular velocity, and

under the assumption that S is axisymmetric and steady, (C.3) through (C.6) reduces
to:
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The solution of (C.8) is

τ = C1r
−2 + C0 (C 12)
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where C0 and C1 are to-be-determined constants. On the other hand, since Z 6= 0, (C.9)
implies σ = 0, and thus, (C.7), (C.10) and (C.11) reduce to

Z = 1 +
3
b

+
1

bG
γ, (C 13)
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Substituting (C.13) into (C.14) and (C.15), and then eliminating γ, we obtain another
equation for τ as follows:

(
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2

τ
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The constants C0 and C1 should be determined from the compatibility between (C.14)
and (C.16). Hence, after inserting (C.14) into (C.16), we get
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Since (C.17) is true for all r > r0, the coefficients of different powers of r must vanish; this
implies bG2ηβ (1− εb)2 = 0 which is impossible. Therefore, the FENE-P model cannot
support a potential vortex.

Appendix D. Formulas for the interpolated Maxwell model and the
compatibility condition for potential flow in spherical
coordinates

In this appendix, we will list all the necessary formulas to express (9.1) and (9.3) in
spherical coordinates with basis r̂, θ̂, ϕ̂ as shown in Figure D.1. The general formulas
for the interpolated Maxwell model will be given first without assuming the potential
flow, then we give reduced formulas for potential flow and finally we give formulas for
the compatibility condition ∇∧ (∇ · S) = 0.
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Figure D.2. Figure D.1. Spherical coordinates
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Rate equations for interpolated Maxwell models:
We should express the rate equation
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in spherical polar coordinates in component forms with G = η/λ.
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ϕ̂⊗ ϕ̂ component:

β̇ +
{

1
λ
− 2a

r

(
u + v cot θ +

w,ϕ

sin θ

)}
β + uβ,r +

v

r
β,θ +

w

r sin θ
β,ϕ

+κ
(
(1− a)

u,ϕ

r sin θ
+ (1 + a)

(w

r
− aw,r

))
+

δ

r

(
(1− a)

v,ϕ

sin θ
+ (1 + a) (w cot θ − w,θ)

)

=
2G

r

(
u + v cot θ +

w,ϕ

sin θ

)
.

r̂⊗ θ̂ and θ̂ ⊗ r̂ components:

τ̇ +
{

1
λ
− a

(v,θ

r
+

u

r
+ u,r

)}
τ + uτ,r +

v

r
τ,θ +

w

r sin θ
τ,ϕ +

σ

2

(
(1− a)

u,θ

r
+ (1 + a)

(v

r
− v,r

))

−γ

2

(
(1 + a)

u,θ

r
+ (1− a)

(v

r
− v,r

))
− δ

2

(
(1 + a)

u,ϕ

r sin θ
+ (1− a)

(w

r
− w,r

))

− κ

2r

(
(1 + a)

v,ϕ

sin θ
+ (1− a) (w cot θ − w,θ)

)
= G

(
v,r +

u,θ

r
− v

r

)
.
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θ̂ ⊗ ϕ̂ and ϕ̂⊗ θ̂ components:

δ̇ +
{

1
λ
− a

r

(
2u + v,θ + v cot θ +

w,ϕ

sin θ

)}
δ + uδ,r +

v

r
δ,θ +

w

r sin θ
δ,ϕ

+
γ

2r

(
(1− a)

v,ϕ

sin θ
+ (1 + a)(w cot θ − w,θ)

)
− β

2r

(
(1 + a)

v,ϕ

sin θ
+ (1− a)(w cot θ − w,θ)

)

+
τ

2

(
(1− a)

u,ϕ

r sin θ
+ (1 + a)(

w

r
− w,r)

)
+

κ

2

(
(1− a)

u,θ

r
+ (1 + a)(

v

r
− v,r)

)

=
G

r

( v,ϕ

sin θ
− w cot θ + w,θ

)
.

r̂⊗ ϕ̂ and ϕ̂⊗ r̂ components:

κ̇ +
{

1
λ
− a

(
u,r +

u

r
+

v cot θ

r
+

w,ϕ

r sin θ

)}
κ + uκ,r +

v

r
κ,θ +

w

r sin θ
κ,ϕ

+
σ

2

(
(1− a)

u,ϕ

r sin θ
+ (1 + a)

(w

r
− w,r

))
− β

2

(
(1 + a)

u,ϕ

r sin θ
+ (1− a)

(w

r
− w,r

))

+
τ

2r

(
(1− a)

v,ϕ

sin θ
+ (1 + a) (w cot θ − w,θ)

)
− δ

2

(
(1 + a)

u,θ

r
+ (1− a)

(v

r
− v,r

))

= G
( u,ϕ

r sin θ
− w

r
+ w,r

)
.

Rate equations for interpolated Maxwell model in potential flow:

In this case L = LT and
∂S
∂t

+
1
λ
S + (u ·∇)S− a (LS + SL) = 2GD.

r̂⊗ r̂ component:

σ̇ +
(

1
λ
− 2aφ,rr

)
σ + φ,rσ,r +

φ,θ

r2
σ,θ +

φ,ϕ

r2 sin2 θ
σ,ϕ

−2τ

r

(
aφ,rθ + (1− a)

φ,θ

r

)
− 2κ

r sin θ

(
aφ,ϕr + (1− a)

φ,ϕ

r

)
= 2Gφ,rr.

