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Abstract

A new Lagrange-multiplier based ®ctitious-domain method is presented for the direct numerical
simulation of viscous incompressible ¯ow with suspended solid particles. The method uses a ®nite-
element discretization in space and an operator-splitting technique for discretization in time. The linearly
constrained quadratic minimization problems which arise from this splitting are solved using conjugate-
gradient algorithms.

A key feature of the method is that the ¯uid±particle motion is treated implicitly via a combined
weak formulation in which the mutual forces cancelÐexplicit calculation of the hydrodynamic forces
and torques on the particles is not required. The ¯uid ¯ow equations are enforced inside, as well as
outside, the particle boundaries. The ¯ow inside, and on, each particle boundary is constrained to be a
rigid-body motion using a distributed Lagrange multiplier. This multiplier represents the additional
body force per unit volume needed to maintain the rigid-body motion inside the particle boundary, and
is analogous to the pressure in incompressible ¯uid ¯ow, whose gradient is the force required to
maintain the constraint of incompressibility.

The method is validated using the sedimentation of two circular particles in a two-dimensional
channel as the test problem, and is then applied to the sedimentation of 504 circular particles in a closed
two-dimensional box. The resulting suspension is fairly dense, and the computation could not be carried
out without an e�ective strategy for preventing particles from penetrating each other or the solid outer
walls; in the method described herein, this is achieved by activating a repelling force on close approach,
such as might occur as a consequence of roughness elements on the particle. The development of
physically based mathematical methods for avoiding particle±particle and particle±wall penetration is a
new problem posed by the direct simulation of ¯uidized suspensions.

The simulation starts with the particles packed densely at the top of the sedimentation column. In the
course of their fall to the bottom of the box, a ®ngering motion of the particles, which are heavier than
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the surrounding ¯uid, develops in a way reminiscent of the familiar dynamics associated with the
Rayleigh±Taylor instability of heavy ¯uid above light.

We also present here the results of a three-dimensional simulation of the sedimentation of two
spherical particles. The simulation reproduces the familiar dynamics of drafting, kissing and tumbling to
side-by-side motion with the line between centers across the ¯ow at Reynolds numbers in the hundreds.
# 1999 Elsevier Science Ltd. All rights reserved.
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equation of motion; Operator splitting; Finite element

1. Preliminaries

1.1. Introduction

The current popularity of computational ¯uid dynamics is rooted in the perception that
information implicit in the equations of ¯uid motion can be extracted without approximation using
direct numerical simulation. The corresponding potential for solid±liquid ¯owsÐand multiphase
¯ows generallyÐhas yet to be fully realized. In this article, we describe a promising newmethodÐa
®ctitious-domain methodÐfor the direct numerical simulation of the ¯ow of ¯uid-particle mixtures.
By direct numerical simulation, we understand the numerical solution of the exact initial

value problem for a ¯uid±particle mixture. In the method described in this article, the ¯uid is
taken to be Newtonian and the particles to be rigid bodies. To perform a direct simulation in
the above sense, therefore, one must simultaneously integrate the Navier±Stokes equations
(governing the motion of the ¯uid) and the equations of rigid-body motion (governing the
motion of the particles). These equations are coupled through the no-slip condition on the
particle boundaries, and through the hydrodynamic forces and torques which appear in the
equations of rigid-body motion.
These hydrodynamic forces and torques must of course be those arising from the computed

motion of the ¯uid, and so are not known in advance, but only as the integration proceeds. It
is crucial that no approximation of these forces and torques be madeÐother than that due to
the numerical discretization itselfÐso that the overall simulation will yield a solution of the
exact coupled initial value problemÐup to the numerical truncation error.
Our goal is to do direct numerical solutions with many thousands of particles in three

dimensions, with large volume fractions, for the various kinds of suspensions and slurries that
model the practical particulate ¯ows arising in applications like ¯uidized beds, slurry transport,
transport of drill cuttings for oil production, and proppant sands in reservoir stimulations. In
this article, we present the results of a simulation with 504 particles in two dimensions;
simulations with 10,000 particles in two dimensions will certainly appear in the near future.
The direct simulation of ¯uidized suspensions of thousands of particles in three dimensions is a
computationally intensive challenge, not yet achieved, but which will almost certainly be met in
the next years. See our Web site

http : ==www:aem:umn:edu=Solid-Liquid Flows

for recent progress in this direction.
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The hope is that the direct simulation of the motions of thousands of particles will, in
many cases, allow the large numbers of experiments used in deriving engineering
correlations to be replaced by cheaper numerical experiments in which ¯ow, material, and
process-control parameters can be altered with a computer command. There are also
opportunities for the application of direct simulation to the diagnosis of industrial problems
involving ¯owing particulates, to the establishment of benchmark standards for two-phase
¯ow models, to lattice-Boltzmann models, and to point-particle approximations.

1.2. Approximate methods

Many excellent numerical studies of particulate ¯ows of many particles which are not
direct simulations in the above sense have appeared in recent years. These approximate
methods include simulations based on potential ¯ow, Stokes ¯ow, and point-particle
approximations; they all simplify the computation by ignoring some possibly important
e�ects like viscosity and wakes in the case of potential ¯ow, inertial forces which produce
lateral migration and across-the-stream orientations in the case of Stokes ¯ow, and the
e�ects of stagnation and separation points in the case of point-particle approximations.
Without giving here a long list of such approximations, we simply point the reader to

the excellent discussions of these matters, and the rather complete set of references, in the
papers of Hu (1996) and Esmaeeli and Tryggvason (1998). The latter authors note that the
point-particle approximations which have been used for dilute solutions, especially for
turbulent ¯ow, do advect particles by Newton's law:

``In some cases the in¯uence of the particles on the ¯ow are [sic] neglected, in other
cases the force on the ¯uid from the particles is added to the Navier±Stokes equations.
Although this approach is often referred to as ``direct simulations'' by its practitioners,
the forces on each particle are related to its motion and the ¯uid velocity by semi-
empirical relations and this method is only applicable to dilute ¯ows where there are no
direct bubble±bubble interactions''.

1.3. Direct simulations

Direct simulation of the motion of solid particles in ¯uids can be said to have started with
the paper of Hu et al. (1992), and direct simulations of the interaction of bubbles were ®rst
carried out in two and three dimensions by Unverdi and Tryggvason (1992a, 1992b). These
methods work well even at Reynolds numbers in the hundreds.
The method of Unverdi and Tryggvason is a front-tracking method in which the bubbles

communicate with each other by ®nite di�erences on a structured grid, and with their
immediate environment through well known interface conditions, represented on a moving
mesh. The discretized interface conditions can be thought of as smoothed-out versions of
the delta functions used to express the exact interface conditions. The works of the group
of Tryggvason are state-of-the-art examples of the direct simulation of the motion of large
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numbers of bubbles in various kinds of problems, but their method has yet to be applied
to solid±liquid ¯ows.
The method developed by Hu et al. (1992) uses an implicit update of the particle

translational and angular velocities, to prevent numerical instability. This is achieved by
alternately computing the hydrodynamic force and torque, then updating the particle
translational and angular velocities using the equations of rigid-body motion, and iterating
until the translational and angular velocities converge.
Hesla (1991) derived a combined weak formulation which obviates this iterative procedure.

This combined formulation is used in the improved version of Hu's scheme (1996), andÐsuitably
generalizedÐin the ®ctitious-domain scheme developed in the present article. In Hesla's
combined formulation, the ¯uid and particle equations of motion are combined into a single
weak equation of motion, called the combined equation of motion, or total momentum equation, in
which the hydrodynamic forces and torques are completely eliminated. The combined weak
formulation will be derived below. It is a good starting point for constructing ®nite-element
schemes for the direct simulation of ¯uid±particle ¯ows.

