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In this article we discuss a methodology that allows the direct numerical simula-
tion of incompressible viscous fluid flow past moving rigid bodies. The simulation
methods rest essentially on the combination of:

(a) Lagrange-multiplier-based fictitious domain methods which allow the fluid
flow computations to be done in a fixed flow region.

(b) Finite element approximations of the Navier–Stokes equations occurring
in the global model.

(c) Time discretizations by operator splitting schemes in order to treat optimally
the various operators present in the model.

The above methodology is particularly well suited to the direct numerical simulation
of particulate flow, such as the flow of mixtures of rigid solid particles and incom-
pressible viscous fluids, possibly non-Newtonian. We conclude this article with the
presentation of the results of various numerical experiments, including the simulation
of store separation for rigid airfoils and of sedimentation and fluidization phenomena
in two and three dimensions. c© 2001 Academic Press
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1. INTRODUCTION

The main goal of this article is to discuss a methodology well suited to the direct numeri-
cal simulation of (possibly non-Newtonian) incompressible viscous flow past moving rigid
bodieswhen the motion of the bodies is not known in advancebut results from the hydro-
dynamical coupling and external forces such as gravity and collisions (or near collisions).
The methodology discussed here relies on several ingredients, the pivotal ones being:

• A fictitious domain method which allows the flow computation to be done on a fixed
space region which contains the moving rigid bodies.
• Lagrange multipliers defined on the regions occupied by the rigid bodies, to match

over these regions the fluid flow and rigid body motion velocities.
• A simple but effcient strategy to take into account body/body and body/wall colli-

sions (or near collisions).
• Finite element approximations taking advantage of a global variational formulation

(of the virtual power principle type) of the coupled flow–rigid body motion.
• Time discretizations by operator splitting in order to treat separately and (in princi-

ple) optimally the various operators associated to the physics and numerics of the compu-
tational model.

In this article, the above methods will be applied to the direct numerical simulation of
various incompressible Newtonian and non-Newtonian viscous flows past moving rigid
bodies in two and three dimensions. These test problems will include the simulation of
store separationfor rigid airfoils and ofsedimentationand fluidization phenomena for
small and large (>103) populations of particles.

An alternative approach to the methodology discussed in this article can be found in
Ref. [1], in the present issue of theJournal of Computational Physics; it is based on the
Arbitrary Lagrange–Eulermethodology with the flow computed, with a moving mesh on
a time-varying region (see [1] and the references therein for details).

The present article reviews (and improves) methods and results discussed in Refs. [2]–[8].

2. MODELING OF THE FLUID–RIGID BODY INTERACTION

LetÄ ⊂ Rd (d = 2, 3) be a space region; we suppose thatÄ is filled with anincompress-
ible viscous fluidof densityρ f and that it containsJ moving rigid bodiesB1, B2, . . . , BJ

(see Fig. 2.1 for a particular case whered = 2 andJ = 3). We denote byn the unit normal
vector on the boundary ofÄ\⋃J

j=1B̄ j , pointing outward to the flow region. Assuming that
the only external force acting on the mixture isgravity, then, betweencollisions(assuming
that collisions take place), thefluid flow is modeled by theNavier–Stokes equations

ρ f

[
∂u
∂t
+ (u ·∇)u

]
= ρ f g+∇ · σ in Ä

∖ J⋃
j=1

Bj (t),

∇ · u = 0 in Ä

∖ J⋃
j=1

Bj (t), (2.1)

u(x, 0) = u0(x), ∀x ∈ Ä

∖ J⋃
j=1

Bj (0), with∇ · u0 = 0,
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FIG. 2.1. An example of a two-dimensional flow region with three rigid bodies.

to be completed by

u = g0 on0 with
∫

0

g0 · n d0 = 0 (2.2)

and by the followingno-slip boundary conditionon the boundary∂ Bj of Bj ,

u(x, t) = V j (t)+ ω j (t)×
−−−→
G j (t)x, ∀x ∈ ∂ Bj (t), (2.3)

where, in (2.3),V j (resp.,ω j ) denotes thevelocity of the center of massG j (resp., the
angular velocity) of the j th body, for j = 1, . . . , J. In (2.1), thestress-tensorσ verifies

σ = τ − pI , (2.4)

typical situations forτ being

τ = 2νD(u) = ν(∇u+∇ut ) (Newtonian case), (2.5)

