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Viscoelastic potential flow analysis of capillary instability
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Abstract

Analysis of the linear theory of capillary instability of threads of Maxwell fluids of diameterD is carried out
for the unapproximated normal mode solution and for a solution based on viscoelastic potential flow. The analysis
here extends the analysis of viscous potential flow [Int. J. Multiphase Flow 28 (2002) 1459] to viscoelastic fluids of
Maxwell type. The analysis is framed in dimensionless variables with a velocity scale based on the natural collapse
velocityV = γ /µ (surface tension/liquid viscosity). The collapse is controlled by two dimensionless parameters,
a Reynolds numberJ = VDρ/µ = ργD/µ2 = (Oh)2 whereOh is the Ohnesorge number, and a Deborah number
Λ1 = λ1V/D whereλ1 is the relaxation time. The density ratioρa/ρ andµa/µ are nearly zero and do not have
a significant effect on growth rates. The dispersion relation for viscoelastic potential flow is cubic in the growth
rateσ and it can be solved explicitly and computed without restrictions on the Deborah number. On the other hand,
the iterative procedure used to solve the dispersion relation for fully viscoelastic flow fails to converge at very high
Deborah number. The growth rates in both theories increase with Deborah number at each fixed Reynolds number,
and all theories collapse to inviscid potential flow (IPF) for any fixed Deborah number as the Reynolds number
tends to infinity.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Capillary instability of a liquid cylinder of mean radiusR leading to capillary collapse can be described
as a neckdown due to surface tensionγ in which fluid is ejected from the throat of the neck, leading to a
smaller neck and greater neckdown capillary force as seen inFig. 1.
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Fig. 1. Capillary instability. The forceγ /r forces fluid from the throat, decreasingr leading to collapse.

The dynamical theory of instability of a long cylindrical column of liquid of radiusR under the action
of capillary force was given by Rayleigh[1] following earlier work by Plateau[2] who showed that a
long cylinder of liquid is unstable to disturbances with wavelengths greater than 2πR. Rayleigh showed
that the effect of inertia is such that the wavelengthλ corresponding to the mode of maximum instability
is λ = 4.51× 2R, exceeding very considerably the circumference of the cylinder. The idea that the wave
length associated with fastest growing growth rate would become dominant and be observed in practice
was first put forward by Rayleigh[1]. The analysis of Rayleigh is based on potential flow of an inviscid
liquid neglecting the effect of the outside fluid. (Looking forward, we here note that it is possible and
useful to do an analysis of this problem based on the potential flow of a viscoelastic fluid.)

An attempt to account for viscous effects was made by Rayleigh[3] again neglecting the effect of the
surrounding fluid. One of the effects considered is meant to account for the forward motion of an inviscid
fluid with a resistance proportional to velocity. The effect of viscosity is treated in the special case in
which the viscosity is so great that inertia may be neglected. He shows that the wavelength for maximum
growth is very large, strictly infinite. He says, “. . . long threads do not tend to divide themselves into
drops at mutual distances comparable to with the diameter of the cylinder, but rather to give way by
attenuation at few and distant places.”

Weber[4] extended Rayleigh’s theory by considering an effect of viscosity and that of surrounding
air on the stability of a columnar jet. He showed that viscosity does not alter the value of the cut-off
wavenumber predicted by the inviscid theory and that the influence of the ambient air is not significant if
the forward speed of the jet is small. Indeed the effects of the ambient fluid, which can be liquid or gas,
might be significant in various circumstances. The problem, yet to be considered for liquid jets, is the
superposition of Kelvin–Helmholtz and capillary instability.

Tomotika [5] considered the stability to axisymmetric disturbances of a long cylindrical column of
viscous liquid in another viscous fluid under the supposition that the fluids are not driven to move relative
to one another. He derived the dispersion relation for the fully viscous case (his(33)); he solved it only
under the assumption that the time derivative in the equation of motion can be neglected but the time
derivative in the kinematic condition is taken into account (his(34)). These approximations lead herein
to the asymptotic solution in the limit ofJ → 0.

The effect of viscosity on the stability of a liquid cylinder when the surrounding fluid is neglected and
on a hollow (dynamically passive) cylinder in a viscous liquid was treated briefly by Chandrasekhar[6].
The parameterγRρ/µ2 which can be identified as a Reynolds number based on a velocityγ /µ and the
viscosity of the liquidµ, appears in the dispersion relation derived there.

