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We study the stability of stratified gas–liquid flow in a horizontal rectangular channel
using viscous potential flow. The analysis leads to an explicit dispersion relation
in which the effects of surface tension and viscosity on the normal stress are not
neglected but the effect of shear stresses is. Formulas for the growth rates, wave
speeds and neutral stability curve are given in general and applied to experiments in
air–water flows. The effects of surface tension are always important and determine
the stability limits for the cases in which the volume fraction of gas is not too small.
The stability criterion for viscous potential flow is expressed by a critical value of the
relative velocity. The maximum critical value is when the viscosity ratio is equal to
the density ratio; surprisingly the neutral curve for this viscous fluid is the same as
the neutral curve for inviscid fluids. The maximum critical value of the velocity of
all viscous fluids is given by that for inviscid fluid. For air at 20 ◦C and liquids with
density ρ = 1 g cm−3 the liquid viscosity for the critical conditions is 15 cP: the critical
velocity for liquids with viscosities larger than 15 cP is only slightly smaller but the
critical velocity for liquids with viscosities smaller than 15 cP, like water, can be much
lower. The viscosity of the liquid has a strong effect on the growth rate. The viscous
potential flow theory fits the experimental data for air and water well when the gas
fraction is greater than about 70%.

1. Introduction
It is well known that the Navier–Stokes equations are satisfied by potential flow;

the viscous term is identically zero when the vorticity is zero but the viscous stresses
are not zero (Joseph & Liao 1994). It is not possible to satisfy the no-slip condition at
a solid boundary or the continuity of the tangential component of velocity and shear
stress at a fluid–fluid boundary when the velocity is given by a potential. The viscous
stresses enter the viscous potential flow analysis of free surface problems through
the normal stress balance (2.9) at the interface. Viscous potential flow analysis gives
good approximations to fully viscous flows in cases where the shear from the gas
flow is negligible; the Rayleigh–Plesset bubble is a potential flow which satisfies the
Navier–Stokes equations and all the interface conditions. Joseph, Belanger & Beavers
(1999) constructed a viscous potential flow analysis of the Rayleigh–Taylor instability
which is almost indistinguishable from the exact fully viscous analysis.

The success of viscous potential flow in the analysis of Rayleigh–Taylor instability
has motivated the analysis of Kelvin–Helmholtz (KH) theory given here. It is well
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known that the instability that arises when surface tension and viscosity are neglected
is catastrophic: short waves with wavelengths λ = 2π/k amplify without control
like ekt. The instability grows exponentially as the wavenumber k → ∞ no matter
how small time t. This kind of catastrophic instability is called Hadamard instability
(Joseph & Saut 1990). In the case of inviscid fluids this instability is regularized by
surface tension which stabilizes the short waves; surface tension is very important. The
question is whether viscosity, without surface tension, would regularize the Hadamard
instability of a vortex sheet on an unbounded domain. Unlike surface tension, viscosity
will not cause the small waves to decay; they still grow but their growth is limited and
the growth rate Re[σ(k)] does not go to infinity with k as in Hadamard instability.
The positive growth rate is given by

Re[σ+] =
ρaµ

2
l + ρlµ

2
a

2(µl + µa)3
(Ua −Ul)

2, k →∞,
where ρ, µ,U are respectively density, viscosity, velocity.

The present paper gives a detailed report on the viscous potential flow analysis
of KH instability in a rectangular duct together with a comparison of theory and
experiment in the case of air–water flow. As we have already mentioned, potential
flow requires that we neglect the no-slip condition at solid surfaces. In a rectangular
channel the top and bottom walls are perpendicular to gravity; the bottom wall is
under the liquid and parallel to the undisturbed uniform stream; the top wall contacts
gas only. The sidewalls are totally inactive; there is no motion perpendicular to the
sidewalls unless it is created initially and since the two fluids slip at the walls all the
conditions required in the analysis of three dimensions can be satisfied by flow in two
dimensions, which is analysed here.

The viscosity in viscous potential flow enters the normal stress balance rather than
the tangential stress balance. Air over liquid induces small viscous stresses that may
be confined to the boundary layer and may be less and less important as the viscosity
of the liquid increases. At a flat, free surface z = 0 with velocity components (u, w)
corresponding to (x, z) the shear stress is given by

µ

(
∂u

∂z
+
∂w

∂x

)
and the normal stress is

2µ
∂w

∂z
.

The normal stress is an extensional rather than a shear stress and it is activated by
waves on the liquid; the waves are induced more by pressure than by shear. For this
reason, we could argue that the neglect of shear could be justified in wave motions
in which the viscous resistance to wave motion is not negligible; this is the situation
which may be approximated well by viscous potential flow.

2. Formulation of the problem
A channel of rectangular cross-section with height H and width W and of length

L is set horizontally, in which a gas layer is over a liquid layer (see figure 1): the
two-layer Newtonian incompressible fluids are immiscible. The undisturbed interface
is taken at z = 0 on the z-axis of Cartesian coordinates (x, y, z). We denote velocity
by (u, w), pressure p, density ρ, viscosity µ and acceleration due to gravity (0,−g); the
y component is ignored herein.
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Figure 1. Kelvin–Helmholtz instability due to a discontinuity of velocity of air above liquid in
a rectangular channel. The no-slip condition is not enforced in viscous potential flow so that the
two-dimensional solution satisfies the sidewall boundary conditions.

In the undisturbed state, the gas (air) with a uniform flow (Ua, 0) is in 0 < z < ha,
and the liquid with a uniform flow (Ul, 0) is in −hl < z < 0 (H = hl +ha); the pressure
has an equilibrium distribution due to the gravity. We consider Kelvin–Helmholtz
instability of small disturbances to the undisturbed state.

The prescription of a discontinuity in velocity across z = 0 is not compatible with
the no-slip condition of Navier–Stokes viscous fluid mechanics. The discontinuous
prescription of data in the study of Kelvin–Helmholtz instability is a viscous potential
flow solution of the Navier–Stokes equation in which no-slip conditions at the walls
and no slip and continuity of shear stress across the gas–liquid interface are neglected.
Usually the analysis of Kelvin–Helmholtz instability is done using potential flow for
an inviscid fluid but this procedure leaves out certain effects of viscosity which can
be included with complete rigour. This kind of analysis using viscous potential flow
is carried out here. An exact study of, say, air over water requires the inclusion
of all of the effects of viscosity, and even the prescription of a basic flow is much
more complicated. Problems of superposed viscous fluids have been considered, for
example, in the monograph on two-fluid mechanics by Joseph & Renardy (1991) and
more recently in the paper and references therein of Charru & Hinch (2000).