τ is a nonlinear function of∇u (non-Newtonian case). (2.6)

The motion of the rigid bodies is modeled by theNewton–Eulerequations

M j
dV j

dt
= M j g+ F j ,

(2.7)

I j
dω j

dt
+ ω j × I jω j = T j ,

for j = 1, . . . , J, where in (2.7),

• M j is themassof the j th rigid body,
• I j is theinertia tensorof the j th rigid body,
• F j is the resultant of thehydrodynamical forcesacting on thej th body, i.e.,

F j = (−1)

∫
∂ B j

σn d(∂ Bj ), (2.8)

• T j is the torque atG j of the hydrodynamical forces acting on thej th body, i.e.,

T j = (−1)

∫
∂ B j

−−−→
G j x ×σn d(∂ Bj ), (2.9)
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• and we have

dG j

dt
= V j . (2.10)

Equations (2.7) to (2.10) have to be completed by the followinginitial conditions:

Bj (0) = B0 j , G j (0) = G0 j , V j (0) = V0 j , ω j (0) = ω0 j , ∀ j = 1, . . . , J.

(2.11)

Remark 2.1. If Bj is made of ahomogeneousmaterial ofdensityρ j , we have

M j = ρ j

∫
Bj

dx, I j =

 I11, j −I12, j −I13, j

−I12, j I22, j −I23, j

−I13, j −I23, j I33, j

 , (2.12)

where, in (2.12),dx = dx1 dx2 dx3 and

I11, j = ρ j

∫
Bj

(
x2

2 + x2
3

)
dx, I22, j = ρ j

∫
Bj

(
x2

3 + x2
1

)
dx, I33, j = ρ j

∫
Bj

(
x2

1 + x2
2

)
dx,

I12, j = ρ j

∫
Bj

x1x2 dx, I23, j = ρ j

∫
Bj

x2x3 dx, I13, j = ρ j

∫
Bj

x1x3 dx.

Remark 2.2. If the flow–rigid body motion is two-dimensional, or ifBj is a spherical
body made of ahomogeneousmaterial, then the nonlinear termω j × I jω j vanishes in (2.7).

Remark 2.3. Suppose that the rigid bodies do not touch att = 0; then it has been shown
by B. Desjardins and M. Esteban (Ref. [9]) that the system of equations modeling the flow
of the above fluid–rigid body mixture has a (weak) solution on the time interval [0, t∗),
t∗(>0) depending on the initial conditions; uniqueness is an open problem.

3. A GLOBAL VARIATIONAL FORMULATION OF THE FLUID–SOLID

INTERACTION VIA THE VIRTUAL POWER PRINCIPLE

We suppose, in this section, that the fluid isNewtonianof viscosityν. Let us denote by
B(t) the space region occupied at timet by the rigid bodies; we have thusB(t) = ⋃J

j=1Bj (t).
To obtain avariational formulationfor the system of equations described in Section 2, we
introduce the followingfunctional spaceof compatible test functions:

W0(t) =
{{v, Y,θ} | v ∈ (H1(Ä\B(t)))d, v = 0 on0,

Y = {Y j }Jj=1, θ = {θ j }Jj=1, with Y j ∈ Rd,θ j ∈ R3, (3.1)

v(x, t) = Y j + θ j ×
−−−→
G j (t)x on ∂ Bj (t), ∀ j = 1, . . . , J

}
.

In (3.1) we haveθ j = {0, 0, θ j } if d = 2.
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Applying thevirtual power principleto thewholemixture (i.e., to the fluidandthe rigid
bodies) yields theglobalvariational formulation

ρf

∫
Ä\B(t)

[
∂u
∂t
+ (u ·∇)u

]
· v dx+ 2ν

∫
Ä\B(t)

D(u) : D(v) dx

−
∫

Ä\B(t)
p∇ · v dx+

J∑
j=1

M j V̇ j · Y j +
J∑

j=1

(I j ω̇ j + ω j × I jω j ) · θ j (3.2)

= ρf

∫
Ä\B(t)

g · v dx+
J∑

j=1

M j g · Y j , ∀{v, Y, θ} ∈ W0(t),

∫
Ä\B(t)

q∇ · u(t) dx = 0, ∀q ∈ L2(Ä\B(t)), (3.3)

u(t) = g0(t) on0, (3.4)

u(x, t) = V j (t)+ ω j (t)×
−−−→
G j (t)x, ∀x ∈ ∂ Bj (t), ∀ j = 1, . . . , J, (3.5)

dG j

dt
= V j , (3.6)

to be completed by theinitial conditions

u(x, 0) = u0(x), ∀x ∈ Ä\B(0), (3.7)

