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Abstract
Potential flows of incompressible fluids admit a pressure (Bernoulli) equation when the diver-

gence of the stress is a gradient as in inviscid fluids, viscous fluids, linear viscoelastic fluids and
second-order fluids. We show that in potential flow without boundary layers the equation balancing
drag and acceleration is the same for all these fluids, independent of the viscosity or any viscoelastic
parameter, and that the drag is zero when the flow is steady. But, if the potential flow is viewed as
an approximation to the actual flow field, the unsteady drag on bubbles in a viscous (and possibly
in a viscoelastic) fluid may be approximated by evaluating the dissipation integral of the approx-
imating potential flow because the neglected dissipation in the vorticity layer at the traction-free
boundary of the bubble gets smaller as the Reynolds number is increased. Using the potential flow
approximation, the actual drag D on a spherical gas bubble of radius α rising with velocity U(t)
in a linear viscoelastic liquid of density ρ and shear modules G(s) is estimated to be

D =
2
3
πa3ρU̇ + 12πα

∫ t

−∞
G(t− τ)U(τ)dτ

and, in a second-order fluid,

D = πa

(
2
3
a2ρ + 12α1

)
U̇ + 12πaµU,

where α1 < 0 is the coefficient of the first normal stress and µ is the viscosity of the fluid. Because
α1 is negative, we see from this formula that the unsteady normal stresses oppose inertia;that
is,oppose the acceleration reaction. When U(t) is slowly varying, the two formulae coincide. For
steady flow, we obtain the approximate drag D = 12πaµU for both viscous and viscoelastic fluids.
In the case where the dynamic contribution of the interior flow of the bubble cannot be ignored
as in the case of liquid bubbles, the dissipation method gives an estimation of the rate of total
kinetic energy of the flows instead of the drag. When the dynamic effect of the interior flow is
negligible but the density is important, this formula for the rate of total kinetic energy leads to
D = (ρα − ρ) VBg · ex − ραVBU̇ where ρα is the density of the fluid (or air) inside the bubble and
VB is the volume of the bubble.

Classical theorems of vorticity for potential flow of ideal fluids hold equally for second-order
fluid. The drag and lift on two-dimensional bodies of arbitrary cross-section in a potential flow of
second-order and linear viscoelastic fluids are the same as in potential flow of an inviscid fluid but
the moment M in a linear viscoelastic fluid is given by

M = MI + 2
∫ t

−∞
[G(t− τ)Γ(τ)]dτ,

where MI is the inviscid moment and Γ(t) is the circlulation, and

M = MI + 2µΓ + 2α1∂Γ/∂t

in a second-order fluid. When Γ(t) is slowly varying, the two formulae for M coincide. For steady
flow, they reduce to

M = MI + 2µΓ,

which is also the expression for M in both steady and unsteady potential flow of a viscous fluid.
Moreover, when there is no stream, this moment reduces to the actual moment M = 2µΓ on a
rotating rod.

Potential flows of models of a viscoelastic fluid like Maxwell’s are studied. These models do not
admit potential flows unless the curl of the divergence of the extra stress vanishes. This leads to
an over-determined system of equations for the components of the stress. Special potential flow
solutions like uniform flow and simple extension satisfy these extra conditions automatically but
other special solutions like the potential vortex can satisfy the equations for some models and not
for others.
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1 Introduction

Potential flows arise from the kinematic assumption that the curl of the velocity vanishes identically
in some region of space, ω

def= ∇× u = 0. In this case, the velocity is given by the gradient of a
potential, u = ∇φ. If, in addition, the material is incompressible, then ∇ · u = 0 and ∇2φ = 0. None
of this depends on the constitutive equation of the fluid. In fact most constitutive equations are not
compatible with the assumption that ∇ × u = 0, in general. For example, if the viscosity µ of a
Newtonian fluid varies from point to point, then

ρ∇×
(

du

dt

)
= ∇× [−∇p +∇ · (µA)] = ∇× (

µ∇2u
)

+∇× (A∇µ) , (1.1)

where A def= L + LT and L def= ∇u, ρ is the density which only depends on time and, p is a to-be-
determined scalar field called the pressure. All the terms except the last vanish when u = ∇φ.
This term amounts to a ‘torque’ which generates vorticity. Most constitutive equations will generate
vorticity because the curl of the divergence of the stress produces such a torque.

There are special irrotational motions which satisfy the equations of motion even for fluids that
will not generally accommodate potential flows. For example, since the stress must be Galilean in-
variant, uniform motion is a potential flow which satisfies the equations of motion independent of the
constitutive equation. Another such potential flow, greatly loved by rheologists, is pure extensional or
elongational flow which leads to the concept of extensional viscosity.

In general, potential flows will not satisfy the boundary conditions at solid walls or free surfaces. This
is why potential flows are almost impossible to achieve exactly in practice. In particular, this feature
is probably at the bottom of the apparent disagreement of the different instruments which claim to
measure extensional viscosity. None of them achieve the irrotational flows necessary for backing out
the rheology. However, we know how to use potential flows in viscous fluid mechanics, where we were
instructed by Prandtl. Perhaps we may also learn how to use potential flow to study the fluid dynamics
of viscoelastic liquids.

There are some special constitutive equations which are compatible with the assumption that ∇×
u = 0, in general. Among these are inviscid fluids, viscous fluids with constant viscosity (Joseph,
Liao & Hu 1993), second-order fluids (Joseph 1992) and linear viscoelastic fluids which perturb rest or
uniform flow (cf. §5). The second-order fluid arises asymptotically from the class of simple fluids by the
slowing of histories, which Coleman & Noll (1960) called a retardation. The retardation can be said to
arise on slow and slowly varying motions, where slow variations mean that spatial gradients are small
when the velocity is small and time derivatives of order n scale with |u|n. In viscous fluid mechanics
we generally associate potential flows with high Reynolds numbers, i.e. fast flows. The constitutive
equation (5.5) for a linear viscoelastic liquid is the appropriate asymptotic form for simple fluids in
motions that perturb uniform flows which need not be slow. We should show that second-order fluids
also arise as perturbations of fast uniform flows when the perturbations are slowly varying (cf. (5.8)
and (5.9)). We have worked out the consequences of the second-order theory in a mathematically
rigorous way without considering the domain of deformations in which second-order fluids are valid
(see the Appendix). In fact this theory should not be expected to give good results for rapidly varying
flows or in other motions outside of its domain of applicability. More general models of a viscoelastic
fluid can support special irrotational flows even if they do not have a pressure function in general.
Such special solutions can be found;some are universal and others work for some models and not for
others. The conclusion that viscoelastic liquids will not admit potential flows is too sweeping, but
outside the class of deformations that give rise to second-order or linear viscoelastic fluids the chances
that a special potential flow can be achieved are slight.

In §2 of the paper we motivate our subsequent work by calling attention to the fact that potential
flows of viscous and viscoelastic fluids may not be realizable; non-existence is not exceptional. Potential
motions of fluids for which the divergence of the extra stress is not a gradient are not possible. In §3
we derive an equation for the evolution of the energy of a fluid in which the dissipation is an important
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term. We introduce the drag on a body in rectilinear motion into this equation and show first that
the drag on a body in potential flow is independent of the constitutive equation and vanishes when
the flow is steady (d’Alembert’s paradox). In §4 we use Levich’s idea that potential flows are a good
approximation to viscous (or viscoelastic) flow outside the vorticity layer at the surface of a gas bubble.
The idea here is that unlike boundary layers on solid boundaries, the layer here is weaker in the sense
that its contribution to the total rate of energy dissipation is small or even negligible at moderate and
high Reynolds number. In this case, we get drag equations by evaluating the rate of energy dissipation
on a potential flow; we get the drag on the bubble using potential flow to approximate the motion
outside the bubble. In §5 we derive the drag equation on a spherical gas bubble in a second-order fluid
and a linear viscoelastic fluid using the dissipation equation in the aforementioned approximation. In
the §§6 and 7 we return to exact rather than approximate descriptions of potential flows of viscous,
second-order, and linear viscoelastic fluids, but now restricted to two dimensions. Drag and lift are the
same in inviscid potential flow, but new formulae for the moments, which do depend on the constitutive
equation appear. In §8 we examine the general problem of admissibility by looking for special potential
flow solutions of models like Maxwell’s. In the Appendix, which follows the discussion of out result in
§9, we derive certain classical formulae for a second-order fluid.