Eggers[7] has given a comprehensive review of nonlinear dynamics and breakup of free surface flows
of Newtonian fluids. All of the references just mentioned are discussed in the Eggers review.
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Tomotika’s problem was studied by Lee and Flumerfelt[8] without making the approximations used
by Tomotika, focusing on the elucidation of various limiting cases defined in terms of three dimensionless
parameter, a density ratio, a viscosity ratio and the Ohnesorge numberOh = √

ργD/µ = J 1/2.
It is perhaps necessary to call attention to the fact it is neither necessary nor desirable to put the

viscosities to zero when considering potential flows. The Navier–Stokes equations, and the equations
for many models of a viscoelastic fluid, are satisfied by potential flow; the viscous term is identically
zero when the vorticity is zero but the viscous stresses are not zero[9]. It is not possible to satisfy the
no-slip condition at a solid boundary or the continuity of the tangential component of velocity and shear
stress at a fluid–fluid boundary when the velocity is given by a potential. The viscous stresses enter
into the viscous potential flow analysis of free surface problems through the normal stress balance at
the interface. Viscous potential flow analysis gives good approximations to fully viscous flows in cases
where the shears from the gas flow are negligible; the Rayleigh–Plesset bubble is a potential flow which
satisfies the Navier–Stokes equations and all the interface conditions. Joseph et al.[10] constructed a
viscous potential flow analysis of the Rayleigh–Taylor instability which can scarcely be distinguished
from the exact fully viscous analysis. Similar agreements were demonstrated for viscoelastic fluids by
Joseph et al.[11]. In a recent paper, Funada and Joseph[12] analyzed Kelvin–Helmholtz instability of a
plane gas–liquid layer using viscous potential flow.

Funada and Joseph[13] did a viscous potential flow analysis of capillary instability. Results of linearized
analysis based on potential flow of a viscous and inviscid fluid are compared with the unapproximated
normal mode analysis of the linearized Navier–Stokes equations. The growth rates for the inviscid fluid
are largest, the growth rates of the fully viscous problem are smallest and those of viscous potential flow
are between. They found that the results from all three theories converge whenJ is large with reasonable
agreement between viscous potential and fully viscous flow withJ > O(10). The convergence results
apply to two liquids as well as to liquid and gas.

In this paper, we shall extend the results of Funada and Joseph[13] to the case of viscoelastic liquid
filaments of Maxwell type. Joseph et al.[11] have analyzed Rayleigh–Taylor instability of an Oldroyd
fluid using viscoelastic potential flow. They show that the most unstable wave is a sensitive function of
the retardation timeλ2 which fits experiments whenλ2/λ1 = O(10−3). The growth rates for the most
unstable wave are much larger than for the comparable viscous drop, which agrees with the surprising
fact that the breakup times for viscoelastic drops are shorter. They also do an analysis of Rayleigh–Taylor
instability based on viscoelastic potential flow which gives rise to nearly the same dispersion relation as
the unapproximated analysis.

The linear stability analysis of the capillary instability of a viscoelastic fluid has been done by Middle-
man[14] and Goldin et al.[15]. They showed that the growth rates are larger for the viscoelastic fluid.
The analysis done here of viscoelastic potential flow has not been done before.

Chang et al.[16] did a long wave study of the stretching dynamics of bead-string filaments for FENE
and Oldroyd-B fluids which extends the results of Bousfield et al.[17]. They also do a long wave study
of linear stability of the cylinder studied here in the smallJ limit. Strictly speaking, the long wave
equations perturb solutions with infinitely long wavelengths. The wavelength for the maximum growth
rates computed here range from 20πD to a little less than 2πD.

Bousfield et al.[17] did a nonlinear analysis of capillary instability which captures observed features
of the breakup in experiments cited by them better than the linear theory.

A referee of this paper noted that the observed increase of stability of jets with increasing elasticity,
which contradicts the results of the linear stability analysis given here and elsewhere, may possibly be
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explained by linear stability analysis of a stressed filament at rest (see[18] for a simplified analysis). One
difficulty is that a stressed filament at rest is not a permanent solution.

The analysis which is developed in the sections to follow is framed in a general way suitable for an
Oldroyd-B filament in another viscous fluid which is designated with a subscript ‘a’, for air. The linear
theory perturbs a uniform cylinder with capillary forces. It is well known that all small perturbations of
motionless states are governed by the constitutive equation of linear viscoelastic fluids ([19], section 164):[

1 + λ1
∂

∂t

]
τ = µ0

[
1 + λ2

∂

∂t

] [∇	v + (∇	v)T] , (1)

whereτ is the viscous stress tensor,µ0 the viscosity, and 1/2[∇	v+ (∇	v)T] the rate of strain tensor. Here
we have assumed an Oldroyd model so that the parameters of the general linear viscoelastic fluid are
expressed in terms of the model parameters.