Bj (0)= B0 j , G j (0)=G0 j , V j (0)=V0 j , ω j (0)=ω0 j , ∀ j = 1, . . . , J. (3.8)

In relations (3.2) to (3.8):

• We have denoted functions such asx→ ϕ(x, t) by ϕ(t).
• We have used the following notation:

a · b =
d∑

k=1

akbk, ∀a= {ak}dk=1, b = {bk}dk=1,

A : B =
d∑

k=1

d∑
l=1

aklbkl , ∀A = (akl)1≤k,l≤d, B = (bkl)1≤k,l≤d.

• It is reasonable to assume thatu(t) ∈ (H1(Ä\B(t)))d and p(t) ∈ L2(Ä\B(t)).
• We haveω j (t) = {0, 0, ω j (t)} if d = 2.

Formulations such as (3.2)–(3.8) (or closely related ones) have been used by several authors
(see, e.g., [1], [10]–[12]) to simulate particulate flow viaarbitrary Lagrange–Euler(ALE)
methods using moving meshes (actually, formulation (3.2)–(3.8) has been used in [9] to
prove the existence of a local in time weak solution to problem (2.1)–(2.5), (2.7), (2.11)).
Our goal in this article is to discuss an alternative based onfictitious domain methods(also
calleddomain embeddingmethods). The main advantage of this new (in the context of
particulate flow) approach is the possibility of achieving the flow-related computations on
a fixedspace region, allowing thus the use of a fixed (finite difference or finite element)
mesh, which is a significant simplification.
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4. A DISTRIBUTED LAGRANGE-MULTIPLIER-BASED FICTITIOUS

DOMAIN FORMULATION

In general terms our goal is to find a methodology in which

(a) a fixed mesh can be used for flow computations,
(b) the rigid body positions are obtained from the solution of the Newton–Euler equa-

tions of motion, and
(c) The time discretization is done by operator splitting methods in order to treat

individually the various operators occurring in the mathematical model.

To achieve such a goal we proceed as follows:

(i) We fill the rigid bodies with the surrounding fluid.
(ii) We assume that the fluid inside each body has a rigid body motion.
(iii) We use (i) and (ii) to modify the variational formulation (3.2)–(3.8).
(iv) We force the rigid body motion inside each moving body via a Lagrange multiplier

defined (distributed) over the body.
(v) We combine (iii) and (iv) to derive a variational formulation involving Lagrange

multipliers to force the rigid body motion inside the moving bodies.

We suppose (for simplicity) that each rigid bodyBj is made of ahomogeneous material
of densityρ j ; then, taking into account the fact that any rigid body motion velocity fieldv
verifies∇ · v = 0 andD(v) = 0, steps (i) to (iii) yield the following variant of formulation
(3.2)–(3.8):

For a.e.t > 0, findu(t), p(t), {V j (t), G j (t),ω j (t)}Jj=1, such that

ρf

∫
Ä

[
∂u
∂t
+ (u ·∇)u

]
· v dx−

∫
Ä

p∇ · v dx+ 2ν

∫
Ä

D(u) : D(v) dx

+
J∑

j=1

(1− ρ f /ρ j )

[
M j

dv j

dt
· Y j +

(
I j

dω j

dt
+ ω j × I jω j

)
· θ j

]
(4.1)

= ρf

∫
Ä

g · v dx+
J∑

j=1

(1− ρ f /ρ j )M j g · Y j , ∀{v, Y,θ} ∈ W̃0(t),∫
Ä

q∇ · u dx = 0, ∀q ∈ L2(Ä), (4.2)

u = g0 on0, (4.3)

u(x, t) = V j (t)+ ω j (t)×
−−−→
G j (t)x, ∀x ∈ Bj (t), ∀ j = 1, . . . , J, (4.4)

dG j

dt
= V j , (4.5)