2 Compatibility condition for potential flows

A necessary condition for a constitutive equation to support a potential flow solution can be derived
from the momentum equation as follows. We might write the momentum equation in the form:

∇ · S = ρ
du

dt
− ρg +∇p (2.1)

where S is the extra stress given by the constitutive equation of the fluid. If the velocity field has as
potential φ, then the right-hand side of (2.1) can be written as

∇
(

ρ
∂φ

∂t
+ ρ

|∇φ|2
2

+ p− ρg · x
)

(2.2)

provided that the body force field is conservative. Therefore, if the momentum equation holds for this
potential flow, we must have

∇∧ (∇ · S) = 0. (2.3)

That is, there exists a real function ψ(φ) such that

∇ · S = ∇ψ. (2.4)

In this case, a generalized pressure (Bernoulli) equation can be obtained from (2.2) and (2.4), which
is

p = ρg · x− ρ
∂φ

∂t
− ρ

|∇φ|2
2

+ ψ + C(t), (2.5)

where C(t) is a time-dependent Bernoulli constant. Obviously (2.4) holds for Newtonian fluids of
constant viscosity with ψ = 0; it also holds for linear viscoelastic fluids with ψ = 0 (see (5.6)); and less

trivially for second-order fluids with ψ =
1
2
β̂γ2, where β̂ is the climbing constant and γ2 =

1
2
tr

(
A2

)

(see Joseph 1992). For models like Jeffreys’, S = SN + SE , where SN = µA[u], (2.4) need only be
checked for SE . Generally, (2.4) and the constitutive equations lead to an over-determined system of
differential equations for the components of S. Special solutions of this over-determined system can
be found even for models that do not admit potential flow genrally (see §8).
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3 Dissipation formula for the drag on a body

The stress in an incompressible liquid can be written as

T = −pI + S (3.1)

where p is a to-be-determined scalar field and S is the part of the stress which is related to the
deformation by a constitutive equation. We are going to write S = S[u], meaning S is functional of
the history of u. The formulae relating drag and dissipation do not require that we choose a constitutive
equation.

Consider the motion of a solid body or bubble in a liquid in three dimensions. Suppose that the
body B moves forward with a velocity Uex and that it neither rotates nor changes shape or volume.
The absolute velocity u and the relative velocity v of the fluid are then related by

u = Uex + v (3.2)

with

v · n |∂B = 0, (3.3)

where n is the inward normal on the boundary ∂B of B. The fluid outside B is unbounded. We assume
that the flow is irrotational far from the body. Since the volume V of the fluid outside B is a material
volume (because no mass crosses ∂B), we apply the Reynolds transport theorem to the kinetic energy
E of the fluid in V to obtain

dE

dt
=

d
dt

∫

V (t)
ρ
|u|2
2

dV =
∫

V (t)
ρu · du

dt
dV, (3.4)

where the integrals converge because u = O(r−3) as r → ∞ in irrotational flow (see Batchelor, 1967
p.122). For the types of constitutive equations to be considered in this paper, it can be shown that,
as r →∞, T = O(r−2). Therefore, using ∇ · u = 0 and ρdu/dt = ∇ ·T + ρg, we obtain

dE

dt
=

∫

V (t)
u · (∇ ·T + ρg) dV =

∫

∂B
u · (T · n + (ρg · x) n) dS −

∫

V (t)
L[u] : S[u]dV,

where T ·n is the negative of the traction vector expressing the force exerted by the fluid on the body
and x is the position vector. We may rewrite this, using (3.2)and (3.3), as

dE

dt
= UD +

∫

∂B
v · (T · n) dS −

∫

V (t)
L[u] : S[u]dV, (3.5)

where

D
def=

∫

ρB
ex · (T · n) dS − ρVBg · ex (3.6)

is the drag exerted on the fluid by the body and VB is the volume of the body.
For potential flows, using (2.4), we obtain

∫

∂B
v ·T · ndS =

∫

∂B
v · S[u] · ndS =

∫

V (t)
∇ · (v · S[u]) dV

=
∫

V (t)
v · ∇ψdV +

∫

V (t)
L[u] : S[u]dV =

∫

V (t)
L[u] : S[u]dV.

The first and last equalities hold because v · n|∂B = 0 and ∇ · v = 0. Therefore (3.5) gives rise to

D =
1
U

dE

dt
. (3.7)
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In a potential flow of the type under consideration, one has (see Batchelor 1967, p.403)

E =
1
2
eρVBU2, (3.8)

where e is a constant depending only on the shape of the body. For spheres, it can be shown that

e =
1
2
. Applying (3.8) to (3.7), we get

D = eρVB
dU

dt
. (3.9)

This equation shows that the drag on a body in a potential flow is independent of the constitutive
equations of liquids satisfying (2.4) and vanishes when the flow is steady (d’Alembert’s paradox).

On the other hand, there are two standard situations, neither of which holds in potential flow, in
which

v · (T · n) |∂B ≡ 0. (3.10)

If B is a rigid solid, then v|∂B ≡ 0 and hence (3.10). If B is a bubble, the tangential component of
the traction vector vanishes, i.e.

τ · (T · v) |∂B = 0 for all τ ⊥ n. (3.11)

Since v ⊥ n by (3.3), we obtain (3.10). Thus, applying (3.10) to (3.5), we obtain the dissipation
formula for the drag:

D =
1
U

dE

dt
+

1
U

∫

V (t)
L[u] : S[u]dV. (3.12)

When the flow is steady, this equation becomes

D =
1
U

∫

V (t)
L[u] : S[u]dV. (3.13)

In general, potential flow fails to satisfy (3.10) or (3.11) and therefore (3.12) and (3.13). However, many
flows are approximately irrotational outside thin vorticity layers, so that (3.13) might be used to obtain
approximate values of the drag. In fact, Levich (1949) used (3.13) and u = ∇φ to approximate the
drag in the steady ascent of a bubble in a viscous fluid, obtaining good agreement with experiments.
Unfortunately, we notice that in the case of two-dimensional flow with non-zero circulation on the
body the kinetic energy is infinite (see Batchelor 1967, p.404); therefore, (3.4) is no longer true and
the above analysis fail. To find the drag of a body in two-dimensional potential flow, we thus turn to
the generalized Blasius formulae described in §7.

