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Abstract

We carry out an analysis of the stability of a liquid jet into a gas or another liquid using viscous potential
flow. The instability may be driven by Kelvin–Helmholtz KH instability due to a velocity difference and a
neckdown due to capillary instability. Viscous potential flow is the potential flow solution of Navier–Stokes
equations; the viscosity enters at the interface.

KH instability is induced by a discontinuity of velocity at a gas–liquid interface. Such discontinuities
cannot occur in the flow of viscous fluids. However, the effects of viscous extensional stresses can be
obtained from a mathematically consistent analysis of the irrotational motion of a viscous fluid carried
out here. An explicit dispersion relation is derived and analyzed for temporal and convective/absolute
(C/A) instability. We find that for all values of the relevant parameters, there are wavenumbers for which
the liquid jet is temporally unstable. The cut-off wavenumber and wavenumber of maximum growth are
most important; the variation of these quantities with the density and viscosity ratios, the Weber number
and Reynolds is computed and displayed as graphs and asymptotic formulas. The instabilities of a liquid jet
are due to capillary and KH instabilities. We show that KH instability cannot occur in a vacuum but cap-
illary instability can occur in vacuum. We present comprehensive results, based on viscous potential flow, of
the effects of the ambient.

Temporally unstable liquid jet flows can be analyzed for spatial instabilities by C/A theory; they are
either convectively unstable or absolutely unstable depending on the sign of the temporal growth rate
at a singularity of the dispersion relation. The study of such singularities is greatly simplified by the anal-
ysis here which leads to an explicit dispersion relation; an algebraic function of a complex frequency and
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complex wavenumber. Analysis of this function gives rise to an accurate Weber–Reynolds criterion for the
border between absolute and convective instabilities. Some problems of the applicability to physics of C/A
analysis of stability of spatially uniform and nearly uniform flows are discussed.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

It is well known that the Navier–Stokes equations are satisfied by potential flow; the viscous
term is identically zero when the vorticity is zero but the viscous stresses are not zero (Joseph
and Liao, 1994). It is not possible to satisfy the no-slip condition at a solid boundary or the con-
tinuity of the tangential component of velocity and shear stress at a fluid–fluid boundary when the
velocity is given by a potential. The viscous stresses enter into the viscous potential flow analysis
of free surface problems through the normal stress balance at the interface.

Funada and Joseph (2002) constructed a viscous potential flow analysis of capillary instability
of a liquid cylinder which was in excellent agreement with the exact fully viscous analysis. Funada
and Joseph (2001) constructed a viscous potential flow analysis of Kelvin–Helmholtz instability in
a channel. A fully viscous flow analysis is not available because the basic flow which postulates
two uniform streams with different velocities is incompatible with, the requirement that the shear
stress and tangential component of velocity should be continuous and the no-slip conditions at the
channel wall. The analysis of Funada and Joseph (2001) is in much better agreement with exper-
iments reviewed by Mata et al. (2002) than with other theories which account for the shear of the
gas using different empirical correlations.

The excellent and well known book on stability theory by Drazin and Reid (1981) starts with an
analysis of Rayleigh–Taylor, Kelvin–Helmholtz and capillary instability of an inviscid fluid. The
potential flow analyses are not more difficult, but have a much richer content when the viscous
contribution to the normal stress is not put to zero.

This paper is also allied to the analysis of temporal instability of the capillary jet given by
Funada and Joseph (2002). Their analysis generalizes the inviscid analysis of Rayleigh (1878)
in two ways: by accounting (i) for the viscosity of the jet and (ii) for the viscosity and density
of the ambient media. The liquid jet is prey to capillary instability and Kelvin–Helmholtz insta-
bility due to the difference of the velocity of the jet and of the ambient media. The effects of
discontinuous velocity can be obtained by a Galilean transformation to a fixed coordinate system
relative to which the jet is moving with a velocity U. As a practical matter, the transformation
z ! z + Ut transforms disturbances of the form exp[i(kz�xt)] to exp½iðkz� ~xtÞ� where
~x ¼ x � kU . A Kelvin–Helmholtz instability due to velocity discontinuity cannot occur when
the no-slip condition is applied.

In the present work we compute in a coordinate system fixed on the ambient fluid relative to
which the jet velocity is U. We consider temporal, convective and absolute instability. The analysis
of these instabilities is greatly simplified by viscous potential flow which leads to an explicit
dispersion relation D(k,x) = 0, in which the ambient media with viscosity la and density qa is
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fully represented. Moreover, the analysis applies equally to jets into liquid and jet into gas; qa and
la stand for ‘‘air’’ for jets into air and for ‘‘ambient’’ for jets into liquid. This paper is organized so
as to emphasize the case of jets into air which can be compared to the prior literature, which is
reviewed below. The case of jets of viscous liquids into viscous liquids can be analyzed because
viscous potential flow is consistent with a discontinuous velocity across the jet boundary.

The liquid jet is subject to Kelvin–Helmholtz instability due to the discontinuous velocity and
to capillary instability due to surface tension. We show that Kelvin–Helmholtz instabilities cannot
occur in a vacuum. The only other paper to treat the case of combined KH and capillary insta-
bility is that of Lin and Lian (1989) who analyzed the viscous problem using the Navier–Stokes
equations but neglecting the effects of shear from the viscous gas. We call this type of solution
‘‘fully viscous flow (FVF)’’ in Section 10.

Other papers relevant to the stability of the liquid jet neglect viscosity altogether or neglect the
effects of the ambient. Rayleigh�s (1878) study of temporal instability, the study of spatial insta-
bility of Keller et al. (1973), and Leib and Goldstein�s (1986a) study of C/A instability neglect vis-
cosity and the effects of the ambient. Leib and Goldstein (1986b) and Le Dizès (1997) account for
the jet viscosity but neglect the ambient. Many examples of transition from convective to absolute
instability arising in the breakup of sheets and jets are presented in the monograph of Lin (2003).
In particular, Lin has an interesting discussion of the relevance of this transition to the transition
from dripping to jetting under gravity. The comparisons are suggestive but the agreement between
C/A theory and experiments is not definitive.
2. Problem formulation

A long liquid cylinder of density q, viscosity l, and of mean radius a moves with a uniform axial
velocity U relative to an ambient gas (air) of qa, la. With a cylindrical frame (r,h,z) fixed on the
gas, the liquid cylinder is put in the region of 0 6 r < a + g and �1 < z <1, where g = g(z, t) is
the varicose interface displacement. The governing Navier–Stokes equations and interface condi-
tions for disturbances of the cylinder and gas are made dimensionless with the following scales:
½length; velocity; time; pressure� ¼ 2a;U ;
2a
U

;qU 2

� �
: ð2:1Þ
In terms of this normalization, we may define Weber number W, Reynolds number R, density
ratio ‘ and viscosity ratio m:
W ¼ c

q2aU 2
; R ¼ U2a

m
; ‘ ¼ qa

q
; m ¼ la

l
; ð2:2Þ
where c is the surface tension coefficient, m = l/q, ma = la/qa and m/‘ = ma/m.
This problem is a combination of capillary instability and Kelvin–Helmholtz instability. When

W = 0 (c = 0) the instability is generated by the velocity difference. An interesting feature of this
instability is that even though the density and viscosity of the gas is much smaller than the liquid,
the dynamical effects of the gas cannot be neglected. The relevant physical quantity is the kine-
matic viscosity m = l/q; Funada and Joseph (2001) found that the stability limit for viscous
potential flow is nearly independent of the viscosity when m‘ > ma with a sensible dependence when
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m‘ < ma, for small viscosities, the opposite of what intuition would suggest. Essentially the same
result holds for Kelvin–Helmholtz of liquid jet, studied here. The other limit W !1 or U ! 0
leads to capillary instability which was studied using viscous potential flow, by Funada and
Joseph (2002). Our sealing fails when U tends to zero; in the case the scale velocity is c/l which
is the characteristic velocity for capillary collapse and the relevant Reynolds number is J =
qc2a/l2. The basic flow in dimensionless coordinates is (oU/oz,oUa/oz) = (1,0) in terms of the
velocity potential U and Ua.

