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1 Analysis

Here we show that the analysis of the viscous correction of viscous potential flow (VCVPF) and the
dissipation method (DM) are equivalent. Consider the equations of motion for an incompressible
Newtonian fluid with gravity as a body force per unit mass

ρ
du
dt

= −∇Φ + µ∇2u (1.1)

where

Φ = p + ρgz. (1.2)

The stress is given by

T = −p1 + τ (1.3)

where

τ = 2µD[u]

and

∇ · τ = µ∇2u

The mechanical energy equation corresponding to (1.1) is given by

d
dt

∫

Ω

ρ

2
|u|2 dΩ =

∫

S
n · T̃ · udS − 2µ

∫

Ω
D : D dΩ, (1.4)

where S is the boundary of Ω, with outward normal n. On solid boundaries no-slip is imposed; say
u = 0 there, and on the free surface

z = η(x, y, t)

and the shear stress

n ·T · es = 0, (1.5)

where es is any vector tangent to the free surface Sf . On Sf we have
∫

S
n · T̃ · udS =

∫

Sf

n · T̃ · udS

where

T̃ = T− ρgη1, (1.6)
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n ·T · n = −γ∇II · n. (1.7)

Hence, on Sf

n · T̃ · n = −ρgη − γ∇II · n. (1.8)

and, since the shear stress vanishes on Sf

n · T̃ · u = n · T̃ · (unn + uses)
= −(ρgη + γ∇II · n)un. (1.9)

Hence, (1.4) may be written as

d
dt

∫

Ω

ρ

2
|u|2 dΩ = −

∫

Sf

(ρgη + γ∇II · n)undSf − 2µ

∫

Ω
D : D dΩ, (1.10)

Equation (1.10) holds for viscous fluids satisfying the Navier–Stokes equations (1.1) subject to the
vanishing shear stress condition (1.5).

We turn now to potential flow u = ∇φ, ∇2φ = 0. In this case, ∇2u = 0 but the dissipation
does not vanish. How can this be? In Joseph (2006) we showed that the irrotational viscous stress
is self-equilibrated and does give rise to a force density term ∇2∇φ = 0; however, the power of
self-equilibrated irrotational viscous stresses

∫

Sf

u · 2µ∇⊗∇φdSf

does not vanish, and it gives rise to an irrotational viscous dissipation

2µ

∫

Ω
D[u] : D[u]dΩ = 2µ

∫

Ω

∂2φ

∂xi∂xj

∂2φ

∂xi∂xj
dΩ = 2µ

∫

S
nj

∂2φ

∂xj∂xi
uidS

= 2µ

∫

Sf

n ·D[∇φ] · udSf = 2µ

∫

Sf

n ·D · (unn + uses) dSf

=
∫

Sf

(
2µ

∂2φ

∂n2
un + τsus

)
dSf (1.11)

where τs is an irrotational shear stress

τs = 2µn ·D[∇φ] · es,

us = u · es. (1.12)

Turning next to the inertial terms, we have

(u · ∇)u = ∇|u|
2

2

and

d
dt

∫

Ω

ρ

2
|u|2dΩ =

∫

Ω
ρ

(
u · ∂u

∂t
+ u · ∇|u|

2

2

)
dΩ

=
∫

Ω
ρ

[
∂φ

∂xi

∂

∂xi

∂φ

∂t
+∇ ·

(
u
|u|2
2

)]
dΩ

=
∫

Sf

ρun

(
∂φ

∂t
+
|∇φ|2

2

)
dSf (1.13)
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Collecting the results (1.9),(1.11), (1.12) and (1.13) we need to evaluate the energy equation (1.4) for
(1.1) when u = ∇φ; we find that

∫

Sf

un

[
ρ

(
∂φ

∂t
+
|∇φ|2

2
+ gη

)
+ 2µ

∂2φ

∂n2
+ γ∇II · n

]
dSf = −

∫

Sf

τsusdSf . (1.14)

This equation (1.14) is the energy equation for the irrotational flow of a viscous fluid.
The viscous pressure pv for VCVPF can be defined by the equation

∫

Sf

(−pv)undSf =
∫

Sf

τsusdSf . (1.15)

This ‘pressure’ is important when it can be calculated; sometimes we can calculate pv, especially in
linear problems in which ∇2pv = 0. More often, we do not know how to calculate pv. VCVPF leads
to a new set of PDE’s in which pv is a variable.

Suppose now that there is such a pressure correction and Bernoulli equation

pi + ρ

(
∂φ

∂t
+
|∇φ|2

2
+ gη

)
= C

holds. Since

C

∫

S
u · ndS = C

∫

Ω
∇ · udΩ = 0

we obtain
∫

Sf

un

[
−pi − pv + 2µ

∂2φ

∂n2
+ γ∇II · n

]
dSf = 0 (1.16)

The normal stress balance for VCVPF is

−pi − pv + 2µ
∂2φ

∂n2
+ γ∇II · n = 0 (1.17)

The dissipation method DM is equivalent to VCVPF; however, in DM we do not compute a pressure
correction but the power of the irrotational shear stress on the right of (1.14), which satisfies (1.15)
when pv can be found and makes sense, is computed. In DM a new field pv is not computed and is
not needed. We use the word ‘equivalent’ rather than equal because one obtains the same results from
(1.14) with or without (1.15).

In all the linear problems we have considered so far (e.g., capillary instability Wang et al. 2005a,
Wang et al. 2005b; oscillations of drops and bubbles Padrino et al. 2007), we can actually calculate
pv, and VCVPF and DM give exactly the same result.
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