2.1. Viscous potential flow analysis

We have already noted that if the fluids are allowed to slip at the walls, then the
two-dimensional solution will satisfy the three-dimensional equations and we may
reduce the analysis to flow between parallel plates. We found by computing that
three-dimensional disturbances are more stable than two-dimensional ones. We now
consider two-dimensional disturbances, for which the velocity potential φ ≡ φ(x, z, t)
gives (u, w) = ∇φ.

The potential is subject to the equation of continuity:

∂u

∂x
+
∂w

∂z
= 0→ ∂2φ

∂x2
+
∂2φ

∂z2
= 0; (2.1)

thus the potentials for the respective fluids are given by

∂2φa

∂x2
+
∂2φa

∂z2
= 0 in 0 < z < ha, (2.2)
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∂2φl

∂x2
+
∂2φl

∂z2
= 0 in − hl < z < 0. (2.3)

Boundary conditions at the interface (at z = h, where h ≡ h(x, t) is the interface
elevation) are given by

∂h

∂t
+Ua

∂h

∂x
= wa,

∂h

∂t
+Ul

∂h

∂x
= wl, (2.4a, b)

and the conditions on the walls are given by

wa = 0 at z = ha, (2.5)

wl = 0 at z = −hl. (2.6)

The potential φa that satisfies (2.2) and (2.5) for the air and the potential φl that
satisfies (2.3) and (2.6) for the liquid are given, respectively, by

φa = Aa cosh[k(z − ha)] exp(σt+ ikx) + c.c., (2.7a)

φl = Al cosh[k(z + hl)] exp(σt+ ikx) + c.c., (2.7b)

and the interface elevation may be given by

h = A0 exp(σt+ ikx) + c.c., (2.7c)

where Aa, Al and A0 denote the complex amplitudes, and c.c. stands for the complex
conjugate of the preceding expression; σ is the complex growth rate and k > 0
denotes the wavenumber; i =

√−1. From the kinematic conditions (2.4a, b), we have
the following equations for the complex amplitudes:

(σ + ikUa)A0 = −kAa sinh(kha), (2.8a)

(σ + ikUl)A0 = kAl sinh(khl). (2.8b)

The other boundary condition is the normal stress balance (with the normal viscous
stress) at the interface:

−pa + 2µa
∂wa

∂z
+ ρagh−

(
−pl + 2µl

∂wl

∂z
+ ρlgh

)
= −γ ∂

2h

∂x2
, (2.9)

in which γ denotes the surface tension. Noting that the pressure is solely subject to
the Laplace equation derived from the equation of motion for small disturbances, the
pressure terms in (2.9) may be eliminated using the equations of motion in which the
viscous terms vanish identically when u = ∇φ; µ∇2u = µ∇(∇2φ) ≡ 0. Thus pa may be
written, from the equation of motion without the viscous term, as

ρa

(
∂ua

∂t
+Ua

∂ua

∂x

)
= −∂pa

∂x
, (2.10a)

and with the aid of the equation of continuity, we have the expression for pa:

ρa

(
∂2wa

∂t∂z
+Ua

∂2wa

∂x∂z

)
=
∂2pa

∂x2
; (2.10b)

the pressure pl may be written as

ρl

(
∂2wl

∂t∂z
+Ul

∂2wl

∂x∂z

)
=
∂2pl

∂x2
. (2.11)
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Thus the normal stress balance is now written as

−ρa
(
∂2wa

∂t∂z
+Ua

∂2wa

∂x∂z

)
+ 2µa

∂3wa

∂x2∂z
+ ρl

(
∂2wl

∂t∂z
+Ul

∂2wl

∂x∂z

)
−2µl

∂3wl

∂x2∂z
− (ρl − ρa)g ∂

2h

∂x2
= −γ ∂

4h

∂x4
, (2.12)

hence we have the equation for σ, using (2.7) and (2.8):

[ρa(σ + ikUa)
2 + 2µak

2(σ + ikUa)] coth(kha)

+[ρl(σ + ikUl)
2 + 2µlk

2(σ + ikUl)] coth(khl) + (ρl − ρa)gk + γk3 = 0. (2.13)

2.2. Dispersion relation

From (2.13) the dispersion relation is given as

Aσ2 + 2Bσ + C = 0, (2.14)

where the coefficients A, B and C are defined as

A = ρl coth(khl) + ρa coth(kha), (2.15a)

B = ik[ρlUl coth(khl) + ρaUa coth(kha)]

+k2[µl coth(khl) + µa coth(kha)] = BR + iBI, (2.15b)

C = (ρl − ρa)gk − k2[ρlU
2
l coth(khl) + ρaU

2
a coth(kha)] + γk3

+2ik3[µlUl coth(khl) + µaUa coth(kha)] = CR + iCI. (2.15c)

The solution σ may be expressed as

σ = −B
A
±
√
B2

A2
− C

A
→ σR + iσI = −BR + iBI

A
±
√
D

A
, (2.16)

where D is given by

D = DR + iDI = (BR + iBI )
2 − A(CR + iCI ), (2.17a)

DR = ρlρa(Ua −Ul)
2k2 coth(khl) coth(kha)k

4[µl coth(khl) + µa coth(kha)]
2

−[ρl coth(khl) + ρa coth(kha)][(ρl − ρa)gk + γk3], (2.17b)

DI = 2k3(ρaµl − ρlµa)(Ua −Ul) coth(khl) coth(kha). (2.17c)

When ρaµl = ρlµa for which DI = 0, and if DR > 0, we have

σR =
−BR ±√DR

A
, σI = −BI

A
. (2.18a, b)

This is a typical case where the real and imaginary parts of σ can be expressed most
clearly.