For the liquid cylinder in a disturbed state (0 6 r < 1/2 + g and �1 < z <1), the velocity
potential / 	 /(r,z, t) of an axisymmetric disturbance satisfies the Laplace equation:
o2

or2
þ 1

r
o

or
þ o2

oz2

� �
/ ¼ 0; ð2:3Þ
and the Bernoulli equation:
o/
ot

þ o/
oz

þ 1

2

o/
or

� �2

þ 1

2

o/
oz

� �2

þ p ¼ f ðtÞ; ð2:4Þ
where p 	 p(r,z, t) is the pressure, and f(t) is an arbitrary function of time t which may be put to
zero. For the gas disturbance of infinite extent (1/2 + g < r <1 and �1 < z <1), the velocity
potential /a 	 /a(r,z, t) satisfies the equations:
o2

or2
þ 1

r
o

or
þ o2

oz2

� �
/a ¼ 0; ð2:5Þ
‘
o/a

ot
þ 1

2

o/a

or

� �2

þ 1

2

o/a

oz

� �2
" #

þ pa ¼ faðtÞ: ð2:6Þ
The kinematic condition at the interface r = 1/2 + g is given for each fluid by
og
ot

þ og
oz

þ o/
oz

og
oz

¼ o/
or

;
og
ot

þ o/a

oz
og
oz

¼ o/a

or
; ð2:7Þ
and the normal stress balance at r = 1/2 + g is given by
p � pa �
1

R
s þ m

R
sa ¼ �W

o
2g
oz2

1þ og
oz

� �2
" #�3=2

� ð1=2þ gÞ�1 1þ og
oz

� �2
" #�1=2

þ 2

8<
:

9=
;;

ð2:8Þ

where the pressures at the interface are expressed by (2.4) and (2.6), and s and sa denote the nor-
mal viscous stresses acting on the interface:
s ¼ 2
o2/
or2

� 2
o2/
oroz

og
oz

þ o2/
oz2

og
oz

� �2
" #

1þ og
oz

� �2
" #�1

; ð2:9Þ
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2 2 2 � �2
" # � �2

" #�1
sa ¼ 2
o /a

or2
� 2

o /a

oroz
og
oz

þ o /a

oz2
og
oz

1þ og
oz

; ð2:10Þ
For a case of the interface displacement small compared with the mean radius, (2.7)–(2.10) may be
expanded around r = 1/2 to give a linear system of boundary conditions for small disturbances.
We do not require the continuity of tangential velocity and shear stress. The other conditions are
that the liquid velocity is finite at the center r = 0, and the gas velocity should vanish as r !1.
3. Dispersion relation

The potentials / and /a are determined by (2.3) and (2.5). At the interface approximated by
r = 1/2, the kinematic conditions are given by
og
ot

þ og
oz

¼ o/
or

;
og
ot

¼ o/a

or
; ð3:1Þ
and the normal stress balance is given by
� o/
ot

þ o/
oz

� �
þ ‘

o/a

ot
� 2

R
o
2/
or2

þ 2m
R

o
2/a

or2
¼ �W

o
2g
oz2

þ 4g

� �
: ð3:2Þ
Thus, we may have the solutions of the form
g ¼ AE þ c:c:; / ¼ A1I0ðkrÞE þ c:c:; /a ¼ A2K0ðkrÞE þ c:c:; ð3:3Þ
where A, A1 and A2 are the complex amplitudes, E 	 exp(ikz � ixt), x 	 xR + ixI denotes the
complex angular frequency, k 	 kR + ikI the complex wavenumber, i ¼

ffiffiffiffiffiffiffi
�1

p
and c.c. stands

for the complex conjugate of the preceding expression; I0(kr) and K0(kr) denote the zeroth order
of modified Bessel functions of the first and second kind. Then / gives the finite velocity at r = 0
and /a gives the velocity which vanishes as r ! 1.

Substitution of (3.3) into (3.1) and (3.2) gives the dispersion relation,
Dðk;xÞ ¼ ðx � kÞ2a þ ‘x2aa þ i
2k2

R
ðx � kÞbþ i

2mk2

R
xba � W ðk3 � 4kÞ ¼ 0
which is a quadratic equation in x
c2x2 þ 2c1x þ c0 ¼ 0 ð3:4Þ
with the coefficients c2 	 c2(k), c1 	 c1(k) and c0 	 c0(k);
c2 ¼ a þ ‘aa; c1 ¼ �ka þ i
k2

R
ðbþ mbaÞ ¼ c1R þ ic1I;

c0 ¼ k2a � i
2k3

R
b� W ðk3 � 4kÞ ¼ c0R þ ic0I;

9>>=
>>; ð3:5Þ



Fig. 1. Functions a, ba, b and aa versus real k; these functions tend to one for k > 10. The neutral curves of inviscid and
viscous potential flow for ‘ = m are identical when k > 10; this will be seen in (4.17). The functions for k > 10 will lead
to the asymptotic forms (4.7), (4.8) and (4.23)–(4.28), (4.28)–(4.30).

1284 T. Funada et al. / International Journal of Multiphase Flow 30 (2004) 1279–1310
where a, aa, b and ba are defined as
a ¼ I0ðk=2Þ
I1ðk=2Þ

; aa ¼
K0ðk=2Þ
K1ðk=2Þ

; b ¼ a � 2

k
; ba ¼ aa þ

2

k
: ð3:6Þ
It is noted for real k that ka ! 4 and aa ! 0 as k ! 0, while a ! 1 and aa ! 1 as k !1; this will
be shown in Fig. 1. Apart from the Bessel functions, (3.4) is a cubic equation in k; numerical cal-
culations show that for each and every fixed set of parameters studied here, (3.4) gives rise to three
complex roots.
4. Temporal instability

For this case k is real and x = xR + ixI. Recalling that W = c/(q2aU2), we obtain pure KH
instability with W = 0, and pure capillary instability with W ! 1. A temporal growth rate curve
is depicted as in Fig. 2, by which the maximum growth rate xIm, the associated wavenumber km

and the cut-off wavenumber kc are defined.

4.1. Inviscid fluids

When the fluids are both inviscid as R !1, (3.4)–(3.6) reduce to
ða þ ‘aaÞx2 � 2kax þ k2a � W ðk3 � 4kÞ ¼ 0: ð4:1Þ

The complex angular frequency x = xR + ixI is given by
xR ¼ ka
a þ ‘aa

; xI ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2‘aaa

ða þ ‘aaÞ2
� W ðk3 � 4kÞ

a þ ‘aa

s
ð4:2Þ



Fig. 2. Example of a growth rate curve defined in Section 4, showing the main features: the shape, maximum, xIm, km

and the cut-off wavenumber kc.
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in the unstable case, and
1 H
infinit
propo
how s
(1990)
xR ¼ ka
a þ ‘aa

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� k2‘aaa

ða þ ‘aaÞ2
þ W ðk3 � 4kÞ

a þ ‘aa

s
; xI ¼ 0; ð4:3Þ
in the stable case. The neutral state is defined by xI = 0; either k = 0 or W = Wc where
W �1
c ¼ a þ ‘aa

‘aaa

k � 4

k

� �� �
k¼kc

: ð4:4Þ
Instability may arise in 0 < k < kc, where the cut-off wavenumber kc (kc P 2 for which W �1
c P 0) is

evaluated by (4.4) for given values of ‘ and Wc. For k large for which a and aa approach 1 (see Fig.
1), (4.4) is approximated as W �1

c ¼ ð‘�1 þ 1Þkc.
The effects of surface tension, leading to capillary instability are absent when W = 0; hence

W = 0 is pure KH instability. Inspection of (4.2) shows that KH instability cannot occur when
‘ = 0; the viscosity and density of the ambient vanish so the KH instability cannot occur in vacuum
(no pressure can be generated in vacuum). Pure KH instability is Hadamard unstable 1 with
growth rate proportional to k; the short waves grow exponentially with k at fixed t. The regular-
izing effect of surface tension is to stabilize short waves with k > kc given by (4.4). The maximum
growth rate
xIm ¼ max
k

xIðkÞ ¼ xIðkmÞ ð4:5Þ
adamard instability is defined differently by different authors. For stability studies the growth rates r(k) goes to
y with k, the growth rates are not bounded for short waves. Say, for example r = k; the disturbance amplitude is
rtional to exp(kt). This is a very bad instability; the amplitude tends to infinity with k for any fixed t no matter
mall k; the more you refine the mesh the worse is the result; they are very unstable to short waves. See Joseph
and Joseph and Saut (1990).
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may be obtained from (4.2) at an interior maximum for which
Fig. 3
(dotte
asymp
oxI=ok ¼ 0: ð4:6Þ

This computation is slightly complicated by that a(k) and aa(k) depend on k weakly. The values
xIm and km depend on W and are plotted in Fig. 3. For large k, a(k) = aa(k) = 1, and we find that
xIm ¼ 2‘
ffiffi
‘

p

3
ffiffiffi
3

p
ð1þ ‘Þ2W

ð4:7Þ
. (a) xIm versus W�1 and (b) km versus W�1, for ‘ = 0 (solid line), 0.0012 (broken line), 0.012 (dashed line), 0.1
d line), 0.3455 (broken dotted line), 0.5 (dash dotted line). For large W�1 and ‘ 5 0, the curves approach the
totic form given respectively by (4.7) and (4.8).
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and
km ¼ 2‘

3ð1þ ‘ÞW : ð4:8Þ
Eqs. (4.7) and (4.8) show that the maximum growth rate and the associated wavenumber tend
to infinity for small W like 1/W; the wavelength km = 2p/km tends to zero with W. Viscosity
regularizes the growth rate but the wave length tends to zero with W as in the inviscid case
(see Fig. 4).