1.3.1. Methods based on moving unstructured grids
The schemes described in Hu et al. (1992), Hesla (1991), and Hu (1996), all use

unstructured grids. Hu's improved method (1996) uses an arbitrary Lagrangian±Eulerian
(ALE) moving mesh techniqueÐwith remeshing and projection as neededÐto deal with the
time-dependent domain determined by the moving particle boundaries. The particle
positions and angular orientations, as well as the mesh point positions, are updated
explicitly. The ¯uid velocity, and the particle translational and angular velocities, are
updated implicitly.
Using his improved method, Hu simulated the sedimentation of 400 heavy particles in an

upward, two-dimensional Poiseuille ¯ow. The same method was used by Patankar (1997) in his
Ph.D. thesis. This method is now being applied to simulations of 1000 particles in two
dimensions and 50 spherical particles in three dimensions. It will also be applied to the study
of ¯uidized beds.
A di�erent numerical method, also using unstructured grids, was developed by Johnson and

Tezduyar (1996, 1997), and has been applied to cases involving multiple spheres falling in a
liquid-®lled tube in three dimensions with the number of particles reaching 100. Their method
uses a stabilized space-time formulation to deal with the time-dependent domain, and an
automatic mesh generation method which produces structured layers of elements around the
particles, and unstructured elements elsewhere in the domain. The mesh is updated using an
automatic mesh moving method (with the structured layers of elements ``glued'' to the
particles), combined with remeshing and projection as needed. The method has been
implemented in parallel.
The method of Johnson and Tezduyar is explicit: as in the earlier work of Hu et al.

(1992), the particles are moved by the hydrodynamic forces and torques (in conjunction
with gravity, of course), which must be computed. This can be compared with the implicit
methods used by Hesla (1991) and Hu (1996), which are based on the combined weak
formulation of Hesla in which the hydrodynamic forces and torques are completely
eliminated.
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Johnson and Tezduyar apply their method to the sedimentation of polydisperse spheres;
their simulations reproduce the microstructural across-the-stream structures associated with
drafting, kissing, and tumbling (Fortes et al., 1987; Joseph et al.; 1987, and Joseph, 1996).
For 100 spheres, however, the number of mesh points required is extremely large, and
remeshing/projection is required quite often, due to the high frequency of ``near-collisions''
between spheres. 1 To alleviate this problemÐthat is, to prevent particles from approaching
each other too closelyÐJohnson and Tezduyar have implemented a ``collision strategy,''
described later.

1.3.2. Fictitious domain methods
Fictitious-domain methods, also called domain-embedding methods, comprise a large class of

solution methods for partial di�erential equations. The basic idea is to extend a problem on a
geometrically complex (possibly time-dependent) domain to a larger, simpler domain (the
``®ctitious domain''). This conceptual framework provides two key advantages in constructing
computational schemes:

. The extended domain is geometrically simpler, so it admits simpler, more regular meshes.
This may allow specialized, fast solution methods, such as fast direct solvers for elliptic
problems on rectangular domains.

. The extended domain may be time-independentÐeven if the original domain is time-
dependent. Thus, the same, ®xed mesh can be used for the entire computation, eliminating
the need for repeated remeshing and projection. This is in sharp contrast to the situation for
the unstructured-grid methods described above.

Of course, the boundary conditions on the original boundary must still be enforced, in order
for the solution of the extended problem to match the solution of the original problem on the
original domain.
Fictitious-domain methods were, to the best of our knowledge, introduced by Hyman

(1952). They were also discussed by Saul'ev (1963) (who coined the term ``®ctitious
domain'') and by Buzbee et al. (1971). Glowinski et al. (1994a, 1994b, 1995), described
®ctitious-domain methods for the Dirichlet problem in which the boundary condition (on
the boundary of the original domain) is enforced as a side constraint, using a (boundary-
supported) Lagrange multiplier. These methods use structured, regular meshes (which are
not boundary-®tted) over the extended domain. They also applied the methods to the
solution of nonlinear time-dependent problems, such as the variational inequalities modeling
the ¯ow of a viscous-plastic medium in a pipe, the Ginzburg±Landau equations, and the
Navier±Stokes equations.

1 In principle, the lubrication forces implicit in the equations of ¯uid motion will not allow two particles to touch
without ®lm rupture, which is ignored in the equations of motion. In experiments, actual touching contacts are

observed in gas-¯uidized beds of heavy particles. In liquid-¯uidized beds, the lubrication forces are higher, so the
particles do not actually touch, in general, although they can approach arbitrarily closely if their relative velocity is
great enough.
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Examples of non Lagrange multiplier based ®ctitious-domain methods can be found in the
immersed boundary method of C. Peskin and his collaborators (Peskin, 1977; Peskin and
McQueen, 1980; Peskin, 1981) for the simulation of incompressible viscous ¯ow in regions with
elastic moving boundaries, and in the work of LeVeque and Li (1994, 1997).
Glowinski et al. (1997b, 1997c) describe ®ctitious-domain methods for incompressible viscous

unsteady ¯ow around rigid particles which have prescribed motions. For this problem, the
original (``complex'') domain is the region occupied by the ¯uid, and the extended domain is
the region occupied by the ¯uid together with the interiors of the particles. The no-slip
condition on the particle boundaries is enforced as a side constraint, using a Lagrange
multiplier. A time discretization by operator splitting aÁ la Marchuk±Yanenko is coupled with
an L 2-projection technique to enforce the incompressibility condition to produce a method that
is robust, stable, and easy to implement.
If the motions of the particles are caused by the hydrodynamic forces and torques (in

addition to gravity) rather than being prescribed in advance, the equations of ¯uid motion are
coupled with the equations of rigid-body motion. As for Hu's improved method (1996) referred
to above, it is advantageous to derive a combined weak formulation of the problem in which
the hydrodynamic forces and torques are eliminatedÐa generalization of Hesla's (1991)
combined weak formulation to the extended domain. To make this possible, the constraint of
rigid-body motion on the boundaries of the particles (that is, the no-slip condition) must be
extended to their interiors as well. This extended constraint can be enforced using a distributed
Lagrange multiplier.
A preliminary version of a ®nite-element scheme based on these ideas was introduced by

Glowinski et al. (1997a). 2 A more complete version of this schemeÐwhich includes a short-
range repulsive force to prevent particle±particle and particle-wall interpenetrationÐis
described in the present article. The method is quite di�erent from that described in Glowinski
et al. (1997b, 1997c); it has been applied to sedimenting particles in a channel, and accurately
reproduces the hydrodynamical interactions among the particles.
Assuming that the outer boundary of the ¯uid±particle domain is independent of time, the

extended domain is also time-independent, obviating the need for repeated remeshing/
projection, as pointed out above. 3 This is a great advantage, since, for three-dimensional
particulate ¯ow, the automatic generation of unstructured, body-®tted meshes in the region
outside a large number of closely spaced particles is a di�cult problem. And if the outer
boundary (in two dimensions) is rectangular, a structured mesh can be used, which allows fast
elliptic solvers to be used.

1.4. Collision strategies

As alluded to above, when simulating dense suspensions, near-collisions occur with high
frequency. In unstructured-grid methods, this necessitates an inordinately large number of

2 The notation used in Glowinski et al. (1997a) di�ers from that of the present article.
3 In order to stably compute the distributed Lagrange multiplier, a separate, coarser mesh must be generated inside

each particle at each time step. However, this mesh is very simple, and can be generated very quickly.
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mesh points in the narrow gap between the close particles, and causes the mesh to become
distorted very quickly, requiring a high frequency of remeshing and projection. What is needed
is a ``collision strategy'' for preventing such near-collisions, while still conserving total mass
and momentum (within the numerical truncation error).
Johnson and Tezduyar (1996, 1997) implement a collision strategy based on the physics of

inelastic collisions, which requires the selection of a ``coe�cient of restitution.'' This strategy is
appropriate for handling the actual touching contacts which occur in gas-¯uidized beds of
heavy particles.
However, in liquid-¯uidized beds where the particles do not actually collide, a simpler

strategy may be better. The strategy adopted for the ®ctitious-domain method described below
is to activate an arti®cial repelling force at close range. This circumvents the need for moving
locally structured grids, and selecting a restitution coe�cients, and may be a more appropriate
and computationally e�cient way to handle the near-collisions of particles in liquid-¯uidized
suspensions. Some excellent approaches for treating collisions between particles of arbitrary
shape have recently been proposed by Maury (1997).