If the top and bottom are far away, hl →∞, ha →∞, then (2.14) gives rise to

σ = − ik(ρaUa + ρlUl) + k2(µa + µl)

(ρa + ρl)

±
[
ρaρlk

2(Ua −Ul)
2

(ρa + ρl)2
− (ρl − ρa)gk + γk3

(ρa + ρl)
+
k4(µa + µl)

2

(ρa + ρl)2

+ 2ik3 (ρaµl − ρlµa)(Ua −Ul)

(ρa + ρl)2

]1/2

,
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which is reduced, for a particular case that ρaµl = ρlµa, to

σR = −k
2(µa + µl)

(ρa + ρl)
±
[
ρaρlk

2(Ua −Ul)
2

(ρa + ρl)2
− (ρl − ρa)gk + γk3

(ρa + ρl)
+
k4(µa + µl)

2

(ρa + ρl)2

]1/2

,

(2.19a)

σI = −k(ρaUa + ρlUl)

(ρa + ρl)
. (2.19b)

Here, it is easy to find that σR = 0 gives a relation independent of viscosity. In other
words, the relation holds even for inviscid fluids; this is helpful for the problem to be
considered herein.

2.3. Growth rates and wave speeds

In terms of σ = σR + iσI , (2.14) is also written, for the real and imaginary parts, as

A(σ2
R − σ2

I ) + 2(BRσR − BIσI ) + CR = 0, σI = − 2BIσR + CI

2(AσR + BR)
. (2.20a, b)

Eliminating σI from the above, we have a quartic equation for σR:

a4σ
4
R + a3σ

3
R + a2σ

2
R + a1σR + a0 = 0, (2.21)

where the coefficients are given as

a4 = A3, a3 = 4A2BR, a2 = 5AB2
R + AB2

I + A2CR, (2.22a, b, c)

a1 = 2B3
R + 2BRB

2
I + 2ABRCR, a0 = − 1

4
AC2

I + BRBICI + B2
RCR. (2.22d, e)

The quartic equation (2.21) can be solved analytically. Neutral states for which σR = 0
are described in terms of the solution to the equation a0 = 0. The peak value (the
maximum growth rate) σm and the corresponding wavenumber km are obtained by
solving (2.21). It is usually true, but unproven, that λm = 2π/km will be the length of
unstable waves observed in experiments.

The complex values of σ are frequently expressed in terms of a complex frequency
ω with

σR + iσI = σ = −iω = −iωR + ωI. (2.23)

Hence

σR = ωI, σI = −ωR. (2.24)

The wave speed for the mode with wavenumber k is

C̃R = ωR/k = −σI/k. (2.25)

The set of wavenumbers for which unstable flows are stable is also of interest. The
wavelengths corresponding to these wavenumbers will not appear in the spectrum.
Cut-off wavenumbers kC separate the unstable and stable parts of the spectrum.

2.4. Neutral curves

Neutral curves define values of the parameters for which σR(k) = 0. These curves may
be obtained by putting a0 = 0:

−ρlµ
2
a coth(khl) coth2(kha) + ρaµ

2
l coth2(khl) coth(kha)

[µl coth(khl) + µa coth(kha)]2
kV 2 + (ρl − ρa)g + γk2 = 0,

(2.26)
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where the relative velocity V is defined by V ≡ Ua−Ul . This equation may be solved
for V 2 where

V 2(k) =
[µl coth(khl) + µa coth(kha)]

2

ρlµ2
a coth(khl) coth2(kha) + ρaµ

2
l coth2(khl) coth(kha)

×1

k
[(ρl − ρa)g + γk2]. (2.27)

The lowest point on the neutral curve V 2(k) is

V 2
c = min

k>0
V 2(k) ≡ V 2(kc), (2.28)

where λc = 2π/kc is the wavelength that makes V 2 minimum. The flow is unstable
when

V 2 = (−V )2 > V 2
c . (2.29)

This criterion is symmetric with respect to V and −V , depending only on the absolute
value of the difference. This feature stems from Galilean invariance: the flow seen by
an observer moving with the gas is the same as the one seen by an observer moving
with the liquid.

By recalling the results obtained by computing, it is interesting to note here that
the three-dimensional disturbances in the sense of the viscous potential flow lead to
the relative velocity V3D , which can be expressed in terms of (2.27) as

V 2
3D ≡ (k ·U a − k ·U l)

2

k2
x

=
k2

k2
x

V 2(k), (2.30)

only if we regard the three-dimensional-wavenumber vector k = (kx, ky) as

k =
√
k2
x + k2

y, ky = 0, ± π

W
, ±2π

W
, · · · . (2.31a, b)

It is evident in (2.30) that V 2
3D is larger than V 2(k) if ky 6= 0; the most dangerous

three-dimensional disturbance is two-dimensional with ky = 0.

3. KH instability of inviscid fluid
For inviscid fluids (µa = µl = 0), we have BR = 0 and CI = 0; thus a3 = a1 = a0 = 0

and (2.21) reduces to

a4σ
4
R + a2σ

2
R = 0; (3.1)

thus we have

a4σ
2
R + a2 = 0, (3.2)

and

σI = −BI
A

= −k[ρlUl coth(khl) + ρaUa coth(kha)]

ρl coth(khl) + ρa coth(kha)
. (3.3)

It should be noted here that the neutral curve was given by the equation a0 = 0 in
the viscous potential analysis ((2.26) and (2.27)), whereas the neutral curve in this
K-H instability is given by the equation a2 = 0. It is also noted that σI is the same
as in (2.18b), though σR may be different, in general, from (2.18a). But the equation
σR = 0 in (3.2) is the same as σR = 0 in (2.18a), for the case of ρaµl = ρlµa.



270 T. Funada and D. D. Joseph

From (3.2) with a2 < 0, the growth rate σR is expressed as

σR =±
√
ρlρak2 coth(khl) coth(kha)V 2−[ρl coth(khl)+ρa coth(kha)][(ρl−ρa)gk+γk3]

ρl coth(khl) + ρa coth(kha)
.

(3.4)
At the neutral state σR = 0 for which a2 = 0, we have

ρlρak coth(khl) coth(kha)

ρl coth(khl) + ρa coth(kha)
V 2 − [(ρl − ρa)g + γk2] = 0. (3.5)

Instability arises if

V 2 >

[
tanh (khl)

ρl
+

tanh (kha)

ρa

]
1

k

[
(ρl − ρa) g + γk2

] ≡ V 2
i (k). (3.6)

In the stable case for which a2 > 0, the wave velocity C̃R is given by

−kC̃R = σI = −BI
A
±
√
B2
I

A2
+
CR

A
. (3.7)

4. Dimensionless form of the dispersion equation
The dimensionless variables are designated with a hat and are

k̂ = kH, ĥa =
ha

H
≡ α, ĥl =

hl

H
= 1− ĥa, ρ̂ =

ρa

ρl
, µ̂ =

µa

µl
, γ̂ =

γ

ρlgH2
,

Ûa =
Ua

Q
, Ûl =

Ul

Q
, V̂ = Ûa − Ûl , σ̂ =

σH

Q
, θ =

µl

ρlHQ
,

where

Q =

[
(1− ρ̂)gH

ρ̂

]1/2

.

