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The breakup of a liquid capillary filament is analyzed as a viscous potential flow near
a stagnation point on the centerline of the filament towards which the surface collapses
under the action of surface tension forces. We find that the neck is of parabolic shape
and its radius collapses to zero in a finite time; the curvature at the throat tends to
zero much faster than the radius, leading ultimately to a microthread of nearly uniform
radius. During the collapse the tensile stress due to viscosity increases in value until at a
certain finite radius, which is about 1.5 microns for water in air, the stress in the throat
passes into tension, presumably inducing cavitation there.

1. Introduction

The breakup of liquid jets is generally framed in terms of the capillary pressure
o/R(z,t) due to surface tension o acting at the neck of radius R(z,t). The capillary
pressure is greatest at the position z where R is smallest, an unstable situation in which
liquid is squeezed out of the neck further reducing R and increasing the capillary pressure
there. This picture leads to an inevitable collapse of the radius to zero. The conventional
view is that the capillary instability just described leads to ‘pinch-off’ but the physics
required to actually rupture the thread is not revealed. Here we are promoting the idea
that the filament ruptures by cavitation due to tensile stresses induced by the motion
out of the neck. The idea that liquids can cavitate by tensile stresses associated with
motions, rather than by lowering the pressure was introduced by Joseph (1995). One of
the interesting implications of this idea (Joseph 1998) is that cavitation in a pure shear
flow may be induced by a tensile stress at 45° from the direction of shearing in a pure
shear flow.

Capillary collapse is the final stage of dynamics which may be framed as starting from
the capillary instability of a liquid cylinder. The initial instability of the liquid cylinder
was studied by Funada & Joseph (2002) and Wang, Joseph & Funada (2005). Funada &
Joseph (2002) assumed that the motion of the viscous cylinder is irrotational; the velocity
is given by u = V¢, V2¢ = 0 and the viscous terms in the normal stress balances are
evaluated from the potential. They derived a dispersion relation, o vs. k, where o is the
growth rate and k the wave number. They compared growth rate curves for potential flows
of inviscid and viscous fluids in which the conditions on the tangential components of the
velocity and stress are neglected with the growth rates from the normal mode reduction
of the Navier—Stokes equations (called exact) in which the vorticity and continuity of the
tangential velocity and stress are not neglected. Many liquids with viscosities differing
by many orders of magnitude were studied. In all cases there is a strict separation of the
growth rate curves computed by three theories. The growth rates for inviscid potential
flow are largest and those for the Navier—Stokes theory are smallest with viscous potential
flow between. The curves are crowded when the viscosity is small and are widely separated
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when the viscosity is large. The potential flow solution for viscous fluids is in a modest
agreement with the exact results, but the results for inviscid fluids are well off the mark.

Wang, Joseph & Funada (2005) implemented the method proposed by Joseph & Wang
(2004) for computing a viscous correction of the irrotational pressure induced by the
discrepancy between the non-zero irrotational shear stress and the zero shear stress
boundary condition at a free surface. The theory with an additional viscous pressure
correction added to the irrotational pressure is called the viscous correction of viscous
potential flow (VCVPF). The corrected theory leads to a connection formula between
the irrotational shear stress and the added viscous pressure which arises in a very thin
boundary layer which is not analyzed and not needed. The linearized equations in this
layer are used to show that the added pressure is harmonic and the additional contribu-
tions of the viscosity to the normal stress are small compared to the viscous irrotational
contribution.

The analysis of capillary instability using the added pressure is in remarkable agree-
ment with the results of exact analysis for all cases. The growth rate curves for VCVPF
are nearly identical to those computed from the exact theory, uniformly in k. The two
theories differ at most by a few percent whereas, for the case of highly viscous liquids, the
analysis for inviscid liquids gives large unrealistic growth rates. The popular idea that
viscous potential flow should be a small perturbation of inviscid potential flow is wrong.