For pure capillary instability with W !1, the neutral boundaries are given by k = 0 and
kc = 2. In this limiting case, we may rescale as x ¼ x̂

ffiffiffiffiffi
W

p
by which (4.1) is expressed as
ða þ ‘aaÞx2 �W ðk3 � 4kÞ ¼ 0 ! ða þ ‘aaÞx̂2 � ðk3 � 4kÞ ¼ 0; ð4:9Þ

so that the solution x̂ is given by
x̂ ¼ x̂R þ ix̂I ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3 � 4k
a þ ‘aa

s
; ð4:10Þ
hence instability ðx̂ ¼ ix̂IÞ may arise in 0 < k < 2. Disturbances with k > 2 are stable and have an
angular frequency x̂ ¼ x̂R. The single column with ‘ = 0 is the case that Rayleigh analyzed in
(1878).

4.2. Viscous fluids

For x = xR + ixI, the quadratic equation (3.4) is separated into the real and imaginary parts
c2ðx2
R � x2

I Þ þ 2ðc1RxR � c1IxIÞ þ c0R ¼ 0; ð4:11Þ
2c2xRxI þ 2ðc1RxI þ c1IxRÞ þ c0I ¼ 0 ! xR ¼ � 2c1RxI þ c0I
2c2xI þ 2c1I

; ð4:12Þ
to give the quartic equation in xI alone:
a4x4
I þ a3x3

I þ a2x2
I þ a1xI þ a0 ¼ 0; ð4:13Þ
with
a4 ¼ c32; a3 ¼ 4c32c1I; a2 ¼ c2c21R þ 5c2c21I � c22c0R;

a1 ¼ 2c21Rc1I þ 2c31I � 2c2c1Ic0R; a0 ¼ c1Rc1Ic0I � c21Ic0R � 1

4
c2c20I:

9=
; ð4:14Þ
4.2.1. Neutral curves
Neutral curves, xI = 0 in (4.13), are generated by the condition a0 = 0:
a0 ¼ � k6

R2
ðm2ab2a þ ‘b2aaÞ þ

k4

R2
ðbþ mbaÞ2W ðk3 � 4kÞ ¼ 0: ð4:15Þ



Fig. 4. (a) xIm versus W�1 (=q2aU2/c) and (b) kc (the upper curves) and km (the lower curves) versus W�1 for R = 100;
the solid curve is for ‘ = 0 and m = 0, the broken line for ‘ = 0.0012 and m = 0, the dashed line for ‘ = 0.0012 and
m = 0.018, the dotted line for ‘ = 0 and m = 0.018. Kelvin–Helmholtz (KH) instability for the liquid jet corresponds to
c ! 0 or W�1 ! 1. The neutral curve is independent of the Reynolds number R. If surface tension and gravity are
zero, KH flows are unstable for all k (see equation (2.27) in Funada and Joseph, 2001). When U ! 0, we get capillary
instability which is unstable to all waves with 0 < k < 2. The interval of unstable wave 0 < k < kc increases as the Weber
number decreases (larger U, smaller c). In general, the neutral curve for viscous potential flow lies above that for
inviscid potential flow with equality for a given k when maba = ‘baa and for large k > 10, when ‘ = m, (m = ma) (see Eqs.
(4.20)–(4.22)). The values km (W�1) for which the growth is maximum depends on R. The maximum growth rates xIm

are finite for W ! 0 but the associated wavenumbers are proportional to 1/W for small W.
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One root of (4.15) is k = 0 and it is the only root when W = 0 (Kelvin–Helmholtz instability). The
other roots are given by
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W �1 ¼ ðbþ mbaÞ2

m2ab2a þ ‘b2aa

k � 4

k

� �
; ð4:16Þ
which has the general form shown in Fig. 4. Eqs. (4.13) and (4.15) show that when ‘ = 0, m = 0,
the only instability is due to capillarity KH instability is not possible in vacuum. An identical con-
clusion for KH instability of stratified gas–liquid flow in a horizontal rectangular channel follows
from Eq. (3.4) in the paper by Funada and Joseph (2001). For large values of k, b, ba, a and aa
tend to 1 and (4.16) reduces to
W �1 ¼ ð1þ mÞ2

m2 þ ‘
k: ð4:17Þ
When ‘ = m (m = ma), this reduces to (‘ + 1)k/‘, which is the same as the inviscid case given by
(4.4).

A striking conclusion which follows from (4.15) and (4.16) is that the cut-off wavenumber
k = kc satisfying (4.16) is independent of the Reynolds number R; when k > kc, the liquid jet is
stable.

A further comparison, (4.16) and (4.4), of inviscid and viscous potential flow shows that the
neutral curves are identical under the condition that maba = ‘baa. Fig. 1 shows that aba = baa
for k > 10; in this case the neutral curves are identical when ‘ = m (or m = ma). It is of interest that
for jets of liquid into air ‘  1 and m  1. In this limit both (4.16) and (4.4) reduce to
W �1 ¼ 1

‘aa

k � 4

k

� �
: ð4:18Þ
This surprising and anti-intuitive result says that the neutral condition for a highly viscous liquid
m ! 0 is the same as for two inviscid fluids provided that ‘ 1.

The ratio (4.16)/(4.4) may be written as
W �1
VPF

W �1
IPF

¼ ðbþ mbaÞ2‘aaa

ðm2ab2a þ ‘b2aaÞða þ ‘aaÞ
ð4:19Þ
where VPF and IPF stand for viscous and inviscid potential flow. For large k > 10, this reduces to
W �1
VPF

W �1
IPF

¼ ð1þ mÞ2‘
ðm2 þ ‘Þð1þ ‘Þ : ð4:20Þ
For m = 0 (the viscosity of the jet is much larger than the ambient)
W �1
VPF

W �1
IPF

¼ 1

1þ ‘
6 1: ð4:21Þ
For m ! 1 (the viscosity of the jet is much smaller than the ambient)
W �1
VPF

W �1
IPF

¼ ‘

1þ ‘
6 1: ð4:22Þ
In general, the neutral curve for viscous potential flow is below (or at least not above) that of
inviscid potential flow.
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For all values of ‘, R and W, there are wavenumbers for which xI > 0; the liquid jet is always
unstable to temporal disturbances in analysis based on viscous potential flow.

4.2.2. Growth rate curves
An example of a growth rate curve is shown as Fig. 2. All of the growth rate curves have this

same form and may be characterized by three parameters: the maximum growth rate xIm and
wavenumber km, xIm = xI(km) and the cut-off wavenumber kc, as shown in Fig. 2. xIm and km

depend on R, but kc is independent of R.
The variation of xIm and km with W�1 is shown in Fig. 4. The effect of viscosity is to regularize

the Hadamard instability, xIm tends to a finite value as W !1 (cf, Figs. 4 and 5). For large val-
ues of W�1, KH instability dominates. The great difference between stability in vacuum
(‘,m) = (0,0) and inviscid gas m = 0, ‘5 0 is apparent for large values of W�1.