The dimensionless form of (2.14) is given by

[coth(k̂ĥl) + ρ̂ coth(k̂ĥa)]σ̂
2

+ 2σ̂{ik̂[Ûl coth(k̂ĥl) + ρ̂Ûa coth(k̂ĥa)] + θk̂
2
[coth(k̂ĥl) + µ̂ coth(k̂ĥa)]}

− k̂2
[Û

2

l coth(k̂ĥl) + ρ̂Û
2

a coth(k̂ĥa)] + 2ik̂
3
θ[Ûl coth(k̂ĥl) + µ̂Ûa coth(k̂ĥa)]

+ k̂

[
1 +

γ̂k̂
2

(1− ρ̂)

]
= 0. (4.1)

The expression (2.27) for the neutral curve σ̂R(k̂) = 0 is written in dimensionless
variables as

V̂ 2 =
[tanh(k̂ĥa) + µ̂ tanh(k̂ĥl)]

2

tanh(k̂ĥa) + (µ̂2/ρ̂) tanh(k̂ĥl)

1

k̂

[
1 +

γ̂k̂
2

(1− ρ̂)

]
. (4.2)

Notice that the growth rate parameter θ = µl/(ρlHQ), which depends linearly on the
kinematic viscosity νl = µl/ρl of the liquid, does not appear in (4.2). Note also that
the value of (1− ρ̂) is close to unity, since ρ̂ = 0.0012 for air–water.
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The neutral curves for an inviscid fluid (3.5) can be obtained by putting µ̂ = ρ̂ or
µl/ρl = µa/ρa. This gives from (4.2) the following expression:

V̂ 2 = [tanh(k̂ĥa) + ρ̂ tanh(k̂ĥl)]
1

k̂

[
1 +

γ̂k̂
2

1− ρ̂
]

(4.3)

which is the dimensionless form of (3.6). Though this reduction is immediate it is
surprising.

Evaluating (4.2) for µ̂ = 0, we get

V̂ 2 = tanh(k̂ĥa)
1

k̂

[
1 +

γ̂k̂
2

1− ρ̂
]
. (4.4)

Evaluating (4.2) for µ̂ = ∞ we get

V̂ 2 = ρ̂ tanh(k̂hl)
1

k̂

[
1 +

γ̂k̂
2

1− ρ̂
]
. (4.5)

It is easy to verify that V̂ 2 is maximum at µ̂ = ρ̂, for inviscid fluids. Viscosity in
viscous potential flow is destabilizing; however, large viscosities are less destabilizing
than small viscosities.

Since ρ̂ = 0.0012, which is very small, the variation in the stability is large when µ̂
varies between ρ̂ and ∞, and is very small when µ̂ varies between ρ̂ and zero. The
value µ̂ = 0.018 > ρ̂ = 0.0012, and is in the interval in which V̂ 2 is rapidly varying
(see figure 4).

In the literature on gas–liquid flows a long-wave approximation is often made to

obtain stability limits. For long waves k̂ → 0 and tanh(k̂ĥ)→ k̂ĥ and (4.2) reduces to

V̂ 2 =
(ĥa + µ̂ĥl)

2

ĥa + (µ̂2/ρ̂)ĥl

[
1 +

γ̂k̂
2

1− ρ̂
]
. (4.6)

The effect of surface tension disappears in this limit but the effects of viscosity are
important. To obtain the long-wave limit in the inviscid case put µ̂ = ρ̂.

The regularization of short waves by surface tension is an important physical effect.

For short waves, k̂ →∞, tanh(k̂ĥ)→ 1 and

V̂ 2 =
(µ̂+ 1)2

1 + µ̂2/ρ̂

1

k̂

[
1 +

γ̂k̂
2

(1− ρ̂)

]
. (4.7)

To obtain the short-wave limit in the inviscid case put µ̂ = ρ̂.
The effects of surface tension may be computed from (4.6) and (4.7). The stability

limit for long waves k̂ → 0 is independent of γ̂. For short waves (4.6) has a minimum

at k̂ =
√

(1− ρ̂)/γ̂ with a value there given by

V̂ 2 =
2(µ̂+ 1)2

1 + µ̂2/ρ̂

√
γ̂

1− ρ̂ . (4.8)

Equation (4.8) shows that short waves are stabilized by increasing γ̂. For small γ̂ long
waves are unstable.
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Figure 2. Neutral curves for air and water (µ̂ = 0.018, see table 1 and figure 4); α = ĥa is the gas
fraction. As in the usual manner, the disturbances will grow above the neutral curve, but decay
below it. For α larger than about 0.2, the critical velocity Vc arises, below which all the disturbances
will decay.

5. The effect of liquid viscosity and surface tension on growth rates and
neutral curves

For air and water at 20 ◦C

ρa = 0.0012 g cm−3, ρl = 1 g cm−3, ρ̂ = ρa/ρl = 0.0012,

µa = 0.00018 P, µl = 0.01 P, µ̂ = µa/µl = 0.018.

The surface tension of air and pure water is γ = 72.8 dyn cm−1. Usually the water
is slightly contaminated and γ = 60 dyn cm−1 is more probable for the water–air
tension in experiments. For all kinds of organic liquids γ = 30 dyn cm−1 is a good
appproximation.