The reader may think that the calculation of an added viscous pressure correction
takes the theory away from purely irrotational flow, even though the velocities are ob-
tained from the potential. However, exactly the same results that arise from VCVPF also
arise from the dissipation method in which the pressure never enters; all the quantities
needed are obtained from solutions of Laplace equation for the potential. The dissipation
method used for the calculation of capillary instability is the strict analog of the dissipa-
tion method used by Lamb (1932) to determine the effects of viscosity on the decay of
irrotational water and by Levich (1949) to determine the drag on a spherical gas bubble.

The problem of capillary collapse considered here is rather different than the problem
of capillary instability of a liquid cylinder. One obvious difference is that the instability
problem is linear but the collapse problem is very nonlinear. Less obvious is the role of
the pressure correction which arises in the linear problem from the need to compensate
the unbalanced irrotational shear stress. In the problem considered here the shear stress
is continuous at the throat and the normal stresses are balanced there. A harmonic
correction p, of the irrotational pressure p; is required to balance the normal stress
away from the throat. This additional contribution to the pressure generates a vortical
contribution to the velocity away from the throat.

2. Analysis

In this paper we study the collapse of a capillary filament under surface tension forces
which squeeze liquid symmetrically from the throat at z = 0 in Figure 1. The analysis is
local; terms of order z* are neglected but the local stagnation flow can be thought to be
embedded in a global periodic structure of stagnation points with depletion at throats
and accumulation at crests, as is shown in Figure 1.

We assume that the flow in the neighborhood of the throat is an axially symmetric
straining flow, or stagnation point flow, with velocity components

uy = a(t) z, (2.1)
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r—R(z,1)

F1GURE 1. Periodic structure of stagnation points as a cartoon of the dynamics of capillary
collapse. The collapse will give rise to a periodic string of liquid drops. The analysis here is local
focusing on dynamics of collapse at z = 0.

Up = —%a(t)r, (2.2)

and determine the strain rate a(t) and the capillary shape, r = R(z,t), by satisfying the

appropriate boundary conditions at the capillary surface. The velocity field described

by equations (2.1) and (2.2) is incompressible and irrotational, therefore despite being

a viscous flow, it may be described by a velocity potential (u, = 0¢/3z,u, = d¢/0r) of
form

¢ = %az2 - iarQ. (2.3)

The pressure p; in the flow is determined from the unsteady version of the Bernoulli

equation

00 1 9 9 P Do
Z + + 2 == 2.4
ot 2 (ur Uz ) P P > (2.9)
in the form
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- - = — + — + — — — . 2
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The constant stagnation pressure py may be related to a distant state of rest; po is a
global reference in an otherwise local solution. The overdot denotes a time derivative.
In this flow the state of stress is given by two principal stresses;

Qu,

Ty, = —pi + 2%—11 = —pi + 2pa, (2.6)
ou,

Trr=—pi +2p 5 = P pa. (2.7)

The normal traction at a point on the free surface, the force per unit area which the
surface exerts on the fluid, is

Tnn = nrzTrr + nz2Tzz ) (28)

where n, and n, are components of the unit outward normal. A force balance at the free
surface gives the boundary condition

—Tpn — Do = 0K, (29)

where p, is atmospheric pressure, o is the surface tension force per unit length and & is
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the mean curvature, given by

2 2
1
j=—— O R/O2 + . (2.10)

(1 + (aR/az)2)3/2 R (1 + (aR/az)2)1/2

Equation (2.9) is the condition which drives the capillary collapse. It should be pointed
out that the condition of zero shear stress at the boundary is satisfied exactly at the throat
because u, is independent of 7.