4 Potential flow approximations for the terminal velocity of rising
bubbles

The idea that viscous forces in regions of potential flow may actually dominate the dissipation of
energy seems to have been first advanced by Lamb (1924) who showed that in some cases of wave
motion the rate of dissipation can be calculated with sufficient accuracy by regarding the motion as
irrotational. The computation of the drag D on a sphere in potential flow using the dissipation method
seems to have been given first by Bateman in 1932 (see Dryden, Murnaghan & Bateman 1956) and
repeated by Ackeret (1952). They found that D = 12πaµU where µ is the viscosity, a the radius of
the sphere and U its velocity. This drag is twice the Stokes drag and is in better agreement with the
measured drag for Reynolds numbers in excess of about 8.
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The same calculation for a rising spherical gas bubble was given by Levich (1949). Measured values
of the drag on spherical gas bubbles are close to 12πaµU for Reynolds numbers larger than about 20.
The reasons for the success of the dissipation method in predicting the drag on gas bubbles have to
do with the fact that vorticity is confined to thin layers and the contribution of this vorticity to the
drag is smaller in the case of gas bubbles, where the shear traction rather than the relative velocity
must vanish on the surface of the sphere. A good explanation was given by Levich (1962) and by
Moore (1959, 1963); a convenient reference is Batchelor (1967). Brabston & Keller (1975) did a direct
numerical simulation of the drag on a gas spherical bubble in steady ascent at terminal velocity U in
a Newtonian fluid and found the same kind of agreement with experiments. In fact, the agreement
between experiments and potential flow calculations using the dissipation method are fairly good for
Reynolds numbers as small as 5 and improves (rather than deteriorates) as the Reynolds number
increases.

The idea that viscosity may act strongly in the regions in which vorticity is effectively zero appears
to contradict explanations of boundary layers which have appeared repeatedly since Prandtl. For
example, Glauert (1943) say (p.142) that

...Prandtl’s conception of the problem is that the effect of the viscosity is importaint
only in a narrow boundary layer surrounding the surface of the body and that the viscosity
may be ignored in the free fluid outside this layer.

According to Harper (1972), this view of boundary layers is correct for solid spheres but not for
spherical bubbles. He says that

For R À 1, the theories of motion past solid spheres and tangentially stress-free bubbles
are quite different. It is easy to see why this must be so. In either case vorticity must
be generated at the surface because irrotational flow does not satisfy all the boundary
conditions. The vorticity remains whithin a boundary layer of thickness δ = O(aR− 1

2 ), for it
is convected around the surface in a time t of order a/U , during which viscosity can diffuse it
away to a distance δ if δ2 = O(vt) = O(a2/R). But for a solid sphere the fluid velocity must
change by O(U) across the layer, because it vanishes on the sphere, whereas for a gas bubble
the normal derivative of velocity must change by O(U/a) in order that the shear stress be
zero. That implies that the velocity itself changes by O(Uδ/a) = O(UR− 1

2 ) = o(U) ....
In the boundary layer on the bubble, therefore, the fluid velocity is only slightly per-

turbed from that of the irrotational flow, and velocity derivatives are of the same order as
in the irrotational flow. Then the viscous dissipation integral has the same valus as in the
irrtational flow, to the first order, because the total volume of the boundary layer of order
a2δ is much less than the volume, of order a3, of the region in which the velocity derivatives
are of order U/a. The volume of the wake is not small, but the velocity derivatives in it
are, and it contributes to the dissipation only in higher order terms....

For flows in which the vorticity is confined to narrow layers the kinetic energy E should be well
approximated by potential flow (even if the dissipation is not). Then using (3.8), (3.12) becomes

eρVB
dU

dt
≈ D − 1

U

∫

V (t)
L[∇φ] : S[∇φ]dV. (4.1)

In the problem of the rising bubble where the contributions from the flow inside the bubble cannot
be neglected we get

dE

dt
=

dE1

dt
+

dE2

dt
=

∫

∂B
(u2 ·T2 − u1 ·T1) · ndS +

∫

∂B
g · x (ρ2u2 − ρ1u1) · ndS − Φ(x, t), (4.2)

where the region 1 is inside the bubble and 2 is outside, n is the normal vector on the surface which
points into the bubble and

Φ(x, t) def=
∫

B
L[u1] : S[u1]dV +

∫

V (t)
L[u2] : S[u2]dV
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is the total rate of energy dissipation. On the surface of the bubble the normal velocity and the shear
stress are continuous; that is,

(u2 − u1) · u = 0 on ∂B

and τ · (T2 −T1) · n = 0 on ∂B for all τ ⊥ n. (4.3)

Since the bubble is neither rotating nor deforming, we can decompose the velocity as in (3.2) and
(3.3). Then inserting (3.2) into (4.2), we find, after using a recent result of Hesla, Huang & Joseph
(1933) which says the mean value of the jump of the traction vector vanishes on the closed surface of
a drop

∫

∂B
ex · (T2 −T1) · ndV = 0, (4.4)

that

dE

dt
= −U [(ρ2 − ρ1) VB] g · ex +

∫

∂B
(v2 ·T2 − v1 ·T1) · ndS − Φ(x, t). (4.5)

Moreover, if v1 = v2, then, after applying (3.3) and (4.3), above equation reduces to

dE

dt
= −U [(ρ2 − ρ1) VB] g · ex − Φ(x, t). (4.6)

Equation (4.6) can be used to form an unsteady extension of the drag formula introduced by Levich
(1949). We first assume that the air bubble does not exert a shear traction on the liquid outside. This
implies that a vorticity layer is required in the liquid to adjust the potential flow stress to its zero-
shear-traction value on the free surface. This vorticity layer is much weaker than the layer required
on a moving solid, or on a viscous bubble, in which the velocity of the potential flow rather than
its derivative must be adjusted to its no-slip value. If the rate of energy dissipation in the bubble is
neglected, then the kinetic energy of the gas becomes

dE1

dt
= ρ1VBUU̇,

where ∂/∂t is denoted by a superposed dot, and

Φ(x, t) =
∫

V (t)
L[u2] : S[u2]dV

Applying these two equations to (4.6) and using (3.12) on the fluid region (region 2), we find that the
drag induced by the flow outside the body is

D = (ρ1 − ρ2) VBg · ex − ρ1VBU̇ .

This approximate formula for drag is independent of the constitutive equation of the fluid.

5 Motion of a spherical gas bubble in a second-order fluid and a
linear viscoelastic fluid using the dissipation method

For a spherical bubble of radius a moving with speed U through a viscous fluid the flow outside the
boundary layer and a narrow wake is given approximately by potential flow

φ = −U

2
a3

r2
cos θ. (5.1)
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We can assume that this approximation is valid for a second-order fluid, where

S = µA + α1B + α2A2, (5.2)

with B def=
4
A = ∂A/∂t + (u · ∇)A + AL + LTA, and ψ =

1
2
β̂γ2 and see where it leads. To complete

the unsteady drag formula (4.1), we need L and S. In spherical coordinates (r, θ, ϕ), denoting the
extra stress as

S =




Srr Srθ Srϕ

Sθr Sθθ Sθϕ

Sϕr Sϕθ Sϕϕ




and using (5.1), we find

L =
A
2

= −3
2

Ua3

r4




2 cos θ sin θ 0
sin θ − cos θ 0

0 0 − cos θ




and

S = −3
(

µU + α1
∂U

∂t

)
a3

r4




2 cos θ sin θ 0
sin θ − cos θ 0

0 0 − cos θ




+3α1U
2 a3

r5



−12 cos2 θ + 4 −8 cos θ sin θ 0
−8 cos θ sin θ 7 cos2 θ − 3 0

0 0 5 cos2 θ − 1




+3α1U
2 a6

r8




15 cos2 θ + 5 5 cos θ sin θ 0

5 cos θ sin θ
3− 5 cos2 θ

2
0

0 0
−1 + cos2 θ

2




+9α2U
2 a6

r8




3 cos2 θ + 1 cos θ sin θ 0
cos θ sin θ 1 0

0 0 cos2 θ


 .

The pressure can be derived from the Bernoulli equation (2.5) as

p =
ρ

2
∂U

∂t

a3

r2
cos θ − ρ

2
U2 a3

r3

{(
1− 3 cos2 θ

)
+

a3

4r3

(
1 + 3 cos2 θ

)}
+ 9β̂U2 a6

r8

(
cos2 θ +

1
2

)
+ ρg · x.