2. Linear stability for small disturbances of fully viscoelastic flow

In an undisturbed rest state, the long column of liquid (viscoelastic liquid of densityρ and viscosity
µ) with mean radiusR is put in 0≤ r < R and the fluid ‘a’ (air or gas of densityρa and viscosityµa) is
in R < r < ∞, using cylindrical coordinates(r, θ, z). The normal stress balance is given by

p̄ − p̄a = γ

R
, (2)

wherep̄ is the liquid pressure,̄pa is the gas pressure, andγ denotes the interfacial tension. The stability
problem of this state to small axisymmetric disturbances is solved herein.

In terms of the diameter of columnD, typical timeT , typical velocityU = D/T and typical pressure
p0 = γ /D = ρU2 for whichU = √

γ /(ρD), we have the normalization:

r = Dr̃, z = Dz̃, t = T t̃,

p = p0p̃, ψ = UD2ψ̃, u = Uũ, w = Uw̃, η = Dη̃,

}
(3)

whereψ is the stream function for axisymmetric flow:

u = 1

r

∂ψ

∂z
, w = −1

r

∂ψ

∂r
. (4)

The parameters are given by

! = ρa

ρ
, m = µa

µ0
, J = VDρ

µ0
= ργD

µ2
0

,

Λ1 = λ1V

D
, λ̂1 = Λ1√

J
, Λ2 = λ2V

D
, λ̂2 = Λ2√

J
,




(5)

whereV = γ /µ0 denotes the capillary collapse velocity, andΛ1 is the Deborah number. It is noted thatT

may also be defined asT = D/V which is suitable for smallJ , butT = D/U = (D/V )
√
J is suitable

for largeJ . Hereinafter, dimensionless quantities are used without a tilde.
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For small disturbances, the equations for the liquid are given by

∂u

∂r
+ u

r
+ ∂w

∂z
= 0, (6)

ρ
∂u

∂t
= −∂p

∂r
+ µ̂√

J

(
∇2u − u

r2

)
, ρ

∂w

∂t
= −∂p

∂z
+ µ̂√

J
∇2w, (7)

where the constitutive equation is expressed symbolically as

µ̂ = 1 + λ̂2(∂/∂t)

1 + λ̂1(∂/∂t)
, (8)

and the equations for fluid ‘a’ are given by

∂ua

∂r
+ ua

r
+ ∂wa

∂z
= 0, (9)

!
∂ua

∂t
= −∂pa

∂r
+ m√

J

(
∇2ua − ua

r2

)
, !

∂wa

∂t
= −∂pa

∂z
+ m√

J
∇2wa, (10)

with the Laplacian defined as

∇2 = ∂2

∂r2
+ 1

r

∂

∂r
+ ∂2

∂z2
. (11)

The kinematic condition at the interfacer = R + η ≈ R (R = 1/2) is given for each fluid by

∂η

∂t
= u,

∂η

∂t
= ua, (12)

and the normal stress balance atr ≈ R is given by

p − pa − 2
µ̂√
J

∂u

∂r
+ 2

m√
J

∂ua

∂r
= −

(
∂2η

∂z2
+ η

R2

)
. (13)

The velocity components are continuous across the interface, for which

u = ua, w = wa. (14)

The tangential stress balance at the interface is given by

µ̂√
J

(
∂u

∂z
+ ∂w

∂r

)
= m√

J

(
∂ua

∂z
+ ∂wa

∂r

)
. (15)

The stability problem for the disturbances is given by theEqs. (6)–(10)and the boundary conditions
Eqs. (12)–(15).

The equation of motion gives the pressurep and the equation of vorticity is expressed in terms ofψ :

∂p

∂z
=
(
µ∇2 − ρ

∂

∂t

)
w,

(
D − ρ

µ

∂

∂t

)
Dψ = 0, (16)

with the operator D defined as

Dψ = ∂2ψ

∂r2
− 1

r

∂ψ

∂r
+ ∂2ψ

∂z2
. (17)
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The solutions for small disturbances may take the following form:

ψ = [A1rI1(kr) + A2rI1(kvr)] exp(σ t + ιkz) + c.c., (18)

ψa = [B1rK1(kr) + B2rK1(kar)] exp(σ t + ιkz) + c.c., (19)