Bj (0)= B0 j , V j (0)=V0 j , ω j (0)=ω0 j , G j (0)=G0 j , ∀ j = 1, . . . , J,

(4.6)

u(x, 0)= u0(x), ∀x ∈ Ä

∖ J⋃
j=1

B0 j and u(x, 0) = V0 j + ω0 j ×
−−−→
G0 j x ,

∀x ∈ B0 j (4.7)



FICTITIOUS DOMAIN APPROACH 369

with, in relation (4.1), spacẽW0(t) defined by

W̃0(t) =
{{v, Y,θ} | v ∈ (H1

0 (Ä)
)d

, Y = {Y j }Jj=1,θ = {θ j }Jj=1, with Y j ∈ Rd,

θ j ∈ R3, v(x, t) = Y j + θ j ×
−−−→
G j (t)x in Bj (t), ∀ j = 1, . . . , J

}
.

Concerningu and p, it makes sense to assume thatu(t) ∈ (H1(Ä))d and p(t) ∈ L2(Ä).

In order to relax therigid body motion constraint(4.4), we are going to employ a family
{λ j }Jj=1 of Lagrange multipliersso thatλ j (t) ∈ 3 j (t) with

3 j (t) = (H1(Bj (t)))
d, ∀ j = 1, . . . , J. (4.8)

We obtain, thus, the followingfictitious domain formulation with Lagrange multipliers:

For a.e.t > 0, findu(t), p(t), {V j (t), G j (t),ω j (t),λ j (t)}Jj=1, such that

u(t) ∈ (H1(Ä))d, u(t) = g0(t) on0, p(t) ∈ L2(Ä),
(4.9)

V j (t) ∈ Rd, G j (t) ∈ Rd,ω j (t) ∈ R3,λ j (t) ∈ 3 j (t), ∀ j = 1, . . . , J,

and

ρ f

∫
Ä

[
∂u
∂t
+ (u ·∇)u

]
· v dx−

∫
Ä

p∇ · v dx+ 2ν

∫
Ä

D(u) : D(v) dx

−
J∑

j=1

〈λ j , v− Y j − θ j ×
−−−→
G j x 〉 j +

J∑
j=1

(1− ρ f /ρ j )M j
dV j

dt
· Y j

(4.10)

+
J∑

j=1

(1− ρ f /ρ j )

(
I j

dω j

dt
+ ω j × I jω j

)
· θ j = ρ f

∫
Ä

g · v dx

+
J∑

j=1

(1− ρ f /ρ j )M j g · Y j , ∀v ∈ (H1
0 (Ä)

)d
, ∀Y j ∈ Rd, ∀θ j ∈ R3,

∫
Ä

q∇ · u dx = 0, ∀q ∈ L2(Ä), (4.11)

〈µ j , u(t)−V j (t)−ω j (t)×
−−−→
G j (t)x〉 j = 0, ∀µ j ∈ 3 j (t), ∀ j = 1, . . . , J, (4.12)

dG j

dt
= V j , ∀ j = 1, . . . , J, (4.13)

V j (0) = V0 j , G j (0)=G0 j , ω j (0) = ω0 j , Bj (0) = B0 j , ∀ j = 1, . . . , J,

(4.14)

u(x, 0) = u0(x), ∀x ∈ Ä

∖ J⋃
j=1

B0 j and u(x, 0) = V0 j + ω0 j ×
−−−→
G0 j x , ∀x ∈ B0 j .

(4.15)

The two most natural choices for〈·, ·〉 j are defined by

〈µ, v〉 j =
∫

Bj (t)

(
µ · v+ δ2

j∇µ :∇v
)

dx, ∀µ andv ∈ 3 j (t), (4.16)
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〈µ, v〉 j =
∫

Bj (t)

(
µ · v+ δ2

j D(µ) : D(v)
)

dx, ∀µ andv ∈ 3 j (t), (4.17)

with δ j as acharacteristic length(the diameter ofBj , for example). Other choices are
possible, such as

〈µ, v〉 j =
∫

∂ Bj (t)
µ · v d(∂ Bj )+ δ j

∫
Bj (t)
∇µ :∇v dx, ∀µ andv ∈ 3 j (t),

or

〈µ, v〉 j =
∫

∂ Bj (t)
µ · v d(∂ Bj )+ δ j

∫
Bj (t)

D(µ) : D(v) dx, ∀µ andv ∈ 3 j (t).