Since the free surface must move with the fluid, we also have the kinematic condition

oR oR
Upr = E + uza (211)
at r = R(z,t) . This may be written
1 oR oR
-- = - 2.12
= T, (2.12)

The mathematical problem is to find a function R(z,t) which satisfies the conditions
expressed by equations (2.9) and (2.12). We will show that a function of form

R(z,t) = Ro(t) + Ra(t) 2> + O(2*) (2.13)

is suitable and determine Ry(t), Ra(t) and the strain rate a(t) by expanding these con-
ditions for small z. To the lowest order in 22

Tnn _ Trr _ Di
p p p

a— éa2> R? (2.14)

and to the same order

1
=— —2R,. 2.15
K Ro 2 ( )
Equation (2.12) gives the two equations
1 .
—EaRo = RO s (216)
5 .
—iaRQ = R2 . (217)

From these, we see that Ry = CR,®, where C is a constant depending on starting
conditions. This result implies that Ry tends to zero faster than Ry which means that
the parabola flatters out during collapse. It follows then that the Ry term in (2.14) is of
lower order and the term proportional to 22 can not be balanced.

To balance the terms proportional to z2 in (2.14), we introduce a pressure correction
py where p = p; + p,. We find this correction among harmonic functions VZp, = 0 so
that

Vip = V?p; = —pdiv (u- Vu),

where u = V¢ and p; is given by (2.5). The required harmonic function is found in the
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r2

and, after adding p, to (2.5), we get

- 1 1 1 1
p PO:_(_d+_a2_g)z2+(_a__a2_£> r2.
p 22 p

To balance the terms proportional to 22 in (2.14), we choose

c=L(a+a).
Then
- 3
L ppo = —Za’r. (2.19)

This pressure difference is negative and is most negative at the boundary r = R.
The pressure correction induces a vortical velocity v which vanishes at the throat. The
velocity u = u; + v, where the components of u; = V¢ are given by (2.1) and (2.2), and
0
a—‘t,-l-v-Vv+ui-Vv+v-Vui:—V%+VV2V. (2.20)
We shall show that the left side of (2.20) is of lower order and may be neglected near
the stagnation point. Writing (v,,v,) = (u,w) , and using (2.18), we have

Pw 13 [ dw
202 = |5 + -2 (T ae
2 u[az2+r6r (rar>]’

u 19 ou u
ow 10
% T W =0

The solution of (2.21) which vanishes at the origin is

w= 223, u= —grz2 . (2.22)
3u 2u
The vorticity for this axisymmetric solution is given by
ou Ow C
e 2.2
dz or 0 e (2:23)

The largest terms on the right side of (2.20) for values of 7 and z are O(2®) and O(rz?).
The vortical velocity v does not enter into any leading balance discussed below.
To leading order, Ty, = Trr = —p + pa and =T, — p, = 0/ Ry, which is in the form
3p 2 g
——Ry” — — Do = = 2.24
g flo” —Hatpo—p.=p (2.24)
Since we are most interested in small Ry, we can pick out the dominant terms in (2.24)
as Ry tends to zero. These are
Ro g
—ou0 - =
1 Re Ry’
which is a balance between the viscous part of the normal force (which resists the collapse)
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and the surface tension force (which drives it). The large Ry™" term cancels from each
side giving

. lo
Ry = Tk (2.25)
with solution
o
=— (t, — 1), 2.2
Ro= 5 (b~ (2.26)

where t, is a constant of integration. Therefore we have a solution in which Ry tends
to zero in a finite time. By expanding Ry in powers of (¢, — t) it is easy to see that the
neglected terms in equation (2.24) give a correction to Rg of order (t. — t)2. With the
additional term the solution becomes

o 0 Po — Pa 2
= — (t, —t) — — te — t eee 2.2
Ro= g (=) = 5 PP (1) 4 (2.27)
The strain rate is,
R 2 — Pa
a=-2-0 = Po—Pay | (2.28)

Ry ti—t  2u

The axial stress at leading order is given by

3
T..=—p+2ua=—po+ =pa’r? + 2ua

8
2
3p02 (1\° 4u
= —— | — — (2pn —
8/~If2 (RO) +t*—t (pO pa);

where R2 = 02/4p?, from (2.25). The stress induced cavitation will occur when and
where the axial stress passes into tension. This will always occur first at the boundary
of the capillary where r/Ry = 1.