η = H exp(σ t + ιkz) + c.c., (20)

where the modified Bessel functions of the first order are denoted byI1 for the first kind andK1 for
the second kind,σ is the complex growth rate andk is the wavenumber. Substitution of(18)–(20) into
(12)–(15) leads to the solvability condition, which is given as the dispersion relation ofσ :∣∣∣∣∣∣∣∣∣∣

I1(kR) I1(kvR) K1(kR) K1(kaR)

kI0(kR) kvI0(kvR) −kK0(kR) −kaK0(kaR)

2µ̂k2I1(kR) µ̂(k2 + k2
v)I1(kvR) 2mk2K1(kR) m(k2 + k2

a)K1(kaR)

F1 F2 F3 F4

∣∣∣∣∣∣∣∣∣∣
= 0, (21)

whereF1–F4 are defined as

F1 = ισ I0(kR) + 2ι
µ̂k2

√
J
I ′

1(kR) −
(

1

R2
− k2

)
ι
k

σ
I1(kR), (22)

F2 = 2ι
µ̂kkv√

J
I ′

1(kvR) −
(

1

R2
− k2

)
ι
k

σ
I1(kvR), (23)

F3 = −ισ!K0(kR) + 2ι
mk2

√
J
K ′

1(kR), (24)

F4 = 2ι
mkka√

J
K ′

1(kaR), (25)

with kv andka given by

kv =
√
k2 +

√
J

µ̂
σ , ka =

√
k2 + !

√
J

m
σ, (26)

and the prime denotes the derivative:I ′
1(kR) = dI1(kR)/d(kR). We note again that̂µ = (1 + λ̂2σ)/(1 +

λ̂1σ). It is noted that(21) with µ̂ = 1 (for λ̂1 = λ̂2 or even for steady caseσ = 0) corresponds to
(normalized) Eq. (33) in the paper of Tomotika[5], while (21) reduces to (normalized) (34) if(21) is
manipulated by assuming both

√
J/µ̂ and!

√
J/m are small. Comparing with a Newtonian fluid of same

viscosity (µ̂ = 1), we find readily that̂µ = (1 + λ̂2σ)/(1 + λ̂1σ) < 1 if 0 ≤ λ̂2 < λ̂1 andσ > 0,
but µ̂ > 1 if 0 ≤ λ̂2 < λ̂1 andσ < 0 within (1 + λ̂1σ) > 0. It may be regarded that the viscoelastic
fluid of µ̂ < 1 has “viscosity” less than the Newtonian. Even for the Oldroyd model, instability arises in
0 < kR < 1; the critical wavenumber is given bykc = R−1 = 2. Then we haveσ = 0 at the critical and
at k = 0. Therefore, the fluid in consideration behaves as a Newtonian fluid of same viscosity near the
stability boundaries, while as a fluid of less “viscosity” inside those, which we concern here of the onset
of instability.
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Table 1
Viscoelastic fluid properties and the parameters (after[10])

2% PAA 2% PO

ρ (g cm−3) 0.99 0.99
µ0 (P) 96.0 350.0
ρa (g cm−3) 1.947× 10−3 1.776× 10−3

µa (P) 1.8 × 10−4 1.8 × 10−4

γ (dyn cm−1) 45.0 63.0
λ1 (s) 0.039 0.21
λ2 (s) 0.0 0.0
V (cm s−1) 0.4688 0.18
U (cm s−1) (T = D/U ) 6.742 7.977
J 4.834× 10−3 5.091× 10−4√
J 0.06953 0.02256

! 1.967× 10−3 1.794× 10−3

m 1.875× 10−6 5.143× 10−7

Λ1 0.01828 0.0378
Λ2 0.0 0.0

For the single column given by! = 0 andm = 0, (21) reduces to∣∣∣∣ 2µ̂k2I1(kR) µ̂
(
k2 + k2

v

)
I1(kvR)

F1 F2

∣∣∣∣ = 0, (27)

which involvesJ ,Λ1 andΛ2. This may approximate(21)well for viscoelastic fluids with small values of
! andm as shown inTable 1. Eq. (27), as well as(21), is to be solved numerically by an implicit iteration
method.