1.5. Viscoelastic ¯uids

The ®rst paper on the direct simulations of the motion of particles in viscoelastic ¯uids
was the study of the two-dimensional sedimentation of circular particles in an Oldroyd B
¯uid by Feng et al. (1996). The method used is an extension of the unstructured-grid
method of Hu et al. (1992) to Oldroyd B ¯uids. The results show chains of particles
aligned along, rather than across the streamÐprecisely the microstructures observed in
actual experiments.
More recent applications of this method can be found in the paper on the direct simulation

of the motion of particles in Couette and Poisseuille ¯ows of viscoelastic and shear-thinning
¯uids by Huang et al. (1997), and in the paper of Huang et al. (1998) on the e�ects of
viscoelasticity and shear thinning on the stable orientation of ellipses falling in a viscoelastic
¯uid. Particulate ¯ows of as many as 100 particles in an Oldroyd B ¯uid were reported in the
Ph.D. thesis of Patankar (1997), and video animation of some of these can be seen on our Web
site

http : ==www:aem:umn:edu=Solid-Liquid Flows

These are the only direct simulations of initial value problems for ¯ows of particles in
viscoelastic ¯uids which have been published to date; we believe that these represent the only
numerical packages available which can move solid particles in a viscoelastic ¯uid.

2. Mathematical formulation

2.1. The governing equations

As stated in Section 1.1, the ¯uid is assumed to be Newtonian. The method will eventually
be extended to the viscoelastic case. It is assumed that the lubrication forces are large enough
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to prevent particles from touching each other, or the walls. To make the equations associated
with the angular motion of the particles simpler, we focus on the two-dimensional case. The
extension to three dimensions is straightforward.
Let O be the entire computational domain, including the interior of the particles. For

simplicity, O will be taken to be a rectangle, with sides G1, G2, G3, and G4. Let Pi (t) be the
interior of the ith particle, i=1, . . . , N, where N is the number of particles (see Fig. 1). We
assume, for simplicity, that the ¯uid velocity satis®es a Dirichlet boundary condition on the
outer boundary G=[4i=1Gi, and that rd (the particle density) and g (the body force per unit
mass) are constant, so that the body forces exert no net torque on the particles.

2.1.1. Strong form
Under the above assumptions, the motion of a ¯uid±particle mixture is governed by the

following equations.

Fluid motion

rL
du

dt
� rLg� r � sss in OnP�t�; �1�

r � u � 0 in OnP�t�; �2�

u � uG�t� on G; �3�

u � Ui � oi � ri on @Pi�t�; i � 1; : : : ;N; �4�

ujt�0 � u0 in OnP�0�: �5�

Fig. 1. Fluid±particle system.

R. Glowinski et al. / International Journal of Multiphase Flow 25 (1999) 755±794762



Particle motion

Mi
dUi

dt
�Mig� Fi; �6�

Ii
doi

dt
� Ti; �7�

Uijt�0 � Ui;0; �8�

oijt�0 � oi;0: �9�

Kinematic equations

dXi

dt
� Ui; �10�

dYi

dt
� oi; �11�

Xijt�0 � Xi;0; �12�

Yijt�0 � Yi;0: �13�

Here

du

dt
� @u
@t
� �u � r�u �14�

is the material derivative;

P�t� �
[N
i�1

Pi�t�

is the region occupied by the particles; ri=xÿ Xi; rL, u, and ss are the ¯uid density (assumed
constant), velocity, and stress; Mi, Ii, Ui, oi, Xi, and Yi, are the mass, moment of inertia,
translational velocity, angular velocity, center of mass, and angular orientation of the ith
particle, respectively; and

Fi �
�
@Pi�t�

sssn̂ ds; Ti �
�
@Pi�t�

ri � sssn̂ ds �15�

are the hydrodynamic force and torque (about the center of mass) on the ith particle, and nÃ is
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the unit normal vector [to @Pi(t)] pointing out of the particle. Note that the initial velocity u0
and boundary data uG(t) must satisfy the compatibility conditions 4

r � u0 � 0 in OnP�0�;
�
G
uG�t� � n̂ ds � 0: �16�

Since the ¯uid is Newtonian, the stress tensor ss takes the form:

sss � ÿpI� 2ZD�u�; �17�
where p is the pressure, Z is the viscosity (assumed constant), and D[u] is the rate-of-strain
tensor.

2.1.1.1. Remarks. For two-dimensional motion, the three-dimensional vector angular velocity is

oooi � �0; 0; oi�:
The term oi� ri in (4) should thus more properly have been written

oooi � ri � �ÿoiri;y;oiri;x; 0�:
For simplicity, however, we shall continue to use the notation oi� ri. In a similar vein, the
integrand ri�ssnÃ in (15) is actually the three-dimensional vector

ri � sssn̂ � �0; 0; ÿri;y�sssn̂�x � ri;x�sssn̂�y�:
The right-hand side of (15) should be interpreted as the z component of this vector, integrated
over @Pi(t).
Eq. (7) is valid in two dimensions; it is also valid in three dimensions when the particles are

spherically symmetric if we replace the scalar oi by ooi, since the inertia tensor Ii is isotropic
when the ith particle is spherically symmetric. In the general three-dimensional case, (7) must
be replaced by

d

dt
Iioooi � Ii

doooi

dt
� oooi � Iioooi � Ti;

where Ti is the (vector) torque (about the center of mass) on the ith particle.

In three dimensions, the orientation of the ith particle cannot be described by a single angle;
three angles are requiredÐfor example, the Euler angles. Thus, (11) and (13) would need to be
replaced by the corresponding equations for the three Euler angles.

For circular particles in two dimensions and spherical particles in three dimensions, (11) and
(13) decouple from the remaining equations and may be ignored.

2.1.1.2. Collision strategy. To prevent particles from penetrating each other or the four walls
G1, G2, G3, and G4, we adopt the following collision strategy. For simplicity, it is assumed that
the particles are circular; the technique can easily be generalized to handle arbitrary shaped

4 Eq. (16) follows from (2) by integration, making use of (4).
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particles. The strategy is to replace (6) by

Mi
dUi

dt
�Mig� Fi � F0i; �18�

where

F0i �
XN
j�1
j6�i

Fp
i;j �

X4
j�1

Fw
i;j

is a short-range repulsive force exerted on the ith particle by the other particles and by the

walls. For the particle±particle repulsive force, we take

Fp
i;j �

0; di;j > Ri � Rj � r;

1

Ep
�Xi ÿ Xj��Ri � Rj � rÿ d i;j�2; di;jRRi � Rj � r;

8><>: �19�

where di,j= vXiÿXjv is the distance between the centers of the ith and jth particles, Ri is the

radius of the ith particle, r is the force range, and Ep is a small positive ``sti�ness'' parameter.

For the particle-wall repulsive force, we take

Fw
i;j �

0; d 0i;j > 2Ri � r;

1

Ew
�Xi ÿ X0i;j��2Ri � rÿ d 0i;j�2; d 0i;jR2Ri � r;

8><>: �20�

where d 0i;j= vXiÿX 0i;jv is the distance between the centers of the ith particle and the imaginary

particle P 0i;j located on the other side of Gj (see Fig. 2), and Ew is another (small positive) ``sti�-

ness'' parameter. In the future, following Maury (1997), we will implement more sophisticated

collision strategies, in order to allow particles of arbitrary shape.