For large k (>10) for which a = aa = b = ba = 1, the imaginary part of the dispersion relation
(4.12) gives xR:
xR ¼
kxI þ k3

R

ð1þ ‘ÞxI þ k2

R ð1þ mÞ
¼ k

ð1þ ‘ÞX X þ k2

R
ð‘� mÞ

� �
; ð4:23Þ
where X is defined as
X ¼ ð1þ ‘ÞxI þ
k2

R
ð1þ mÞ: ð4:24Þ
The real part of the dispersion relation (4.11) leads to the quadratic equation of X2:
k2

X 2

k4

R2
ð‘� mÞ2 � X 2 þ 2Y ¼ 0; ð4:25Þ
with
Y ¼ 1

2

k4

R2
ð1þ mÞ2 þ ‘k2 � ð1þ ‘ÞW ðk3 � 4kÞ

� �
; ð4:26Þ
whence the solution to (4.25) is expressed as
X ¼ ð1þ ‘ÞxI þ
k2

R
ð1þ mÞ ¼ Y þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y 2 þ k6

R2
ð‘� mÞ2

s2
4

3
5

1=2

; ð4:27Þ
When ‘ = m, the solution (4.27) reduces to
X ¼ ð1þ ‘ÞxI þ
k2

R
ð1þ mÞ ¼

ffiffiffiffiffiffi
2Y

p
: ð4:28Þ
When R !1, the solution (4.27) reduces to the inviscid case:
X ¼ ð1þ ‘ÞxI ¼ ‘k2 � ð1þ ‘ÞW ðk3 � 4kÞ
� �1=2

: ð4:29Þ
The solution (4.27) is available to have the maximum growth rate and the cut-off wavenumber
when those exist in large k under the condition that ‘ 5 0 or m 5 0, for which W�1 is large.



Fig. 5. (a) xIm versus W�1 and (b) km versus W�1 for R = 100, m = 0 and various ‘; ‘ = 0 (solid line), 0.0012 (broken
line), 0.012 (dashed line), 0.1 (dotted line), 0.5 (broken dotted line), 1 (dash dotted line). For large W�1 and ‘ 5 0, the
curves approach the asymptotic form given by (4.30).
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The extremum value of xI is given by differentiating (4.27) and imposing oxI/ok = 0 at k = km:
xIm ¼ � k2m
R

ð1þ mÞ
ð1þ ‘Þ þ R=ð1þ mÞ

4kmð1þ ‘Þ
oY
ok

þ Y
oY
ok

þ 3k5

R2
ð‘� mÞ2

� �
Y 2 þ k6

R2
ð‘� mÞ2

� ��1=2
( )

k¼km

:

ð4:30Þ

The expression for km is rather cumbersome; it shows that km / 1/W for small W even though
xI(km) is bounded as W ! 0 (Figs. 4 and 5). It follows that the wave length km = 2p/km tends
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to zero with W. If this KH disturbance leads to breakup, we would find small liquid fragments
even to fine mist.

4.3. Nonaxisymmetric disturbances

The authors of papers on spatial, temporal and C/A theory cited at the end of Section 1 restrict
the attention to axisymmetric disturbances. Yang (1992) studied the stability of an inviscid liquid
jet to axisymmetric and nonaxisymmetric temporal disturbances. He found wavenumber ranges
Fig. 6. (a) xIm versus W�1 and (b) km versus W1 for R = 100, and m = 0; ‘ = 0.012 and n = 0 (solid line), ‘ = 0.012 and
n = 1 (broken line), ‘ = 0.5 and n = 0 (solid line), ‘ = 0.5 and n = 1 (broken line).
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for which the nonaxisymmetric disturbances grow faster, but the greatest peak values of xI(km)
are for axisymmetric disturbances. A preliminary study of axisymmetric disturbances propor-
tional to exp(inh) with n = 0 and asymmetric disturbances with n > 0, especially with n = 1 yielded
results similar to those found by Yang (1992) for the inviscid jet. The peak growth rates are always
attained for n = 0 in flows with capillary numbers W larger than small value, say 1/10; for KH
instability W ! 1, the peak values for n = 0 and n = 1 are nearly identical (see Fig. 6).

Li and Kelly (1992) did an analysis of an inviscid liquid jet in a compressible high speed air-
stream. They found that n = 1 is the most dangerous mode when the Mach number is near to
one. The case of nonaxisymmetric disturbances needs further study.
5. Numerical results of temporal instability

Here we present neutral curves and growth rates for the stability of viscous liquids into air com-
paring viscous potential flow (VPF) with inviscid potential flow (IPF).

Using the data of Funada and Joseph (2002), various liquid–gas cases are shown in Table 1.
The parameters of the growth rate curves for the 10 cases are defined in Fig. 2 and given in Table
2 for typical values of U. The neutral curves W�1(k) for all 10 cases start at k = 2. For large k
(>10), they may be computed exactly from (4.17) and compared with inviscid potential flow using
(4.20). The differences between viscous and inviscid potential flow vanish for k > 10 when ma-
ba = ‘baa and for all k when qa  q, la  l when l is very large, as shown previously.
6. Spatial, absolute and convective instability

The motivation for considering spatial instability of a liquid jet was very clearly expressed by
Keller et al. (1973) who noted that the disturbance initiating from the nozzle tip actually grows in
space as it is swept downstream, where it is observed to break into drops, leaving a section of jet
intact near the nozzle tip as would occur for a disturbance that is convectively unstable. Such dis-
turbances proportional to exp(ikz � ixt) can be described by allowing k to be complex and x real
Table 1
Data of various liquid–gas cases

No. Liquid Cylinder–gas ‘ = qa/q m = la/l m/‘ = ma/m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c=ðq2aÞ

p
(m/s)

1 Mercury–air 8.889E�05 1.154E�02 1.298E+02 5.976E�02
2 Water–air 1.200E�03 1.800E�02 1.500E+01 8.532E�02
3 Benzene–air 1.395E�03 2.769E�02 1.985E+01 5.793E�02
4 SO100–air 1.238E�03 1.800E�04 1.454E�01 4.655E�02
5 Glycerine–air 9.547E�04 2.302E�05 2.411E�02 7.102E�02
6 Oil–air 1.478E�03 3.830E�05 2.592E�02 5.984E�02
7 SO10000–air 1.238E�03 1.800E�06 1.454E�03 4.655E�02
8 SO10–air 1.238E�03 1.800E�03 1.454E+00 4.655E�02
9 Silicon oil-nitrogen 1.345E�03 8.750E�04 6.508E�01 4.697E�02
10 Silicon oil-nitrogen 1.326E�03 1.750E�03 1.319E+00 4.620E�02



Table 2
Parameters of the growth rate curves identified in Fig. 2 for the 10 cases of liquid–gas flow in Table 1

No. U (m/s) W W�1 R xVPF
Im kVPFm kVPFc xVPF

Im kIPFm kIPFc

1 0.02 8.928 0.112 0.17308E+04 0.9709 1.394 2.000 0.9711 1.394 2.000
0.06 0.992 1.008 0.51923E+04 0.9709 1.394 2.000 0.9711 1.394 2.000
0.10 0.357 2.800 0.86538E+04 0.9709 1.394 2.000 0.9712 1.394 2.000

2 0.02 18.200 0.055 0.20000E+03 0.9698 1.393 2.000 0.9710 1.394 2.000
0.06 2.022 0.495 0.60000E+03 0.9699 1.393 2.000 0.9711 1.394 2.000
0.10 0.728 1.374 0.10000E+04 0.9701 1.394 2.000 0.9713 1.394 2.000

3 0.02 8.390 0.119 0.26462E+03 0.9696 1.393 2.000 0.9710 1.394 2.000
0.06 0.932 1.073 0.79385E+03 0.9699 1.394 2.000 0.9713 1.394 2.000
0.10 0.336 2.980 0.13231E+04 0.9704 1.394 2.001 0.9718 1.395 2.001

4 0.02 5.418 0.185 0.19380E+01 0.7890 1.244 2.000 0.9710 1.394 2.000
0.06 0.602 1.661 0.58140E+01 0.7893 1.244 2.000 0.9714 1.395 2.000
0.10 0.217 4.614 0.96900E+01 0.7898 1.245 2.001 0.9722 1.396 2.001

5 0.02 12.609 0.079 0.32148E+00 0.5138 0.988 2.000 0.9710 1.394 2.000
0.06 1.401 0.714 0.96445E+00 0.5139 0.988 2.000 0.9712 1.394 2.000
0.10 0.504 1.983 0.16074E+01 0.5140 0.988 2.000 0.9714 1.395 2.000

