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We compute the irrotational streaming flow of a second-order fluid past a Joukowski airfoil. The
pressure and extra stress are evaluated using the irrotational flow theory, and the lift, drag and torque
on the airfoil are obtained by integration of the normal stress over the surface of the airfoil. Our
calculation can give rise to a lift force opposite to what would be predicted from the classical theory
of aerodynamics. The result is in qualitative agreement with the experiments of the flow of a foam
past an airfoil by Dollet, Aubouy and Graner 2004.

1 Introduction

Dollet, Aubouy and Graner [1] (hereafter referred to as DAG2004) performed experiments of the flow
of a foam past an airfoil. They observed a striking feature that the lift force on the airfoil is opposite
to what would be predicted from the classical theory of aerodynamics. They argued that this inverse
lift is due to the effect of elasticity of the foam.

Besides the inverse lift on an airfoil, many other unusual features of flows observed in viscoelastic
fluids but not in Newtonian fluids can be understood by considering the competition between the
effects of inertia and viscoelasticity; for example, the stable orientation of a sedimenting long particle
(Liu and Joseph [2], Galdi et al. [3], Wang et al. [4]), chaining of particles in extensional and shear
flows and in sedimentation and fluidization (Michele et al. [5], Joseph [6], [7], chap. 7), and the
two-dimensional cusp at the trailing edge of a rising air bubble (Liu, Liao and Joseph [8]). Our
understanding of these phenomena relies on two pillars: a viscoelastic “pressure” generated by normal
stress due to shear (Joseph and Feng [9]) and a change in the sign of the normal stress at points of
stagnation (Wang and Joseph [10]). These explanations are suggested by analysis of the second-order
fluid model which arises asymptotically for motions which are slow and slowly varying.

Wang and Joseph [10] considered the potential flow of a second-order fluid over a sphere or an
ellipse and calculated the normal stress at the surface. The irrotational normal stress depends in a
significant way on the viscosity and viscoelastic parameters and produces torques on solid particles
and deformations of gas bubbles which are in qualitative agreement with experiments. The stress T
in an incompressible second-order fluid is given by

T = —pl + pA + a;B + apA?, (1)
where A = L 4+ LT is the symmetric part of the velocity gradient L = Vu,
B=0A/0t+ (u-V)A+AL+L"A, (2)

p is the zero shear viscosity, @1 = —n1/2 and ag = n1 + ny where [n1, no]= [N1(¥), No(¥)]/ ¥* as
4 — 0 are the constants obtained from the first and second normal stress differences.



In this work, we apply potential flow theory to the flow of a second-order fluid past an airfoil and
compute the lift, drag and torque by integration of the normal stress over the surface of the airfoil. Our
calculation can give the inverse lift as observed by DAG2004, but quantitative comparison between
our results and the experimental ones does not yield good agreement; though foams are elastic, they
are almost certainly not well described by a second-order fluid model. DAG2004 showed evidence that
the inverse lift on an asymmetric object exists in a 0.5% by weight cellulose solution, which suggests
that the inverse lift on an asymmetric object is a common feature in viscoelastic fluids, not only in
foams. Our calculation provides a way for explicit analysis of the viscoelastic effects in such problems
and offers partial explanation for the inverse lift. We regard the results using the potential flow of a
second-order fluid as tentative and subject to ultimate validation by experiments and direct numerical
simulation using other models.

2 Numerical method

We consider a uniform streaming flow with the velocity Uy past a cambered airfoil at an angle of
attack a. The calculation is carried out using dimensionless parameters. Following scales are used

1 l
[length, velocity, pressure and stress, time] = [l, Uy, EpUg, F]’ (3)
0

where [ is the length of the airfoil and p is the density of the fluid. There are two controlling parameters

in this problem:
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Re 77 IB = W’ (4)

where R, is the Reynolds number and 3 * R, would give the Deborah number. Only the normal stress
Thnn = —p + Tnn at the surface is considered and the shear stress is ignored. The lift, drag and torque
coefficients are defined as
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(5)
All the variables in the rest part of this section are dimensionless.
The airfoil is obtained by the Joukowski transformation

62

C ?
in conjunction with a circle in the ¢ plane. The center of the circle is displaced a distance m from the
origin at an angle ¢ from the z axis and it is in the second quadrant (see Fig. 1). Here m is assumed
to be small compared with unity. The circumference of the circle passes through the critical point
¢ = ¢ for the Joukowski transformation, which corresponds to the sharp trailing edge of the airfoil in

the z plane.
In the ¢ plane, a generic point (r,6) on the circle satisfies

z=C(+ (6)

a? =12+ m? — 2rmcos(d — 6), (7)

which gives rise to

r =mcos(d — ) + 1/a% — m2sin*(J — 0). (8)
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Figure 1: The mapping planes for a Joukowski airfoil. In the { plane, the center of the circle is
displaced a distance m from the origin at an angle ¢ from the z axis and it is in the second quadrant.
The center of the mass in the z plane (zg, yo) is marked.