We may also write the dissipation integral as
∫

V
L[∇φ] : S[∇φ]dV =

1
2

∫

V
A :

[
µA + α1

∂A
∂t

]
dV +

1
2

∫

V
A :

[
α1 (u · ∇)A + (α1 + α2)A2

]
dV,

where dV = 2πr2 sin θdθdr, 0 ≤ θ ≤ π. The last integral vanishes after integrating over θ. Noting next
that

∂A
∂t

=
U̇

U
A,
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where U̇ ≡ ∂U/∂t, we find than

∫

V
L : SdV =

1
2

(
µ + α1

U̇

U

)∫

V
A : AdV = 12πaU

(
µU + α1U̇

)
. (5.3)

Substituting (5.3) into (4.1) with e =
1
2

and VB =
4
3
πa3, we obtain

D = πa

(
2
3
a2ρ + 12α1

)
U̇ + 12πaµU. (5.4)

The main result of this section is (5.4). Since α1 is negative, we see that the elastic term has a
different sign than the acceleration reaction (added mass) term. This then is yet another manifestation
of the competition between elasticity and inertia. Elasticity will dominate when

−18α1

ρa2
> 1.

In steady flow the drag on a spherical bubble rising in a second-order fluid is the same as that on
a similar bubble rising in a viscous fluid at high Reynolds numbers, independent of the values of α1

and α2.
If a gas bubble rises through a linear viscoelastic fluid at velocity U(t)ex which is nearly steady, the

induced flow will be a small perturbation of that for the steady case, and the extra stress is given by
(see Joseph 1990, p.168)

S =
∫ t

−∞
G(t− τ)A[u(χ, τ)]dτ (5.5)

where

χ = x−ex

∫ t

τ
U(s)ds =




x− ∫ t
τ U(s)ds
y
z


 ,

and G(s) = (η/λ)e−s/λ for the Maxwell model. If u = ∇φ is a potential flow now and in the past,
then from (5.5), ∇ · S = ∇ψ where

ψ =
∫ t

−∞
G(t− τ)∇2φ(χ, τ)dr = 0, (5.6)

and we get the same Bernoulli equation as in inviscid or viscous potential flow with

p = −ρ
∂φ

∂t
− ρ

|u|2
2

+ ρg · x + C(t), (5.7)

where C(t) is a constant of integration. Of course the pressure is not needed for the dissipation

calculation. By (4.1) with e =
1
2
, VB =

4
3
πa3, and L =

1
2
A, we have

2
3
πa3ρU̇ = D − 1

2U

∫

V
A : SdV

where S is given by (5.5) and

A[u(χ, τ)] =
U(τ)
U(t)

A[u(x, t)].
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Following now the procedure used for the second-order fluid, we find that

D =
2
3
πa3ρU̇ + 12πa

∫ t

−∞
G(t− τ)U(τ)dτ. (5.8)

Suppose that we present the history of u(χ, τ), for τ < t, as a Taylor series around the present
value τ = t. Then

u(χ, τ) = u(x, t) +
[
∂u(x, t)

∂t
+ U(t)

∂u(x, t)
∂x

]
(τ − t) + O

(
|t− τ |2

)
.

Hence,

S = µA[u (x, t)] + α1

{
∂A [u(x, t)]

∂t
+ U(t)

∂A [u(x, t)]
∂x

}
+ O

(
|t− τ |2

)
, (5.9)

where

µ
def=

∫ t

−∞
G(t− τ)dτ and α1

def= −
∫ t

−∞
(t− τ)G(t− τ)dτ. (5.10)

Using (5.10), we can show that (5.8) reduces to (5.4) when U(γ) is slowly varying but not necessarily
slow. We again get the Levich drag D = 12πaµU for steady flow.

We intend to test the prediction that the rise velocity of bubbles in viscoelastic liquids, for modest
rise velocities, is determined by a balance of weight and drag

12πaµU =
4
3
πa3ρg

where ρ is the density of the liquid and g is gravity, independent of any viscoelastic parameter. High-
frequency back and forth motions of spherical bubbles in viscoelastic liquids might be well described
by (5.8).

6 Potential vortex solutions which satisfy non-slip conditions

The flow of a viscous fluid, which is at rest at infinity, outside a long cylinder of radius a rotating
with a steady angular velocity ω is an exact realization of viscous potential flow valid even when the
viscosity µ is very large. The exact solution of this problem is given by

u =
ωa2

r
eθ (6.1)

and it is a potential flow solution of the Navier-Stokes equations with a circulation

Γ = −2πa2ω (6.2)

which satisfies the no-slip condition. The viscosity enters this problem through the couple

M = 2µΓ (6.3)

required to turn the cylinder.
The same solution (6.1) for the potential vortex holds for a second-order fluid (see Joseph 1990,

p.489) and for a linear viscoelastic fluid with U = 0 in the steady case. Deiber & Schowalter (1992)
have shown how the potential vortex flow (6.1) might be used as a prototype for predictions of polymer
behaviour in unsteady and turbulent flow. They point out that it is the rotation of the principal axis
of stretch as one follows a fluid particle in its circular orbit that distinguishes this flow from the pure
stretching flows familiar to polymer rheologists. Unfortunately, the potential vortex is not likely to
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exist in a class of deformations more severe than ones for which a second-order approximation is valid
(see §8).

Joseph & Fosdick (1973) gave a theory of rod climbing based on a retarded motion expansion of the
stress for small ω. At first order they get (6.1), (6.2) and (6.3). If the fluid is neutrally wetting with a
flat horizontal contact at the rod, the motion vanishes at second order and the climb can be computed
from the normal stress balance at second order. The same solution can be obtained by assuming that
the flow is a potential vortex solution of a second-order fluid.

7 Force and moment on a two-dimensional body in the flow of a
viscous fluid, a second-order fluid and a linear viscoelastic fluid

The main results concerning force and moment of a two-dimensional body in the potential flow of an
ideal fluid can be obtained from the Blasius integral formulae. These formulae have been extended
to viscous potential flow by Joseph, Liao & Hu (1993). Here we are seeking a different extension to
viscoelastic potential flow of a second-order fluid which contains the viscous fluid as a special case.

Figure.1 In two-dimensional space an arbitrary body B is enclosed by a two-dimensional control
volume Ω with outer boundary C and inner boundary ∂B. Here X and Y are the components of the
force exerted by the fluid on the body and M is the hydrodynamic couple. ex and ey are the basic
vectors in a Cartesian coordinate system with origin o inside the body such that at infinity the flow
velocity is u = Uex.

Let

Xex + Y ey
def=

∮

∂B
n̂ ·Tdl = −

∮

∂B
n ·Tdl (7.1)

and

M
def=

∮

∂B
x ∧ (n̂ ·Tdl) = −

∮

∂B
x ∧ (n ·Tdl) , (7.2)

where n̂ = −n is the outward unit normal to the body, x
def= xex + yey is the position vector from

the origin o, X and Y are forces on the body, and M is the moment about the origin o. The velocity
of the flow is given by u

def= uex + vey. Using the two-dimensional control volume Ω in figure 1, the
balance of momentum and balance of angular momentum can be expressed as

d
dt

∫∫

Ω
ρudS =

∫

∂Ω
n ·Tdl −

∫

∂Ω
ρu (u · n) dl +

∫∫

Ω
ρgdS, (7.3)

and

d
dt

∫∫

Ω
ρx ∧ udS =

∫

∂Ω
x ∧ (n · T ) dl −

∫

∂Ω
ρx ∧ [u (u · n)] dl +

∫∫

Ω
ρx ∧ gdS, (7.4)
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where ∂Ω = C ∪ ∂B. Using (3.1) and (2.5) with ψ =
1
2
β̂γ2, and applying (7.1) and (7.2), we find that

(7.3) and (7.4) can be written as

Xex + Y ey = XIex + YIey +
∮

C
n · Sdl −

∮

C
β̂

γ2

2
ndl (7.5)

and

M = M I +
∮

C
x ∧ (n · S)dl −

∮

C

(
β̂

γ2

2

)
x ∧ ndl, (7.6)

where

XIex + YIey =
∮

C

(
ρ
|u|2
2

− C(t)

)
ndl −

∮

C
ρu (u · n) dl +

∮

∂B
ρ
∂φ

∂t
n̂dl −

∮

∂B
ρ (g · x) n̂dl (7.7)

and

MI =
∮

C

(
ρ
|u|2
2

− C(t)

)
x ∧ ndl −

∮

C
ρx ∧ u (u · n) dl +

∮

∂B
ρ
∂φ

∂t
x ∧ n̂dl

−
∮

∂B
ρ (g · x) x ∧ n̂dl. (7.8)

We have used the condition u · n = 0 on ∂B to eliminate integrals
∮

∂B
ρu (u · n) dl and

∮

∂B
ρx ∧ u (u · n) dl.