6 0.02 8.951 0.112 0.36431E+00 0.5028 0.977 2.000 0.9710 1.395 2.000
0.06 0.995 1.005 0.10929E+01 0.5029 0.977 2.000 0.9713 1.395 2.000
0.10 0.358 2.793 0.18215E+01 0.5031 0.977 2.001 0.9718 1.396 2.001

7 0.02 5.418 0.185 0.19380E�01 0.0430 0.278 2.000 0.9710 1.394 2.000
0.06 0.602 1.661 0.58140E�01 0.0430 0.279 2.000 0.9714 1.395 2.000
0.10 0.217 4.614 0.96900E�01 0.0430 0.278 2.002 0.9722 1.396 2.001

8 0.02 5.418 0.185 0.19380E+02 0.9488 1.376 2.000 0.9710 1.394 2.000
0.06 0.602 1.661 0.58140E+02 0.9492 1.377 2.000 0.9714 1.395 2.000
0.10 0.217 4.614 0.96900E+02 0.9499 1.378 2.002 0.9722 1.396 2.001

9 0.02 5.515 0.181 0.95200E+01 0.9273 1.359 2.000 0.9710 1.394 2.000
0.06 0.613 1.632 0.28560E+02 0.9277 1.359 2.000 0.9714 1.395 2.000
0.10 0.221 4.533 0.47600E+02 0.9284 1.361 2.002 0.9722 1.396 2.002

10 0.02 5.337 0.187 0.19300E+02 0.9485 1.376 2.000 0.9710 1.394 2.000
0.06 0.593 1.686 0.57900E+02 0.9489 1.377 2.000 0.9714 1.395 2.000
0.10 0.213 4.684 0.96500E+02 0.9497 1.378 2.002 0.9723 1.396 2.002

Viscous (VPF) and (IPF) are compared.
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so that disturbances can grow in space but not in time. They found that Rayleigh�s results are rel-
evant only when the Weber number W = c/(q2aU2) is small and the spatial growth rate kI is re-
lated to the temporal growth rate xI by the relation kI = ±xI + O(W), while the disturbance
travels at the jet velocity. For large values of W, they found a new mode of faster growing distur-
bances whose wavelengths are perhaps too long to be observable.

Leib and Goldstein (1986b) showed that the new mode corresponds to an absolute instability
which arises from a pinch point singularity in the dispersion relation. An absolutely unstable wave
packet propagates upstream and downstream and hence such disturbances spread over the whole
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z domain of flow; the flow is unstable at any z, as t increases. This is not the picture advanced by
Keller et al. (1973) in which the region close to the discharge is never corrupted by growing
disturbances.

One of the aims of the theory of absolute and convective instability is to provide a frame for the
problem of spatial development of disturbances. The spatial development of controlled distur-
bances such as are generated by a vibrating ribbon at the start of a growing boundary layer or
at the inlet of a plane Poiseuille flow calculated from spatial theory yielded good results with
experiments in which disturbances were suppressed. However the spatial theory has no rigorous
foundation; for example, a spatial mode, when it can be defined, is inadmissible when it is un-
bounded at infinity, though it may describe the spatial evolution of disturbances of a given fre-
quency for a long time (see Drazin and Reid, 1981 section 32 for experiments; section 47.1 for
theoretical problems).

To deal with the problem of propagation of impulses, the concept of convective and absolutely
unstable solutions (C/A for short) has been introduced. The definitions of instability in the C/A
context is formulated in terms of the evolution of impulses at the origin in the (x, t) plane propor-
tional initially to the product d(x)d(t). A flow is called linearly stable if this disturbance decays to
zero along all rays x/t = const. It is linearly unstable if the impulse tends to infinity along at least
one ray x/t = const. An unstable flow is linearly convectively unstable if the impulse tends to zero
along the ray x/t = 0 and is absolutely unstable if the impulse tends to infinity along the ray x/
t = 0. Obviously an absolutely unstable impulse is linearly unstable.

A cartoon for wave packets propagating from the origin in these four cases is shown in Fig. 7.
The C/A concepts are not straightforward and need explanation. Huerre (2000) notes that
Fig. 7
conve
a resp
unstab
unstab
A parallel shear flow of given velocity profile is said to be convectively unstable if the growing
wavepacket produced in response to an impulsive source localized in space and time is
advected away. It is absolutely unstable if the growing wavepacket expands around the source
to contaminate the entire medium. In the case of parallel flows that are invariant under
Galilean transformations, this distinction appears at first sight to be preposterous: a simple
change of reference frame transforms a flow from convectively unstable to absolutely unsta-
ble and vice versa, and the �laboratory frame� is not properly defined. However, when
Galilean invariance is broken, e.g. in spatially developing flows, in flows with a definite
origin, or in flows forced at a specific streamwise station, the laboratory frame is singled
. Linear impulse response. (a) Linearly stable flow; (b) linearly convectively unstable flow; (c) marginally
ctively/absolutely unstable flow; (d) absolutely unstable flow (after Huerre, 2000, Fig. 8). The pictures here are for
onse to a linear impulses; stability cannot be determined from the evolution of impulses alone. Convectively
le flows in (b) are also temporally unstable; at any x, real wavenumbers exist for which disturbances outside the
le wedge in (b) will grow.
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out and it is precisely in these instances that the distinction between convective and absolute
instability becomes of interest. It should be emphasized that, in order for these concepts to be
relevant, one must enforce a scale-separation assumption: the flow under consideration must
be slowly evolving along the stream over a typical instability wavelength. This strong
hypothesis is made throughout the ensuing theoretical developments in order to recover
the locally parallel flow instability properties as a leading-order approximation at each
streamwise station.
Parallel flows which are temporally stable are also stable in the C/A theory. Temporally unsta-
ble flows can be absolutely or convectively unstable. Disturbances from a source, like a vibrating
ribbon, can propagate without corrupting the source, only if the flow is convectively unstable and
only if random disturbances at fixed points which are temporally unstable are suppressed.

In this paper we follow others in considering the open basic flow which has no spatial variation
in the axial direction which is Galilean invariant. The point of novelty of our analyses is that the
stability analysis is carried out using the equations of viscous potential flow which allow a discon-
tinuous velocity at the jet surface but accommodates effects of viscosity, viscosity ratios, density
ratios, etc. but still leads to an explicit dispersion relation.

Huerre and Monkewitz (1985) point out that the spatial stability theory is applicable when the
flow is convectively unstable and not when the flow is absolutely unstable. They describe a meth-
odology based on Bers (1975) criterion, to determine when a free shear layer is convectively unsta-
ble. Their problem is difficult and does not give rise to an explicit dispersion; numerical
computations are required. The search for the border between absolute and convective instability
is a function of prescribed parameters and requires knowledge of the dispersion relation for com-
plex frequencies and wavenumbers. This search is greatly simplified in the case of the stability of
the liquid jet based on viscous potential flow because the search for singularities of the dispersion
relation is reduced to the study of algebraic equations of two complex variables.

We use the criterion of Bers (1975) which says that an unstable flow is convectively unstable if
the modes proportional to exp(ikz � ixt) of complex frequency x and k, which have a zero group
velocity
GV ¼ oxR=okR ¼ 0; ð6:1Þ

are all temporally damped, xI < 0. Otherwise the system is absolutely unstable. If xR does not
change with kR and xI < 0, then a disturbance with excitation frequency xR will decay in time
but can grow in space. On the other hand, we do not use the method of Briggs (1964) and Bers
(1975). Instead, we implement an algebraic study of the dispersion relation.

Following Schmid and Henningson (2001), we may characterize the singularities of D(k,x) at
k0, x0 by the equation
Dðk0;x0Þ ¼ 0;
oD
ok

ðk0;x0Þ ¼ 0;
o2D

ok2
ðk0;x0Þ 6¼ 0: ð6:2Þ
In the neighborhood of k0, x0 a Taylor series expansion of D(k,x) leads to
0 ¼ oD
ox

����
0

ðx � x0Þ þ
1

2

o2D

ok2

����
0

ðk � k0Þ2 þ HO ð6:3Þ
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where HO are terms that go to zero faster than the terms retained. This results in a square root
singularity for the local map between the k and x planes.