Neutral curves for µ̂ = 0.018 (air/water) and µ̂ = ρ̂ = 0.0012 (inviscid flow) and
µ̂ = 3.6 × 10−6 (µl = 50 P) with γ = 60 dyn cm−1 are selected here; the former two
are shown in figures 2 and 3. The liquid viscosities µl = ρlµa/ρa corresponding to
these three cases are µl = 0.01 P, 0.15 P and 50 P. The neutral curves for µ̂ > ρ̂ are
nearly identical. The neutral curves for µ̂ = 0.018 (air/water) are to be compared

with experiments. We have identified the minimum values of (4.2) over k̂ > 0 in the
air/water case, and in tables 1, 2 and 3 the critical velocity Vc = V (kc), the critical
wavenumber kc (and wavelength λc = 2π/kc) and associated wave speeds C̃Rc = C̃R(kc)
are listed. In the tables, Vs and C̃Rs denote the values taken at k = 10−3 cm−1, which
may be representative of values in the limit of long waves, k → 0. The variation of
the critical velocity with the viscosity ratio µ̂ = µa/µl for a representative gas fraction
α = 0.5 is shown in figure 4. The vertical line µ̂ = ρ̂ identifies the stability limit for
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Figure 3. Neutral curves for inviscid fluids (µ̂ = ρ̂ = 0.0012) for different gas fractions α = ĥa.
This neutral curve arose for the special case µ̂ = ρ̂ = 0.0012 = µa/µl with µa = 0.00018 P; hence
µl = 0.15 P. Surprisingly it is identical to the case µa = µl = 0 (see table 2 and figure 4). The neutral
curves for viscous fluids with µl > 15 cP are essentially the same as these (cf. table 2 and 3).

inviscid fluids. Points to the left of this line have high liquid viscosities µl > 0.15 P,
and for points to the right, µl < 0.15 P.

In all cases the critical velocity is influenced by surface tension; the critical velocity
is given by long waves only when α is small (small air gaps). For larger values of α
(say α > 0.2), the most dangerous neutrally unstable wave is identified by a sharp
minimum determined by surface tension, which is identified in table 1 (cf. equation
(4.8)).

The growth rates depend strongly on the liquid viscosity, unlike the neutral curves.
The most dangerous linear wave is the one whose growth rate σR is maximum at
k = km,

σRm = σR(km) = max
k>0

σR(k) (5.1)

with an associated wavelength λm = 2π/km and wave speed C̃Rm = C̃R(km). Typical
growth rate curves are shown in figure 5. Maximum growth rate parameters for
µ̂ = 0.018 (figure 5), µ̂ = ρ̂ = 0.0012, µl = 15 cP and µ̂ = 3.6 × 10−6(µl = 50 P) are
listed for V = 1500 and 900 cm s−1 in table 4.

6. Comparison of theory and experiments in rectangular ducts
Kordyban & Ranov (1970) and Wallis & Dobson (1973) are the only authors to

report the results of experiments in rectangular ducts. Many other experiments have
been carried out in round pipes; the results of these experiments are not perfectly
matched to the analysis done here or elsewhere, and will be discussed later. All
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Figure 4. Critical velocity V vs. µ̂ for α = 0.5. The critical velocity is the minimum value on the
neutral curve. The vertical line is µ̂ = ρ̂ = 0.0012 and the horizontal line at V = 635.9 cm s−1 is the
critical value for inviscid fluids. The vertical dashed line at µ̂ = 0.018 is for air and water. Typical
values for a high-viscosity liquid are given in table 3.

ĥa Vs (cm s−1) C̃Rs (cm s−1) kc (cm−1) λc (cm) Vc (cm s−1) C̃Rc (cm s−1)

0.01 76.04 198.6 0.649 9.676 72.92 155.9
0.1 285.6 43.22
0.2 478.5 20.82
0.3 643.4 12.50 0.692 9.076 651.3 9.432

3.893 1.614 572.5 5.510
0.4 788.8 8.150 4.020 1.563 573.9 5.484
0.5 919.4 5.481 4.052 1.551 574.1 5.481
0.6 1039 3.676 4.052 1.551 574.1 5.479
0.7 1149 2.373 4.052 1.551 574.3 5.459
0.8 1252 1.389 4.117 1.526 575.7 5.319
0.9 1348 0.619 4.354 1.443 585.3 4.415
0.99 1430 0.056 4.150 1.514 628.0 0.585

Table 1. Typical values of the neutral curves in figure 2 for air–water with ρa = 0.0012 g cm−3,
µa = 0.00018 P, ρl = 1.0 g cm−3, µl = 0.01 P, g = 980.0 cm s−2, γ = 60.0 dyn cm−1, H = 2.54 cm. (This
table was based upon the results of computation that the neutral curves with α = 0.1 and 0.2 in
figure 2 increase monotonically from the values Vs cm s−1 at k = 10−3 cm−1; the curve with α = 0.3
in figure 2 increases from the value Vs cm s−1 at k = 10−3 cm−1, takes a maximum V = 651.3 cm s−1

at k = 0.692 cm−1, and then takes a minimum Vc = 572.5 cm s−1 (the critical) at kc = 3.893 cm−1;
for the other values of α, the corresponding curves give the critical Vc at kc.)

experimenters were motivated to understand the transition from stratified flow with
a flat smooth interface to slug flow. They note that in many cases the first transition,
which is studied here, is from smooth stratified flow to small-amplitude sinusoidal
waves, called capillary waves by Wallis & Dobson (1973). The data given by these
authors are framed as a transition to slug flow, though the criteria given are for the
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ĥa Vs (cm s−1) C̃Rs (cm s−1) kc (cm−1) λc (cm) Vc (cm s−1) C̃Rc (cm s−1)

0.01 152.2 16.17 0.629 9.990 150.6 9.725
0.1 457.6 4.890
0.2 645.3 3.082 2.990 2.101 619.8 0.818
0.3 789.5 2.204 3.924 1.601 634.4 0.764
0.4 911.2 1.637 4.020 1.563 635.7 0.762
0.5 1018 1.221 4.052 1.551 635.9 0.762
0.6 1115 0.892 4.052 1.551 635.9 0.762
0.7 1205 0.619 4.052 1.551 635.9 0.759
0.8 1288 0.386 4.052 1.551 635.9 0.738
0.9 1366 0.182 4.052 1.551 635.8 0.590
0.99 1432 0.017 4.052 1.551 635.6 0.078

Table 2. Typical values of the neutral curves in figure 3 for air–water (as inviscid fluids) with
ρa = 0.0012 g cm−3, µa = 0.0 P, ρl = 1.0 g cm−3, µl = 0.0 P, g = 980.0 cm s−2, γ = 60.0 dyn cm−1,
H = 2.54 cm.
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Figure 5. The real part of growth rate σR s vs. k for µ̂ = 0.018 (water, µl = 1 cP), V = 1500 cm s−1.
The graphs are top to bottom α = 0.2, 0.5, 0.8. The curves of σR s−1 along the line of V = 1500 cm s−1

in figure 2, are drawn here for respective values of α. Instability may arise for all the disturbances
of wavenumbers below the cut-off wavenumber kC . The maximum growth rate σRm and the
corresponding wavenumber km = 2π/λm for V = 1500 and 900 cm s−1 are listed with wave velocity

C̃Rm in table 4.

loss of stability of smooth stratified flow. The theoretical predictions are for the loss
of stability, which may or may not be to slug flow.

