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Abstract
A spherical gas bubble accelerates to steady motion in an irrotational flow of a viscous

liquid induced by a balance of the acceleration of the added mass of the liquid with the
Levich drag. The equation of rectilinear motion is linear and may be integrated giving rise
to exponential decay with a decay constant 18νt/a2 where ν is the kinematic viscosity
of the liquid and a is the bubble radius. The problem of decay to rest of a bubble
moving initially when the forces maintaining motion are inactivated and the acceleration
of a bubble initially at rest to terminal velocity are considered. The equation of motion
follows from the assumption that the motion of the viscous liquid is irrotational. It is an
elementary example of how potential flows can be used to study the unsteady motions of
a viscous liquid suitable for the instruction of undergraduate students. Another example,
considered here, is the purely radial irrotational motion of a viscous liquid associated
with the motions of a spherical gas bubble. This gives rise to an exact potential flow
solution of the Navier-Stokes equations in which the jump of the viscous component of
the normal stress is evaluated on the potential flow. The equation of motion for the
liquid is almost always called the Reyleigh-Plesset equation but the viscous terms were
introduced by Poritsky (1951) and not by Plesset (1949). We show that when the normal
stress equation is converted into an energy equation in the conventional way used for
inviscid fluid, the viscous normal stress term is converted into the viscous dissipation in
the liquid evaluated on potential flow.

We consider a body moving with the velocity U in an unbounded viscous potential flow. Let
M be the mass of the body and M ′ be the added mass, then the total kinetic energy of the
fluid and body is

T =
1

2
(M + M ′)U2. (1)

Let D be the drag and F be the external force in the direction of motion, then the power of D
and F should be equal to the rate of the total kinetic energy,

(F + D)U =
dT

dt
= (M + M ′)U

dU

dt
. (2)

We next consider a spherical gas bubble, for which M = 0 and M ′ =
2

3
πa3ρf . The drag can

be obtained by direct integration using the irrotational viscous normal stress and a viscous
pressure correction: D = −12πµaU (see Joseph and Wang 2004). Suppose the external force
just balances the drag, then the bubble moves with a constant velocity U = U0. Imagine that
the external force suddenly disappears, then (2) gives rise to

− 12πµaU =
2

3
πa3ρf

dU

dt
. (3)
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The solution is
U = U0e

− 18ν
a2 t, (4)

which shows that the velocity of the bubble approaches zero exponentially.

If gravity is considered, then F =
4

3
πa3ρfg. Suppose the bubble is at rest at t = 0 and starts

to move due to the buoyant force. Equation (2) can be written as

4

3
πa3ρfg − 12πµaU =

2

3
πa3ρf

dU

dt
. (5)

The solution is

U =
a2g

9ν

(
1− e−

18ν
a2 t

)
, (6)

which indicates the bubble velocity approaches the steady state velocity

U =
a2g

9ν
(7)

exponentially.
Another way to obtain the equation of motion is to argue following Lamb (1932) and Levich

(1949) that the work done by the external force F is equal to the rate of the total kinetic energy
and the dissipation:

FU = (M + M ′)U
dU

dt
+D. (8)

Since D = −DU , (8) is the same as (2).
The motion of a single spherical gas bubble in a viscous liquid has been considered by some

authors. Typically, these authors assemble terms arising in various situations, like Stokes flow
(Hadamard-Rybczynski drag, Basset memory integral) and high Reynolds number flow (Levich
drag, boundary layer drag, induced mass) and other terms into a single equation. Such general
equations have been presented by Yang and Leal (1991) and by Park, Klausner and Mei (1995)
and they have been discussed in the review paper of Magnaudet and Eams (2000, see their
section 4). Yang and Leal’s equation has Stokes drag and no Levich drag. Our equation is not
embedded in their equation. Park et al. listed five terms for the force on a gas bubble; our
equation may be obtained from theirs if the free stream velocity U is put to zero, the memory
term is dropped, and the boundary layer contribution to the drag given by Moore (1963) is
neglected. Park et al. did not write down the same equation as our equation (1) and did not
obtain the exponential decay.

It is generally believed that the added mass contribution, derived for potential flow is inde-
pendent of viscosity. Magnaudet and Eames say that “... results all indicate that the added
mass coefficient is independent of the Reynolds, strength of acceleration and ... boundary con-
ditions.” This independence of added mass on viscosity follows from the assumption that the
motion of viscous fluids can be irrotational. The results cited by Magnaudet and Eams seem
to suggest that induced mass is also independent of vorticity.

Chen (1974) did a boundary layer analysis of the impulsive motion of a spherical gas bubble

which shows that the Levich drag 48/Re at short times evolves to the drag 48
Re

(
1− 2.21√

Re

)
obtained in a boundary layer analysis by Moore (1963). The Moore drag cannot be distinguished
from the Levich drag when Re is large. The boundary layer contribution is vortical and is
neglected in our potential flow analysis.

Another problem of irrotational motion of a spherical gas bubble in a viscous liquid is the
expanding or contracting gas bubble first studied by Rayleigh (1917). The problem is also
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framed by Batchelor 1967 (p.479) but, as in Rayleigh’s work, with viscosity and surface tension
neglected. Vicosity µ and surface tension γ effects can be readily introduced into this problem
without approximation because the motion is purely radial and irrotational; shear stresses do
not arise. Though Plesset (1949) introduced a variable external driving pressure and surface
tension, the effects of surface tension were also introduced and the effects of viscosity were first
introduced by Poritsky (1951). His understanding of irrotational viscous stresses is exemplary,
unique for his time and not usual even in ours. The equation

2γ

R
= pb − p∞ −RR̈− 3

2
Ṙ2 − 4µ

Ṙ

R
(9)

for the bubble radius R(t), is always called the Rayleigh-Plesset equation but Plesset did not
present or discuss this equation which is given as (62) in the 1951 paper of Poritsky. It is well
known when γ and µ are neglected, that equation (9) can be formulated as an energy equation

d

dt
KE = (pb − p∞) V̇

where

KE =
1

2

∫ ∞

R

ρ

(
∂φ

∂r

)2

4πr2dr

and

V̇ =
d

dt

(
4

3
πR3

)
The equation

(pb − p∞) V̇ =
dKE

dt
+D + 2γ

V̇

R
(10)

where the dissipation

D = 2µ

∫ ∞

R

∂2φ

∂xi∂xj

∂2φ

∂xi∂xj

4πr2dr = 16πµ2RṘ2

follows from (9) after multiplication by V̇ . In this problem we demonstrate a direct connection
between the irrotational viscous normal stress and the dissipation integral D computed on
potential flow.
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