Remark 4.1. The fictitious domain approach, described above, has clearly many simi-
larities with theimmersed boundaryapproach of C. Peskin (see Refs. [13]–[16]). However,
the systematic use ofLagrange multipliersseems to be new in this context. Another major
difference is the fact that in our approach the boundary of the moving rigid bodies does not
play the fundamental role it plays in the Peskin’s approach.

Remark 4.2. An approach with some similarities to ours has been developed by
S. Schwarzeret al. (see Ref. [17]) in a finite difference framework. In the above refer-
ence (dedicated to the simulation of particulate flow), the interaction between the rigid
body and the fluid is forced via apenalty method, instead of the multiplier technique used in
the present article; also, minor particle–particle penetration is allowed and no enforcement
of the rigid body motion inside the region occupied by the particle is done.

Remark 4.3. In order to force the rigid body motion inside the moving rigid bodies
we can use the fact thatv defined overÄ is a rigid body motion velocity field inside each
moving rigid body if and only ifD(v) = 0 in Bj (t), ∀ j = 1, . . . , J; i.e.,∫

Bj (t)
D(v) : D(µ) dx = 0, ∀µ ∈ 3 j (t), ∀ j = 1, . . . , J. (4.18)

A computational method based on this approach is discussed in [18].

Remark 4.4. Since, in (4.10),u is divergence freeand satisfies Dirichlet boundary
conditions on0, we have

2
∫

Ä

D(u) : D(v) dx =
∫

Ä

∇u :∇v dx, ∀v ∈ (H1
0 (Ä)

)d
, (4.19)

a substantial simplification indeed, from acomputational point of view, which is another
plus for the fictitious domain approach used here.

Remark 4.5. Using high-energy physics terminology, the multiplierλ j can be viewed
as agluonwhose role is to force the rigidity insideBj by matching the velocity fields of
two continua. More precisely, the multipliersλ j are mathematical objects of themortar
type, very close to those used indomain decomposition methodsto match local solutions
at interfaces or on overlapping regions (see Ref. [19]). Indeed, theλ j in the present article
have genuine mortar properties since their role is to force a fluid to behave like a rigid solid
inside the space region occupied by the moving bodies.
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5. ON THE TREATMENT OF COLLISIONS

In the above sections, we have considered the motion of fluid/rigid body mixtures and
have given various mathematical models of this phenomenon, assuming that there was no
rigid body/rigid body or boundary/rigid body collisions. Actually, with the mathematical
model that we have considered it is not known if collisions can take place in finite time
(in fact several scientists strongly believe that lubrication forces prevent these collisions
in the case of viscous fluids). However, collisions take place in nature and also in actual
numerical simulations if special precautions are not taken. In the particular case of rigid
bodies moving in a viscous fluid, under the effect of gravity and hydrodynamical forces, we
shall assume that the collisions taking place aresmoothones in the sense that if two rigid
bodies collide (resp., if a rigid body hits the boundary), the rigid body velocities (resp., the
rigid body and boundary velocities) coincide at the points of contact. From the smooth nature
of these collisions the only precaution to be taken will be to avoid overlapping of the regions
occupied by the rigid bodies. To achieve this goal, we include in the right-hand sides of
theNewton–Euler equations(2.7) modeling the rigid body motion ashort-range repulsive
force. If we consider the particular case of rigid bodiescircular (in two-dimensions) or
spherical(in three-dimensions), and ifBi andBj are two such rigid bodies, with radiiRi

and Rj and centers of massGi andG j , we shall require the repulsion force
−→
Fi j between

Bi andBj to satisfy the following properties:

(i) to be parallel to
−−−→
Gi G j ,

(ii) to verify

| −→Fi j | = 0 if di j ≥ Ri + Rj + ρ,

(5.1)

| −→Fi j | = ci j /ε if di j = Ri + Rj ,

with di j = |
−−−→
Gi G j |, ci j as ascaling factor, andε as a “small” positive number, and

(iii) | −→Fi j | has to behave as in Fig. 5.1 for

Ri + Rj ≤ di j ≤ Ri + Rj + ρ.

FIG. 5.1. Repulsion force behavior.
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Parameterρ is the range of the repulsion force; for the simulations discussed in the
following sections, we have takenρ ' hÄ (hÄ is the space discretization stepused for
approximating thevelocity). Boundary/rigid body collisions can be treated in a similar way.