The critical point (¢, 0 ) is on the circle and satisfies

r(@ = 0) = ¢ = mcosé + Va2 — m?sin?s. (9)

The surface of the airfoil in the z plane is then given by

2
z=re? + C—e_la, (10)
T

2 2
T = (’I“ + ?> cosf and y= (T - 7) sinf. (11)

The length of the airfoil can be calculated from z(6 = 0) — z(6 = m) with the aid of (8) and (11):

2
(m cosd + Va2 —m?2 sin25>
—m cosd + Va2 — m?2sin?é .

Let & = dz/df and y = dy/df, then the unit norm on the surface pointing outward from the airfoil
can be written as

or

1 = mcosé + 3V a2 — m?sin?6 + (12)

Y€y — L€y

Vi + 2
ds = /42 + 52d6. (14)

Among the four geometric parameters ¢, a, m and ¢, we choose to prescribe m and §, then compute
¢ and a from (9) and (12), respectively.

The complex potential for a uniform flow past a circle with circulation at an angle of attack a in
the ¢ plane is

n=nge; +nye, = (13)

and

F(O) = | (¢ — mel®)eio ﬂ] + g (ﬂ) . (15)

¢ — meld
The circulation I' is determined by Kutta condition, which requires df/d{ = 0 at the critical point
¢ = c¢. Calculation shows that

I’ = 47 (esina — m cosd sina + m sind cosa) . (16)



Equation (15) along with the inverse Joukowski transformation
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z
=44/ —c2 1

(=Zay/Z - (17

gives the potential for the flow past an airfoil in the z plane. The velocities can be evaluated using
the potential

1 /df df i fdf df
==+ -= d =—-|—=—-—= 18
“ 2(dz+d2> and v 2(dz az )’ (18)

where the overbar denotes conjugate variables. Wang and Joseph [10] gave the expression for the
stress of a second-order fluid evaluated using a two-dimensional potential flow solution
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where
af  d’f (d?f  af
= - — _J _ < 2
"zt f (dz2 dz2> ’ (20)
aéf  d*F (dF df
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The normal stress at the surface of the airfoil can be computed from
Tpn=m-T-n, (22)

where n is given in (13). The drag and lift coefficients are obtained by integration of Ty, over the
airfoil surface

Cp= ?{Tnnnx ds, Cr = %Tnnny ds. (23)

We compute the torque with respect to the center of the mass z = (zo,yo) by integration

Cr= j{[(x — z0)ny — (Y — Yo)1g) T ds. (24)

3 Results

We use a Joukowski airfoil described in DAG2004, which can be obtain by setting m = 0.0911 and
¢ = 0.6887 in our calculation. The angle of attack is fixed at a = 0, in accordance with the experiments
of DAG2004. Although the velocity is finite everywhere on the airfoil surface, the velocity gradients
are singular at the front nose and trailing edge (corresponding to # = «w and € = 0, respectively).
The numerical integrations (23) and (24) cannot converge near these singular points when § # 0 and
they have to be excluded from the integration interval. A small number A is introduced and the
integrations are performed in the following intervals

0+A<O0<7T—A, and 71+A<O<2x7—A. (25)
First we test the inviscid Newtonian fluid. Classical potential flow theory for inviscid fluid shows
that the drag is zero (D’Alembert’s paradox), and the lift coefficient is
pU()F r

Cr = — 2— = 1.90302, 26
P Ipu21 U0l (26)




where the dimensionless expression for the circulation (16) has been used for the calculation.! The
torque on the airfoil with respect to the origin z = 0 can be computed using the Blasius’ theorem
(written in dimensionless form)

Y = 7{ (zny — yng)Ton ds = —Real ( 7{ W2 dz) = —0.0965562, (28)

where W = df(z)/dz is the complex velocity. Then the torque with respect to the center of the mass
(g = —0.1362, yo = 0.0978)can be obtained

Cr = f(xny —yng)Thn ds — xg jl{nyTnn ds + yo 7{ ngTpn ds
= C% — 200 + yoCp = 0.162651. (29)

Now we compute Cp, Cr, and Cr by integration of the normal stress over the airfoil surface. The
inviscid Newtonian fluid can be achieved by setting R, — oo and 8 = 0. The results are listed in the
first row of Table 1 and they are in perfect agreement with the classical potential flow theory. The
calculation for the inviscid fluid can converge with A = 0; we set A = 0.05 and repeat the calculation
to test the effect of A. The second row of Table 1 shows that the disturbance caused by this A is
small and Cp, C and Cr remain almost the same.