Notice that the last integrals in (7.7) and (7.8) can also be written as
∮

∂B
ρ (g · x) n̂dl =

∫∫

B
∇ (ρg · x) dS = Mog (7.9)

and
∮

∂B
ρ (g · x) (x ∧ n̂) dl =

∫∫

B
x ∧∇ (ρg · x) dS = xcm ∧Mog (7.10)

where

Mo
def=

∫∫

B
ρdS

is the mass of fluid per unit length displaced by the body and

xcm
def=

1
Mo

∫∫

B
ρxdS.

Substituting S from (5.2) and using the relations

ndl = (nxex + nyey) dl = dyex − dxey on C,

n̂dl = (n̂xex + n̂yey) dl = dyex − dxey on ∂B,

and the fact that the velocity potential φ satisfies Laplace’s equation, we find using the definitions of
β̂ and γ2, that (7.5) and (7.6) can be written as

X − ıY = XI − ıYI − 2ıµ

∮

C

(
dW

dz

)
dz

−2ıα1

{∮

C

(
∂

∂t

[
dW

dz

])
dz +

∮

C

(
W̄

d2W

dz2

)
dz +

∮

C

∣∣∣∣
dW

dz

∣∣∣∣
2

dz̄

}
(7.11)
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and

M = MI + Re

{
2µ

∮

C

(
z
dW

dz

)
dz

}

+Re

{
2α1

[∮

C
z

∂

∂t

[
dW

dz

]
dz +

∮

C
zW̄

d2W

dz2
dz +

∮

C
z

∣∣∣∣
dW

dz

]2

dz̄

]}
. (7.12)

Also, (7.7) and (7.8) become

XI − ıYI = ı
ρ

2

∮

C
W 2dz − ı

∮

∂B
ρ

(
g · x− ∂φ

∂t

)
dz̄ (7.13)

and

MI = Re

{−ρ

2

∮

C
zW 2dz +

∮

∂B
ρ

(
g · x− ∂φ

∂t

)
zdz̄

}
, (7.14)

where W = u− ıv is the complex velocity, an analytic function of the complex variable z = x+ ıy and
the overbar denotes a complex conjugate. Equations (7.13) and (7.14) are the classical Blasius integral
formulate for the flow of an ideal fluid. Equations (7.11) and (7.12) are the generalized formulae for
the flow of a second-order fluid.

Since we can always choose a coordinate system such that the flow has u = Uex at infinity, the
far-field form of the potential F (z) for flow past a finite body of arbitrary shape is given by

F (z) = zU +
m + ıΓ

2π
ln z +

∞∑

k=1

ak + ıbk

zk
, (7.15)

where the Γ is the circulation, which is positive if clockwise, m is the volume flux across the boundary
of the cylinder, which vanishes for a solid body, and ak, bk are real time-dependent constants which
are determined by the shape of the body. The complex form of the velocity at far field is then given
by

W =
dF

dz
= U +

m + ıΓ
2πz

−
∞∑

k=1

k
ak + ıbk

zk+1
.

Inserting (7.9), (7.10), (7.13) and (7.14) into both (7.11) and (7.12) and letting the outer boundary
C approach infinity, we obtain, in view of the asymptotic behaviour of W ,

Xex + Y ey = XIex + YIey = −ρmUex + ρΓUey +
∮

∂B
ρ
∂φ

∂t
n̂dl −Mog (7.16)

and

M = MI + 2µΓ + 2α1
∂Γ
∂t

, (7.17)

where

MI = −2ρπUb1 +
ρmΓ
2π

+
∮

∂B
ρ
∂φ

∂t
x ∧ n̂dl − xcm ∧Mog.

The viscoelastic properties of the fluid do not enter into the expression (7.16) for the forces. The
parameter α2 of the second-order fluid does not enter into the expression (7.17) for the moment and
2α1 ∂Γ/∂t vanishes in steady flow. The forces and moment on an arbitrary simply connected body
in two-dimensional steady potential flow of a second-order fluid are the same as in potential flow of
a viscous fluid with viscosity µ. Moreover, (7.17) shows that there is moment M = 2µΓ + 2α1∂Γ/∂t
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even without a stream. Particularly, in this case if the circulation also does not depend on t, we recover
(6.3).

After carrying out calculations similar to the ones above using the two dimensional form of the
extra stress (5.5) and the Bernoulli equation (5.7), we find that the force on a two-dimensional body
in the flow of a linear viscoelastic fluid is

X − ıY = XI − ıYI − 2ı

∫ t

−∞

[
G (t− τ)

∮

C

(
dW

dz

)
dz

]
dτ

and the moment is given by

M = MI + Re

{
2

∫ t

−∞

[
G (t− τ)

∮

C

(
z
dW

dz

)
dz

]
dτ

}
.

The far-field potential (7.15) holds here and shows that X − ıY = XI − ıYI and

M = MI + 2
∫ t

−∞
[G (t− τ) Γ(τ)] dτ. (7.18)

Again, (7.18) reduces to (7.17) when Γ is slowly varying, in view of (5.10).

8 Special potential flow solutions of models like Maxwell’s

Most models of a viscoelastic fluid will not admit a Bernoulli equation in general. But there are
certain potential flows that satisfy the required conditions even for models that do not generally have
a Bernoulli equation. For example, uniform flow is a potential flow solution for every model. So too
is any motion for which ∇ · S = 0, say S is independent of x, as in extensional flow. A less trivial
example, the potential vortex, is more representative. Among all of the interpolated Maxwell models,
only the upper convected model (UCM) and lower convected model (LCM) can support a potential
vortex. The existence of a potential flow solution is a precise mathematical problem equivalent to an
examination of the conditions for the existence of solutions to an over-determined problem. We can
formulate this problem as follows. The six stress equations in the six components of the extra stress
S can generally be solved when the flow is prescribed; that is, for each and every potential flow. The
compatibility condition for potential flow (2.3), ∇∧ (∇ · S) = 0, gives rise to three extra equations for
the six components of the stress so that we have three equations too many. In two dimensions we find
four equations for three unknowns. When this over-determined system of equations allows a solution,
we may solve (2.4) for ψ and the pressure is then given by (2.5), P = −ρ∂φ/∂t− ρ|φ|2/2 + ψ + C(t).