Remark 5.1. For those readers wondering how to adjusthÄ andε, we would like to
make the following comments: clearly, the space discretization parameterhÄ is adjusted so
that the finite element approximation can resolve the boundary and shear layers occurring
in the flow. Next, it is clear thatρ can be taken of the order ofhÄ. The choice ofε is more
subtle; suppose that

−→
Fi j is defined by

−→
Fi j = ci j

ε

((
di j − Ri − Rj − ρ

ρ

)−)2
−−−→
Gi G j

di j
, (5.2)

where, in (5.2), we have used the notationξ− = max(0,−ξ ). Denoting, as usual, the di-
mension of quantityX by [X], ε will be a dimensionalif and only if ci j has the dimension
of a force, i.e., [ci j ] = MLT−2.

In order to linkε andρ, we are going to consider the simple model problem where a
material point of massm is dropped from heightz= H , without initial velocity, above
a rigid obstacle located atz= 0 and falls under the effect of gravity. Assuming that the
collision is treated as above bypenaltyand a natural choice for the scaling parameterc
beingmg, the motion of the point is described bymz̈− mg

ερ2
((z− ρ)−)2 = −mg,

z(0) = H, ż(0) = 0.

(5.3)

A long asz≥ ρ the equation of motion reduces toz̈= −g, which implies that the material
point reachesz= ρ for the first timeat t = tρ , with

tρ =
√

2(H − ρ)

g
, (5.4)

the velocityż(tρ) being given by

ż(tρ) = −
√

2g(H − ρ). (5.5)

For z≤ ρ the differential equation in (5.3) can also be written as

z̈− g

ερ2
(z− ρ)2+ g = 0. (5.6)

Multiplying both sides of the differential equation (5.6) byż, and observing thatdz/dt =
d(z− ρ)/dt, yields

d

dt

[
1

2
ż2− g

3ερ2
(z− ρ)3+ g(z− ρ)

]
= 0. (5.7)

It follows from (5.5) and (5.7) that as long asz(t) ≤ ρ, we have

1

2
ż(t)2− g

3ερ2
(z(t)− ρ)3+ g(z(t)− ρ) = g(H − ρ). (5.8)
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The material point reaches its minimal heightzm for tm such thaṫzm(t) = 0. It follows thus
from (5.8) thatzm verifies

zm− ρ − (zm− ρ)3/(3ερ2) = H − ρ. (5.9)

Let us denote themaximal penetration distanceρ − zm by δ; we have then (from (5.9))

δ3/(3ερ2)− δ = H − ρ. (5.10)

We are going to use relation (5.10) to explore several scenarios:

(i) Suppose thatH = ρ; it follows then from (5.10) that

δ =
√

3ερ, (5.11)

which implies in turn that to haveδ/ρ ¿ 1 we need to take
√

ε ¿ 1, i.e., δ/ρ “small”
impliesε “very small.” Typically,δ/ρ ' 10−2 impliesε ' 10−4.

(ii) Suppose now thatH À ρ. Since we wantδ/ρ ¿ 1, it follows from (5.10) that

δ3/(3ερ2) ' H,

i.e.,

δ/ρ ' (3ε)1/3(H/ρ)1/3. (5.12)

Suppose that, for example,H/ρ = 102 and that we want to takeδ/ρ ' 10−2; it follows then
from (5.11) that we need to takeε ' 10−8, i.e.,δ/ρ “small” implies ε “very very small.”

Returning to (5.2), let us say that scenario (ii) will be encountered (in some sense) if the
fluid surrounding the rigid bodies isinviscid, implying possible violent collisions. Scenario
(i) corresponds clearly to a soft collision sinceρ ' hÄ, and we shall assume that it is the
kind of situation which prevails if the fluid is sufficiently viscous and the ratioρ j /ρf is not
too large, i.e.,ρ j /ρf of the order of 1,∀ j = 1, . . . , J. On the basis of these assumptions
we have always takenε ' h2

Ä for the calculations to be presented in Section 8.

Remark 5.2. In order to treat the collisions, we can use repulsion forces derived by
truncation of theLennard–Jonespotentials frommolecular dynamics(see, e.g., [20] for
these notions from molecular chemistry); this approach is commonly used by physico-
chemists to treat collisions in solvents containing “large” particles (whose characteristic
sizes are a few micrometers at least).