Note also that all the linear theories that neglect viscosity overpredict the observed
stability limit. Wallis & Dobson (1973) note that “. . . as a result of the present
experiments it is our view that the various small wave theories are all inappropriate
for describing ‘slugging.’ Slugging is the result of the rapid development of a large
wave which rides over the underlying liquid and can eventually fill the channel to
form a slug . . . ” They also note that “It was found possible to produce slugs at
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ĥa Vs (cm s−1) C̃Rs (cm s−1) kc (cm−1) λc (cm) Vc (cm s−1) C̃Rc (cm s−1)

0.01 144.0 0.1104
0.1 455.2 0.0100
0.2 643.7 0.0045 2.990 2.101 619.4 0.0012
0.3 788.4 0.0026 3.924 1.601 634.1 0.0011
0.4 910.4 0.0017 4.020 1.563 635.4 0.0011
0.5 1018 0.0011 4.052 1.551 635.5 0.0011
0.6 1115 0.0007 4.052 1.551 635.5 0.0011
0.7 1204 0.0005 4.052 1.551 635.5 0.0011
0.8 1287 0.0003 4.052 1.551 635.5 0.0011
0.9 1366 0.0001 4.052 1.551 635.5 0.0009
0.99 1432 1.1× 10−5 4.052 1.551 635.5 0.0001

Table 3. Typical values of the neutral curves for air–high-viscosity liquid with ρa = 0.0012 g cm−3,
µa = 0.00018 P, ρl = 1.0 g cm−3, µl = 50.0 P, g = 980.0 cm s−2, γ = 60.0 dyn cm−1, H = 2.54 cm;

thus µ̂ = 3.6× 10−6. This corresponds to a high viscosity case in figure 4. (The curves with ĥa = 0.5
through 0.8 take almost the same minimum value at k = kc, though the values at k = 10−3 cm−1

change as Vs = 1018–1287 cm s−1 and C̃Rs = 0.0011–0.0003 cm s−1). (See table 4 for the maximum
growth rate.)

air fluxes less than those predicted” by their empirical formula, j∗ < 0.5α3/2. All this
suggests that we may be looking at something akin to subcritical bifurcation with
multiple solutions and hysteresis.

Turning next to linearized theory Wallis & Dobson (1973) do an inviscid analysis
and state that “. . . if waves are ‘long’ (khL � 1, khG � 1) and surface tension can be
neglected, the predicted instability condition is

(vG − vL)2 > (ρL − ρG) g

(
hG

ρG
+
hL

ρL

)
. (6.1)

If ρG � ρL and υL � υG they may be simplified further to give

ρGυ
2
G > g(ρL − ρG)hG (6.2)

which is the same as

j∗G > α3/2 (6.3)

. . . ” Here α = hG/H and

j∗G =
υGα
√
ρG√

gH(ρL − ρG)
> α3/2.

Their criterion (6.1) is identical to our (4.6) for the long-wave inviscid case µ̂ = ρ̂ and

k̂ → 0. They compare their criterion (6.3) with transition observations that they call
‘slugging’ and note that empirically the stability limit is described well by

j∗G > 0.5α3/2,

rather than (6.3).
In figure 6 we plot j∗ vs. α showing j∗G = α3/2 and 0.5α3/2; we give the results from

our viscous potential flow theory for the inviscid case in table 2 and the air–water
case in table 1 and we show the experimental results presented by Wallis & Dobson
(1973) and Kordyban & Ranov (1970). Our theory fits the data better than Wallis &
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µ̂ V (cm s−1) ĥa km (cm−1) λm (cm) σRm (s−1) C̃Rm (cm s−1)

0.018 1500 0.01 29.90 0.2101 1448 3.044
0.1–0.9 29.66 0.2118 872.5 2.049

0.99 32.13 0.1955 706.2 1.454

900 0.01 15.40 0.408 615.3 3.046
0.1 10.00 0.628 167.7 1.183
0.2 10.24 0.613 164.2 1.175

0.3–0.8 10.24 0.613 164.2 1.174
0.9 10.33 0.609 163.3 1.164
0.99 11.36 0.553 84.66 0.367

0.0012 1500 0.01 26.95 0.233 1340 3.022
0.1–0.9 27.17 0.231 768 1.798

0.99 30.14 0.209 584.7 1.159

900 0.01 14.45 0.435 585.2 3.064
0.1 9.456 0.665 155.1 1.097

0.2–0.7 9.685 0.649 151.0 1.079
0.8 9.763 0.644 151.0 1.079
0.9 9.841 0.638 149.9 1.064
0.99 10.66 0.589 69.59 0.285

3.6× 10−6 1500 0.01 1.821 3.450 295.1 24.55
0.1 0.916 6.861 60.04 4.495
0.2 0.845 7.432 34.43 2.049
0.3 3.087 2.035 21.96 0.086

0.4–0.6 4.4–4.5 1.42–1.40 21.89 0.045–0.04
0.7 4.679 1.343 21.85 0.040
0.8 5.360 1.172 21.61 0.032
0.9 7.743 0.812 20.21 0.017
0.99 20.54 0.306 6.801 0.003

900 0.01 1.323 4.750 145.9 19.64
0.1 0.676 9.297 24.80 3.017
0.2 0.581 10.82 10.48 1.199
0.3 0.984 6.385 4.294 0.135

0.4–0.6 4.02–4.08 1.56–1.51 4.86 0.010
0.7 4.150 1.514 4.840 0.009
0.8 4.460 1.409 4.735 0.008
0.9 5.534 1.135 4.100 0.005
0.99 7.994 0.786 0.741 0.001

Table 4. Wavenumber, wavelength and wave speed for the maximum growth rate (5.1).