θ̂ ⊗ θ̂ component:

γ̇ +
(

1
λ
− 2a

r

(
φ,θθ

r
+ φ,r

))
γ + φ,rγ,r +

φ,θ

r2
γ,θ +

φ,ϕ

r2 sin2 θ
γ,ϕ − 2τ

r

(
aφ,rθ − (1 + a)

φ,θ

r

)

− 2δ

r2 sin θ
(aφ,ϕθ + (1− a) cot θφ,ϕ) =

2G

r

(
φ,θθ

r
+ φ,r

)
.

ϕ̂⊗ ϕ̂ component:

β̇ +
(

1
λ
− 2a

r

(
φ,r +

φ,ϕϕ

r sin2 θ
+

cot θ

r
φ,θ

))
β + φ,rβ,r +

φ,θ

r2
β,θ +

φ,ϕ

r2 sin2 θ
β,ϕ

− 2κ

r sin θ

(
aφ,ϕr − (1 + a)

φ,ϕ

r

)
− 2δ

r2 sin θ
(aφ,ϕθ − (1 + a) cot θφ,ϕ)

=
2G

r

(
φ,r +

φ,ϕϕ

r sin2 θ
+

cot θ

r
φ,θ

)
.

r̂⊗ θ̂ and θ̂ ⊗ r̂ components:

τ̇ +
(

1
λ
− a

(
φ,rr +

φ,θθ

r2
+

φ,r

r

))
τ + φ,rτ,r +

φ,θ

r2
τ,θ +

φ,ϕ

r2 sin2 θ
τ,ϕ +

σ

r

(
φ,θ

r
+ a

(
φ,θ

r
− φ,rθ

))

−γ

r

(
aφ,rθ + (1− a)

φ,θ

r

)
− κ

r2 sin θ
(aφ,ϕθ + (1− a) cot θφ,ϕ)

− δ

r sin θ

(
aφ,ϕr + (1− a)

φ,ϕ

r

)
=

2G

r

(
φ,rθ − φ,θ

r

)
.
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θ̂ ⊗ ϕ̂ and ϕ̂⊗ θ̂ components:

δ̇ +
(

1
λ

+ aφ,rr

)
δ + φ,rδ,r +

φ,θ

r2
δ,θ +

φ,θ

r2
κ +

φ,ϕ

r2 sin2 θ
δ,ϕ

− γ

r2 sin θ
(aφ,ϕθ − (1 + a) cot θφ,ϕ)− β

r2 sin θ
(aφ,ϕθ + (1− a) cot θφ,ϕ)

− τ

r sin θ

(
aφ,ϕr − (1 + a)

φ,ϕ

r

)
− aκ

r

(
φ,rθ − φ,θ

r

)
=

2G

r2 sin θ
(φ,ϕθ − cot θφ,ϕ).

r̂⊗ ϕ̂ and ϕ̂⊗ r̂ components:

κ̇ +
(

1
λ

+
a

r

(
φ,r +

φ,θθ

r

))
κ + φ,rκ,r +

φ,θ

r2
κ,θ +

φ,ϕ

r2 sin2 θ
κ,ϕ − σ

r sin θ

(
aφ,ϕr − (1 + a)

φ,ϕ

r

)

− β

r sin θ

(
aφ,ϕr + (1− a)

φ,ϕ

r

)
− τ

r2 sin θ
(aφ,ϕθ − (1 + a) cot θφ,ϕ)

−δ

r

(
aφ,rθ + (1− a)

φ,θ

r

)
=

2G

r sin θ

(
φ,ϕr − φ,ϕ

r

)
.

Formulas for the compatibility condition ∇∧ (∇ · S) = 0 written for potential
flow:
r̂ component:

− cot θ

r2 sin θ
γ,ϕ − 1

r2 sin θ
γ,θϕ +

cot θ

r2 sin θ
β,ϕ +

1
r2 sin θ

β,ϕθ +
cot θ

r
τ,r − 3

r2 sin θ
τ,ϕ +

1
r
τ,rθ

− 1
r sin θ

τ,rϕ − 2
r2

δ +
cot θ

r2
δ,θ +

1
r2

δ,θθ − 1
r2 sin2 θ

δ,ϕϕ +
3 cot θ

r2
κ +

3
r2

κ,θ = 0.

θ̂ component:

1
r sin θ

σ,rϕ +
2

r2 sin θ
σ,ϕ − 1

r2 sin θ
γ,ϕ − 1

r2 sin θ
β,ϕ − 1

r sin θ
β,ϕr − 1

r
τ,r

+
cot θ

r2 sin θ
τ,ϕ − τ,rr +

1
r2 sin θ

τ,θϕ − 2 cot θ

r
δ,r − 1

r
δ,θr − 3

r
κ,r +

1
r2 sin2 θ

κ,ϕϕ = 0.

ϕ̂ component:

−2
1
r2

σ,θ − 1
r
σ,rθ+

cot θ

r
γ,r +

1
r2

γ,θ+
1
r
γ,θr − cot θ

r
β,r+

1
r2

β,θ +
1

r2 sin2 θ
τ +

4
r
τ,r

−cot θ

r2
τ,θ + τ,rr − 1

r2
τ,θθ +

1
r sin θ

δ,ϕr +
cot θ

r2 sin θ
κ,ϕ − 1

r2 sin θ
κ,ϕθ = 0.
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