
Breakup of a liquid drop suddenly exposed to a high-speed
airstream

D.D. Joseph*, J. Belanger, G.S. Beavers

Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA

Received 9 November 1998; received in revised form 10 April 1999

This paper is dedicated to Gad Hetsroni, on the occasion of his 65th birthday, to honor his many contributions to
the understanding of multiphase ¯ows.

Abstract

The breakup of viscous and viscoelastic drops in the high speed airstream behind a shock wave in a
shock tube was photographed with a rotating drum camera giving one photograph every 5 ms. From
these photographs we created movies of the fragmentation history of viscous drops of widely varying
viscosity, and viscoelastic drops, at very high Weber and Reynolds numbers. Drops of the order of one
millimeter are reduced to droplet clouds and possibly to vapor in times less than 500 ms. The movies
may be viewed at http://www.aem.umn.edu /research/Aerodynamic_Breakup. They reveal sequences of
breakup events which were previously unavailable for study. Bag and bag-and-stamen breakup can be
seen at very high Weber numbers, in the regime of breakup previously called `catastrophic'. The movies
allow us to generate precise displacement±time graphs from which accurate values of acceleration (of
orders 104 to 105 times the acceleration of gravity) are computed. These large accelerations from gas to
liquid put the ¯attened drops at high risk to Rayleigh±Taylor instabilities. The most unstable Rayleigh±
Taylor wave ®ts nearly perfectly with waves measured on enhanced images of drops from the movies,
but the e�ects of viscosity cannot be neglected. Other features of drop breakup under extreme
conditions, not treated here, are available on our Web site. # 1999 Elsevier Science Ltd. All rights
reserved.
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1. Fragmentation of Newtonian and viscoelastic drops

The problem of aerodynamic breakup of liquid drops has given rise to a large literature. Most
of the early literature focuses on drops of Newtonian liquids in subsonic airstreams, and is
excellently reviewed by Pilch and Erdman (1987), and Hsiang and Faeth (1992). Shock tube
studies of the breakup of Newtonian drops, usually water, under high subsonic and supersonic
conditions were carried out by Hanson and Domich (1956), Engel (1958), Hanson et al. (1963),
Ranger and Nicholls (1969), Reinecke and McKay (1969), Reinecke and Waldman (1970),
Reinecke and Waldman (1975), Waldman et al. (1972), Simpkins and Bales (1972), Wierzba and
Takayama (1988), Yoshida and Takayama (1990), Hirahara and Kawahashi (1992), and others.
The excellent study of Engel (1958) showed that water drops of millimeter diameter would be
reduced to mist by the ¯ow behind an incident shock moving at Mach numbers in the range 1.3±
1.7. Many of the other aforementioned studies allude to the presence of large amounts of mist.
Joseph et al. (1996) argued that mist could arise from condensed vapor under ¯ash vaporization
due to (1) low pressures at the leeside produced by rarefaction and drop acceleration, (2) high
tensions produced by extensional motions in the liquid stripped from the drop, (3) the frictional
heating by rapid rates of deformation, and (4) the heating of sheets and ®laments torn from the
drop by hot air. Though mist and vapor formation is not the focus of this study, it is relevant that
the Rayleigh±Taylor instability pumps ®ngers of hot gas, behind the shock, into the drop
increasing both the frictional heating and the area of liquid surface exposed to hot gas.
The recent and fairly extensive literature on atomization is well represented in the papers by

Hsiang and Faeth (1992), Hwang et al. (1996), and Faeth (1996). These results, and earlier
drop breakup studies such as Krzeczkowski (1980), Wierzba (1990), Kitscha and
Kocamustafaogullari (1989), and Stone (1994), are restricted to relatively low Weber and
Reynolds numbers. The highest Weber and Reynolds data for drop breakup was reported by
Hsiang and Faeth (1992) who worked under conditions for which the Weber numbers ranged
from 0.5 to 1000 with Reynolds numbers from 300 to 1600.
High Weber number drop breakup data were obtained by Engel (1958), Ranger and Nicholls

(1969), and Reinecke and Waldman (1970) for air and water only, so viscous e�ects could not
be studied. In contrast, the data presented here cover a wide range of viscosities (from 0.001 to
35 kg/m s) and a wide range of high Weber numbers (from 11,700 to 169,000), Ohnesorge
numbers (from 0.002 to 82.3) and Reynolds numbers (from 40,000 to 127,600), based on the
free stream conditions. Another feature, which distinguishes our experiments from previous
ones, is that we have recorded all of the data as real time movies which may be seen under
`video animations' at our Web address. The movies capture events which were previously
unknown, such as bag breakup and bag-and-stamen breakup of high viscosity drops at very
high Weber numbers, whereas short wave Rayleigh±Taylor corrugations appear on water
drops under similar free stream conditions (see Fig. 19).
The thesis of this paper is that breakup at high accelerations, corresponding to high Weber

numbers, is controlled at early times by Rayleigh±Taylor instabilities. We back up this claim by
comparing theory with experiment. From the movies, we get accurate displacement±time graphs,
one point every 5 ms, from which the huge accelerations which drive Rayleigh±Taylor instabilities
can be measured. The movie frames can be processed for images of unstable waves from which
the length of the most dangerous wave can be measured and compared with theory.
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Only a few studies of the breakup of viscoelastic drops have been published; Lane (1951),
Wilcox et al. (1961), Matta and Tytus (1982), Matta et al. (1983). Matta and co-workers did
studies at Mach numbers near one and less. They showed that threads and ligaments of liquid
arise immediately after breakup, rather than the droplets which are seen in Newtonian liquids.
We have veri®ed these general observations for more and di�erent liquids in high speed air
behind shocks with Mach numbers as high as 3. These structures can be seen in the
photographs in Figs. 1±13 of this paper, which show just a few frames from the respective
movies on our web page. For example, compare Fig. 1, which shows the breakup of a water
drop in our shock tube at a shock Mach number of 2, with Figs. 5 and 7 which show,
respectively, the breakup under the same conditions of a 2% aqueous solution of polyox and a

Fig. 1. Stages in the breakup of a water drop (diameter = 2.6 mm) in the ¯ow behind a Mach 2 shock wave. Air
velocity = 432 m/s; dynamic pressure = 158.0 kPa; Weber No. = 11,700. Time (ms): (a) 0, (b) 45, (c) 70, (d) 135,
(e) 170, (f) 290.
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2.6% solution of polystyrene butylacrylate in tributyl phosphate. Figs. 2, 6 and 8 show the
breakup of the same liquids at a shock Mach number of 3.

2. Shock tube

The shock tube consists of a driver section that can be varied in length between 1.829 and
4.627 m, a double-diaphragm section, a low pressure channel with a maximum length of 10.363
m, a windowed test-section approximately 0.76 m in length, and a dump tank with a volume of
approximately 1.13 m3. Both the driver section and the channel are built up from sections of
extruded 6063-T6 aluminum.

Fig. 2. Stages in the breakup of a water drop (diameter = 2.5 mm) in the ¯ow behind a Mach 3 shock wave. Air
velocity = 764 m/s; dynamic pressure = 606.4 kPa; Weber No. = 43,330. Time (ms): (a) 0, (b) 15, (c) 30, (d) 40, (e)
95, (f) 135.

D.D. Joseph et al. / International Journal of Multiphase Flow 25 (1999) 1263±13031266



Fig. 3. Stages in the breakup of a glycerine drop (diameter = 2.3 mm) in the ¯ow behind a Mach 2 shock wave.