Dobson’s (1973) j∗ = α3/2 curve; it still overpredicts the data for small α but fits the
large α data quite well; we have good agreement when the water layer is small.

The predicted wavelength and wave speed in table 1 can be compared with
experiments in principle, but in practice this comparison is obscured by the focus
on the formation of slugs. For example, Wallis & Dobson (1973) remark that “at a
certain minimum air velocity, ripples appeared at the air entry end, and slowly spread
down the channel. These waves were about 2-in. (0.05 m) long and were made up of
long wave crests, with three or four capillary waves riding on the troughs. The long
waves traveled faster than the capillary waves.” The speed of these long waves was
reported by Wallis & Dobson (1973) to be less than 0.3 m s−1 in all cases. Theoretical
results from table 1 show that the wavelength λc increases with the water depth (as in
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Figure 6. j∗ vs. α is for marginal stability of air and water in a frame in which the water velocity
is zero. The heavy line through � = air–water, our result with γ = 60 dynes/cm from table 1; � =

inviscid fluid from table 2. j∗ = α3/2 is the long-wave criterion for an inviscid fluid put forward
by Wallis & Dobson (1973). j∗ = 0.5α3/2 was proposed by them as best fit to the experiments
f1.1 through f1.9 described in their paper. The shaded region is from experiments by Kordyban &
Ranov (1970). Also shown are experimental data in rectangular conduits j∗ vs. 1− h/H = α and in
round pipes j∗ vs. 1− h/D = α (Lin & Hanratty 1986, figure 4).

the experiment) and the wave speed varies from 0.1 m s−1 to 0.04 m s−1. The predicted
spacing of the waves on average is about 1.5 cm s−1. The predicted wavelength and
wave speed from viscous potential flow are apparently in good agreement with the
waves Wallis & Dobson (1973) call capillary waves.

Observations similar to those of Wallis & Dobson (1973) were made by Andritsos,
Williams & Hanratty (1989) who note that for high-viscosity liquid (80 cP) a region
of regular two-dimensional waves barely exists. “The first disturbances observed
with increasing gas velocity are small-amplitude, small-wavelength, rather regular 2D
waves. With a slight increase in gas velocity, these give way to a few large-amplitude
waves with steep fronts and smooth troughs, and with spacing that can vary from a
few centimeters to a meter.”

7. Critical viscosity and density ratios
The most interesting aspect of our potential flow analysis is the surprising im-

portance of the viscosity ratio µ̂ = µa/µl and density ratio ρ̂ = ρa/ρl; when µ̂ = ρ̂
equation (4.2) for marginal stability is identical to the equation for the neutral stability
of an inviscid fluid even though µ̂ = ρ̂ in no way implies that the fluids are inviscid.
Moreover, the critical velocity is a maximum at µ̂ = ρ̂; hence the critical velocity is
smaller for all viscous fluids such that µ̂ 6= ρ̂ and is smaller than the critical velocity
for inviscid fluids. All this may be understood by inspection of figure 4, which shows
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Figure 7. (After Andritsos & Hanratty 1987.) The borders between smooth stratified flow and
disturbed flow observed in experiment for various heights of the liquid and viscosities. The water–air
data are well below the cluster of high-viscosity data that are bunched together.

that µ̂ = ρ̂ is a distinguished value that can be said to divide high-viscosity liquids
with µ̂ < ρ̂ from low-viscosity liquids. The stability limits of high-viscosity liquids can
hardly be distinguished from each other while the critical velocity decreases sharply
for low-viscosity fluids. This result may be framed in terms of the kinematic viscosity
ν = µ/ρ with high viscosities νl > νa. The condition νa = νl can be written as

µl = µa
ρl

ρa
. (7.1)

For air and water

µl = 0.15 P. (7.2)

Hence µl > 0.15 P is a high-viscosity liquid and µl < 0.15 P is a low-viscosity liquid
provided that ρl ≈ 1 g cm−3.

Other authors have noted unusual relations between viscous and inviscid fluids.
Barnea & Taitel (1993) note that “the neutral stability lines obtained from the viscous
Kelvin-Helmholtz analysis and the inviscid analysis are quite different for the case
of low liquid viscosities, whereas they are quite similar for high viscosity, contrary to
what one would expect.” Their analysis starts from a two-fluid model and it leads to
different dispersion relations; they do not obtain the critical condition µ̂ = ρ̂. Earlier,
Andritsos et al. (1989) noted a “surprising result that the inviscid theory becomes
more accurate as the liquid viscosity increases.”

Andritsos & Hanratty (1987) have presented flow regime maps for flows in 2.52 cm
and 9.53 cm pipes for fluids of different viscosity ranging from 1 cP to 80 cP. These
figures present flow boundaries; the boundaries of interest to us are those that separate
‘smooth’ flow from disturbed flow. Liquid holdups (essentially α) are not specified in
these experiments. We extracted the smooth flow boundaries from figures in Andritsos
& Hanratty (1987) and collected them in our figure 7. It appears from this figure that
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the boundaries of smooth flow for all the liquids with µl > 15 cP are close together,
but the boundary for water with µl = 1 cP is much lower. The velocities shown in
these figures are superficial velocities; the average velocities which could be compared
with critical velocities in tables 1, 2 and 3 are larger than the superficial velocities
and are significantly larger than those in the tables.

Even earlier Francis (1951) had observed that though the inviscid prediction of the
KH instability overestimates the onset for air over water, this prediction is in good
agreement with experiments in rectangular ducts when air is above water.