For the viscoelastic potential flow,(21) reduces to∣∣∣∣ I1(kR) K1(kR)

F1 F3

∣∣∣∣ = 0, (28)

which is arranged as

σ(α + !αa) + 2
k2

√
J
(µ̂β + mβa) −

(
1

R2
− k2

)
k

σ
= 0, (29)

with

α = I0(kR)

I1(kR)
, αa = K0(kR)

K1(kR)
, β = I ′

1(kR)

I1(kR)
, βa = −K ′

1(kR)

K1(kR)
. (30)

Arranging then(29) usingµ̂ = (1 + λ̂2σ)/(1 + λ̂1σ), we have the cubic equation ofσ (the dispersion
relation of the viscoelastic potential flow):

Aσ 2(1 + λ̂1σ) + 2
k2

√
J
(B + B1σ)σ + C(1 + λ̂1σ) = 0, (31)
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with

A = (α + !αa), B = β + mβa, B1 = λ̂2β + mλ̂1βa, C = −
(

1

R2
− k2

)
k, (32)

it is easy to have explicit expressions of the solutions of(31).
Whenµ̂ = 1 for which λ̂1 = λ̂2, (31) reduces to the quadratic equation (the dispersion relation of the

viscous potential flow) to give the solutionsσ :

σ = − k2 (β + mβa)√
J (α + !αa)

±
√[

k2 (β + mβa)√
J (α + !αa)

]2

+
(

1

R2
− k2

)
k

(α + !αa)
. (33)

When the viscosity is dominant,σ for instability (with the upper sign in(33)) may be expressed as

σ = 1

2

(
1

R2
− k2

) √
J

k(β + mβa)
, (34)

whereas when the viscosity is negligible,σ may be expressed as

σ =
√(

1

R2
− k2

)
k

(α + !αa)
. (35)

The viscous potential flow analysis includes the inviscid potential flow (IPF)[13].

3. Asymptotic forms in large J , inviscid potential flow

Taking the limitJ → ∞ in the system of equations(6)–(15), we have the equations for inviscid fluids,
which allows, of course, solutions for inviscid potential flow:

σ = ±
√(

1

R2
− k2

)
k

α + !αa
. (36)

For the single column given by! = 0, (36)has the following asymptotic form:

σ = ±
√(

1

R2
− k2

)
k

α
≈ ±

√
k2

2R
= ±k. (37)

Another limiting case needs to be added as inviscid potential flow. Ifλ̂1 is huge but̂λ2 is kept fixed,µ̂
goes to zero. In addition, ifm/

√
J is sufficiently small,(29) reduces to give the solutions(36).

4. Asymptotic forms in small J

Assumingσ
√
J is sufficiently small, manipulating the columns in(21)as was made by Tomotika[5],

we have the dispersion relation for smallσ
√
J :∣∣∣∣∣∣∣∣∣

I1(kR) kRI′1(kR) K1(kR) kRK′
1(kR)

I0(kR) I0(kR) + kRI1(kR) −K0(kR) −K0(kR) + kRK1(kR)

µ̂I1(kR) µ̂kRI0(kR) mK1(kR) −mkRK0(kR)

G1 G2 G3 G4

∣∣∣∣∣∣∣∣∣
= 0, (38)



T. Funada, D.D. Joseph / J. Non-Newtonian Fluid Mech. 111 (2003) 87–105 95

Table 2
Peak values

km σm

PAA
(1) VPF 3.4308758E−01 6.5569461E−02
(2) VPF (Newtonian) 3.4154810E−01 6.4537511E−02
(3) FVF 2.1395718E−01 2.2780113E−02
(4) FVF (Newtonian) 2.1299713E−01 2.2647558E−02
(5) IPF 1.3956612E+00 9.7090853E−01

PO
(1) VPF 2.0271663E−01 2.2830346E−02
(2) VPF (Newtonian) 1.9910257E−01 2.2009961E−02
(3) FVF 1.2360773E−01 7.5584962E−03
(4) FVF (Newtonian) 1.2250093E−01 7.4646936E−03
(5) IPF 1.3956612E+00 9.7092587E−01

VPF: viscoelastic potential flow, FVF: fully viscoelastic flow, and IPF: inviscid potential flow. ‘Newtonian’ means the case for
whichΛ1 = 0.

whereG1–G4 are defined as

G1 = µ̂I ′
1(kR) − (1 − (kR)2)

√
J

2σR

I1(kR)

kR
, (39)

G2 = µ̂[I ′
1(kR) + kRI ′′

1(kR) − I0(kR)] − (1 − (kR)2)

√
J

2σR
I ′

1(kR), (40)

G3 = mK ′
1(kR), (41)

Fig. 2. The growth rateσ vs. k in viscoelastic potential flow (VPF) and fully viscoelastic flow (FVF). PAA as Newtonian and
viscoelastic.
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Fig. 3. The growth rateσ vs. k in viscoelasic potential flow (VPF) and fully viscoelasic flow (FVF). PO as Newtonian and
viscoelastic.