Air velocity = 428 m/s; dynamic pressure = 145.8 kPa; Weber No. = 10,600. Time (ms): (a) 0, (b) 70, (c) 115, (d)
165, (e) 220, (f) 250, (g) 295, (h) 345.
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The complete tube (driver, diaphragm, channel, and test section) is supported by ball-bearing
carriages which ride on a precision rail. The rail in turn is mounted on a 0.152 m aluminum I-
beam, which is attached through leveling screws to a set of ®ve concrete columns. This
arrangement allows for accurate leveling of the whole tube, while giving ease of movement to
the complete tube system for replacement of the diaphragms and for accommodating di�erent
lengths of the system.
The tube has an internal cross-sectional shape consisting of ¯at side walls and semi-circular

upper and lower walls, while the outside of the tube has a circular cross-section 0.127 m in
diameter. This con®guration was selected to keep the stresses in the walls as low as possible
and to give the greatest ¯ow area for the cross-section that could be extruded, while retaining
¯at side walls for continuity with the windows in the test section. The distance between the ¯at
side walls is 0.0762 m; the upper and lower walls are semi-circular arcs with diameter 0.0955 m.

Fig. 4. Stages in the breakup of a drop of glycerine (diameter = 2.4 mm) in the ¯ow behind a Mach 3 shock wave.
Air velocity = 758 m/s; dynamic pressure = 554.0 kPa; Weber No. = 42,220. Time (ms): (a) 0, (b) 35, (c) 50, (d)
70, (e) 90, (f) 125, (g) 150, (h) 185.
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The test section is built around a 0.762 m length of the extruded aluminum tube, and is
designed to prevent any distortion under internal pressure, thus allowing 0.035 m long
glass windows to be used. The test section incorporates ¯at upper and lower external
surfaces, thereby facilitating the mounting of auxiliary equipment, such as the drop injection
system.
The shock tube is ®red by means of a double diaphragm system in which the inter-

diaphragm space is ®lled with helium at a pressure approximately equal to the mean of the
driver and channel pressures, and is evacuated through a fast-acting solenoid valve, providing
a fast and repeatable ®ring of the shock tube.
For the experiments described in this paper, the channel pressure (air) was evacuated to 50

kPa for the Mach 3 experiments and 58 kPa for the Mach 2 experiments, and the Mach
number was ®xed through the driver pressure, using nitrogen for the Mach 2 tests and helium

Fig. 5. Stages in the breakup of a drop of 2% aqueous solution of polyox (WSR 301; diameter = 2.9 mm) in the

¯ow behind a Mach 2 shock wave. Air velocity = 432 m/s; dynamic pressure = 165.5 kPa; Weber No. = 15,200.
Time (ms): (a) 0, (b) 55, (c) 95, (d) 290, (e) 370, (f) 435.
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for the Mach 3 tests. A drop of test liquid of known volume is injected into the test section by
means of an injector device mounted on top of the test section. The injector consists of a

hypodermic syringe connected by a ¯exible tube to a hypodermic tube which passes through a

solenoid and projects into the test section from above. The syringe, ¯exible tube, and solenoid
are enclosed within a housing, which is maintained at the channel pressure. The displacement

of the syringe plunger is controlled by a micrometer which projects through the top of the

injector housing. A drop of known volume is formed at the end of the injection tube. When
the drop falls from the tube it is detected by a photodetector which initiates the signals, with

appropriate delays, to ®re the shock tube, activate the solenoid to withdraw the injector tube

from the test section, and open the camera shutter. A pressure transducer near the test section
is used to detect the shock wave and ®re the ¯ash lamp to take the pictures.

Fig. 6. Stages in the breakup of a drop of 2% aqueous solution of polyox (WSR 301; diameter = 2.9 mm) in the
¯ow behind a Mach 3 shock wave. Air velocity = 755 m/s; dynamic pressure = 587.2 kPa; Weber No. = 54,100.
Time (ms): (a) 0, (b) 30, (c) 45, (d) 170, (e) 195, (f) 235.
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Fig. 7. Stages in the breakup of a drop of 2.6% solution of polystyrene butylacrylate (47025-24) in tributyl

phosphate (PSBA/TBP; diameter = 2.2 mm) in the ¯ow behind a Mach 2 shock wave. Air velocity = 435 m/s;
dynamic pressure = 152.4 kPa; Weber No. = 31,900. Time (ms): (a) 0, (b) 60, (c) 80, (d) 125, (e) 205, (f) 260, (g)
300, (h) 360.
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Fig. 8. Stages in the breakup of a drop of 2.6% solution of polystyrene butylacrylate (47025-24) in tributyl
phosphate (PSBA/TBP; diameter = 2.2 mm) in the ¯ow behind a Mach 3 shock wave. Air velocity = 736 m/s;
dynamic pressure = 513.0 kPa; Weber No. = 107,500. Time (ms): (a) 0, (b) 30, (c) 50, (d) 80, (e) 105, (f) 135, (g)
160, (h) 200.
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Fig. 9. Stages in the breakup of a drop of 2% aqueous solution of polyacrylamide (Cyanamer N-300LMW;
diameter = 3.2 mm) in the ¯ow behind a Mach 3 shock wave. Air velocity = 771 m/s; dynamic pressure = 578.1
kPa; Weber No. = 82,200. Time (ms): (a) 0, (b) 45, (c) 60, (d) 90, (e) 145, (f) 185, (g) 225.
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The camera is a Cordin model 377 rotating drum framing camera, operated at 200,000
frames per second. The individual frames are scanned into a workstation and composed into a
movie sequence using standard commercial movie-making software.

3. Experiments

The data necessary to specify our experiments are listed in Table 1. The ®rst column
identi®es the 13 liquids studied; there are eight di�erent silicone oils with viscosities ranging
from 0.1 to 10 kg/m s. The Ohnesorge number Oh, the Weber number We and the Reynolds
number Re

Fig. 10. Example of stripping breakup; a drop of 1 kg/ms silicone oil (diameter = 2.6 mm) in the ¯ow behind a
Mach 3 shock wave. Air velocity = 767 m/s; dynamic pressure = 681.0 kPa; Weber No. = 168,600. Time (ms): (a)
15, (b) 40, (c) 50, (d) 80, (e) 115, (f) 150.
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Oh � md

�rdDg�1=2 , We � rV 2D

g
, Re � VDr

m
�1�

are de®ned in terms of the initial drop diameter D, listed in the second column, drop viscosity
md, surface tension g, drop density rd listed in columns 3, 4, 5, respectively, and the free stream
values of the velocity V, viscosity m, and density r.