The total stress can be decomposed into three parts, the inertia term, the viscous term and the
viscoelastic term. For an inviscid Newtonian fluid, the inertia term is the only term in the total stress.
We can probe the viscous term by setting R, to be a finite number. In the second section in Table
1, we set R, = 1 and 10 and 8 = 0. The viscous effects lead to a positive drag, indicating that the
viscous stress gives rise to a drag on the airfoil in the same direction as the incoming flow. The lift
C, increases from the value for an inviscid Newtonian fluid, showing that the viscous stress gives rise
to a lift force pointing upward, in the same direction as the aerodynamic lift. The viscous stress also
gives rise to a counter-clockwise torque, which is in the same direction as the torque induced by the
inertia term. The viscous effects are stronger when R, is smaller.

We set Re — oo and § = 0.01, 0.05 and 0.1 to suppress the viscous effects and investigate the
viscoelastic effects. The third section in Table 1 shows that the viscoelastic term gives rise to a
negative drag, which is opposite to the incoming flow. The viscoelastic term leads to a negative
lift, which offsets the lift by inertia and gives a total lift which points downward when g is large
enough. This result is in agreement with the conclusion in DAG2004 that the inverse lift is generated
by viscoelasticity of the fluid. The torque due to the viscoelastic stress is clockwise, opposite to the
inertia and viscous torques.

Next we consider the combined effects of the inertia term, the viscous term and the viscoelastic term.
We arbitrarily set R, from 1 to 3 and keep S to be a constant at 0.1. When 1 < R, < 2.5, the viscous
contribution to Cp outweigh the viscoelastic contribution and leads to a positive drag; however, the
viscoelastic contribution to Cf, prevails over the viscous contribution and gives rise to a negative lift.
The viscous effects attenuate as R, increases and the viscoelastic effects become dominant. When
R. = 3, both Cp and Cf, are negative, showing dominant viscoelastic effects. When the torque is
concerned, the viscoelastic term gives the major contribution when 1 < R, < 3 and 8 = 0.1 and the
torque is clockwise.

!Currie ([11], §4.18) used approximations to the first order of m and obtained another expression for the lift coefficient
on the airfoil in an inviscid fluid

Cr = 27(1 — mcosé) sin(a + 4msind) = 1.969, (27)

which is close to the exact lift coefficient (26).



R.| B | A Cp Cr Cr
~ | 0 | 0 0 1.903 | 0.1627
oo | 0 005 106 | 1.903 | 0.1626
1| 0 |005] 11.674 | 4.288 | 2.670
10| 0 |0.05]| 1.167 | 2.141 | 0.4134

oo | 0.01 | 0.05 | -0.3937 | 1.029 | -0.4167
oo | 0.05 | 0.05 | -1.969 | -2.465 | -2.734
oo | 0.1 | 0.05| -3.937 | -6.833 | -5.630
1.0 0.1 | 0.05 | 7.737 | -4.449 | -3.123
1.5 0.1 | 0.05 | 3.846 | -5.244 | -3.959
20| 0.1 | 0.06| 1.900 |-5.641 | -4.377
25| 0.1 | 0.05| 0.732 | -5.879 | -4.627
3.0 0.1 | 0.05 | -0.0459 | -6.038 | -4.795

Table 1: The lift, drag and torque coefficients on a Joukowski airfoil in the potential flow of a second-
order fluid as a function of the controlling parameters R, and S (4). The profile of the airfoil is
determined by m = 0.0911 and § = 0.6887, and the angle of attack is fixed at a = 0.

We plot the normal stress on the airfoil surface as a function of the angle 8 in Fig. 2; the three
curves correspond to the inviscid Newtonian fluid with R, = oo, the viscous Newtonian fluid with
R, = 10, and the viscoelastic fluid with R, = 10 and 8 = 0.01, respectively. We set poo = 0 in
this calculation. The pressure is the only component of the normal stress for the inviscid Newtonian
fluid. The front nose (§ = ) is the stagnation point and the pressure gives rise to a compressive
nornal stress at § = w. For the Newtonian fluid with R, = 10, the viscous stress comes into play; Fig.
2 shows that the viscous effects make the normal stress more compressive at the stagnation point.
For the viscoelastic fluid with R, = 10 and 8 = 0.01, the normal stress varies dramatically near the
stagnation point. Although we cannot compute the normal stress precisely at § = 7w because it is
singular, we can compute points close to § = 7 and connect them to obtain a curve. The curve in Fig.
2 shows that Ty, becomes tensile near # = m due to the viscoelastic effects. This change of sign of
the normal stress at the stagnation point plays a role in the inverse lift force on the airfoil; it also has
significant importance in many unusual features in viscoelastic fluids, such as the stable orientation of
a sedimenting long particle, chaining of particles in extensional and shear flows, and the cusp at the
trailing edge of a rising air bubble (Wang and Joseph [10]).