Fig. 2. Imaginary particle.
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2.1.2. Weak form
In deriving the weak form of the governing equations, the hydrodynamic forces and torques

on the particles can be completely eliminated by combining the ¯uid and particle equations of
motion ((1), (18), and (7)) into a single weak equation of motion for the combined ¯uid±
particle system. This equationÐcalled the combined equation of motion, or total momentum
equationÐwas ®rst introduced by Hesla (1991), who used it as the basis of a ®nite-element
scheme for the direct simulation of the motion of particles in a Newtonian ¯uid. 5 As will be
seen, the combined equation of motion is completely general; it applies to any ¯uid±particle
systemÐeven if the ¯uid is viscoelastic (though of course for viscoelastic ¯uids, the stress
equations must also be included in the overall formulation). For simplicity of exposition, we
assume that there is only one particle. The extension to the many-particle case is
straightforward.
The key to deriving the combined equation of motion is the combined velocity space

VuG�t� � f�v; V; x�jv 2 H1�OnP�t��2; V 2 R2; x 2 R;

v � V� x� r on @P�t�; and v � uG�t� on Gg;

which incorporates the constraint of rigid-body motion on @P(t) (that is, the no-slip condition).
In light of (3) and (4), we see that the combined ¯uid±particle velocity (u, U, o) must lie in
VuG

(t). To derive the combined equation of motion, we take a combined variation (v, V, x)
from the combined variation space

V0�t� � f�v; V; x�jv 2 H1�OnP�t��2; V 2 R2; x 2 R;

v � V� x� r on @P�t�; and v � 0 on Gg;

and perform the following symbolic operations:�
OnP�t�
�Equation �1�� � v dx� �Equation �18�� � V� �Equation �7��x:

After integrating the stress-divergence term by parts, and using the fact that v=V+ x� r on
@P(t), we ®nd that the @P(t) integrals arising from the integration by parts exactly cancel the
hydrodynamic force and torque from the particle equations of motion, yielding the combined
equation of motion:�

OnP�t�
rL

du

dt
ÿ g

� �
� v dx�M

dU

dt
ÿ g

� �
� V� I

do
dt

xÿ F0 � V

� ÿ
�
OnP�t�

sss : D�v� dx; for all �v; V; x� 2 V0: �21�

5 Hesla used (6) instead of (18).
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The ¯uid pressure p is required to lie in the space

L2
0�OnP�t�� � q 2 L2�OnP�t��

�
OnP�t�

q dx � 0

�����
�(

in order to ®x the undetermined additive constant. The weak formulation of the problem is
completed by the weak form of the incompressibility constraint,�

OnP�t�
qr � u dx � 0; for all q 2 L2�OnP�t��: �22�

Eqs. (21) and (22), together with (10) and (11), and the initial conditions (5), (8), (9), (12), and
(13), form a good starting point for constructing ®nite-element schemes for the direct
simulation of ¯uid±particle ¯ows. (The ®ctitious-domain method derived below is based on a
generalization of this formulation.) One such ®nite-element scheme, which uses a generalization
of the y operator-splitting scheme (Bristeau et al., 1987) for the time discretization, was
developed by Hesla (1991).
Such ®nite-element schemes have at least two built-in advantages, owing to the fact that the

hydrodynamic force and torque have been eliminated in the derivation of the combined
equation of motion. The ®rst is that the force and torque need not even be computed, thereby
eliminating one step of the computation. The secondÐand more importantÐadvantage is that
these schemes are not subject to a numerical instability which can arise when the equations of
¯uid and particle motion are integrated as a coupled system with explicitly computed force and
torque (Hu et al., 1992).

2.1.3. Discussion
Eq. (21) represents a virtual power principle for the combined ¯uid±particle system, and governs

the evolution of the total system momentumÐ¯uid plus particle. It is noteworthy that because it
was derived without using the speci®c form of ss, (21) holds for any ¯uid, even a viscoelastic one; in
fact, it holds for any continuous medium whateverÐfor example, an elastic solid.
The cancellation of the @P(t) integrals can be viewed as a consequence of Newton's third

law. The hydrodynamic force and torque represent internal forces for the combined ¯uid±
particle system, so cannot alter the total momentum of the system; they can only e�ect an
exchange of momentum between ¯uid and particle.
When (17) is substituted into (21), the viscous dissipation term which arises involves

D[u]:D[v], rather than the more usual HHu:HHv. This is a consequence of the need to retain the
complete stress tensor during the integration by parts so that the @P(t) integrals will cancel the
hydrodynamic force and torque terms from the particle equations of motion.
Finally, The Navier±Stokes equation and the equations of rigid-body motion can be

recovered from (21) as special cases, by appropriate choices of (v, V, x)$V0(t).

2.2. A ®ctitious-domain formulation

As stated in Section 1.3.2, the basic idea of ®ctitious-domain methods, in the present setting,
is to extend the problem from O\P(t) to all of O, while still forcing the solution to satisfy the
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no-slip condition on @P(t). For simplicity of exposition, we continue to assume that there is
only one particle. The extension to the many-particle case is straightforward.
Extending (22) to O is straightforward. The extension of (21) is carried out in two steps:

1. Obtain an analogous combined equation of motion for P(t), and add it to (21) to produce a
combined equation of motion for the whole of O;

2. Relax the constraint of rigid-body motion by removing it from the combined velocity
spaces, and enforce it as a side constraint using a Lagrange multiplier.

2.2.1. Combined equation of motion for the extended domain
To obtain a combined equation of motion for P(t) in a form suitable for combining with

(21), it is necessary to enforce the constraint of rigid-body motion for both u and v throughout
P(t)Ðnot just on @P(t). That is, we require

u � U� o� r in P�t�; �23�

v � V� x� r in P�t�: �24�
It can be checked that (23) implies

du

dt
� dU

dt
� do

dt
� r� o� �o� r� in P�t�:

Forming the inner product of this with rdv, integrating over P(t), and using (24) together with
the fact that�

P�t�
r dx � 0; �25�

we obtain 6 (after some calculation)�
P�t�

rd
du

dt
� v dx �M

dU

dt
� V� I

do
dt

x: �26�

We also have, in light of (24) and (25),�
P�t�

rdg � v dx �Mg � V:

Subtracting this from (26), multiplying by rL/rd, and noting that D[v]= 0 in P(t) because of
(24), we obtain (after rearranging)�

P�t�
rL

du

dt
ÿ g

�
� v dxÿ rL

rd
M

dU

dt
ÿ g

�
� Vÿ rL

rd
I
do
dt

x � ÿ
�
P�t�

sss : D�v� dx:
��

�27�

6 In three dimensions, the term I do/dt x would become (I doo/dt+ oo� Ioo)�xx.
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To produce the combined weak equation of motion for the entire domain O, we extend the
combined velocity and combined variation spaces to P(t) using the extended rigid-motion
constraint (24):eVuG�t� � f�v; V; x�jv 2 H1�O�2; V 2 R2; x 2 R;

v �V� x� r in P�t�; and v � uG�t� on Gg;

eV0�t� � f�v; V; x�jv 2 H1�O�2; V 2 R2; x 2 R;

v �V� x� r in P�t�; and v � 0 on Gg:
(In light of (3) and (23), the extended combined ¯uid±particle velocity (u, U, o) must lie
in eVuG

(t).) Adding (27) to (21), we obtain the following combined weak equation of motion for
the entire domain O:Z

O
rL

du

dt
ÿ g

� �
� v dx� 1ÿ rL

rd

� �
M

dU

dt
ÿ g

� �
� V� I

do
dt

x
� �

ÿ F0 � V

� ÿ
Z
O
sss : D�v� dx; for all �v; V; x� 2 eV0: �28�

2.2.2. Relaxing the constraint of rigid-body motion
In (28), the solution function u and variation v are required to satisfy the (strong form of

the) constraint of rigid-body motion throughout P(t)Ðthat is, the constraint is enforced via the
de®nition of the combined velocity spaces. We can relax the constraint by:

1. Removing it from the combined velocity spaces;
2. Enforcing it, in the weak sense, as a side constraint; and
3. Adding an appropriate distributed Lagrange multiplier term to the right-hand side.