3.1. Time±displacement graphs and accelerations

We have obtained data sets of distance traveled vs. time from many of our experiments. The
distance refers to the slowest moving drop fragment; other parts of the fragmenting drop
accelerate from rest even more rapidly. Representative graphs are exhibited in Fig. 14; these

Fig. 11. Example of bag breakup; a drop of 6 kg/ms silicone oil (diameter = 2.5 mm) in the ¯ow behind a Mach 3

shock wave. Air velocity = 761 m/s; dynamic pressure = 666.6 kPa; Weber No. = 158,700. Time (ms): (a) 265, (b)
290, (c) 320, (d) 340, (e) 365.
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graphs are nearly perfect parabolas for the ®rst few hundred microseconds of the motion, and
the acceleration 2a can be obtained by curve ®tting. It is noteworthy that in these graphs the
acceleration is constant, independent of time for small times, and about 104±105 times the
acceleration of gravity depending upon the shock wave Mach number. In general, there is a
moderate drop-o� of acceleration with time over the course of the 400 or 500 ms it takes to
totally fragment the drop.
Table 2 gives the initial accelerations for the drops listed in Table 1 at shock Mach numbers

of 2 and 3. The accelerations are an increasing function of the shock Mach number; the
dynamic pressure which accelerates the drop increases with the free stream velocity. There
appears to be a tendency for the acceleration to decrease with drop size; if we write that the
drag on a spherical drop is proportional to the drop diameter squared and the mass to the

Fig. 12. Example of bag breakup; a drop of 10 kg/ms silicone oil (diameter = 2.6 mm) in the ¯ow behind a Mach 3
shock wave. Air velocity = 754 m/s; dynamic pressure = 652.4 kPa; Weber No. = 161,000. Time (ms): (a) 360,
(b) 375, (c) 390, (d) 405, (e) 425, (f) 455.
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diameter cubed, then the acceleration is proportional to Dÿ1 and decreases with increasing D.
There is also a tendency for low viscosity drops, like water, to accelerate less rapidly; this
reduction is a consequence of the transfer of momentum from the gas stream into deformation
of the drop.

4. Description of stages of drop breakup

The permanent record of high speed movies of the breakup of all kinds of liquids at high
Weber numbers shares many features with the classi®cations of breakup at low Weber numbers
summarized in the papers of Pilch and Erdman (1987) and Hsiang and Faeth (1992). However,
other features in these classi®cations do not appear in our study, still other features not seen

Fig. 13. Example of bag-and-stamen type breakup; a drop of glycerine (diameter = 2.4 mm) in the ¯ow behind a
Mach 3 shock wave. Air velocity = 758 m/s; dynamic pressure = 554.0 kPa; Weber No. = 42,200. Time (ms): (a)
55, (b) 100, (c) 115, (d) 125, (e) 135, (f) 155.
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Table 1
Experimental parameters

Liquid properties Free stream conditions

Liquid Diameter
(mm)

Viscosity
(kg/m s)

Surface
tension

(N/m)

Density
(kg/m3)

Ohnesorge
No.

Velocity
(m/s)

Density
(kg/m3)

Pressure
(kPa)

Dynamic
pressure

(kPa)

Temperature
(K)

Weber
No.

(103 �)

Reynolds
No.

(103 �)

Shock
M

Newtonian

Water 2.6 0.001 0.07 1000 0.002 431.7 1.696 241.0 158.0 497 11.7 72.1 2.01
Water 2.5 0.001 0.07 1000 0.002 764.3 2.076 468.2 606.4 788 43.3 111.3 3.01
Glycerine 2.3 1.49 0.063 1258 3.5 428.1 1.591 225.0 145.8 494 10.6 59.6 2

Glycerine 2.4 1.49 0.063 1258 3.4 757.9 1.929 431.1 554.0 782 42.2 99.0 2.99
SO 100 2.6 0.1 0.021 969 0.4 435.2 1.866 266.4 176.8 499 43.8 79.7 2.02
SO 100 2.6 0.1 0.021 969 0.4 757.9 2.296 513.2 659.5 782 163.3 127.6 2.99
SO 1000 2.6 1 0.021 969 4.3 438.8 1.876 269.2 180.6 502 44.7 80.6 2.03

SO 1000 2.6 1 0.021 969 4.3 767.4 2.312 523.7 681.0 792 168.6 129.1 3.02
SO 3000 2.6 3 0.021 969 13.0 435.2 1.866 266.4 176.8 499 43.8 79.7 2.02
SO 3000 2.5 3 0.021 969 13.3 754.8 2.290 509.7 652.4 778 155.3 122.3 2.98

SO 3000 2.6 3 0.021 969 13.0 757.9 2.296 513.2 659.5 782 163.3 127.6 2.99
SO 4000 2.47 4 0.021 969 17.8 435.2 1.866 266.4 176.8 499 41.6 75.8 2.02
SO 4000 2.51 4 0.021 969 17.7 754.8 2.290 509.7 652.4 778 156.0 122.8 2.98

SO 4000 2.09 4 0.021 969 19.4 761.1 2.301 516.7 666.6 785 132.7 103.0 3
SO 5000 2.5 5 0.021 969 22.2 761.1 2.301 516.7 666.6 785 158.7 123.2 3
SO 6000 2.6 6 0.021 969 26.1 473.9 1.976 297.3 221.9 526 54.9 88.7 2.13
SO 6000 2.6 6 0.021 969 26.1 754.8 2.290 509.7 652.4 778 161.5 127.2 2.98

SO 6000 2.5 6 0.021 969 26.6 761.1 2.301 516.7 666.6 785 158.7 123.2 3
SO 10000 2.5 10 0.021 969 44.3 438.8 1.876 269.2 180.6 502 43.0 77.5 2.03
SO 10000 2.6 10 0.021 969 43.5 754.8 2.290 509.7 652.4 778 161.5 127.2 2.98

SO 10000 2.5 10 0.021 969 44.3 748.4 2.279 502.8 638.3 771 152.0 121.3 2.96
SO 10000 2.6 10 0.021 969 43.5 1070.3 0.655 222.0 375.0 1186 92.8 40.0 4

Viscoelastic

2% PO 2.9 35 0.063 990 82.3 431.7 1.776 252.3 165.5 497 15.2 84.2 2.01
2% PO 2.9 35 0.063 990 82.3 424.6 1.756 247.2 158.3 492 14.6 82.5 1.99
2% PO 2.9 35 0.063 990 82.3 754.8 2.061 458.7 587.2 778 54.1 127.6 2.98

2.6% PSBA 2.2 1.13 0.07 900 3.0 435.2 1.609 229.7 152.4 499 9.6 58.2 2.02
2.6% PSBA 2.2 1.13 0.07 900 3.0 735.7 1.896 410.8 513.0 758 32.2 88.2 2.92
2% PAA 3.2 0.96 0.045 990 2.5 770.6 1.947 442.9 578.1 795 82.2 134.0 3.03
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Fig. 14. Distance traveled vs. time. xÿ x 0 � a�tÿ t0�2 where x 0 and t0 are the extrapolated starting values from the
curve ®tting technique. The starting values x 0 and t0 are uncertain within several pixels and 5 ms.
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by them are captured in our high speed movies, and features which are said to occur only at
low Weber numbers in water appear in more viscous drops at Weber numbers orders of
magnitude higher. For example, Fig. 11 shows an example of bag-type breakup of 60 kg/m s
silicone oil at a Weber number of about 160,000 based on free stream conditions, and Fig. 13
shows an example of breakup of glycerin of a bag-and-stamen type at a Weber number of
about 42,000. Many universal structures like nose stripping producing accumulated ¯uid at the
equator (Saturn's rings) and transient lenticular drops, which can be seen clearly in our movies,
are not mentioned by Pilch and Erdman or in other works on drop breakup known to us. The
surface corrugations seen in their cartoons for We<350 are due to Rayleigh±Taylor instabilities
which will be discussed in Section 5.
We shall now describe the sequence of stages of drop breakup at high Weber and Reynolds

numbers which can be seen in the movies on our web page (http://www.aem.umn.edu/
research/Aerodynamic_Breakup). We have documented these stages with still photos in Figs.
1±13; a fuller understanding of these stages can be obtained by viewing the movies.
The ®rst three stages of breakup numbered below appear to be universal in that they occur

in all breakup experiments recorded on our web page; they apply to low and high viscosity
liquids and to the viscoelastic liquids of di�erent types that we have studied so far.