Consider next the axial stress at the stagnation point (r =0,z = 0)

20
Ro(t) -

The thread will pass into tension over the whole cross section at z = 0 when T, given
by (2.30) becomes positive and passes into tension.

We see that when Ry is sufficiently small T, can become positive. This means that
the axial stress becomes tension instead of compression. Liquids can not support much
tension without rupturing. This would occur here when Ry is somewhat less than the
critical value

Tzz = - (2100 - pa) + (230)

20
(2p0 - pa) ’
which, it should be noted, is independent of the viscosity. This value is fairly large; for
water with 0 = 75 dynes/cm and estimating py to be py =~ p, = 10¢ dynes/cm?, we get
Ry.r = 1.5 microns.
A Reynolds number for the collapsing capillary may be defined by
RoR
Re = 222 (2.32)
v

Roer = (2.31)

based on the throat radius and the velocity of collapse, using equation (2.25) for the
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latter quantity gives
_ Ryo

Re =
€ 2002’

(2.33)

which is the ratio of Ry to a viscous length (Peregrine, Shoker & Symon 1990) 2pv? /o
which is very small for water, about 0.027 microns. Therefore using Rg.r (= 1.5 microns)
for Ry, the Reynolds number at collapse is about 55 for water (the collapse velocity is
about 37 m/s). For more viscous liquids the Reynolds number at collapse could be very
small. For the solution presented here there is no restriction on the magnitude of the
Reynolds number.

The symmetric local solution derived here may not be stable; photographs of breaking
liquid bridges (Peregrine et al. 1990) are globally asymmetric. A strongly collapsing
capillary could be expected to amplify asymmetries, as is known to happen in a collapsing
bubble. Nevertheless, the local symmetric solution presented here is of interest (as is
spherical bubble collapse) and the fracture at a finite value of the radius due to viscous
stresses is perhaps independent of the global properties of the solution.

3. Conclusions and discussion

Neckdown of a liquid capillary thread was studied in a local analysis based on viscous
potential flow. One objective of this study was to show that during collapse the thread
will enter into tension due to viscosity and can be expected to fracture, or cavitate, at a
finite radius.

The flow in the throat of the collapsing capillary is locally a uniaxial extensional flow,
linear in z and r , with a time dependent strain rate a(t). This viscous potential flow
satisfies the Navier—Stokes equation and all the relevant interfacial conditions, including
continuity of the shear stress. The principal dynamic balance is between the surface
tension forces, which are trying to collapse the capillary, and the radial viscous stress
which is resisting the collapse. Since mass must be conserved a large axial flow results
from squeezing liquid out of the neck and this results in a large viscous extensional stress.
The extensional stress passes into tension at Ry = 1.5 micron (for water and air) long
before Ry actually collapses to zero. The solution is symmetric about z = 0, the position
of the smallest radius; the axial velocity is odd and the radial velocity, pressure and
interface shape

R(z,t) = Ro(t) + Ry(t) 2° + O(2")
are even in z. At lowest order the interface is a parabola in which Ry(t) is proportional
to Ro® , hence in the limit of collapsing radius Ry — 0 much more rapidly than Ry and
the shape approaches that of a straight cylinder. The radius tends to zero linearly, like
(tx« —t), collapsing to zero in a finite time. At the same time the strain rate a(t) tends
to infinity like (. —t) ™"

In the literature on capillary collapse and rupture the focus is on collapse which is
universally framed as a ‘pinch-off” and the fundamental physics governing the rupture
of the thread is not considered. A ‘pinch-off’ is a squeezing flow; the radius of the jet at
the pinch point collapses, squeezing fluid out as the filament collapses. Here one finds a
stagnation point; stagnation point flow is a potential flow and the effects of viscosity in
such a flow may be huge. Certainly, potential flow of an inviscid fluid is not the right
tool here. We can get results in which viscosity acts strongly using viscous potential flow.
The question is not whether viscosity is important, which it is, but whether vorticity is
important.