This resultsÐafter using (14) and (17)Ðin the following weak formulation of the problem in
the extended domain:
For a.e. t>0, ®nd u $ WuG

, p $ L 2
0(O), ll $ L(t), U $ R

2

, and o $ R satisfying�
O
rL

@u

@t
� �u � r�uÿ g

� �
� v dxÿ

�
O
pr � v dx�

�
O
2ZD�u�:D�v� dx

� 1ÿ rL
rd

� �
M

dU

dt
ÿ g

� �
� V� I

do
dt

x
� �

ÿ F0 � V � hlll; vÿ �V� x� r�iP�t�

for all v 2W0; V 2 R2; and x 2 R; �29��
O
qr � u dx � 0 for all q 2 L2�O�; �30�

hmmm; uÿ �U� o� r�iP�t� � 0 for all mmm 2 L�t�; �31�
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ujt�0 � u0 in O; �32�
as well as (10) and (11), and the initial conditions (8), (9), (12), and (13), where u0 satis®es the
compatibility conditions

r � u0 � 0

u0 � U0 � o0 � r0

in OnP�0�;
in P�0�:

Here r0=xÿ X(0),

WuG � fv 2 H1�O�2jv � uG�t� on Gg;

W0 �H1
0�O�2;

L2
0�O� � q 2 L2�O�

�
O
q dx � 0

���� �
;

�
and L(t) is H 1(P(t))2, with h�, �iP(t) denoting an appropriate inner product. The above
formulation is due to the ®rst two authors.

2.2.3. Remarks
The velocity u, initial velocity u0, and pressure p for the extended problem must of course

coincide with the corresponding functions for the original problem, in O\P(t). This entitles us
to use the same symbol for both the original and extended functions.
If v0 V+ x� r in P(t), it is straightforward to check that (29) reduces to (21). Thus, the

extended formulation is truly an extension of the weak formulation in O\P(t).
Since rL and g are constant, the body-force term�

O
rLg � v dx

in (29) can be absorbed into the pressure term. The ensuing discussion will re¯ect this change.
Since, in (29), u is divergence-free and satis®es a Dirichlet boundary condition on all of G,

we have

2

�
O
D�u� : D�v� dx �

�
O
ru : rv dx for all v 2W0: �33�

This is a substantial simpli®cation from the computational point of viewÐanother advantage
of the ®ctitious domain method developed here.
For the inner product h�, �iP(t) on L(t), we can use the standard inner product on H 1(P(t))2.

Alternatively, we can use an equivalent inner product which is more closely related to the
physics of the problem. One possibility is

hmmm; viP�t� �
�
P�t�
�mmm � v� armmm : rv� dx

where a is a scaling factor. If all the particles have the same diameter d, an obvious choice for
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a, on dimensional grounds, is d 2, since d is the most important characteristic length in the
problem. Another natural H 1 inner product, well suited to rigid-body motion, is

hmmm; viP�t� �
�
P�t�
�mmm � v� 2aD�mmm� : D�v�� dx:

Neither of these inner products has yet been tested in the actual code.

2.2.4. Interpretation of the distributed Lagrange multiplier
It can be shown thatÐif the standard H 1 inner product is used for L(t)Ðthe combined

equation of motion (29) implies the following conservation equation for linear momentum
inside P(t):

rL
du

dt
� rLg� �lllÿ r2lll� � r � sss in P�t�; �34�

together with the Neumann boundary condition

�n̂ � r�lll � n̂ � �sssd ÿ sssL� on @P�t� �35�
where ssd and ssL are the stress inside and outside @P(t), respectively. From this, we see that
(llÿ H 2ll) can be interpreted as the additional body force (per unit volume) required to
maintain the rigid-body motion in P(t).
It is interesting to note that we can obtain a third-order partial di�erential equation for ll

alone by substituting the strong form

u � U� o� r in P�t�
of (31), together with (17) into (34) then taking the curl. This results (since g is constant) in

2rL
do
dt
� r � lllÿ r2�r � lll�: �36�

3. Computational scheme

3.1. Finite-element discretization

To discretize the problem in space, we introduce a regular ®nite-element triangulation T h of
O for u, where h is the mesh size [see Fig. 3(a)], and a (regular) ``twice-coarser'' triangulation
T 2 h for p [see Fig. 3(b)]. 7 We then de®ne the following ®nite dimensional spaces
approximating WuG

, W0, L
2(O), L 2

0(O):

7 In actual practice T2 h is constructed ®rst; then Th is constructed by joining the midpoints of the edges of T2 h,
dividing each triangle of T2 h into 4 similar subtriangles.
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WuG;h � fvh 2 C0� �O�2 jvhjT 2 P1 � P1 for all T 2 T h; vh � uG;h on Gg;

W0;h � fvh 2 C0� �O�2 jvhjT 2 P1 � P1 for all T 2 T h; vh � 0 on Gg;

L2
h � fqh 2 C0� �O� jqhjT 2 P1 for all T 2 T 2hg;

L2
0;h � qh 2 L2

h

�
O
qh dx � 0

���� �
:

�
Here uG,h is an approximation of uG satisfying�

G
uG;h � n̂ ds � 0;

and P1 is the space of polynomials in two variables of degree 1 or less.

For functions in L(t), we must use a coarser triangulation to ensure stability (see Section

3.1.1. for details). Let T Ph
(t) be a ®nite-element triangulation of Ph(t), a polygonal domain

inscribed in P(t) (see Fig. 4). Then, a ®nite-dimensional space approximating L(t) is

Lh�t� � fmmmh 2 C 0�Ph�t��2 jmmmhjT 2 P1 � P1 for all T 2 T Ph�t�g:
This space was used in Glowinski et al. (1998). Another possibility is to choose M points in

P(t), x1, . . . , xM, which cover P(t) uniformly, and de®ne

Lh�t� � mmmh mmmh �
XM
i�1

mmmh;id�xÿ xi�; mmm1; . . . ; mmmM 2 R2

�����
)
;

(
�37�

Fig. 3. (a) Velocity mesh; (b) pressure mesh.
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where d(�) is the Dirac delta function at x=0; then de®ne a discrete L 2 ``inner product''
h�, �iPh(t)

by

hmmmh; vhiPh�t� �
XM
i�1

mmmh;i � vh�xi�; for all mmmh 2 Ll�t�; vh 2WuG;h or W0;h: �38�

Using this ``inner product'' is equivalent to enforcing the constraint of rigid-body motion
inside P(t) with a collocation method. A similar technique is used by Bertrand et al. (1997) to
enforce a Dirichlet boundary condition. Other approaches are possible, and will be investigated
in the future.
Using these ®nite-dimensional spaces, we obtain the following ®nite-element approximation

of the problem (29)±(32):
Find uh $ WuG,h

, ph $ L 2
0,h, llh $ Lh(t), U $ R2, and o $ R satisfying�

O
rL

duh
dt
� �uh � r�uh

� �
� vh dxÿ

Z
O
phr � vh dx�

Z
O
2ZD�uh� : D�vh� dx

� 1ÿ rL
rd

� �
M

dU

dt
ÿ g

� �
� V� I

do
dt

x
� �

ÿ F0 � V � hlllh; vh ÿ �V� x� r�iPh�t�

for all vh 2W0;h; V 2 R2; and x 2 R; �39��
O
qhr � uh dx � 0 for all qh 2 L2

h; �40�

Fig. 4. Triangulation of Ph(t), if P(t) is circular.
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hmmmh; uh ÿ �U� o� r�iPh�t� � 0 for all mmmh 2 Lh�t�; �41�

uhjt�0 � u0;h in O; �42�
as well as (10) and (11), and the initial conditions (8), (9), (12), and (13), where u0,h is an
approximation of u0 satisfying the compatibility conditions�

O
qhr � u0;h dx � 0 for all qh 2 L2

h;

hmmmh; u0;h ÿ �U0 � o0 � r0�iPh�0� � 0 for all mmmh 2 Lh�0�:

3.1.1. Remarks
The viscous dissipation term�

O
2ZD�uh� : D�vh� dx �43�

in (39) inextricably couples the x and y equations of motion. (This is inevitable since the ¯uid
and particle equations of motion are coupled in their strong form to begin with, through (4)
and through the hydrodynamic force and torque.) This doubles the size of the matrix and thus
quadruples the work required for each matrix±vector multiply. However, this is o�set by the
fact that only one system needs to be solved, instead of two. Furthermore, we can use
preconditions based on the point-block ordering of the velocity unknowns. That is, if u=(u, v),
we order the velocity unknowns u1, v1, u2, v2, . . . Ðalways dealing with the x and y
components of u at a single node together, as a single entity. This means, for example, that
instead of using a diagonal preconditioner, we would use a block diagonal preconditioner,
based on the 2� 2 point blocks. Since the coupling between the x and y components of
velocity at a single node is generally tighter than that between velocity components at separate
nodes, this strategy should signi®cantly reduce the number of iterations required for
convergence of iterative solution techniques.
When u satis®es a Dirichlet boundary condition on the entire outer boundary G, the viscous

dissipation term (43) can be simpli®ed considerably: It can be written in the form�
O
Zruh : rvh dx;

in view of (33).
The mesh sizes hO and hP(t) for Th and TPh

(t), respectively, must be related by a condition of
the form

hO0khP�t�; �44�
for some k in the interval (0.5, 1). This follows from general results on the approximation of
generalized saddle-point problems (that is, problems involving Lagrange multipliers), (29)±(32)
being a typical example of such a problem. For a thorough discussion of the approximation of
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steady saddle-point problems see, for example, Babuska (1973) and Brezzi (1974). Without
going into details, we simply state that the conditioning of the algebraic systems to be solved at
each time step is enhanced by requiring

hO � hP�t�;

while accuracy is enhanced by requiring

hP�t� � hO:

Relation (44) represents a compromise between these two alternatives.

3.2. Time discretization by operator splitting

Following Chorin (1967, 1968, 1973), most ``modern'' Navier±Stokes solvers are based on
operator-splitting algorithms, in order to enforce the incompressibility condition via a Stokes
solver or an L 2-projection method (Glowinski and Pironneau, 1992; Turek, 1996). This
approach can be applied to the initial value problem (39)±(42) to decouple its three principal
numerical di�culties:

1. The incompressibility condition, and the related unknown pressure ph;
2. The advection and di�usion terms;
3. The constraint of rigid-body motion in Ph(t), and the related distributed Lagrange multiplier

llh.

Each of these corresponds to a speci®c operator. (The ®rst and last are essentially projection
operators.)
Problem (39)±(42) is a particular case of the abstract initial value problem

df
dt
� A1�f� � A2�f� � A3�f� � f;

f�0� � f0;

where the operators A1, A2, and A3, can be multiple-valued. Among the many operator-
splitting methods which could be employed to solve this problem, we advocate the following
one (analyzed in, for example, Marchuk, 1990). It is only ®rst-order accurate, but this is
compensated for by its good stability and robustness properties. In the following, Dt is a time
step.
Fractional-step scheme aÁ la Marchuk±Yanenko

Set f 0=f0.
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For n=0, 1, . . . , compute an approximation f n+1 to f((n+1)Dt) by solving the three

successive problems

fn�1=3 ÿ fn

Dt
� A1�fn�1=3� � f n�1

1 ;

fn�2=3 ÿ fn�1=3

Dt
� A2�fn�2=3� � f n�1

2 ;

fn�1 ÿ fn�2=3

Dt
� A3�fn�1� � f n�1

3 ;

where f n+1
1 + f n+1

2 + f n+1
3 = f ((n+1)Dt).

In applying this scheme to (39)±(42), we assume for simplicity that the particles are circular

so that (11) and (13) may be ignored as stated in Section 2.1.1.1. The resulting algorithm can

easily be generalized to arbitrary shaped particles. With 0R a, bR1 and a+ b=1 we obtain,

after dropping some of the subscripts h:

Set u0=u0,h, U
0=U0, o

0=o0, X
0=X0.

For n=0, 1, . . . , assuming un, Un, o n, and Xn are known, proceed as follows:

Find un+1/3 $ W n+1
uG,h

and p n+1/3 $ L2
0,h satisfying

rL

�
O

un�1=3 ÿ un

Dt
� v dxÿ

�
O
pn�1=3r � v dx � 0 for all v 2W0;h; �45�

�
O
qr � un�1=3 dx � 0 for all q 2 L2

h: �46�

Find un+2/3$W n+1
uG,h

satisfying

rL

�
O

un�2=3 ÿ un�1=3

Dt
� v dx� rL

�
O
�un�1=3 � r�un�2=3 � v dx

� 2aZ
�
O
D�un�2=3� : D�v� dx � 0 for all v 2W0;h: �47�

Compute Un+2/3 and Xn+2/3 using the prediction procedure

Set Un,0=Un, Xn,0=Xn.

do k = 1, K

U�n;k � Un;kÿ1 � g� 1ÿ rL
rd

�ÿ1
Mÿ1F0�Xn;kÿ1�

�
Dt
K
;

  
�48�

X�n;k � Xn;kÿ1 � Un;kÿ1 �U�n;k

2

�
Dt
K
;

�
�49�
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Un;k � Un;kÿ1 � g� 1ÿ rL
rd

�ÿ1
Mÿ1

F0�Xn;kÿ1� � F0�X�n;k�
2

�
Dt
K
;

  
�50�

Xn;k � Xn;kÿ1 � Un;kÿ1 �Un;k

2

�
Dt
K
;

�
�51�

end do
Set Un+2.3=Un,K, Xn+2/3=Xn,K.

Find un+1 $ W n+1
uG,h

, Un+1 $ R2, o n+1 $ R, and lln+1 $ L n+2/3
h satisfying

rL

�
O

un�1 ÿ un�2=3

Dt
� v dx� 2bZ

�
O
D�un�1� : D�v� dx

� 1ÿ rL
rd

� �
M

Un�1 ÿUn�2=3

Dt
� V� I

on�1 ÿ on

Dt
x

� �
� hllln�1; vÿ �V� x� rn�2=3�iP n�2=3

h

for all v 2W0;h; V 2 R2; and x 2 R; �52�

hmmm; un�1 ÿ �Un�1 � on�1 � rn�2=3�iP n�2=3
h
� 0 for all mmm 2 Ln�2=3

h : �53�

Compute Xn+1 using the correction procedure
Set Xn+1,0=Xn.
do k=1, K

X�n�1;k � Xn�1;kÿ1 � Un �Un�1

2

�
Dt
K
;

�
�54�

Xn�1;k � X�n�1;k � 1ÿ rL
rd

�ÿ1
Mÿ1

F0�Xn�1;kÿ1� � F0�X�n�1;k�
2

� �Dt�2
2K 2

;

� 
�55�

end do
Set Xn+1=Xn+1,K.