4.1. Flattening due to potential ¯ow

In the ®rst 20±30 ms after the passage of the shock, the ¯ow is not strongly a�ected by
viscosity and can be described as the high speed potential ¯ow of a hot gas over a near sphere
of radius r; the pressure nearly recovers its stagnation value on the back side of the sphere; the
sphere is squeezed by these pressures and pulled out at the equator by high speed ¯ow

Table 2
Initial accelerations of drops speci®ed in the data set in Table 1 (see Fig. 14)

Liquid Viscosity (kg/m s) Initial acceleration (105 m/s2) Initial drop diameter (mm)

Ms � 3:0 Ms � 2:0

Silicone oil

SO 100 0.1 15.8 4.0 2.6
SO 1000 1 11.12 2.92 2.6
SO 3000 3 9.98 3.08 2.6

SO 4000 4 12.06 2.02 2.5
SO 4000 4 11.08 ± 2.1
SO 5000 5 8.99 ± 2.5
SO 6000 6 9.78 ± 2.6

SO 10000 10 7.73 ± 2.6
2% Polyox 35 6.48 1.37 2.9
2% Polyacrylamide 0.96 4.92 ± 3.2

2.6% PSBA/TBP 1.13 7.28 2.32 2.2
Glycerine 1.49 8.43 4.38 2.4
Water 0.001 6.47 1.52 2.5
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¯attening the sphere. An analysis of this ¯attening was given by J.M. Burgers in Engel (1958).
The analysis is for incompressible ¯ow in the drop with equal pressures ps at the front and
back of the sphere and pe<ps at the equator. The outward displacement d at the equator of the
drop and perpendicular to the air ¯ow is found to be given for small times t by

d � 1

3

ps ÿ pe

rdr
t2 �2�

where rd is the drop density and r is its radius. This shows a strong dependence on drop size.
Engel (1958) applied Eq. (2) to a later ¯attening of the drop in which viscosity is important,
and found that Eq. (2) predicted the radius correctly but otherwise did not agree with
experiments. This points to the necessity of obtaining systematic results from experiments with
di�erent size of drops in which viscosity and surface tension are not neglected.
The ¯attening of the drop at early times is a universal feature apparently independent of

drop viscosity or material type at large Weber numbers. The analysis of Rayleigh±Taylor
instability of the acceleration of a gas into a liquid at a plane interface is well-suited to a ¯at
drop.

Fig. 15. (Pilch and Erdman, 1987) Cartoon of breakup mechanisms. These mechanisms apply perhaps qualitatively
to the breakup of water drops. We know of no experimental evidence for vibrational breakup. The bag and bag-

and-stamen breakup can be seen at Weber numbers as large or larger than 42,000 (e.g., Fig. 13), `catastrophic'
breakup for high viscosity drops is basically a Rayleigh±Taylor breakup (see Section 5 and Hsiang and Faeth,
1992).
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4.2. Radially outward boundary layer ¯ow from the nose of the drop to its equator

This was analyzed by Taylor (1949) in his celebrated Porton Down paper. The analysis was
carried out using several severe approximations and the calculations are not in good agreement
with experiments. In particular, the ¯ow was assumed to be steady and parallel to the drop
surface; the normal component of velocity of the air was neglected and no account was taken
of the e�ects of pervasive corrugations of the interface which are generated by Rayleigh±
Taylor instability. Inspection of our movies should convince any doubting reader that the kind
of boundary ¯ow studied by Taylor is de®nitely present in the drop dynamics, and it is
involved in an important redistribution of the liquid resulting in change of shape as well as in
the stripping of liquid from the drop.

Fig. 16. Comparison of the lenticular shape that Taylor (1949), Fig. 2, predicted a spherical water drop would
assume if it did not break up with the lenticular shape of an initially spherical water drop (2.6 mm diameter) 70 ms
after exposure to the ¯ow behind a Mach 2 shock wave in our shock tube.
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4.3. Accumulation of liquid at the equator

The liquid driven from the nose of the drop by the high speed airstream accumulates in a
thin ring at the equator, like Saturn's rings attached to the drop by a liquid web. The e�ect,
which is not accounted for in the frequently-quoted Pilch and Erdman (1987) classi®cation,
reproduced here as Fig. 15, is very dramatic and universal, but the size of the rings and the
time interval during which they are present depend upon the liquid and the ¯ow (see, for
example, Figs. 3(b) and 4(b) for glycerin, Figs. 5(b) and 6(b) for 2% aqueous polyox, Figs.
7(b) and 8(b) for PSBA/TBP, Fig. 9(b) for 2% polyacrylamide, and Fig. 1(b) for water). The
mechanism responsible for the transient accumulation of liquid is not understood and might be
best approached by direct numerical simulation.
The following features can be seen in some drops, and not in others.

4.4. Blow-o� of liquid from the rings into drops and mist

Capillary instability and generalized cavitation are possible actors in the formation of the
clouds, which are formed from the rings. These features are most readily observed in low and
not in high viscosity liquids. Compare, for example, Figs. 1 and 2 for water and Fig. 10 for 1
kg/m s silicone oil with Figs. 3 and 4 for glycerin, Figs. 5 and 6 for polyox, and Figs. 7 and 8
for PSBA/TBP.

4.5. Formation of lenticular drops

A lenticular drop has a hemispherical front and ¯at back (Fig. 16). Some transient structure
resembling a lenticular drop always occurs after blow-o�.
The lenticular drop forms from the ¯ow of liquid dragged around the nose and accumulated

on the equator of the drop. These lenticular drop shapes are most readily observed in low and
not in high viscosity liquids (compare Figs. 1 and 2 with Figs. 3 and 4). The lenticular gas
bubble rising in a liquid was studied by Davies and Taylor (1950). Taylor (1949) used the same
idea to determine the (lenticular) shape which the drop would assume, if it did not disintegrate.
The lenticular shape predicted by Taylor's analysis does appear as a transient structure in some
cases of low-speed breakup of viscoelastic liquids (see Figs. 5±9), but it always disintegrates,
either by ¯attening at the nose, or by ®ngering due to Rayleigh±Taylor instability. The paper
by Pilch and Erdman (1987) and other literature known to us do not acknowledge these cases.

4.6. Flattening and bursting of very viscous drops

Very viscous Newtonian drops seem not to experience blow o� and not give rise to small
droplet clouds and mist. They tend to ¯atten immediately after the e�ect described in Section
4.3, and travel long distances before breakup (see Figs. 11 and 12, and the movies of 6 and 10
kg/m s silicone oils on our Web page). On the other hand, the viscoelastic liquids with high
zero shear viscosity that we have studied break up in much shorter distances.
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4.7. Pancake formation and explosive breakup of drops

The very viscous silicone oils ®nally form a pancake or very ¯at disk perpendicular to the
¯ow. These ¯at disks break up explosively, probably as a result of ®ngers of gas poking
through the pancake. This breakup resembles `bag breakup' in which the air `in¯ates' a
balloon, which ultimately bursts (see Figs. 11 and 12 for the breakup of 6 and 10 kg/m s
silicone oils); this kind of breakup, which has been discussed, for example, by Pilch and
Erdman (1987), generally occurs at much lower Weber numbers. In fact, it takes so long to
break up a very viscous drop that the drop has already accelerated to 40% or more of the free
stream value so that the slip velocity is perhaps at a low value compatible with bag breakup.