8. Further comparisons with previous results
In practice, interest in the pipelining of gas–liquid flow is in round pipes. All

experiments other than those of Kordyban & Ranov (1970) and Wallis & Dobson
(1973) reviewed in § 6 have been carried out in round pipes. To our knowledge there
is no other theoretical study in which the stability of stratified flow in a round pipe is
studied without approximations. Theoretical studies of stability of stratified flow have
been presented by Wallis (1969), Wu et al. (1987), Barnea (1991), Crowley, Wallis &
Barry (1992), Kordyban & Ranov (1970), Wallis & Dobson (1973), Taitel & Dukler
(1976), Mishima & Ishii (1980), Lin & Hanratty (1986), Andritsos & Hanratty (1987),
Andritsos et al. (1989), Barnea & Taitel (1993). Viscosity is neglected by Kordyban
& Ranov (1970), Wallis & Dobson (1973), Taitel & Dukler (1976) and Mishima &
Ishii (1980). Surface tension is neglected by Wallis (1969), Kordyban & Ranov (1970),
Wallis & Dobson (1973), Taitel & Dukler (1976), Mishima & Ishii (1980) and Lin &
Hanratty (1986). Wallis (1969), Lin & Hanratty (1986), Wu et al. (1987), Barnea (1991),
Crowley et al. (1992) and Barnea & Taitel (1993) use one or other of the forms of
two-fluids equations. In these equations averaged variables are introduced, the actual
geometry is represented only so far as its area and round, elliptical or rectangular
pipes with equal areas are equivalent. The effects of viscosity in these averaged models
are introduced through empirical wall and interfacial fraction correlations. All these
authors neglect the normal component of viscous stress (extensional stresses are
neglected). The approach of Andritsos & Hanratty (1987), Andritsos et al. (1989) is
different: all the main physical effects are represented in an analysis of the plane flow
which is later applied to flow in round pipes. The disturbance equations for the liquid
are solved exactly except that the shear of the basic liquid flow is neglected using a
plug flow assumption. The effects of the gas on the liquid are represented through
empirical correlations and further approximations are required for round pipes.

The viscous analysis of Andritsos & Hanratty (1987) for stability of stratified flow
indicates that the critical velocity increases with increasing viscosity unlike the present
analysis which predicts no such increase when νl > νa. The discrepancy may be due
to the approximations made by Andritsos & Hanratty (1987).

Experiments on the stability of stratified flow have been reported by Kordyban
& Ranov (1970), Wallis & Dobson (1973), Taitel & Dukler (1976), Lin & Hanratty
(1986), Crowley et al. (1992) and Andritsos & Hanratty (1987). The experiments of
Lin & Hanratty (1986) and Andritsos & Hanratty (1987) do not have data giving the
height of the liquid and gas layers. Kordyban & Ranov (1970) and Wallis & Dobson
(1973) did experiments in rectangular ducts, the geometry analysed in this paper, the
other experiments were done in round pipes. Lin & Hanratty (1986), Crowley et al.
(1992) and Andritsos & Hanratty (1987) are the only experimenters to report results
for fluids with different viscosities.

It is difficult to compare the results of experiments in round pipes and rectangular
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channels. The common practice for round pipes is to express results in terms of h/D
where D is the pipe diameter and h is the height of liquid above the bottom of the
pipe; h/H is the liquid fraction in rectangular pipes and α = 1 − h/H is the gas
fraction, but h/D is not the liquid fraction in round pipes and 1− h/D is not the gas
fraction in round pipes. Lin & Hanratty (1986) presented experimental results for thin
liquid films in round pipes giving (their figure 4) h/D vs. j∗; we converted their results
to j∗ vs. 1−h/D and compared them in figure 6 with the results for rectangular pipes.
The experimental results for round pipes are much lower than those for rectangular
pipes. All this points to the necessity of taking care when comparing results between
round and rectangular pipes and interpreting results of analysis for one experiment
to another.

In general we do not expect viscous potential flow analysis to work well in two-
liquid problems; we get good results only when one of the fluids is a gas so that
retarding effects of the second liquid can be neglected. However, the case of Holmboe
waves studied by Pouliquen, Chomaz & Huerre (1994) may have a bearing on the two-
liquid case. These waves appear only near our critical condition of equal kinematic
viscosity. They account for viscosity by replacing the vortex sheet with layers of
constant vorticity across which no-slip conditions and the continuity of shear stress
are enforced for the basic flow but the disturbance is inviscid. They did not consider
the notion that an inviscid analysis is just what would emerge from the condition of
equal kinematic viscosity for viscous potential flow.

9. Nonlinear effects
None of the theories agree with experiments. Attempts to represent the effects of

viscosity are only partial, as in our theory of viscous potential flow, or they require
empirical data on wall and interfacial friction, which are not known exactly and may
be adjusted to fit the data. Some choices for empirical inputs underpredict and others
overpredict the experimental data.

It is widely acknowledged that nonlinear effects at play in the transition from
stratified to slug flow are not well understood. The well-known criterion of Taitel
& Dukler (1976), based on a heuristic adjustment of the linear inviscid long-wave
theory for nonlinear effects, is possibly the most accurate predictor of experiments.
Their criterion replaces j∗ = α3/2 with j∗ = α5/2. We can obtain the same heuristic
adjustment for nonlinear effects on viscous potential flow by multiplying the critical
value of the velocity in table 1 by α. Plots of j∗ = α3/2, j∗ = α5/2 and the heuristic
adjustment of viscous potential flow, together with the experimental values of Wallis
& Dobson (1973) and Kordyban & Ranov (1970) are shown in figure 8. The good
agreement there lacks a convincing foundation.

10. Conclusion
We studied Kelvin–Helmholtz stability of superposed uniform streams in rectan-

gular ducts using viscous potential flow analysis. Viscous potential flows satisfy the
Navier–Stokes equations. Because the no-slip condition cannot be satisfied the effects
of shear stresses are neglected, but the effects of extensional stresses at the interface
on the normal stresses are fully represented. The solution presented is complete and
mathematically rigorous. The effects of shear stresses are neglected at the outset;
after that no empirical inputs are introduced. The main result of the analysis is the
emergence of a critical value of velocity, discussed in § 7. The main consequence of
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Figure 8. Nonlinear effects. The Taitel–Dukler (1976) (TD) correction (multiply by α).
WD denotes Wallis & Dobson (1973).

this result is that for air–liquid systems the critical values of velocity for liquids with
viscosities greater than 15 cP are essentially independent of viscosity and the same as
for an inviscid fluid, but for liquids with viscosities less than 15 cP the stability limits
are much lower. The criterion for stability of stratified flow given by viscous potential
flow analysis is in good agreement with experiments when the liquid layer is thin,
but it overpredicts the data when the liquid layer is thick. Though viscous potential
flow neglects the effects of shear the qualitative prediction of the unusual effects of
liquid viscosity have been obtained by other authors using other methods of analysis
in which shear is not neglected.

A quite accurate predictor of experimental results is given by applying the nonlinear
correction factor to account for the effect of finite-amplitude waves on the results of
viscous potential flow.
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