Potential vortex and sink flow are used to illustrate the concept. And the constitutive equations
considered in this section are of the form

λ

(
∂S
∂t

+ (u · ∇)S− 1 + a

2
(
LS + SLT

)
+

1− a

2
(SL + LTS)

)
+ SF = 2ηD, (8.1)

where −1 ≤ a ≤ 1 and F = I (the unit tensor) for the interpolated Maxwell model, F = I + (αλ/η)S
for the Giesekus model and F = [1 + (ελ/η) trS] I for the Phan-Thien and Tanner model, where α and
ε are constants. It is convenient to study vortex and sink flow in a plane polar coordinate system. The
stress dyad then takes the form

S = σr̂ ⊗ r̂ + τ r̂ ⊗ θ̂ + τ θ̂ ⊗ r̂ + γθ̂ ⊗ θ̂ =
[
σ τ
τ γ

]
.
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For plane potential flows, (2.3) and (8.1) may be expressed in component form as

−1
r
σ,θr − 1

r2
σ,θ + τ,rr − 1

r2
τ,θθ +

3
r
τ,τr +

1
r2

γ,θ +
1
r
γ,θr = 0,

σ̇ +
fσ

λ
+ σ,rφ,r +

1
r2

σ,θφ,θ − 2aσφ,rr +
2τ

r

((a− 1)
r

φ,θ − aφ,rθ

)
= 2Gφ,rr,

τ̇ +
fτ

λ
+

σ

r

((a + 1)
r

φ,θ − aφ,rθ

)
+ τ,rφ,r +

τ,θφ,θ

r2
− 2aγ

r
+

((a− 1)
r

φ,θ − aφ,τθ

)
=

2G

r

(
φ,rθ − 1

r
φ,θ

)
,

γ̇ +
fγ

λ
+

2τ

r

((a + 1)
r

φ,θ − aφ,rθ

)
+

γ,θφ,θ

r2
+ γ,rφ,r − 2aγ

r

((1
r

φ,θθ + φ,r

)
=

2G

r

(
φ,θθ − φ,τ

)
,





(8.2)

where G = η/λ, and
.
g

def= ∂g/∂t. To distinguish between different models fσ, fτ , and fγ are assigned
according to Table 1.

Models fσ fτ fγ

Interpolated σ τ γ

Phan-Thien & Tanner σ +
ε

G
(σ + γ)σ τ +

ε

G
(σ + γ)τ γ +

ε

G
(σ + γ)γ

Giesekus σ +
α

G
(σ2 + τ2) τ +

α

G
(σ + γ)τ γ +

α

G
(γ2 + τ2)

Table 1. fσ, fτ , and fγ for different models.

Consider the potential vortex, φ(θ) = bθ, where b = ωr2
0, ω is a constant angular velocity, and ωr2

0/r
is the velocity (in circles). For steady, axisymmetric flow, (8.2) reduces to

τ,rr +
3
r
τ,r = 0,

fσ

λ
+

2(a− 1)b
r2

τ = 0,

fτ

λ
+

(a + 1)b
r2

σ +
(a− 1)b

r2
γ = −2Gb

r2
,

fγ

λ
+

2(a + 1)b
r2

τ = 0.





(8.3)

A solution of (8.3) for the interpolated Maxwell model is given by

τ = C1r
−2 + C0, σ =

−2(a− 1)bλ
r2

τ ,

τ = − 2Gbλ

r2 − 4(a2 − 1)b2λ2r−2
, γ =

−2(a + 1)bλ
r2

τ ,





(8.4)

where C1 and C0 are constants. Equating the first and third equations of (8.4), we get

(2Gbλ + C1)− 4C1

(
a2 − 1

)
b2λr−4 + C0r

2 − 4C0

(
a2 − 1

)
b2λr−2 = 0. (8.5)

Since (8.5) is true for all r > r0, the coefficients of different powers of r must vanish; this implies
C0 = 0, C1 = −2Gbλ and a2 − 1 = 0. Thus, solutions exist only when a = 1 or −1. When a = 1
(UCM), we have

S =
[
σ τ
τ γ

]
= 2G

λb

r2

[
0 −1
−1 4λb/r2

]
and ψ =

2Gλ2b2

r4
.

When a = −1 (LCM), we have

S =
[
σ τ
τ γ

]
= 2G

λb

r2

[−4λb/r2 −1
−1 0

]
and ψ = −6Gλ2b2

r4
.

If the Phan-Thien & Tanner model is adopted, we find that

S = G

[−1 + (a− 1)/(2ε) 0
0 1− (a + 1)/(2ε)

]



Joseph and Liao 1994 16

for τ = 0. However, this is a strange potential vortex without torque and constant normal stresses. It
does not appear to be physically acceptable. When τ 6= 0, we find that extra stress is

S =



−G

[
1± 1

r2

(
r4 + 32aεb2λ2

)1/2
]

/ [2(1 + a)] −2Gbλ/r2

−2Gbλ/r2 G

[
1± 1

r2

(
r4 + 32aεb2λ2

)1/2
]

/ [2(1− a)]


 .

This solution rules out the case when a = 1 or −1. We also have

ψ =
−G

2(1 + a)

[
1± 1

r2

(
r4 + 32aεb2λ2

)1/2
]
− G

2 (1− a2)

[
log(r)±

∫ (
r4 + 32aεb2λ2

)1/2

r3
dr

]
.

The Giesekus model admits solutions only when τ = 0, which is unrealistic, and the FENE-P model
does not even produce a solution (see Joseph & Liao 1993). Potential vortex solutions of Maxwell
models are possible only for the upper and lower convected models. The Giesekus and Phan-Thien &
Tanner models replace the linear term S/λ with a nonlinear term, chosen so as to avoid unpleasant
singularities and other maladies in the fluid response. The potential vortex solutions of these nonlinear
models are not unique. One of the two solutions is unphysical and the others requires non-generic
relations among the material parameters if the solution exists.

We next examine the possibility of superposing a potential vortex and sink, confining our study
to the interpolated Maxwell model. Since (2.3) and the constitutive equations are nonlinear, the
superposition of two potential flow solutions is not automatically a solution. Consider the superposition
of the potential vortex and the sink flow with potential φ = m log(r) and a constant strength m. Under
the assumption that the components of stress only depend on r, we find that the solutions exist only
when τ 6= 0 and either a = 1 (UCM) or a = −1 (LCM). When a = 1, the solution is

τ =
−2Gλb

r2
, σ = −2Gλm

r2
, (8.6)

and

γ =
C3r

2

exp [r2/ (2mλ)]
− 2Gλb2

mr2
− G

(
b2 + m2

)

m2

(
1− r2Ei

[
r2/ (2mλ)

]

2λm exp [r2/ (2mλ)]

)
.

In this case, we have

ψ =
Gλ

(
b2 + m2

)

mr2
+ log[r]

G
(
b2 + m2

)

m2
− C3

(
mλ− mλ

exp [r2/(2mλ)]

)

+
G

(
b2 + m2

)

2λm3

∫ ∞

r

rEi[r2/(2mλ)]
exp [r2/(2mλ)]

dr,

where C3 is a constant and Ei[z] is an exponential integral function defind by

Ei[z] def= −
∫ ∞

−z

e−t

t
dt.

When a = −1, the solution is

τ =
−2Gλb

r2
, γ =

2Gλm

r2

and

σ =
C2r

2

exp [r2/(2mλ)]
− 2Gλb2

mr2
+

G
(
b2 + m2

)

m2

(
1− r2Ei

[
r2/(2mλ)

]

2λm exp [r2/(2mλ)]

)
.
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Here, we also have

ψ =
Gλ

(
m2 − b2

)

mr2
+

G
(
b2 + m2

)

m2
(1 + log[r]) + C2

(
r2 −mλ

exp [r2/ (2mλ)]
+ mλ

)

−G
(
b2 + m2

)

2λm3

(
r2Ei

[
r2/ (2mλ)

]

exp [r2/ (2mλ)]
−

∫ ∞

r

rEi
[
r2/ (2mλ)

]

exp [r2/ (2mλ)]
dr

)
, (8.7)

where C2 is a constant. Equations between (8.6) and (8.7) define potential flow fields that are generated
by a superposed sink and potential vortex.