4.8. Thickened liquids

Thickened liquids give rise to basically the same pre-breakup dynamics as Newtonian drops;
the drop ¯attens, ¯uid is driven to the equator and sheets of liquid are dragged backwards to
form lenticular shapes. However, the breakup of liquids thickened with high molecular weight
polymers di�ers from the breakup of the neat non-thickened Newtonian liquid; the neat liquid
gives rise to breakup of the type already discussed but thickened liquid is fragmented into
threads which are the dominant structure seen in all photographs and in our movies (see Figs.
5±9). Even threads of these liquids can be seen to maintain their integrity in high Mach
number ¯ow; it is known that these threads do not undergo capillary instabilities leading to
small drops.

5. Stability

Rayleigh±Taylor instabilities (Taylor, 1950) always play a role in drop breakup. Rayleigh
showed that a heavy ¯uid over a light ¯uid is unstable, as common experience dictates. He
treated the stability of heavy ¯uid over light ¯uid without viscosity, and he found that a
disturbance of the ¯at free surface grows exponentially like exp�nt� where

n �
(
kg�r2 ÿ r1�
r1 � r2

)1=2

�3�

where r2 is the density of the heavy ¯uid, r1 is the density of the light ¯uid, g is the
acceleration of gravity and k � 2p=l is the wave number and l is the wave length. The
instability described by Eq. (3) is catastrophic since the growth rate n tends to in®nity, at any
®xed time, no matter how small, as the wave length tends to zero. The solutions are unstable
to short waves even at the earliest times. Such kinds of disastrous instabilities are called
`Hadamard unstable' and the initial value problems associated with these instabilities are said
to be `ill posed' (Joseph and Saut, 1990). Ill-posed problems are disasters for numerical
simulations. Because such problems are unstable to ever shorter waves, the ®ner the mesh, the
worse the result.
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Nature will not allow such a singular instability; for example, neglected e�ects like viscosity
and surface tension will enter the physics strongly at the shortest wave lengths. These e�ects
have been taken into account in the study of Rayleigh±Taylor instability by Harrison (1908)
and in the celebrated treatise of Chandrasekhar (1961). Surface tension eliminates the
instability of the short waves; there is a ®nite wave length depending strongly on viscosity, as
well as surface tension for which the growth rate n is maximum. This is the wave length that
should occur in a real physical problem and would determine the wave length on the
corrugated fronts of breaking drops in a high speed air ¯ow.
Taylor (1950) extended Rayleigh's inviscid analysis to the case where a constant acceleration

of the superposed ¯uids other than gravity is taken into account. Assuming a constant value
for the acceleration, Taylor (1950) showed that when two superposed ¯uids of di�erent
densities are accelerated in a direction perpendicular to their interface, this surface is unstable
if the acceleration is directed from the lighter to the heavier ¯uid. The Taylor instability
depends strongly on the value of the acceleration a; for example, if g in Eq. (3) is replaced by
a � 104g, the growth rate n is increased by a factor of 100. 104g to 105g are representative
values of the acceleration of drops in our shock tube; moreover the acceleration is nearly
constant for all liquid drops at a given shock Mach number (see Table 2). A similar
observation was made by Engel (1958). Since the acceleration is perpendicular to the air±liquid
interface and directed from gas to liquid, the accelerating liquid drop is unstable and is prey to
the characteristic short wave corrugation associated with this instability.
Lewis (1950) has shown experimentally that a layer of water driven by compressed air is

unstable and that small disturbances, introduced at the air±water interface, grow so that it
appears as though ®ngers of air move through the water layer. Lewis (1950) ®nds agreement
with his experiments when the viscosity of the liquid is small. The peaks of water in his
experiments are sharp, but the match between Taylor's theory and the Lewis experiment is not
perfect because the regularizing e�ects of surface tension were neglected. When the ®nger of air
reaches the opposite surface of the water layer in the experiments, thin bubbles of liquid blow
out ahead of them. These bubbles are like the `bag breakup' shown in Fig. 16. The explosive
breakup of pancakes of high viscosity silicone oil at Mach 3 (Figs. 11 and 12) and Mach 4 (not
shown; similar to Fig. 12) appears to be associated with this same kind of explosive break
through the penetration of ®ngers of air.
The corrugations at the front of an unstable drop are driven toward the drop equator by

shear ¯ow of gas coming from the high pressure stagnation point. This shear ¯ow may also be
subject to an instability of the Kelvin±Helmholz type. Since the tangential velocity is zero at
the stagnation point and small near the stagnation point, the Kelvin±Helmholz instability may
not interact too strongly with the Rayleigh±Taylor instability.
Some details of the corrugations on the front of breaking drops can be predicted by

mathematical analysis of the foregoing instabilities, but the e�ects of viscosity and surface
tension must be taken into account.
A thorough explanation and analysis of the Rayleigh±Taylor instability can be found in

Chapter X of the treatise by Chandrasekhar. In Chandrasekhar's analysis, the two ¯uids are
separated by an interface z � h�x,y,t� which perturbs the plane z � 0. The Navier±Stokes
equations for the perturbation velocity u, perturbation pressure p are solved above and below
the plane z � 0. Gravity points down against the direction of z increasing. It is assumed that
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the heavy ¯uid is above the light ¯uid, or that the light ¯uid is accelerated into the heavy ¯uid
above; (the drop is the heavy ¯uid and the gas ¯owing into and around it, is the light ¯uid). At
the ¯at interface at z � 0, the linearized kinematic equation is

o � @h
@t

�4�

where

�jo j� � o2 ÿ o1 �5�
is the jump in the normal (z component) of velocity (o2 is in z > 0, o1 in z<0). For the
viscous case the jump in the tangential velocity is also zero

�jo j� � �juj� � �juj� � 0 �6�
where u is in the x direction and u in the y direction. Since Eq. (6) holds for all x and y for
z � 0, we may deduce that�

j@u
@x
� @u
@y
j
�
� ÿ

�
j@o
@z
j
�
� 0 �7�

The continuity of the shear stress is expressed by�
jm
�
@u

@z
� @o
@x

�
j
�
� 0

�
jm
�
@u
@z
� @o
@y

�
j
�
� 0 �8�

where m is the viscosity.
The balance of normal stress is given by

ÿ�jpj� � 2

�
jm@o
@z
j
�
� ÿg

 
@2

@x2
� @2

@y2

!
h �9�

where g is the surface tension. We may remove the hydrostatic pressure from the z equation of
motion by introducing the dynamic pressure

p � p� rgh

hence,

�jpj� � gh�jrj� � 2

�
jm@o
@z
j
�
� g

 
@2

@x2
� @2

@y2

!
h �10�

After introducing normal modes proportional to
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f�z�ent�ikxx�ikyy, k2 � k2x � k2y �11�

where f�z� is an amplitude function for p, u, u and h which may be eliminated to ®nd Eq. (40)
on page 433 of Chandrasekhar (1961):�

j
��

rÿ m
n

�
d2

dz2
ÿ k2

��
do
dz
ÿ 1

n

��
d2

dz2
� k2

�
o

�
dm
dz

�
j
�

� ÿk
2

n2

�
g�jrj� ÿ k2g

	
o ÿ 2k2

n

�
jmdo

dz
j
�

�12�

For the present problem, for which the unperturbed states above and below z � 0 are uniform,
dm=dz � 0 and using Eq. (7)�

jmdo
dz
j
�
� �jmj�do

dz
�13�

The entire problem is resolved by

o1 � A1e
kz � B1e

q1z �z<0�

o2 � A2e
ÿkz � B2e

ÿq2z �z > 0� �14�
where

q1 �
��������������������
k2 � n=n1

p
and q2 �

��������������������
k2 � n=n2

p
n1 � m1=r1, n2 � m2=r2 �15�

provided that Chandrasekhar's equation (113) below is satis®ed

ÿ
(
gk

n2

"
�a1 ÿ a2� � k2g

g�r1 � r2�

#
� 1

)
�a2q1 � a1q2 ÿ k� ÿ 4ka1a2 � 4k2

n
�a1n1 ÿ a2n2�

���a2q1 ÿ a1q2� � k�a1 ÿ a2�
	� 4k3

n2
�a1n1 ÿ a2n2�2�q1 ÿ k��q2 ÿ k�

� 0 �16�
where

a1 � r1
r1 � r2

, a2 � r2
r1 � r2

, a1 � a2 � 1

In our problem the light ¯uid is gas; with only a very small error we may treat this as a
vacuum. Hence, we put
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r1 � a1 � 0, a2 � 1

q14k, a2q1 � a1q2 ÿ k4q1 ÿ k

�a2q1 ÿ a1q2� � k�a1 ÿ a2�4q1 ÿ k �17�
and, after factoring q1 ÿ k in Eq. (16) we get