G4 = m[K ′
1(kR) + kRK′′

1(kR) + K0(kR)]. (42)

In this limit J → 0, the inertia terms can be neglected, by which! is not included in(38)–(42). We may
recall that whenµ̂ = 1 (viscous fluid),(38) reduces to Tomotika’s (normalized) (34) which takes the
solution of the formσ = (a function ofk andm)×√

J . Now thatµ̂ = (1 + λ̂2σ)/(1 + λ̂1σ), (38) is the
quadratic equation ofσ , whose expression is long, thus is omitted here.

Fig. 4. PAA: VPFΛ1 = 10−6 to 104. Λ1 is given asΛ1 = 10(n−31)/5 for n = 1,2, . . . ,51, andn is used to label the curves.
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Fig. 5. PO: VPFΛ1 = 10−6 to 104. Λ1 is given asΛ1 = 10(n−31)/5 for n = 1,2, . . . ,51, andn is used to label the curves.

For the single column given bym = 0, (38) reduces to∣∣∣∣∣ µ̂I1(kR) µ̂kRI0(kR)

G1 G2

∣∣∣∣∣ = 0, (43)

which is arranged as the quadratic equation ofσ :

σµ̂ = −
√
J

2R

1 − (kR)2

(kR)2 + 1 − (kR)2α2
≡ f (k). (44)

Fig. 6. PAA: FVFΛ1 = 10−6 to 104. Λ1 is given asΛ1 = 10(n−31)/5 for n = 1,2, . . . ,51, andn is used to label the curves
(curves no. 31–37 are not shown).
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Fig. 7. PO: FVFΛ1 = 10−6 to 104.Λ1 is given asΛ1 = 10(n−31)/5 for n = 1,2, . . . ,51, andn is used to label the curves (curves
no. 31–37 are not shown).

Fig. 8. PAA:Λ1 =1, 5.
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Fig. 9. PO:Λ1 =1, 5.

Solving this, we have

σ = −1 − f λ̂1

2λ̂2

±

√√√√(1 − f λ̂1

2λ̂2

)2

+ f

λ̂2

, (45)

whenλ̂2 �= 0. The solution with the upper sign becomesσ = f (k) if λ̂2 = λ̂1 (viscous fluid). Fork small,
f (k) ≈ √

J/3(1 − (kR)2), which corresponds to Rayleigh’s case[3].
Whenλ̂2 = 0 in (44), we haveσ = f (k)/(1− λ̂1f (k)), which is larger thanf (k) if (1− λ̂1f (k)) > 0;

this growth rate has the larger value than that of the inviscid potential flow.
For the viscoelastic potential flow,(38) reduces to∣∣∣∣∣ I1(kR) K1(kR)

G1 G3

∣∣∣∣∣ = 0, (46)

which is arranged as the quadratic equation ofσ :

2
k2

√
J
(B + B1σ)σ + C(1 + λ̂1σ) = 0. (47)

For the single column given bym = 0 andλ̂2 = 0, (47) reduces to linear equation to give the solutionσ :

σ = −
[

2k2β

C
√
J

+ λ̂1

]−1

. (48)

Whenλ̂1 = 0, we haveσ = √
J at k = 0 (the maximum growth rate in the limitJ → 0 for the viscous

potential flow[13]).
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5. Results

The data on viscoelastic fluids is provided for the diameter of the columnD = 1 cm inTable 1. The
peak values and the associated wavenumber are listed inTable 2, from the growth rate curves inFig. 2for
PAA andFig. 3 for PO. The growth rate and the wavenumber are shown inFigs. 4–7for various values
of Λ1. The comparison of VPF and FVF are shown inFigs. 8 and 9. The growth rates in both theories
increase with Deborah number at each fixed Reynolds number.

The growth rate and the wavenumber are shown inFigs. 10 and 11for changing
√
J , and all theo-

ries collapse to inviscid potential flow for any fixed Deborah number as the Reynolds number tends to
infinity.

Fig. 10. Theσm andkm vs.
√
J for FVF for Λ1 =1.0, 10, 106. The maximum growth rate of IPF is given byσm =0.97099 at

km =1.3957, which is drawn for reference in the figure.
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Fig. 11. Theσm andkm vs.
√
J for VPF forΛ1 =1.0, 10, 106. The maximum growth rate of IPF is given byσm =0.97099 at

km =1.3957, which is drawn for reference in the figure.