We turn next to three dimensions and give a solution for the components of the extra stress in the
interpolated Maxwell model for sink flow, φ = m/r, using (2.3) and (8.1) with F = I (such solutions
are incompletely discussed by Joseph 1990). In this case, we have a system of nine equations for the
six components of the extra stress

S = Srrr̂ ⊗ r̂ + Sθθθ̂ ⊗ θ̂ + Sϕϕϕ̂⊗ ϕ̂

+Srθ(r̂ ⊗ θ̂ + θ̂ ⊗ r̂) + Sθϕ(θ̂ ⊗ ϕ̂ + ϕ̂⊗ θ̂) + Srϕ(r̂ ⊗ ϕ̂ + ϕ̂⊗ r̂)

in spherical coordinates (r, θ, ϕ). Since the flow is symmetric and steady, this system gives rise to a
solution of the form

Srθ = Srϕ = Sθϕ = 0,

Srr = r−4a exp
[
r3/(3λm)

]{
4G

∫ ∞

r
r(−1+4a) exp

[−r3/(3λm)
]
dr + C1

}

and

Sθθ = Sϕϕ = −r2a exp
[
r3/(3λm)

]{
2G

∫ ∞

r
r(−1−2a) exp

[−r3/(3λm)
]
dr + C2

}

where C1 and C2 are constants. We also find

ψ = C1r
−4a exp

[
r3/(3λm)

]− 2C1

∫ ∞

r
r(−4a−1) exp

[−r3/(3λm)
]
dr

−2C2

∫ ∞

r
r2a−1 exp

[
r3/(3λm)

]
dr

+4Gr−4a exp
[
r3/(3λm)

] ∫ ∞

r
r(−1+4a) exp

[−r3/(3λm)
]
dr

−8G

∫ ∞

r

{
r(−1−4a) exp

[
r3/(3λm)

] ∫ ∞

r
s−1+4a exp

[−s3/(3λm)
]
ds

}
dr

−4G

∫ ∞

r

{
r(−1+2a) exp

[
r3/(3λm)

] ∫ ∞

r
s−1−2a exp

[−s3/(3λm)
]
ds

}
dr.

Above formulae define the fields generated by a sink (or source) flow of an interpolated Maxwell model
in three dimensions. In each case discussed above, the pressure can be easily derived from (2.5).

9 Discussion

The theory of potential flows of an inviscid fluid can be readily extended to a theory of potential flow
of viscoelastic fluids which admit a pressure (Bernoulli) function. We have developed some of this
theory for Newtonian fluids, linearly viscoelastic fluids and second-order fluids. The unsteady drag on
a body in a potential flow is independent of the viscosity and of the viscoelastic parameters for the
models studied. However, there are additional viscous and unsteady viscoelastic moments associated
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with circulation in planar motions. These additional moments could play a role in the dynamics of
flow in doubly connected regions of three-dimensional space, e.g. in the dynamics of vortex rings. It is
evident that the various vorticity and circulation theorems which are at the foundation of the theory
of inviscid potential flow hold also when the viscosity and model viscoelastic parameters are not zero.
In addition, the theory of viscous and viscoelastic potential flow admits approximations to real flows
through the use of dissipation and vorticity layer methods in three-dimensional space. For example,
the dissipation theory predicts that the drag on a rising spherical gas bubble in a viscoelastic fluid is
the same as the (Levich) drag on this bubble in a viscous fluid with the same viscosity and density
when the rise velocity is steady but not when it is unsteady. The pressure on solid bodies and bubbles
in viscous liquids is well approximated by potential flow when separation is suppressed even when,
as for the solid body, the drag is determined by the dissipation in the viscous vorticity layer at the
boundary. It is therefore not unreasonable to hope that the shapes of gas bubbles rising in viscoelastic
fluids at moderate and perhaps moderately large speeds can be predicted from forces associated with
viscoelastic potential flows.

Concepts from the theory of viscous and viscoelastic potential flow have something to say about
the phenomenon of vortex inhibition. Gordon & Balakrishnan (1972) report that ‘...remarkably small
quantities of certain high molecular weight polymers inhibit the tendency of water to form a vortex, as
it drains from a large tank...’ and they discuss the phenomenon from a molecular point of view, nothing
that the same high-molecular-weight polymers that are effective drag reducers also work to inhibit the
’bathtub’ vortex. The ’bathtub’ vortex for an inviscid fluid is frequently modelled by superposing a
potential vortex and a sink subject to the condition that the pressure at the unknown position of the
free surface is atmospheric. In more sophisticated models account is taken of the fact that the vortex
core does not reduce its diameter indefinitely, but tends to a constant value obtained by superposing a
potential vortex and a uniform axial motion subject to the same pressure condition. This asymptotic
regime is in the long straight part of the vortex tube near the drain hole shown in the sketch of figure
1 of Gordon & Balakrishnan (1972) and in the first panel of the photograph of the same experiment
shown as figure 2.5-11 in Bird, Armstrong & Hassager(1987). We can imagine an exact harmonic
function that satisfies all the asymptonic that which we have listed and is such that the pressure in
the Bernoulli equation is atmospheric at the free surface z = h(r). Exactly the same solution satisfies
the equations for viscous potential flow with the added caveat that the vanishing of the shear stress
at the free surface cannot be satisfied by viscous potential flow. However, the ’Levich type’ vorticity
layer which would develop at the free surface to accommodate this missing condition can be expected
to be weak in the sense that its relative strength in an energy balance as well as its thickness will
decrease as the Reynolds number increases.

Obviously the aforementioned modeling fails dismally for most models and for some of the currently
most popular models of a viscoelastic fluid and if we thank that the dilute solutions used in the experi-
ments of Gordon & Balakrishnan (1972) are viscoelastic, then we should expect vortex inhibition even
without the molecular arguments. Indeed, molecular ideas seem to involve the idea of strong exten-
sional flow, but the steady vortex that drains from the hole is perhaps modelled by the superposition
of a potential vortex and a uniform axial flow which has no extensional component whatever.

The polymeric solutions used in the vortex inhibition experiments are in the same range of extreme
dilution, say 10p.p.m as in experiments on drag reduction (see Berman 1978 for a review) or the
anomalous transport of heat and mass in the flow across wires (see Joseph 1990 for a review). It is
apparent that in spite of the fact that the aqueous polymeric liquids used in these experiments have
surpassingly small weight fractions, they are responding like viscoelastic liquids. In fact the usual
ideas like those of Rouse and his followers do not work since the drag reduction is never linear in the
concentration, no matter how small (see Berman 1978, p.56).

The theory of rod climbing is based on the potential vortex at the lowest order in an expansion
in which the second-order fluid is the first non-trivial approximation to the stress for slow motions.
This theory shows that for small r < (4β̂/ρ)1/2, where β̂ = λη is the climbing constant for Maxwell
models, the effect of normal stresses is to cause the free surface to rise rather than sink. For aqueous
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drag reducers we may guess that η ≈ 10−2, λ ≈ 2× 10−3 (Joseph 1990) so that in the region r < 10−1

mm the vortex inhibition is suppressed by normal stresses.
Our analysis has led us to definite conclusions about potential flows of viscous and viscoelastic fluids.

Some special fluids, like inviscid, viscous, linear viscoelastic and second-order fluids, admit potential
flow generally and give rise to Bernoulli functions. Other fluids will not admit potential flows unless
the compatibility condition (2.3) is satisfied. This leads to an over-determined system of equations for
the components of the stress. Special potential flow solutions, like uniform flow and simple extension,
satisfy these extra conditions automatically and other special solutions can satisfy the equations for
some models and not for others. It appears that only very simple potential flows are admissible for
general models. This lack of general admissibility greatly complicates the study of boundary layers for
viscoelastic liquids.