1ÿ gk

n2
� ÿ k3g

n2r2
ÿ 4k2

n

m2
r2
� 4k3

n2
m22
r22
�q2 ÿ k� �18�

The Rayleigh±Taylor instability may also be analyzed as a viscous potential ¯ow (Joseph,
1994). In this approach, the perturbation velocity is given by a potential

u � rf �19�
and the Navier±Stokes equations are reduced to an identity provided that the pressure is given
by Bernoulli's equation

p� r
@f
@t
� rgz � ÿr

2
jrfj2 �20�

In this linearization used to study instability, the second term on the right side of Eq. (20) is
put to zero. The interface condition requires continuity of tangential velocities, Eqs. (6) and
(7), and the continuity of shear stress, Eq. (8), cannot be enforced in viscous potential ¯ow.
The pressure in the normal stress condition (9) is eliminated using Eq. (20); this gives rise to�

jr@f
@t
j
�
� gh�jrj� � 2

�
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@z
j
�
� g
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@y2

#
h � 0 �21�

After introducing normal modes, writing Eq. (4) as nh � o , we get

n
�jrfj�� o

n
�jrj�g� 2

�
jm@o
@z
j
�
ÿ gk2

n
o � 0 �22�

For viscous potential ¯ow, r2f � 0 everywhere and Eq. (14) holds with B1 � B2 � 0 and

do
dz
� d2f

dz2
� k2f �23�

After writing �jrfj� � �1=k2��jrdo=dzj� in Eq. (22), we may verify that Eqs. (12) and (22) are
identical when Eq. (12) is evaluated for viscous potential ¯ow. Further evaluation of Eq. (22)
with normal modes give rise to the dispersion relation

1 � k

n2
r2 ÿ r1
r2 � r1

gÿ k3g
n2�r2 � r1�

ÿ 2k2

n

m2 � m1
r2 � r1

�24�

Eq. (24) may be solved for the growth rate
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n � ÿk2m2 � m1
r2 � r1

2

"
k
r2 ÿ r1
r2 � r1

gÿ k3g
r2 � r1

� k4
�
m2 � m1
r2 � r1

�2
#1=2

�25�

If the quantity under the root is negative, then the real part is negative and the interface is
stable. For instability it is su�cient that���������������������������������������������������������������������������

k
r2 ÿ r1
r2 � r1

g� k4
�
m2 � m1
r2 � r1

�2

ÿ k3g
r2 � r1

s
> k2

m2 � m1
r2 � r1

�26�

The border of instability n � 0 for k � kc is given by

kc �
�����������������������r2 ÿ r1�g

g

r
�27�

independent of viscosity.
The quantity of greatest interest is the wave number k for which n is largest (dn=dk � 0) and

that value of n (see Figs. 17 and 18 and Table 3).
Evaluation of the growth rate formula (25) for the conditions (17) close to our experiments

gives

n � ÿk
2m2
r2

2

����������������������������������
kgÿ k3g

r2
� k4m22

r22

s
�28�

It is of interest to compare the growth rate formula (28) for viscous potential ¯ow with the
growth rate formula (18) for fully viscous ¯ow. These two formulas give almost exactly the
same growth rate when

q2 ÿ k � k

�������������������
1� nr2

m2k2

r
ÿ k � nr2

2m2k
�29�

and

nr2
2m2k

<<1 �30�

To evaluate the formulas for Rayleigh±Taylor instability for our experiments, we must

replace g with a �31�

with values of a taken from Table 2. Eq. (27) then implies that

kc � 2p
lc

�
��������
r2a
g

r
�32�

and waves with length
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Fig. 17. n (sÿ1) vs. k (cmÿ1) for viscous potential ¯ow; shock Mach No. = 3.
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Fig. 18. n (sÿ1) vs. k (cmÿ1) for viscous potential ¯ow; shock Mach No. = 2.
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l<lc � 2p
��������
g

r2a

r
�33�

are stable. Taking liberties with Eq. (33), we identify l � D where D is the diameter of drops
with acceleration a that cannot be fragmented by Rayleigh±Taylor instability. Applying this to
our experiments (Tables 1 and 2), we get D between

23 and 65 mm for Ms � 3 �34�

46 and 135 mm for Ms � 2 �35�
Turning next to the computation of the length and growth rate of the most dangerous wave,
we computed n vs. k for fully viscous ¯ow, Eq. (18), and viscous potential ¯ow, Eq. (28). The
dispersion relations for viscous potential ¯ow, using data from Tables 1 and 2, are plotted in
Figs. 17 and 18 for shock Mach numbers of 3 and 2, respectively. The values of the wave
number, wave length and growth rate of the most dangerous wave are summarized in Table 3,
where we have compared values from viscous potential ¯ow to fully viscous ¯ow. The very
small di�erences shown in this comparison show that the essential e�ect of viscosity is

Table 3
Values of the wave number, wave length, and growth rate of the most dangerous wave for the experimental con-

ditions given in Tables 1 and 2

Liquid Viscosity (kg/m s) Fully viscous Viscous potential

n (sÿ1) k (cmÿ1) l (mm) n (sÿ1) k (cmÿ1) l (mm)

Ms � 3
SO 10000 10 17,790 9.5 6.61 19,342 9.7 6.48
SO 6000 6 24,673 14.45 4.35 26,827 14.7 4.27

SO 5000 5 24,787 15.86 3.96 26,951 16.15 3.89
SO 4000 4 32,550 20.3 3.10 35,312 20.7 3.04
SO 3000 3 31,507 23.08 2.72 34,257 23.5 2.67
SO 1000 1 48,769 49.68 1.26 53,088 50.65 1.24

SO 100 0.1 132,198 253.2 0.25 143,699 259 0.24
Glycerine 1.49 38,760 41.3 1.52 42,141 42.1 1.49
2% PO 35 10,492 3.95 15.91 11,406 3.95 15.91

2.6% PSBA 1.13 34,460 37.8 1.66 37,467 38.5 1.63
2% PAA 0.96 28,927 39.4 1.59 31,451 40.15 1.56
Water 0.001 149,632 531.95 0.12 151,758 540.8 0.12

Ms � 2
SO 4000 4 9868 11.2 5.61 10,729 11.4 5.51
SO 3000 3 14,388 15.6 4.03 15,644 15.9 3.95

SO 1000 1 20,018 31.8 1.98 21,765 32.4 1.94
SO 100 0.1 52,726 158 0.40 57,304 161.9 0.39
Glycerine 1.49 25,046 33.2 1.89 27,231 33.8 1.86
2% PO 35 3723 2.35 26.74 4048 2.4 26.18

2.6% PSBA 1.13 16,070 25.75 2.44 17,472 26.25 2.39
Water 0.001 50,971 260.9 0.24 51,507 264.2 0.24
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associated with the action of the viscous component of the normal stress; the continuity of the
tangential component of the stress and velocity can be neglected with only small errors. This
kind of dynamics is associated with the fact that vorticity boundary layers at water/air
interfaces are very weak and viscous potential ¯ow will not work well at liquid/liquid interfaces
or at ¯uid/solid boundaries. Two other notable successes of viscous potential ¯ow are the
rising air bubble (Levich, 1949) and the Rayleigh±Plesset air bubble (Plesset and Prosperetti,
1977).
It is apparent from Table 3 that the most dangerous wave is a strong function of viscosity;

the length of this wave increases and the growth rate decreases as the viscosity increases.