If we imagine D(k,x) = 0 to be solved for x = x(k), then D(k,x(k)) = 0 is an identity in k
and
0 ¼ dD
dk

¼ oD
ok

þ ox
ok

oD
ox

ð6:4Þ
and
ĉ 	 ox
ok

¼ � oD
ok

�
oD
ox

¼ ĉR þ iĉI ð6:5Þ
can be said to be a complex-valued ‘‘generalized’’ group velocity which must be zero at the sin-
gularity. This is not the ordinary group velocity. If oD/ox 5 0, and it is not equal to zero in this
study, then
ĉ ¼ ox
ok

¼ 0 when
oD
ok

¼ 0: ð6:6Þ
Moreover,
ox
ok

¼ 1

2

oxR

okR
þ oxI

okI

� �
þ i

2

oxI

okR
� oxR

okI

� �
ð6:7Þ
and ĉ ¼ 0 does not imply that the group velocity GV = oxR/okR = 0. However, since the Cauchy–
Riemann condition for a function x(k) holds, then ox=o�k ¼ 0 and
oxR

okR
¼ oxI

okI
;

oxI

okR
¼ � oxR

okI
: ð6:8Þ
Hence, if (6.6) holds, then (6.8) implies that
GV ¼ oxR

okR
¼ oxI

okI
¼ 0 and

oxR

okI
¼ � oxI

okR
¼ 0: ð6:9Þ
7. Algebraic equations at a singular point

A singular point satisfies (6.2); alternatively, D ¼ ĉ ¼ 0. These are complex equations, four real
equations for kR, kI, xR and xI when the other parameters are prescribed. If xI < 0 at a singular
point the flow is convectively unstable. A critical singular point is a singular point such that xI = 0.

For given values of the parameters (‘, W, R and m = 0), the solution k = kR + ikI
(x(k) = xR + ixI) of the dispersion relation (3.4)–(3.6) is obtained implicitly. Eq. (3.4) is a quad-
ratic in x and has two roots, x1 and x2:
x1 ¼ � c1
c2

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1
c2

� �2

� c0
c2

s
; x2 	 x ¼ � c1

c2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1
c2

� �2

� c0
c2

s
; ð7:1Þ
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where c0, c1 and c2 are defined in (3.5). The second root can be singular, thus here and henceforth,
we drop the subscript 2 to simplify notation. A singular point (k,x) = (k0,x0) can now be defined
relative to x
x0 ¼ xðk0Þ; xðkÞ ¼ x0 þ
ox
ok

����
0

ðk � k0Þ þ
1

2

o
2x

ok2

����
0

ðk � k0Þ2 þ � � � : ð7:2Þ
If
ox
ok

����
0

¼ 0 at k ¼ k0 and
o2x

ok2

����
0

6¼ 0 at k ¼ k0; ð7:3Þ
a pinch in the k plane is a square root branch point in the x plane. We identify k0 as the roots of
ox
ok

ðk0Þ ¼ 0; ðk � k0Þ2 ¼ ðx � x0Þ
1

2

o2x

ok2

����
0

� �
:

�
ð7:4Þ
The critical singular point satisfies (7.3) and xI = 0.
Our solution procedure is as follows: the root x = xR + ixI, where xR 	 xR(kR,kI) and

xI 	 xI(kR,kI), could be inverted implicitly for
kR ¼ kRðxR;xIÞ; kI ¼ kIðxR;xIÞ: ð7:5Þ

The singular point is determined from the condition (7.3). The solutions must be implicit because
of the Bessel function. The two real equations in (7.4) may be solved for kR and kI.

To seek a singular point k0 at which ĉ ¼ dx=dk ¼ 0, the computation is made by means of
Newton�s method
ĉðkÞ � ĉðksÞ ¼
dĉ
dk

� �
s

ðk � ksÞ; ð7:6Þ
where ks is a starting value which may be close to the singular point k0. Since the solution k0 is to
satisfy ĉðk0Þ ¼ 0, we may rewrite (7.6) as the following iteration algorithm:
k ¼ ks � ĉðksÞ
dĉ
dk

� �
s

�
: ð7:7Þ
For given ks, the right-hand side of this is calculated to give a next approximate solution k. The
iteration is repeated until jk�ksj < � (� < 10�6) or until the iteration is made over 30 times. The
solution k0 also gives x(k0), then we can find the critical singular point when xI = 0.
8. Subcritical, critical and supercritical singular points

The formation and properties of singular points is similar for all cases. Here we shall look at
some typical cases for the formation of pinch points in the (kR,kI) plane and cusp points in the

(xR,xI) plane. We use the Weber number parameter b ¼ q2aU2

c ¼ W �1 where W is the Weber num-
ber defined in (2.2).
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First we fix the parameters (‘,R,m) = (0,100,0) and plot lines of constant xI and xR in the kR,
kI plane in the subcritical (b = 4.934, Fig. 8), critical (b = 5.134, Fig. 9) and supercritical
(b = 5.334, Fig. 10) case. The cusp singularity, with xI < 0 at the cusp point is shown in Fig.
11. The pinch point in the subcritical case is in the region xI > 0; this is in the region of absolute
Fig. 8. kI versus kR for ‘ = 0, R = 100, b = 4.934, and m = 0. Eq. (3.4) gives rise to three complex roots k for each
prescribed set of parameters; for each of the three k�s there is one value of xI whose sign is marked on the figure. The
value b = 4.934 < bc = 5.134 is subcritical. The singular point D = 0 and ĉ ¼ 0 (or c = oxR/okR = 0) has xI > 0 in the
subcritical case and the flow is absolutely unstable; this point is not shown but the points (d) that will merge into a
pinch point (d) in Fig. 9 are identified. The solid curves are given by D = 0 and xI = 0. The dashed curves are for D = 0,
xR = 1.7178 and xI P 0.

Fig. 9. kI versus kR for ‘ = 0, R = 100, m = 0, and b = bc = 5.134 is critical and identified by (d). At this point D = 0,
ĉ ¼ 0, (xR,xI) = (1.7304,0) and (kR,kI) = (2.392,�0.496). The dashed curve D = 0 and xR = 1.7304 passes through the
critical point and has xI 6 0.



Fig. 10. kI versus kR for ‘ = 0, R = 100, m = 0, and b = 5.334 > bc is supercritical. The singular point is shown as a dot
(d) and xI < 0 there. On dashed curves xR = 1.743.

Fig. 11. Cusp point (xR,xI) = (1.7304,0). xI versus xR for ‘ = 0, b = 5.134, R = 100 and m = 0; the solid curves are
for D = 0 and ĉ ¼ 0, which passes through the pinch point (kR,kI) = (2.392,�0.496) in the (kR,kI) plane (see Fig. 9).
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instability. The pinch point in the supercritical case is in the region xI < 0; this is in the region of
convective instability.

We draw the reader�s attention to the fact the curves kI(kR) on which xR = const typically pass
through regions in which xI is positive and negative. The only curves for which
xðkR; kIðkRÞÞ ¼ const ð8:1Þ

that lie entirely in regions in which xI is of one sign pass through the pinch point. In the super-
critical case shown in Fig. 10, xR = 1.743 is the only frequency for xI < 0 for all kR. Of course, we
may interpret xR as an excitation frequency.
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Huerre and Monkewitz (1985) have described the evolution of a wave packet from an impulsive
source in the convectively unstable case. They note that

. . . among all the wavenumbers contained in the impulsive source, the flow selects, along each
ray x/t = const one particular complex wavenumber k* given by
dx
dk

ðk�Þ ¼ x
t
: ð8:2Þ
The group velocity then is real and the temporal amplification rate of the wave reduces to
r ¼ xIðk�Þ � k�I ðdx=dkÞðk�Þ: ð8:3Þ
The growth function then becomes
expð�k�Ixþ xItÞ ¼ expðxI � k�I ðdx=dkÞÞt: ð8:4Þ
Using (6.7) and (6.8), we find that the real part of the group velocity is
ox
ok

ðk�Þ ¼ oxR

okR
: ð8:5Þ
Focusing now on the lines xR(kR,kI(kR)) = const in the k plane (Figs. 8–10) we find that
dxR

dkR
ðkR; kIðkRÞÞ ¼

oxR

okR
þ oxR

okI

dkI
dkR

¼ oxR

okR
¼ 0: ð8:6Þ
The only curve xR = const which has xI 6 0 for all kR > 0 is the one which passes through the
pinch point. The harmonic content of the impulsive source produced by this frequency is not re-
stricted. In general the harmonic content of impulsive sources that are convectively unstable de-
pend on the frequency xR of the excitation.