3.2.1. Remarks
In (45)±(55), W n+1

uG,h
=WuG((n+1)Dt),h

, L n+s
h =Lh((n+ s)Dt), Pn�s

h � Ph��n� s�Dt), and rn+ s=
xÿ Xn+s. In (48)±(51), we predict the particle center-of-mass position, and use it in (52), (53).
Then, in (54), (55), we correct the particle center-of-mass position. With operator splitting, we

R. Glowinski et al. / International Journal of Multiphase Flow 25 (1999) 755±794 777



can use a smaller time step in these prediction and correction procedures than we use in the
rest of the algorithm. In the numerical simulations presented in this article, we use K=10 in
(48)±(51), and (54), (55).
Since the advecting ®eld un+1/3 in (47) is divergence-free (actually, quasi divergence-free

because of the space discretization), the linearization of the advection term has very little e�ect
on the overall stability of the splitting scheme. Actually, when one uses the method of
characteristics to treat the advection (as in, for example, Pironneau, 1989) the advecting ®eld is
a divergence free velocity ®eld computed at a previous step by either a Stokes solver for
velocity or a Poisson solver for pressure.
As shown, for example, in Marchuk (1990) and LeVeque and Oliger (1983) (see also Dean

and Glowinski, 1997) the Marchuk±Yanenko fractional step scheme employed here can be
made second-order accurate without losing its good stability and robustness properties. This
higher accuracy can be obtained by using, for example, a symmetrization procedure and then,
for each fractional step, a sti� A-stable, second-order accurate, Runge±Kutta scheme (instead
of the backward Euler scheme used here). See, for example, Dean and Glowinski (1997) for
more details. These second-order accurate fractional step schemes are clearly more complicated
to implement than the one used in this article. Also, it is very likely that the main source of
numerical errors is the space discretization since, in order to capture the complicated dynamics
of the ¯ows discussed here, we must use small time steps. Nevertheless, we intend to make a
systematic comparison between the ®rst-order and second-order accurate fractional step
schemes in the near future.

3.3. Solution of subproblems (45), (46), (47), and (52), (53)

By inspection of (45), (46), it is clear that un+1/3 is the L 2(O)-projection of un on the
subspace

vh 2Wn�1
uG;h

���� �
O
qhr � vh dx � 0 for all qh 2 L2

h

� �
;

with p n+1/3 the corresponding Lagrange multiplier in L 2
0,h. The pair {un+1/3, p n+1/3} is

unique. To compute {un+1/3, p n+1/3}, we can use a Uzawa/conjugate-gradient algorithm
operating in L 2

0,h equipped with the inner product

fq; q0gj4
�
O
rq � rq0 dx:

This gives an algorithm preconditioned by the discrete equivalent of ÿH 2 with homogeneous
Neumann boundary condition (Glowinski et al., 1997b,). This algorithm is very easy to
implement and seems to have excellent convergence properties.
If a>0, (47) is a classical advection-di�usion problem. It can be easily solved, for example,

by a least-squares/conjugate-gradient algorithm like those discussed in Glowinski (1984).
The solution of (52), (53) can be computed by algorithms similar to those for elliptic

problems (Glowinski et al., 1994a), with the additional di�culty that there are now three
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additional equationsÐthe ones used to compute the translational and angular velocity of the

particle. Problem (52), (53) has the following form.

Find u $ WuG,h
, U $ R2, o $ R, ll $ Lh satisfying

a
�
O
u � v dx� 2Z

�
O
D�u� : D�v� dx� 1ÿ rL

rd

� �
M

UÿU0

Dt
� V� I

oÿ o0

Dt
x

� �
�
O
f � v dx� hlll; vÿ �V� x� r�iPh

for all v 2W0;h; V 2 R2; and x 2 R; �56�

hmmm; uÿ �U� o� r�iPh
� 0 for all mmm 2 Lh; �57�

where the center of mass X of particle Ph is assumed known, and WuG,h
=W n+1

uG,h
. A conjugate-

gradient algorithm for solving (56), (57) is the following:

Step 0: Initialization

Assume ll0$Lh is given.

Find u0$WuG,h
, U0$R2, and o 0$R satisfying

a
�
O
u0 � v dx� 2Z

�
O
D�u0� : D�v� dx �

�
O
f � v dx� hlll0; viPh

for all v 2W0;h; �58�

1ÿ rL
rd

�
M

U0 ÿU0

Dt
� V� hlll0; ViPh

� 0 for all V 2 R2;

�
�59�

1ÿ rL
rd

�
I
o0 ÿ o0

Dt
x� hlll0; x� riPh

� 0 for all x 2 R:

�
�60�

Find g0 $ Lh satisfying

hmmm; g0iPh
� hmmm; u0 ÿ �U0 � o0 � r�iPh

for all mmm 2 Lh: �61�
Set w0=g0.

For m=0, 1, . . . , assuming um, Um, om, llm, gm, and wm are known, compute um+1, Um+1,

om+1, llm+1, gm+1, and wm+1 as follows:

Step 1: Descent

Find �um $ W0,h, �Um $ R2, and �om $ R satisfying

a
�
O

�um � v dx� 2Z
�
O
D��um� : D�v� dx � hwm; viPh

for all v 2W0;h; �62�

1ÿ rL
rd

�
M

Dt
�Um � V� hwm; ViPh

� 0 for all V 2 R2;

�
�63�
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1ÿ rL
rd

�
I

Dt
�omx� hwm; x� riPh

� 0 for all x 2 R:

�
�64�

Find �gm $ Lh satisfying

hmmm; �gmiPh
� hmmm; �um ÿ � �Um � �om � r�iPh

for all mmm 2 Lh: �65�

Set

rm �
hgm; gmiPh

hwm; �gmiPh

; �66�

lllm�1 � lllm ÿ rmw
m; �67�

um�1 � um ÿ rm �um; �68�

Um�1 � Um ÿ rm �Um; �69�

om�1 � om ÿ rm �om; �70�

gm�1 � gm ÿ rm �gm: �71�

Step 2: Convergence test/new descent direction

If

hgm�1; gm�1iPh

hg0; g0iPh

RE

take u= um+1, U= Um+1, o= om+1, and ll= llm+1.

Otherwise, set

gm �
hgm�1; gm�1iPh

hgm; gmiPh

; �72�

wm�1 � gm�1 � gmw
m; �73�

m � m� 1; �74�

and go to (62).
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3.3.1. Remarks
The above algorithm, as it stands, cannot be used if rd=rLÐthat is, if the particles are

neutrally buoyant. However, it can easily be made to work by adding extra conditions to the
space of the distributed Lagrange multipliers.

4. Numerical experiments

We now present the results of some numerical experiments. For all computations, the
collocation method (37), (38) is used to enforce the constraint of rigid-body motion, and a and
b are taken to be 1 and 0, respectively, in the Marchuk±Yanenko scheme (45)±(55).

4.1. Code validation: sedimentation of two circular particles in a two-dimensional channel

To validate the method developed in the preceding sections, we study the sedimentation of
two circular particles in a two-dimensional channel, comparing the results with two di�erent
mesh sizes, and two di�erent time steps.
The computational domain is a ®nite portion of a channel, which is moving along with the

particles. Its x and y dimensions are 2 and 5, respectively. The diameter of the particles
is d=0.25. The ¯uid and particle densities are rL=1.00 and rd=1.5, respectively, and the
¯uid viscosity is Z=0.01. The range over which the repulsive force F0 is active is =1.5 hu, and
the two sti�ness parameters in (19) and (20) are taken to be Ep=10ÿ5 and Ew= Ep/2,
respectively.8 Both particles are initially on the channel centerline, with a distance of 0.5
between their centers. The initial ¯uid and particle velocities are

u0 � 0;

Ui;0 � 0

oi;0 � 0

i � 1; 2;

i � 1; 2:

The simulation is run for two di�erent time steps, Dt=0.0005 and Dt=0.00025. For the
code validation studies, we use two di�erent velocity mesh sizes, hu=1/192 and hu=1/256.
(These values were chosen on the basis of boundary layer thickness and particle diameter.) In
all cases, we take the pressure mesh size hp to be 2 hu. Fig. 5 shows the characteristic drafting,
kissing, and tumbling behavior of two sedimenting particles, computed with velocity mesh size
hu=1/256 and time step Dt=0.0005.
In Figs. 6±8, the particle centers, translational velocities, and angular velocities are plotted

against time, for time step Dt=0.0005, and velocity mesh sizes hu=1/192 and hu=1/256.
Note, in Fig. 6(b), that the time histories of the y-components of the particle centers, computed
using the two di�erent mesh sizes, are essentially indistinguishable. The particles are closest to

8 The choice of Ep and Ew is not critical except in the ®nal stage of a simulation of the sedimentation of a large
number of particles in a closed box, when the particles accumulate at the bottom of box.
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Fig. 5. Sedimentation of two circular particles: t=0.15, 0.2, and 0.3 (left to right).