6. Comparison of theory and experiment

We used image enhancing software to compare photos from our movies with the stability
theory presented in Section 5. No special choice was made in selecting the frames for the
comparisons other than choosing ones from the early part of the motion that were well-
focused. The wave-like structure can be identi®ed much more easily on the computer screen
than in the images reproduced in Figs. 19±22. In Fig. 19, we have compared the predicted
wave length with waves enhanced on a water drop at M � 2 and 3 with the parameters given
by Tables 2 and 3. The tick marks on the photos identify wave troughs so that the predicted
distance between tick marks is the length of an unstable wave. The same kind of comparison is
given in Fig. 20 for the 0.1 kg/m s silicone oil, in Fig. 21 for the 1 kg/m s silicone oil and in
Fig. 22 for glycerine.
The agreements between theory and experiment exhibited in Figs. 19±22 may extend to the

higher viscosity drops in our database; the lengths of the most unstable wave for these drops
are greater than the diameter of the drop. These drop diameters are larger than the values (34)
and (35), hence, shorter waves than the ones listed in Table 3 are still unstable. These shorter
waves have much smaller growth rates and, hence, the growth of the amplitude ent of these
waves is very retarded. The retardation of the instability of unstable waves which is predicted
by theory is realized in experiments; the larger the viscosity the larger is the length of time it
takes for the drop to break. Eventually they do break and the breakup looks like a bag
breakup (see Figs. 11 and 12).
The connection between growth rates and breakup time is examined in a di�erent way in

Table 4 and Fig. 23. The open symbols in that ®gure are experimental breakup times and the
corresponding solid symbols represent a theoretical prediction of the time t̂b to breakup of the
fastest growing disturbance associated with the most dangerous wave.
We may de®ne a theoretical `break-up' time as the time t̂b taken for the initial amplitude A0

of an unstable disturbance A�t� � A0e
nt to grow to M times its initial value; thus

M � A
ÿ
t̂b
�

A0
� ent̂b and t̂b � 1

n
ln M �36�

In Table 4 and Fig. 23, we compare this theoretical value (for M � 10) with the time taken to
`blow o�' the liquid accumulated at the equator of the drop. This `blow-o�` time is not di�cult
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to identify with small error in experiments with mobile liquids; for more viscous liquids the
wave length of maximum growth is larger than the drop diameter and bag break-up with
smaller growth rates is observed.

7. Remarks about the mechanisms of drop breakup

The results described in the previous sections are for drop breakup in a high speed
airstream. The high speed air is created by a shock wave in a shock tube; the ¯uid dynamics of
compressed, hot gas behind the shock after it has passed over the drop is the disturbing factor
responsible for drop fragmentation. The passage of the shock over the drop has no important

Fig. 19. Rayleigh±Taylor waves in water. The tick marks on the photographs locate wave troughs.
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in¯uence on breakup. The Mach number of the shock is important indirectly, since it
determines the dynamic and thermodynamic state of the gas next to the drop.
It is important to know that drops will not break if the slip velocity is zero. Until a drop

breaks up it will accelerate so that its velocity is eventually the same as the air around it; in
this case the forces required to break a drop will vanish.
In general, other things being equal, small drops will resist breaking, high surface tension

drops will resist breaking, and low dynamic pressure will prevent breaking. This problem was
studied by Taylor (1949) who looked at the breakup of 2±5 mm drops subjected to high speed
air from a gun blast in tests at Porton Chemical Defense Experimental Establishment. Using
heuristic theoretical arguments, he found that the drops of radius D would burst whenever

rV 2D

4g
> c �constant�12:7 �37�

Later research by various people on the breakup of low viscosity Newtonian liquids established
that there is a critical Weber number about 12 below which drop breakup does not occur, in
agreement with Eq. (37).
It is generally agreed that the minimum critical Weber number increases with the viscosity of

Fig. 20. Rayleigh±Taylor waves in silicone oil (0.1 kg/m s). The tick marks on the photographs locate wave troughs.
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the drop; this dependence is usually expressed through the Ohnesorge number
Oh � md=�rdDg�1=2. Brodkey's (Brodkey, 1969) correlation We � 12�1� 1:077Oh1:6� (Oh<5,
We<60) is frequently cited; a similar correlation can be found in Fig. 1 of the paper by Hsiang
and Faeth (1992), Oh<5, We<200. The restriction of these correlations to values of Oh<5 is
due to the fact that there are apparently very few data on the speed of the relative velocity at
®nal breakup and the drop size; Hsiang and Faeth (1992) say that ``...due to the problems of
observing drops after secondary breakup there is very little information available about the
outcome of secondary breakup...'' The We (Oh ) curve of the correlation of Brodkey rises so
rapidly, when Oh is near to 4, that reliable extrapolation to higher Oh is impossible.
Hsiang and Faeth (1992) attribute the absence of breakup at Oh > 4 to a stabilizing e�ect of

viscosity. The issue of stability of a drop of high viscosity may be confused with the e�ect of
high viscosity in delaying the time of breakup. If the delay is great, the drop will accelerate to

Fig. 21. Rayleigh±Taylor waves in silicone oil (1 kg/m s). The tick marks on the photographs locate wave troughs.
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Table 4
Comparison of measured breakup times (ms) with predicted times calculated from Eq. (36) with M � 10 and using the values of n derived for the
fully viscous ¯ow (Table 3)

Liquid Viscosity
(kg/m s)

Shock Mach No. = 3 Shock Mach No. = 2

n

(sÿ1)
Time for A � 10A0

(ms)
Experimental n

(sÿ1 )
Time for A � 10A0

(ms)
Experimental

Diameter
(mm)

Blow-o�
(ms)

Diameter
(mm)

Blow-o�
(ms)

Water 0.001 149,632 15 2.6 15 50,971 45 2.5 25
SO 100 0.1 132,198 17 2.6 15 52,727 44 2.6 40
SO 1000 1 48,769 47 2.6 40 20,019 115 2.6 85

Glycerine 1.49 38,760 59 2.4 45 25,046 92 2.4 110
SO 3000 3 31,508 73 2.6 55 14,388 160 2.6 140
SO 4000 4 32,550 71 2.5 65 9868 233 2.5 100b