This work was supported by the NSF, fluid, particulate and hydraulic systems; by the ARO, Math-
ematics; by AHPCRC; by the DOE, Department of Basic Energy Sciences; and by the University of
Minnesota. We gratefully acknowledge Todd Hesla for his many valuable comments and helpful review
of the manuscript.

A Momentum, circulation, and vorticity equations for a second-
order fluid

The constitutive equation of a second-order fluid is

S = µA + α1B + α2A2 (A.1)

where A = L + LT is twice the rate-of-strain tensor D which is the symmetric part of the velocity-

gradient tensor L = ∇u; B def=
4
A = ∂A/∂t + (u · ∇)A + AL + LTA is the lower convected invariant

derivative of A; µ is the zero-shear viscosity; α1 = −n1/2 and α2 = n1 + n2, where ni = lim
k→0

Ni(k)/k2

for i = 1 and 2 are constants obtained from the first and second normal stress differences. It can be
shown that (see Joseph & Liao 1993)

∇ · S = µ∇2u + α1

[
d∇2u

dt
+ LT · (∇2u

)]
+ (α1 + α2)

[
A · (∇2u

)
+∇Ω ·A]

+
β̂

2
∇γ2, (A.2)

where β̂ = 3α1 + 2α2 is the climbing constant, γ2 =
1
2
tr

(
A2

)
, and Ω def= L− LT = −ε · ω where ε is

the alternating unit tensor and ω
def= ∇∧ u is the vorticity. From (A.2) it follows that the momentum

equation for a second-order fluid can be written as

ρ
du

dt
= −∇p + µ∇2u + ρg + α1

[
d∇2u

dt
+ LT · (∇2u

)]

+(α1 + α2)
[
A · (∇2u

)
+∇Ω ·A]

+
β̂

2
∇γ2. (A.3)

For potential flow, u = ∇φ, ∇2u and Ω vanish and du/dt = ∇ (
∂φ/∂t + |u|2/2

)
, so that (A.3) may

be written as

∇
[
p + ρ

∂φ

∂t
+ ρ

|u|2
2

− β̂

2
r2 − ρg · x

]
= 0.

Hence

P = −ρ
∂φ

∂t
− ρ

|u|2
2

+
β̂

2
γ2 + ρg · x + C(t). (A.4)

Lumley (1972) derived a Bernoulli equation for a dilute polymer solution on the centreline of an
axisymmetric contraction. He notes that
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Recent measurements of cavitation in dilute polymer solutions indicate that observed
differences from cavitation in Newtonian media may be due to local pressure differences
resulting from the non-Newtonian constitutive relation governing these dilute solutions. No
convenient means of estimating the departure of the pressure from the Newtonian (inertial)
value presently exists, and, of course, no general expression is possible... .

Inserting (A.1) and (A.4) into the equation, T = −pI + S, we obtain, using index notation, that

Tij = σij − ρg · xδij ,

where

σij
def= −

[
C(t) + β̂φ,lmφ,lm − ρφ,t − ρ

|u|2
2

]
δij + 2

[
µ + α1

(
∂

∂t
+ u · ∇

)]
φ,ij + 4 (α1 + α2) φ,ilφ,ij

is the active dynamic stress.
Some criticisms of the notion of extensional viscosity follow easily from this analysis. The potential

flow of a fluid near a point (x1, x2, x3) = (0, 0, 0) of stagnation is a purely extensional motion with

[u1, u2, u3] =
U

.
S

L
[2x1,−x2 − x3] ,

where
.
S is the dimensionless rate of stretching. In this case,




σ11 0 0
0 σ22 0
0 0 σ33


 =

ρU2

2




.
S

2

L2

(
4x2

1 + x2
2 + x2

3

)− 1







1 0 0
0 1 0
0 0 1




= 2µ
U

.
S

L




2 0 0
0 −1 0
0 0 −1


 + 2

(
U

.
S

L

)2


−α1 + 2α2 0 0

0 −7α1 − 4α2 0
0 0 −7α1 − 4α2


 .

At the stagnation point the extensional stress is

σ11 = −ρ

2
U2 + 4µ

U
.
S

L
+ 2 (2α2 − α1)

(
U

.
S

L

)2

(A.5)

and the extensional stress difference is

σ11 − σ22 = 6µ
U

.
S

L
+ 12(α1 + α2)

(
U

.
S

L

)2
def= 2η̂

U
.
S

L
, (A.6)

where η̂ = 3µ + 6(α1 + α2)(U/L)
.
S is the extensional viscosity of a second-order fluid. Since 2α2 − α1

=
5
2
n1 + n2 > 0 and α1 + α2 =

1
2
n1 + n2 > 0, both the normal stress term in (A.5) and the normal

stress difference term in (A.6) are positive independent of the sign of
.
S. From (A.5) it follows that

inertia and normal stresses are in competition. But you cannot see the effects of inertia in the formula
(A.6) for the normal stress difference. Certainly this formula, or the associated extensional viscosity,
could not be used to assess the force on bodies.

Let Γ def=
∮

u · dl be the circulation and suppose that ρg is derivable from a potential, as is true

when g is gravity. Then, using (A.3) and ∇2u = −∇ ∧ ω, we obtain the circulation equation:

dΓ
dt

= −
∮ (

µ

ρ
(∇∧ ω) +

α1

ρ

[
d (∇∧ ω)

dt
+ LT · (∇∧ ω)

])
· dl

+
∮

(α1 + α2)
ρ

[−A · (∇∧ ω) +∇Ω ·A] · dl. (A.7)
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On the other hand, after taking curl of (A.3) and replacing ∇2u by −∇∧ω, we obtain the vorticity
equation:

dω

dt
= ω · ∇u +

µ

ρ
∇2ω − α1

ρ
∇∧

[
d (∇∧ ω)

dt
+ LT · (∇∧ ω)

]

+
(α1 + α2)

ρ
∇∧ [−A · (∇∧ ω) +∇Ω ·A] . (A.8)

When α1 and α2 are zero, (A.7) and (A.8) reduce to

dΓ
dt

= −µ

ρ

∮
(∇∧ ω) · dl and

dω

dt
= ω · ∇u +

µ

ρ
∇2ω.

These equations govern the circulation and vorticity in a Newtonian fluid (see Batchelor 1967, pp.267,
269). When ω ≡ 0

dΓ
dt

= 0 and
dω

dt
= 0. (A.9)

This leads to the classical vorticity theorems, Kelvin’s circulation theorem and the Cauchy-Lagrange
theorem. The same conclusions (A.9) hold when ω = 0, and Γ and ω satisfy the vorticity equations
(A.7) and (A.8) for a second-order fluid. It follows that the classical theorems of vorticity hold for
potential flow of a second-order fluid independent of the values of the material parameters µ, α1 and
α2. Thus, the discussion of potential flow in no way requires us to turn to the theory of ideal fluids.

Since the boundary conditions at a solid or free surface cannot generally be satisfied by potential
flow, potential flow cannot hold up to the boundary and at the very least a vorticity boundary layer will
be required. Outside this boundary layer we get potential flow but the viscous and viscoelastic stresses
are not zero. In the case of viscous fluids with α1 = α2 = 0, viscosity may or may not be important
outside the vorticity layer. For solid bodies the dissipation in the vorticity layer will dominate the drag
and the viscous stresses in the exterior potential flow will be negligible at high Reynolds numbers. But
for rising bubbles where the vorticity layer is weak the viscous stresses in the exterior potential flow
will dominate the drag and the dissipation of the vorticity layer will be negligible at high Reynolds
numbers. We cannot hope that a similar result will hold for a second-order fluid.
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