6. Conclusions and discussion

The following conclusions arise from our study of the linearized theory of capillary instability of a
viscoelastic filament of Maxwell type in air. For many viscoelastic fluids the final stage of collapse is
controlled by nonlinear effects not considered here.

• Capillary collapse is controlled by two parameters, a Reynolds numberJ = γDρ/µ2 and a Deborah
numberΛ1 = γ λ1/µD. The density ratio! = ρa/ρ and viscosity ratiom = µa/µ are small and have
only a small effect.
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• The dispersion relation for viscoelastic potential flow can be solved forσ and computed for any value
of Λ1.

• The dispersion relation for fully viscoelastic flow (where the shear stress and tangential velocity
conditions are enforced) must be solved by iteration which breaks down at highΛ1.

• Following earlier studies, we found that a disturbance will grow more rapidly on a viscoelastic filament
than on a Newtonian liquid; the growth rates increase withΛ1 at a fixedJ .

• The growth rates for viscoelastic potential flow are several times larger than for fully viscoelastic flow
for each fixedJ whenJ is not large. The dispersion relationσ versusk and the peak valuekm and
σm = σ(km) are not greatly different.

• As in our study[13] of capillary instability of viscous threads, all theories collapse to the inviscid
theory in the limit of largeJ even whenΛ1 is huge. Inertia beats viscoelasticity whenJ → ∞. The
ratioΛ1/J = λ1µ/ρD

2 = E is the elasticity number.Figs. 10 and 11show that inertia beats elasticity
even whenE is rather large.

• The effect of increasing the retardation timeΛ2 (0 ≤ Λ2 ≤ Λ1) is to drive growth to Newtonian values.

Nonlinear studies of capillary instability are frequently framed in terms of extensional flow. Such
studies are particularly popular in the rheology community. Purely extensional flow can be obtained from
a potential; it is a potential flow. Potential flows must be irrotational, but strong effects of viscosity and
viscoelasticity can be represented. Evaluation of the utility of potential flow solutions requires comparison
with exact results. Here and in the other studies of stability reviewed inSection 1we find very accurate
results from viscous and viscoelastic potential flow when the appropriate Reynolds number is not too
large. Even at lowJ , say those forFigs. 2 and 3the discrepancy in the peak values is not greater than
about two and the wave numbers for maximum growth are not greatly different. In general, the peak
values are much closer even for Reynolds numbers in which inviscid potential flow is way off the mark.
In the present case, and in many other cases, the potential flow solution can be done analytically, here
even in cases in which the numerical simulations giving the exact results fail.

The main advantage of the viscous and viscoelastic potential studies is the determination of the con-
ditions under which the flows are very nearly potential flows. This means thatvorticity, not viscosity is
negligible. For example, we could think of ways to connect the vorticity boundary layers on a flat plate
to the potential flow of say glycerin in the free stream. We simplify the analysis using potential flow.

The observed dynamics of collapsing Newtonian and viscoelastic filaments is determined by nonlinear
effects not considered in our linear analysis. Focusing now on the dynamics of thread rupture, in the
Newtonian case, we consider the possibility that the main events prior to rupture are governed by vis-
cous potential flow. The final event is universally, described as a pinch-off and the fundamental physics
governing the rupture of the thread is not considered. A pinch-off is a squeezing flow; the radius of the
jet at the pinch point collapses, squeezing fluid out as the filament collapses. Here one finds a stagnation
point; stagnation point flow is a potential flow and the effects of viscosity in such a flow may be huge,
even more so in the viscoelastic case where extensional flow= stagnation point flow is so important.
Certainly, potential flow of an inviscid fluid is not the right tool here. We can get results in which viscosity
acts strongly using viscous potential flow. The question is not whether viscosity is important, which it is,
but whether vorticity is important.

Chen et al.[20] have studied pinch-off and scaling during drop formation using high-accuracy compu-
tation and ultra-fast high-resolution imaging. They discuss dynamic transition from potential flow with a
2/3 scaling due to Keller and Miksis[21] to an inertial-viscous regime described by Eggers’[22] universal
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solution. They find overturn before breakup in experiments in water (1 cp) well before the dynamic tran-
sition from the potential flow to the inertial-viscous regime. On the other hand, an 85 cp glycerol–water
solution is said to exhibit this transition. The potential flow solutions discussed by Chen et al.[20] are
for inviscid solutions. Of course, water and glycerol are not inviscid. The scaling of Keller and Miksis
[21] which gives rise to the 2/3 power collapse law does not work for viscous potential flow. The spoiler
is their equation (3.3) expressing the normal stress balance. To this equation we must add the viscous
component 2µ∂Un/∂n. The term(∇φ)2 in (3.3) scales likeφ2/L2 whereas the viscous component scales
like φ/L2, so that the similarity transformation does not factor through. Analogies have been put forward
between capillary pinch-off of a viscous fluid thread and van der Waals driven ruptures of a free thin
viscous sheet[23]. The observation that a filament under capillary collapse ruptures in a “pinch-off” does
not come to grips with the physics which leads to a loss of the continuum. One idea is that thread breaks
under the action of disjoining pressures. Unfortunately, a mathematical theory for disjoining pressures
for thin threads is not available.