Fig. 6. Sedimentation of two circular particles: time histories of the x-coordinates (left) and y-coordinates (right) of

the particle centers, obtained using velocity mesh sizes hu=1/192 (thick solid and dotted lines), and hu=1/256 (thin
solid and dotted lines).
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each other (``kissing'') at t=0.1665. Up to this point, we have very good agreement between

the two simulations. After ``kissing,`` the particles ``tumble''Ða manifestation of the instability

of a falling long body aligned with the stream (Fortes et al., 1987; Joseph et al., 1987; Joseph,

1996)Ðthe particle motions computed with the two di�erent velocity mesh sizes are still very

close, considering the di�culty of the problem. Note that ``tumbling'' occurs at essentially the

same time for both mesh sizes (see Figs. 7 and 8). The maximal particle Reynolds number is

about 450.

To check that the computed solutions are converged with respect to the mesh size, another

run was performed with velocity mesh size hu=1/384 (and time step Dt=0.00025). The results

were essentially indistinguishable from those for hu=1/256 (and time step Dt=0.00025).

Fig. 7. Sedimentation of two circular particles: time histories of the x-components (left) and y-components (right) of
the particle translational velocities, obtained using velocity mesh sizes hu=1/192 (thick solid and dotted lines), and

hu=1/256 (thin solid and dotted lines).

Fig. 8. Sedimentation of two circular particles: time histories of the particle angular velocities, obtained using
velocity mesh sizes hu=1/192 (thick solid and dotted lines), and hu=1/256 (thin solid and dotted lines).
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In Fig. 9±11, the same three quantities are plotted, this time for velocity mesh size hu=

1/192, and time steps, Dt=0.0005 and Dt=0.00025. Note, in Fig. 9(b), that the time histories

of the y-components of the particle centers, computed using the two di�erent time steps, are

essentially indistinguishable. The particles are closest to each other (``kissing'') at t=0.17125.

Again, we ®nd excellent agreement between the two simulations prior to this time, and good

agreement afterward. Note that ``tumbling'' occurs at essentially the same time for both time

steps (see Figs. 10 and 11). The maximal particle Reynolds number is about 465 for

Dt=0.00025.

Fig. 9. Sedimentation of two circular particles: time histories of the x-coordinates (left) and y-coordinates (right) of
the particle centers, obtained using time steps Dt=0.0005 (thick solid and dotted lines), and Dt=0.00025 (thin
solid and dotted lines).

Fig. 10. Sedimentation of two circular particles: time histories of the x-components (left) and y-components (right)

of the particle translational velocities, obtained using time steps Dt=0.0005 (thick solid and dotted lines), and
Dt=0.00025 (thin solid and dotted lines).
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These results compare qualitatively well with those of Hu et al. (1992), which were obtained
with di�erent physical parameters and a di�erent numerical methodology. They also compare
well with the results of laboratory experiments with quasi two-dimensional ¯ow.

4.2. Sedimentation of 504 circular particles in a closed two-dimensional box

The sedimentation of 504 circular particles in a closed two-dimensional box is shown in
Fig. 12±20. The x and y dimensions of the box are both 2, and the diameter of the particles is

Fig. 11. Sedimentation of two circular particles: time histories of the particle angular velocities, obtained using time
steps Dt=0.0005 (thick solid and dotted lines), and Dt=0.00025 (thin solid and dotted lines).

Fig. 12. Sedimentation of 504 circular particles: t=0.
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Fig. 13. Sedimentation of 504 circular particles: t=1.

Fig. 14. Sedimentation of 504 circular particles: t=2.
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Fig. 15. Sedimentation of 504 circular particles: t=3.

Fig. 16. Sedimentation of 504 circular particles: t=4.
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Fig. 17. Sedimentation of 504 circular particles: t=5.

Fig. 18. Sedimentation of 504 circular particles: t=8.
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Fig. 19. Sedimentation of 504 circular particles: t=12.

Fig. 20. Sedimentation of 504 circular particles: t=24.
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d=0.0625, giving a solids fraction of 38.66%. The ¯uid and particle densities are rL=1.00

and rd=1.01, respectively, and the ¯uid viscosity is Z=0.01. The range over which the

repulsive force F0 is active is r= hu, and the sti�ness parameters in (19) and (20) are taken as

Ep=8.15� 10ÿ5 and Ew= Ep/2, respectively.

The initial ¯uid and particle velocities are

u0 � 0;

Ui;0 � 0

oi;0 � 0

i � 1; . . . ; 504;

i � 1; . . . ; 504:

Fig. 21. Sedimentation of two spherical particles: t=0.00, 0.35, and 0.40 (left to right).

Fig. 22. Sedimentation of two spherical particles: t=0.50 and 0.70 (left to right).
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and the boundary condition is

uG�t� � 0 tr0:

The time step, velocity mesh size, and pressure mesh size are Dt=0.001, hu=1/256 (263169
nodes), and hp=1/128 (66049 nodes), respectively. (A ®ne mesh is required because of the
large number of particles.)
The numbers of iterations for the divergence-free projection (45), (46), the linearized

advection±di�usion problem (47), and the rigid-body-motion projection (52), (53) are 12±14, 5,
and about 7, respectively. These numbers are nearly independent of the mesh size and of the
number of particles.
A Rayleigh±Taylor instability develops in the advancing front between t=1 and t=3. By

t=2, an eddy has formed close to each wall, which ``pulls'' particles downward. Between t=3
and t=5, a pair of stronger eddies forms in the lower center of the box, which push particles
almost to the top of the box. At the end, all particles have settled to the bottom of the box.
The maximal particle Reynolds number in the entire simulation is rLUid/Z=14.56.

4.3. Sedimentation of two spherical particles in a square three-dimensional channel

Feng et al. (1995) computed the force and torque on an ellipsoidal particle falling slowly in a
square, three-dimensional channel ®lled with a viscoelastic liquid. The problem solved was for
a small perturbation of Stokes ¯ow with inertia and viscoelastic normal stresses. The problem
was solved using a ®ctitious domain methodÐbut with an explicit formulation in which the
forces and torques were needed and calculated.
Here we carry out a comparable direct numerical simulation using the combined weak

formulation described in this article (with forces and torques eliminated): two spherical
particles sedimenting in a square three-dimensional channel ®lled with a Newtonian ¯uid. (See
Figs. 21 and 22.)
The computational domain is a ®nite portion of a square three-dimensional channel, which

follows (approximately) the center of mass of the particles. Its x, y, and z dimensions are 1, 1,
and 2.5, respectively. The diameter of the particles is d=0.25. The ¯uid and particle densities
are rL=1.00 and rd=1.14, respectively, and the ¯uid viscosity is Z=0.01. The initial ¯uid
and particle velocities are

u0 � 0;

Ui;0 � 0

oooi;0 � 0

i � 1; 2;

i � 1; 2:

The time step, velocity mesh size, and pressure mesh size are Dt=0.001, hu=1/40, and hp=
1/20, respectively.
The simulation reproduces the familiar dynamics of drafting, kissing, and tumbling, as seen in

Figs. 21 and 22. (The computation was performed in a moving frame of reference, so the
particles appear to move upward during some of the time steps.) The maximal particle
Reynolds numbers for the two particles are 168.89 and 198.86. The distance of closest
approach (not shown) is 0.363 hu.
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5. Conclusions

We have presented a new Lagrange-multiplier based ®ctitious domain method for the direct
numerical simulation of the ¯ow of ¯uid±particle mixtures. The method has the following
advantages:

1. The hydrodynamic forces and torques do not need to be computed explicitly;
2. The computational domain is time-independent, so a ®xed mesh can be used, eliminating

the need for repeated remeshing and projection;
3. The computational domain is geometrically simple, so regular grids and fast solvers can be

used.
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