In the sequel we will describe singular points as points at which the group velocity GV = oxR/
okR = 0. This is a shorthand for the condition D = 0 and ĉ ¼ 0 which is four equations for kR, kI,
xR and xI. All of the graphs shown in the figures to follow satisfy the dispersion relation D = 0.
We have shown in Section 6 that the condition ĉ ¼ 0 implies that GV = 0. This leads to the con-
dition of Bers (1975) a flow is convectively unstable when xI < 0 and when GV = 0.

The qualitative properties of singularities are the same in all cases. At a critical singular point
xI = 0. The values of parameters at critical singular points are given for R = 100, 200 and 2000
(Table 3) for three or different values of m and 0 6 ‘ 6 0.4. We found that when m = 0, so that
the ambient viscosity is zero, one and only one critical b is found for given values of R and ‘.
When the ambient viscosity is finite (m = 0.5, 1) two critical values are found, but only one is spa-
tially unstable kI < 0.

The inviscid case R ! 1 is degenerate and will be treated in Section 9.
Figs. 8–10 look at the (kR,kI) plane in the subcritical, critical and supercritical cases for

(‘,R,m) = (0,100,0). In these figures we plot curves in the kI versus kR which arise from the real
and imaginary part of the dispersion relation D(kR + ikI, xR + ixI) = 0 when xR or xI is fixed.
The singular points are points on the curves which satisfy (6.6). The point in (xR,xI) plane at cri-
ticality is shown in Fig. 11. These graphs are representative for all the nondegenerate cases R <1.
The explanations of the figures are given in the captions.



Table 3
Critical values of b = bc(‘,R,m) at a generic singular point ðD ¼ 0; ĉ ¼ 0Þ
R m ‘ bc kR kI xR

100 0 0.00 5.134 2.392 �0.496 1.730
0.08 5.714 2.550 �0.565 1.823
0.16 6.495 2.762 �0.668 1.945
0.24 7.596 3.065 �0.834 2.116
0.32 9.192 3.510 �1.127 2.360
0.40 11.358 4.139 �1.643 2.689

1 0.00 13.690 5.899 �1.024 2.585
0.08 15.296 6.377 �1.340 2.832
0.16 17.452 7.004 �1.830 3.158
0.24 20.396 7.837 �2.590 3.589
0.32 24.320 8.889 �3.692 4.135
0.40 29.182 10.044 �5.129 4.760

0.5 0.00 7.206 3.225 �0.309 1.882
0.08 8.158 3.478 �0.424 2.026
0.16 9.484 3.840 �0.630 2.226
0.24 11.352 4.374 �1.010 2.508
0.32 13.814 5.129 �1.647 2.879
0.40 16.664 6.058 �2.505 3.308

200 0 0.00 5.493 2.454 �0.403 1.759
0.08 6.198 2.646 �0.467 1.868
0.16 7.193 2.920 �0.569 2.020
0.24 8.696 3.350 �0.753 2.249
0.32 11.042 4.074 �1.126 2.612
0.40 14.276 5.203 �1.804 3.131

1 0.00 13.638 6.046 �0.534 2.612
0.08 15.306 6.606 �0.716 2.885
0.16 17.720 7.411 �1.036 3.279
0.24 21.594 8.698 �1.679 3.906
0.32 28.344 10.943 �3.081 4.975
0.40 38.728 14.247 �5.688 6.539

0.5 0.00 7.244 3.238 �0.162 1.891
0.08 8.242 3.502 �0.230 2.044
0.16 9.694 3.894 �0.374 2.266
0.24 11.956 4.565 �0.706 2.616
0.32 15.388 5.740 �1.368 3.161
0.40 20.154 7.497 �2.412 3.943

2000 0 0.00 6.065 2.539 �0.192 1.799
0.08 7.011 2.788 �0.229 1.937
0.16 8.488 3.191 �0.296 2.151
0.24 11.154 3.978 �0.447 2.542
0.32 16.744 5.865 �0.865 3.417
0.40 35.516 12.573 �2.650 6.620

(continued on next page)
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Table 3 (continued)

R m ‘ bc kR kI xR

1 0.00 13.622 6.097 �0.054 2.621
0.08 15.320 6.690 �0.073 2.905
0.16 17.868 7.574 �0.109 3.333
0.24 22.550 9.181 �0.201 4.120
0.32 38.966 14.774 �0.847 6.873
0.40 196.642 72.962 �21.449 33.075

0.5 0.00 7.260 3.242 �0.016 1.894
0.08 8.274 3.506 �0.024 2.050
0.16 9.806 3.899 �0.042 2.285
0.24 12.584 4.610 �0.132 2.713
0.32 19.602 6.916 �0.665 3.830
0.40 63.200 22.614 �4.872 11.276

At such a point the group velocity ox
R
/ok

R
= 0, (k

R
,k

I
) is a pinch point; (x

R
,x

I
) is a cusp point. A critical singular

point also has x
I
= 0. When b < b

c
the flow is subcritical (absolutely unstable) and disturbances with zero group

velocity are amplified (x
I
> 0, k

I
< 0). When b > b

c
(convectively unstable) these disturbances decay temporally (x

I
< 0,

k
I
< 0).

Fig. 12. bc versus ‘ when m = 0.5; R = 2000 (*), 200 (·), 100 (+).
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In Figs. 12 and 13 we have plotted bc versus ‘ for R = 2000, 200 and 100 when m = 0 and
m = 0.5, respectively.

Fig. 14 gives a summary of the behavior of singular points for inviscid R !1 and viscous flu-
ids R = 100, 200. A detailed explanation of this summary in the figure caption.
9. Inviscid jet in inviscid fluid (R! ‘, m = 0)

This problem was studied for the case ‘ = 0 by Keller et al. (1973); they did not look at the
problem of convective/absolute instability––treated later by Leib and Goldstein (1986a). Here



Fig. 13. Gives a summary of the behavior of singular points for inviscid R !1 and viscous fluids R = 100, 200. A
detailed explanation of this summary is given in the figure caption.
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we have looked at the inviscid problem for all density ratios and find the border, the critical b = bc

at the singular point (6.2). The singular point is degenerate, because the imaginary part of o2D/ok2

at the pinch point vanishes for 0 < ‘ < 0.3455. The degeneracy appears in the collapse of the re-
gion in which xI < 0 for large kR into a line; this region of convective instability collapses onto a
neutral region for which xI = 0.

Table 4 lists values of parameter at the pinch point; Fig. 15 gives the critical curve bc = b(‘) in
the b versus ‘ plane. ‘ = 0.3455 is an asymptote; when ‘ > 0.3455, there is no pinch point and the
flow is absolutely unstable.
10. Fully viscous flow; comparison with previous results

Using equations (2.17)–(2.21) in Funada and Joseph (2002) for capillary instability of both vis-
cous fluids, we can modify the dispersion relation (2.17) so as to make the ambient fluid inviscid
and the viscous column moving with uniform velocity. The resultant dispersion relation D for a
viscous jet in an inviscid fluid is given by
D ¼
I1ðk=2Þ I1ðk‘=2Þ K1ðk=2Þ

2k2I1ðk=2Þ ðk2 þ k2‘ÞI1ðk‘=2Þ 0

F 1 F 2 F 3

�������
������� ¼ 0; ð10:1Þ
where
F 1 ¼ ðx � kÞ2I0ðk=2Þ þ 2iðx � kÞ k
2

R
dI1ðk=2Þ
dðk=2Þ

� �
þ W ð4� k2ÞkI1ðk=2Þ; ð10:2Þ
F 2 ¼ 2iðx � kÞ kk‘
R

dI1ðk‘=2Þ
dðk‘=2Þ

� �
þW ð4� k2ÞkI1ðk‘=2Þ; ð10:3Þ



Fig. 14. Locus of singular points D = 0, ĉ ¼ 0 for m = 0, ‘ = 0, R = 100 (dashed line), R = 200 (dash dot line), R !1
(solid line) for 10�3