Another idea is that the high extensional stresses which are generated in the pinch region at rupture
are the cause of the rupture, the rupture may be framed as a stress induced cavitation following ideas
introduced by Joseph[24,25]. Cavitation will occur in pure extension when the extensional stress is large
enough, at high rates of extension.

The idea that threads will break under tension at high rates of extension is particularly interesting for
viscoelastic fluids which can support large extensional stresses. Small bubbles of vapor and gas could
be expected to appear in the solvent of polymeric liquids or polymer melts when the thread enters into
tension. The breaking of polymer strands on a spinline observed by Wagner et al.[26] was framed in
terms of this maximum tension leading to cavitation by Joseph[25]. Wagner et al. claim that the breaking
stress is a pure material constant which in their LDPE and HDPE samples is about 106 Pa, an order of
magnitude larger than atmospheric; the thread is in tension when it breaks.

Lundgren and Joseph[27] analyzed the breakup of a capillary filament assuming extensional flow at
the pinch point(z = r = 0), uz = a(µ, γ, t)z, ur = −(1/2)a(µ, γ, t)r whereγ is surface tension and
µ is viscosity. This is a viscous potential flow with a potential

φ = 1
2az2 − 1

4ar2. (49)

They found that the principal balance is between surface tension producing the neckdown and the viscosity
which resists collapse; that the neck is of parabolic shape and its radius collapses to zero in a finite time.
During the collapse the tensile stress due to viscosity increases in value until at a certain finite radius,
which is about 1�m for water in air, the stress in the throat passes into tension, presumably inducing
cavitation there. The Reynolds numberRe = Rcγρ/ν

2 based on the velocityλ/µ of capillary collapse
whereRc = 1�m is about 55. The solution of Lundgren and Joseph is flawed, it satisfies normal stress
balance only atz = 0 but not elsewhere. However, it should be possible to compute an exact numerical
solution of capillary collapse based on the equations of viscous potential flow in much the same way that
capillary breakup was studied by numerical simulation of the equations for potential flow of an inviscid
fluid by Mansour and Lundgren[28].

The recent literature on capillary collapse is presently dominated by the discovery of self-similar, finite
time singularity formation. These solutions are discussed in the recent papers Chang et al.[16], McKinley
and Tripathi[29], and in the paper of Chen et al.[20]. This literature does not treat the physics of rupture
or breakup by cavitation and does not compute stresses. All of the above mentioned authors find that
capillary radius decreases to zero linearly in time, but the rate of collapse differs from author to author.
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McKinley and Tripathi[29] write the formula

R
(t)

mid = R1 − 2X − 1

6

γ

µ
t, (50)

for the neck radius of the collapsing capillary in the stage of final decay ast increases tot∗ whenR(t∗)
mid = 0.

They give theX obtained by different authors in their Table 1, but without the valueX = 2 obtained by
Lundgren and Joseph[27] for viscous potential flow, who give the fastest decay. Eggers[7,22] obtained
X = 0.5912 and Papageoriou[30] obtainedX = 0.7127. The solutions of the two authors last named
have vorticity; Papageriou’s solution has no inertia. McKinley and Tripathi[29] note that very close to
breakup the solution of Papageriou crosses over to Egger’s similarity solution. Maybe the final breakup
is a non-similarity solution which crosses over from Egger’s solution to rupture.

The solution of Eggers[22] gives rise to a universal scaling law which has been observed for viscous
liquids but not in water (see[20]). The long wave approximation used to derive universal scalings may
prevent it from resolving the dynamics of rupture. The similarity solution of Eggers does not lead to a
cavitation threshold; in his solution the tension due to extension increases but not fast enough to overcome
the compression due to the capillary pressure of the thinning filament.

The criterion for the termination of the continuum is probably not a finite time singularity; the thread
radius does not go to zero. It comes apart before then. The physics of rupture is up for discussion.
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