Chen, Notz & Basaran (2002) have studied ‘pinch-off’ and scaling during drop for-
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mation using high-accuracy computation and ultra-fast high-resolution imaging. They
discuss dynamic transition from potential flow with a 2/3 scaling due to Keller & Mik-
sis (1983) to an inertial-viscous regime described by Eggers (1993) universal solution.
They find overturn before breakup in experiments in water (1 cp) well before the dy-
namic transition from the potential flow to the inertial-viscous regime. On the other
hand, an 85 cp glycerol-water solution is said to exhibit this transition. The potential
flow solutions discussed by Chen et al. 2002 are for inviscid solutions. Of course, water
and glycerol are not inviscid. The scaling of Keller & Miksis (1983) which gives rise to
the 2/3 power collapse law does not work for viscous potential flow. The spoiler is their
equation (3.3) expressing the normal stress balance. To this equation we must add the
viscous component 240u,,/dn . The term | V|” in (3.3) scales like ¢2/L? whereas the
viscous component scales like ¢/L?, so that the similarity transformation does not factor
through. Analogies have been put forward between capillary ‘pinch-off’ of a viscous fluid
thread and van der Waals driven ruptures of a free thin viscous sheet by Vaynblat, Lister
& Witelski (2001). The observation that a filament under capillary collapse ruptures in a
‘pinch-off” does not come to grips with the physics which leads to a loss of the continuum.
One idea is that thread breaks under the action of disjoining pressures. Unfortunately, a
mathematical theory for disjoining pressures for thin threads is not available.

The recent literature on capillary collapse is presently dominated by the discovery
of self-similar, finite time singularity formation. These solutions are discussed in the
recent papers Chang, Demekhin & Kalaidin (1999), McKinley & Tripathi (2000), and in
the paper of Chen et al. (2002). This literature does not treat the physics of rupture or
breakup by cavitation and does not compute stresses. All of the above mentioned authors
find that capillary radius decreases to zero linearly in time, but the rate of collapse differs
from author to author. McKinley & Tripathi (2000) write the formula

2X — 1
Ty

Rmit:R_ )
dt) = R 6 u

for the neck radius of the collapsing capillary in the stage of final decay as ¢ increases to
t. when Rpiq(t.) = 0. They give the X obtained by different authors in their Table 1,
but without the value X = 2 obtained here for viscous potential flow, giving the fastest
decay. Eggers (1997, 1993) obtained X = 0.5912 and Papageriou (1995) obtained X =
0.7127. The solutions of the two authors last named have vorticity; Papagerious solution
has no inertia. McKinley & Tripathi (2000) note that very close to breakup the solution of
Papageriou crosses over to Eggers similarity solution. The transitions between different
similarity solutions are less well understood than the similarity solutions themselves.
These transitions can be regarded as a form of instability. It is possible that the solution
in this paper can be described as a transition to rupture.

The solution of Eggers (1993) gives rise to a universal scaling law which has been
observed for viscous liquids but not in water (see Chen et al. 2002). The long wave ap-
proximation used to derive universal scalings may prevent it from resolving the dynamics
of rupture. The similarity solution of Eggers does not lead to a cavitation threshold; in
his solution the tension due to extension increases but not fast enough to overcome the
compression due to the capillary pressure of the thinning filament.

The criterion for the termination of the continuum is probably not a finite time singu-
larity; the thread radius does not go to zero. It comes apart before then.

The work of Joseph was supported by the NSF/CTS-0076648. The authors want to
thank Juan C. Padrino for the careful proof-reading and preparation of the manuscript.
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