DAG2004 measured the drag and lift on an airfoil in the streaming flow of a foam. The drag is in the
same direction as the streaming flow; the lift is in the opposite direction to what would be predicted
from the theory of aerodynamics. Compared to our calculation, their experiments correspond to the
regime in which the viscous contribution prevails for the drag, whereas the viscoelastic contribution
prevails for the lift. In Figure 3 the lift and drag coefficients measured by DAG2004 are plotted against
the Reynolds number.

Our calculation cannot reproduce the experimental results of DAG2004 shown in Figure 3 quan-
titatively. The parameter 8 for the foam used in the experiments is not known. We cannot find a
value of 8 which leads to good agreement between our calculation and the experimental results. Part
of the reason may be due to the fact that the experiments of DAG2004 are in low Reynolds number
(Re ~ 0.1) regime and the yield stress of the foam plays an important role, which is not accounted
for in the second-order fluid model. Nevertheless, our calculation can correctly predict the directions
of the drag and lift and is an improvement on the inviscid potential flow theory in aerodynamics.
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Figure 2: The normal stress on the airfoil surface as a function of the angle 8. The solid line corresponds
to the inviscid Newtonian fluid with R, = oo, the dashed line to the viscous Newtonian fluid with
R, = 10, and the dash-dotted line to the viscoelastic fluid with R, = 10 and 8 = 0.01.
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Figure 3: The magnitude of Cr, and Cp on an airfoil in the flow of a foam measured by DAG2004
against the Reynolds number. The drag is in the uniform flow direction; the direction of the lift force
is opposite to what would be predicted from the theory of aerodynamics.



Potential flow of a second-order fluid provides an explicit and effective way of analyzing viscoelastic
effects in simple flows.

Acknowledgments

This work was supported in part by the NSF under grants from Chemical Transport Systems. We are
thankful to B. Dollet, M. Aubouy and F. Graner for showing their results to us and for enlightening

discussions.
References
[1] Dollet B., Aubouy M. and Graner F. 2004 Inverse lift in a flowing foam. Submitted.

[10]

[11]

Liu, Y. J. and Joseph, D. D. 1993 Sedimentation of particles in polymer solutions. J. Fluid Mech.,
255, 565-595.

Galdi, G. P., Pokomy, M., Vaidya, A., Joseph, D. D. and Feng, J. 2002 Orientation of symmetric
bodies falling in a second-order liquid at non-zero Reynolds number. Math. Models Methods Appl.
Sei. 12(11), 1653 — 1690.

Wang, J., Bai, R., Lewandowski, C., Galdi, G. P. and Joseph, D. D. 2004 Sedimentation of
cylindrical particles in a viscoelastic liquid: shape-tilting. China Particuology, 2(1), 13 — 18.

Michele, J., Pazold, R. and Donis, R. 1977 Alignment and aggregation effects in suspensions of
spheres in non-Newtonian media. Rheol. Acta. 16, 317 — 321.

Joseph, D. D. 1996 Flow induced microstructure in Newtonian and viscoelastic fluids. In Proc.
5th World Congress of Chem. Eng., Particle Technology Track, San Diego. July 14-18. AICHE
6, 3-16.

Joseph, D. D. 2000 Interrogation of direct numerical simulation of solid-liquid flow, available at
http://www.efluids.com/efluids/books/joseph.htm.

Liu, Y. J., Liao, T. Y. and Joseph, D. D. 1995 A two-dimensional cusp at the trailing edge of an
air bubble rising in a viscoelastic liquid. J. Fluid Mech., 304, 321-342.

Joseph, D. D. and Feng, J. 1996 A note on the forces that move particles in a second-order fluid.
J. Non-Newt. Fluid. Mech. 64, 299-302.

Wang, J. and Joseph D. D. 2004 Potential flow of a second-order fluid over a sphere or an ellipse.
J. Fluid Mech. 511, 201 — 215.

Currie, I. G. 1974 Fundamental Mechanics of Fluids, McGraw-Hill, Inc.