SO 4000 4 2.1 45a

Bag breakup Bag bursting Bag bursting
SO 4000 4 2.1 195a 2.5 580b

SO 5000 5 24,788 93 2.5 265
SO 6000 6 24,674 93 2.6 270 2.6 590
SO 10000 10 17,790 129 2.6 370 2.5 860

Viscoelastic Start of distintegration Start of disintegration
2% PAA 0.96 61,949 3.2 60
2.6% PSBA 1.13 2.2 60 2.2 100
2% PO 35 22,807 2.9 60 2.9 110

a At a Mach number of 3 a 2.5 mm drop of SO 4000 oil begins blow-o� at t � 65 ms and continues to break up, whereas a 2.1 mm diameter
drop starts to exhibit blow-o� at t � 45 ms for a short time and then ceases breakup until it undergoes bag breakup at t � 195 ms.
b A 2.5 mm drop of the same oil exhibits a similar e�ect at a Mach number of 2.
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the stream value before it can break. If the relative (slip) velocity between a very viscous drop
and the stream around it could be ®xed, we might ®nd values, even low values, for We at
breakup.
Many mechanisms of instability can lead to fragmentation of drops (see Fig. 15 and the

discussion in Hsiang and Faeth (1992)); however, in the present series of high Weber number
experiments the main mechanism for breakup appears to be associated with a Rayleigh±Taylor
instability driven by ultra high drop accelerations. This instability pumps ®ngers of hot air,
heated by the passing shock wave, into the drop. The ®ngers in¯ate the drop like a balloon
and at the same time bring hot air into contact with all interior parts of the drop. The drop
can break explosively like a balloon, as shown in Fig. 12 for silicone oil.
We have argued that the conditions of very high Weber number (We > 10,000) breakup

ought to be dominated by Rayleigh±Taylor instability, because the drop accelerations are so
large (see Table 2). The agreements of ®rst principle theory and our experiments are

Fig. 22. Rayleigh±Taylor waves in glycerine. The tick marks on the photographs locate wave troughs.
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surprisingly good; we could not point to any feature of the experiments which are in gross
con¯ict with the theory. The quantitative comparisons of predicted with observed wave lengths
are excellent, and the use of the growth rate n to predict an initial break-up time (blow-o�)
t̂b � 1=nln M, with M � 10 and n given by Eq. (18) for mobile liquids is also an arguably
correct semi-theoretical prediction of breakup times for very high Weber number Rayleigh±
Taylor breakup.

Fig. 23. Time (ms) to blow-o� of ¯uid accumulated at the equator vs. viscosity. The open symbols and crosses are

for observed data. The ®lled symbols are times t̂b for an unstable disturbance to grow to 10 times its initial value
(t̂b � 1=nln M, where M � 10 and n is the maximum growth rate (sÿ1) given in Table 3.) For viscosities mE40 kg/m s
the wave length that makes n maximum is less than the drop diameter. These values of n cannot be achieved when
me5 kg/m s; the available growth rates are for waves shorter than the most dangerous one. The shorter waves have

much smaller growth rates; this may explain why the observed times of breakup for m > 50 kg/m s are so much
longer than the time to breakup of the unavailable wave of maximum growth.
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Finally, it is of interest to compare Rayleigh's Weber number breakup criterion (37) with the
criterion (33) when l � D and

D<2p
��������
g

r2a

r
�38�

where a is the acceleration giving the drop diameter that is stable against Raleigh±Taylor
instability. This criterion leads to values Eqs. (34) and (35) which are not unreasonable. The
criterion (38) can be described as a Weber number criterion based on the acceleration

r2D
2a

4g
<p

identical to criterion (37) when a � V 2p=2:7D. Obviously, the identi®cation of drop sizes after
breakup with the wave lengths of unstable waves is not proven and is open to controversy.

8. Summary

. We studied breakup of drops of Newtonian and viscoelastic ¯uids of about one millimeter
diameter in a high speed airstream behind a shock wave in a shock tube.

. Twelve ¯uids with viscosities ranging from 0.001 to 35 kg/m s were tested at air Weber
numbers from 11,700 to 16,900, Ohnesorge numbers from 0 to 82.3 and Reynolds numbers
from 40,000 to 127,600.

. High speed movies, posted on our URL, were made with a rotating drum camera giving one
photograph every 5 ms.

. The movies allow one to correlate breakup events with times to the event. The times increase
with viscosity.

. Events of short duration which escape attention are captured in the movie. At early times,
less than 100 ms, there is an accumulation of ¯uid driven by the wind impacting on the
windward face to the equator of the drop. The accumulated ¯uid forms a ring, like Saturn's
ring, connected to the drop by a web of liquid, with a lifetime less than 10 ms.

. Bag-and-stamen in bag breakup occurs routinely at Weber numbers of 0 (104±105) in the
higher viscosity drops showing that the presently accepted classi®cation of breakup events,
based mainly on water, does not hold generally.

. The early events of breakup (<100 ms), ¯attening, and the accumulation of ¯uid driven
away from the stagnation points, followed by ®ngering are universal and apply equally to
low and high viscosity ¯uids and to viscoelastic ¯uids.

. At later times, the drop fragments in viscoelastic ¯uid are much more stringy than in
Newtonian ¯uids of comparable viscosity. This con®rms that the stringiness of drop
fragments persists in high speed, high Weber number ¯ows.

. The movies generate time±displacement data from which accelerations of the drop may be
computed. The accelerations are 104±105 times the acceleration of gravity, putting the drops
at risk to Rayleigh±Taylor instabilities.

. Rayleigh±Taylor instabilities are computed with an exact viscous theory and with a
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simpli®ed theory based on viscous potential ¯ow. It is assumed that the most dangerous
wave is the one whose length gives the maximum growth rate. The simpli®ed theory gives
the critical wave length and growth rate within a few percent.

. The length of the most dangerous wave increases strongly with viscosity; viscosity should
not be neglected as it is in current practice of the atomization community.

. By enhancing the images of drops on photographs from our movies, we are able to identify
the wave troughs, to measure the wave on the windward face of the drop at early times.

. We compared theory with experiment using only measured data with no adjustments and
found excellent agreement for all cases in which the wave length of the most dangerous
mode is less than the drop diameter.

. When the wave length is of the order of the drop diameter, bag breakup is observed. We
interpret this bag breakup to arise from a Rayleigh±Taylor instability to long waves (longer
than the drop diameter). More viscous drops, with still longer than critical wave lengths
undergo a delayed bag breakup.

. When the wave that maximizes the growth rate is longer than the drop diameter, all the
unstable waves are longer than critical and the growth rates of these waves is much smaller
than critical. Hence, the time to breakup increases with viscosity with very large increases
for the cases in which the critical wave is shorter than the drop diameter. This interpretation
®ts the observed data.

. The border of instability (27) to Rayleigh±Taylor ®ngers is independent of viscosity;
lc � 2p

����������
g=ra
p

, where a is drop acceleration and g is the surface tension. Short waves with
l<lc do not lead to ®ngers. For our experiment, l lies between 23 and 65 mm for a shock
Mach number of 3 and between 46 and 135 mm for a shock Mach number of 2.

. The cuto� value lc may be interpreted as a Weber number criterion based on acceleration
and l<lc0D<Dc the ®nal values of drop diameters D smaller than those which arise from
Rayleigh±Taylor breakup.

. It is suggested that the conventional correlations of drop size with Ohnesorge number are
greatly in¯uenced by the fact that the high viscosity drops do not break before they are
accelerated to nearly the free stream velocity. When the slip velocity is too small, the drops
will not break up and if the slip velocity could be maintained these viscous drops would be
reduced to diameters smaller than those in the correlations.

. The observed events at high Weber numbers seem to be consistent with every aspect of
Rayleigh±Taylor stability analysis. This suggests that the dynamics of breakup at high
Weber numbers is controlled by the huge drop accelerations at early times when the drop is
nearly stationary.
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