6 b 6 10. Critical singular points are those for which xI = 0. b = 10�3 (·),
bĉ ¼ 6:246 ð�Þ ĉbc ¼ 5:134 (h), bc = 5.493 (+) and b = 10 (n). (a) kI versus kR, (b) xI versus xR, (c) (o2x/ok2)I
versus b. b < bc is subcritical, b > bc > 0 is supercritical. The supercritical inviscid branch R ! 1, b > 6.246 is
degenerate (o2x/ok2)I = xI = kI = 0 there. Disturbances with zero group velocity are neutrally stable. The values of b
on the upper branches kI > 0 of the (kR,kI) plane are less than bc = 6.246 and xI < 0. These branches are subcritical and
spatially and temporally damped. The lower branches kI < 0 go from subcritical values 10�3 < b < bc for xI > 0 (for
which the disturbances are spatially and temporally amplified) to supercritical values b > bc: bc = 6.246 for R !1 and
xI = 0, kI = 0 for b > 6.246, bc = 5.134 for R = 200 and xI < 0 there, bc = 5.493 for R = 100 and xI < 0 there.
Disturbances with zero group velocity are temporally damped but spatially amplified (xI < 0,kI < 0) for supercritical
values of b.
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F 3 ¼ �‘x2K0ðk=2Þ; ð10:4Þ

with k‘ defined as
k‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � iRðx � kÞ

q
: ð10:5Þ



Table 4
Inviscid fluids (R ! 1, m = 0)

No. ‘ bc kR kI xR xI

1 0.00 6.246 2.576 0 1.810 0
2 0.04 6.710 2.696 0 1.877 0
3 0.08 7.280 2.840 0 1.958 0
4 0.12 8.004 3.025 0 2.060 0
5 0.16 8.962 3.290 0 2.196 0
6 0.20 10.298 3.681 0 2.387 0
7 0.24 12.282 4.274 0 2.677 0
8 0.28 15.496 5.317 0 3.162 0
9 0.32 22.038 7.514 0 4.199 0
10 0.3455 52.350 17.647 0 9.189 0
11 0.36 – – – – –
12 0.40 – – – – –

Values of (kR,kI) at pinch point singularity (see Fig. 15) indexed by the density ratio ‘. The values of the frequency xR

and the Weber number parameter b (=W�1) are at the pinch point are also listed. Pinch point singularities do not exist
when ‘ > 0.3455; in this case all flows are absolutely unstable.

Fig. 15. Border between absolute and convective instability in the inviscid case R ! 1, m = 0. The value of ‘ = 0.3455
is asymptotic. The inviscid case is degenerate because the imaginary part of o2x/ok2 = 0 at the singular point. The
consequence of this degeneracy is that at criticality (xI,kI) = (0,0) for all ‘ < 0.3455. The condition xI < 0 at the pinch
point cannot be realized; xI at oxR/okR = 0.
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The parameters ‘, W and R are the ones defined in (2.2). The top row of (10.1) arises from the
continuity of normal velocity, of the tangential stress and of the normal stress. Solving (10.1)
implicitly using Newton�s method for given values of (xR,xI) and the parameters, we have (kR,kI)
and ĉ numerically.

In Fig. 16 we have plotted the critical value bc ð¼ W �1
c Þ versus R giving the border between

absolute and convective instability for viscous jets in an inviscid fluid computed by Leib and



Fig. 16. Critical Weber number bc ð¼ W �1
c Þ versus Reynolds number R from the literature: Leib and Goldstein (1986a)

for inviscid jet in an inviscid fluid, bc = 6.3 for ‘ = 0, denoted by dashed line; solid lines are for viscous jets in an inviscid
fluid (m = 0) for ‘ = 0 (Leib and Goldstein, 1986b) and ‘ = 0.0013 and ‘ = 0.03 (Lin and Lian, 1989).
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Goldstein (1986b) for ‘ = 0 and by Lin and Lian (1989) for ‘ = 0.0013 and ‘ = 0.03. The value
bc = 6.3 for an inviscid jet in an inviscid fluid was calculated by Leib and Goldstein (1986a). In
Fig. 17 we compare the results from the theory of viscous potential flow given in Section 3 with
the results for viscous flow according to (10.1). The stability limits from the two theories are close.

The analysis for ‘‘fully viscous flow’’ neglects the dynamical effects of the viscous gas; these ef-
fects require the imposition of continuity of the tangential component of velocity and stress. The
discontinuous velocity which induces Kelvin–Helmholtz instability is then inconsistent with the
aforementioned continuity requirements. Lin (2003) attempted to address the effects of shear
Fig. 17. bc versus R comparing viscous flow (lower two curves) computed from the theory in Section 10 for m = 0,
‘ = 0.0013 (*) and ‘ = 0.03 (h) with viscous potential flow (upper two curves) for the same values (‘ = 0.0013 (+),
‘ = 0.03 (·), m = 0).
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by a study of core-annular flow in a vertical pipe. This is a very different problem. He found a
transition from convective to absolute instability but comparisons with experiments are not
available.
11. Conclusions

The new results presented in this paper are:

(1) The computation of temporal and C/A instability of the liquid jet using viscous potential
flow.

(2) Extensive computation of the effects of the ambient density and viscosity and the viscosity of
the liquid.

(3) A demonstration that KH instability cannot occur in vacuum (but capillary instability and
Rayleigh–Taylor instability can occur in vacuum).

(4) The derivation of a dispersion relation in the form of a polynomial in the complex frequency
which can be used to study temporal, spatial and C/A instability.

(5) A comprehensive analysis of temporal instability; for all values of the parameters there are
wavenumbers for which the liquid jet is unstable.

(6) An analysis of the relative importance of KH and capillary instability on the maximum
growth, on the wave length of maximum growth and the cut-off wavenumber for inviscid
and viscous liquids. KH instability is the dominant mechanism for small Weber numbers
and capillary instability is dominant for large Weber numbers; the variation of the growth
rates and wavenumbers in the two regimes is sharply different.

(7) When viscosity and surface tension are zero, the liquid jet is Hadamard unstable to KH
instability with growth rates proportional to k. Surface tension stabilizes the short waves.
The maximum growth rate and the associated wavenumber are proportional to 1/W for
small W when the fluid is inviscid. For viscous fluids the maximum growth rate is finite as
W ! 0 (pure KH instability) but the wave length km = 2p/km tends to zero with W, as in
the inviscid case. It can be said that the wave lengths for breakup due to KH instability
are exceedingly short and that breakup due to KH instability leads to surpassingly small
drops, essentially mist.

(8) The critical wavenumber kc for marginal instability (stability for k > kc) is independent of the
Reynolds number of the liquid jet but the maximum growth rate and the wavenumber of
maximum growth depend on the Reynolds number.

(9) Under the realizable condition that maba = ‘baa the neutral curves for viscous potential flow
are the same as for inviscid potential flow; this is a remarkable result. When k > 10 this cri-
terion reduces to a statement that the neutral curves are the same when the kinematic viscos-
ity of the liquid equals the kinematic viscosity of the gas; this result was proved for KH
instability of a plane layer by Funada and Joseph (2001).

(10) A comprehensive study of the transition between convective and absolute stability of the
combined KH stability and capillary instability of the liquid jet under a wide range of ambi-
ent condition for different liquid was carried out. Precise results were obtained for full ranges
of the Weber and Reynolds number, density and viscosity ratios.
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(11) The study of pinch point and cusp point singularities was greatly simplified by the fact that
an explicit dispersion relation in the complex frequency and wavenumber planes could be
studied by algebraic rather than geometric method of Bers (1975) and Briggs (1964).

(12) We show that the singular point for inviscid fluids when the density ratio ‘ is in
0 6 ‘ < 0.3455, is degenerate; when ‘ > 0.3455 the inviscid jet is absolutely unstable. The sin-
gular points for inviscid solutions in the supercritical case b > bc are degenerate since (o2x/
ok2)I = 0. In this case kI = 0 and xI = 0, so that the transition from absolute instability is to a
neutral rather than to a convectively unstable state. All other cases are not degenerate and
associate cusp points in the x plane with pinch points in the k plane.

(13) The transition between convective and absolute stability computed by viscous potential flow
is reasonably good agreement with the transition computed by fully viscous flow in which the
flow is not assumed to be irrotational. It must be understood that KH instability cannot be
studied exactly in the frame of the Navier–Stokes equations because the basic flow has a dis-
continuous velocity.

The liquid jet with no spatial development studied here is always unstable to temporal distur-
bances, convectively and absolutely unstable jets are temporally unstable; flows like Hagen-
Poiseuille flow which are temporally stable would not admit C/A instability. Instability for jets
with very slow spatial development should not be very different for jets with no spatial develop-
ment. The predictions of temporal and C/A instability achieved here have a somewhat tentative
relation to actual experiments which emanate from nozzles in which the spatial development of
the basic flow could have an important effect.
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