Remark 5.3. Penalty methods, closely related to those discussed just above, have been
(and still are) used by mechanical engineers for the numerical treatment of contact problems.
A fundamental reference on these topics is the book by Kikuchi and Oden (Ref. [21]; see
also the references therein). The above reference contains comparisons between results
obtained by application of the Hertz contact theory and results obtained by penalty methods.
According to [21], penalty methods allow the solution of contact problems for which Hertz
theory is no longer valid.
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FIG. 6.1. Subdivision of a triangle ofT2h.

6. FINITE ELEMENT APPROXIMATION

For simplicity, we assume thatÄ ⊂ R2 (i.e.,d = 2) and is polygonal; we have thenω(t) =
{0, 0, ω(t)} andθ = {0, 0, θ} with ω(t) andθ ∈ R. Concerning thespace approximation
of problem (4.9)–(4.15) by afinite element method, we shall proceed as follows:

With h(=hÄ) as aspace discretization step, we introduce a finite element triangulation
Th of Ǟ and a triangulationT2h twice coarser (in practice we should constructT2h first and
thenTh by joining the midpoints of the edges ofT2h, dividing thus each triangle ofT2h into
four similar subtriangles, as shown in Fig. 6.1).

We approximate then(H1(Ä))2, (H1
0 (Ä))2, andL2(Ä) by the finite dimensional spaces

Vh = {vh | vh ∈ (C0(Ǟ))2, vh|T ∈ P1× P1, ∀T ∈ Th}, (6.1)

V0h = {vh | vh ∈Vh, vh = 0 on0}, (6.2)

and

L2
h = {qh | qh ∈ C0(Ǟ), qh|T ∈ P1, ∀T ∈ T2h}, (6.3)

respectively; in (6.1)–(6.3),P1 is the space of the polynomials in two variables of degree
≤1. Let Bjh(t) be a polygonal domain inscribed inBj (t) and letT j

h (t) be a finite element
triangulation ofBjh(t), like the one shown in Fig. 6.2, whereBj is a disk.

FIG. 6.2. Triangulation of a disk.
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A finite dimensional space approximating3 j (t) is

3 jh(t) = {µh | µh ∈ (C0(Bjh(t)))2,µh|T ∈ P1× P1, ∀T ∈ T j
h (t)

}
. (6.4)

An alternative to3 jh(t) defined by (6.4) is as follows: let{xi }Nj

i=1 be a set of points from
Bj (t) which coverBj (t) (uniformly, for example); we define then

3 jh(t) =
{
µh | µh =

Nj∑
i=1

µi δ(x− xi ),µi ∈ R2, ∀i = 1, . . . , Nj

}
, (6.5)

where δ(·) is the Dirac measure atx = 0. Then, instead of the scalar product of
(H1(Bjh(t)))2, we shall use〈·, ·〉 jh defined by

〈µh, vh〉 jh =
Nj∑

i=1

µi · vh(xi ), ∀µh ∈ 3 jh(t), vh ∈ Vh. (6.6)

The approach based on (6.5) and (6.6) makes little sense for the continuous problem, but it
is meaningful for the discrete problem; it amounts to forcing the rigid body motion ofBj (t)
via acollocation method. A similar technique has been used to enforce Dirichlet boundary
conditions, by F. Bertrandet al. (Ref. [22]).

Remark 6.1. The bilinear form in (6.6) has definitely the flavor of adiscrete L2(Bj (t))-
scalar product. Let us insist on the fact that taking3 j (t) = (L2(Pj (t)))2 and then

〈µ, v〉 j =
∫

Bj (t)
µ · v dx, ∀µ andv ∈ 3 j (t)

makes no sense for the continuous problem. On the other hand, it makes sense for the finite
element variants of (4.9)–(4.15), but do not expectλ jh(t) to converge to anL2-function as
h→ 0 (it will converge to some element of the dual space((H1(Bj (t)))2)′ of (H1(Bj (t)))2.

Using the above finite dimensional spaces leads to the following approximation of prob-
lem (4.9)–(4.15):

For t > 0 finduh(t), ph(t), {V j (t), G jh(t), ω j (t),λ jh(t)}Jj=1 such that{
uh(t) ∈ Vh, ph(t) ∈ L2

h,

V j (t) ∈ R2, G jh(t) ∈ R2, ω j (t) ∈ R,λ jh(t) ∈ 3 jh(t), ∀ j = 1, . . . , J,
(6.7)

and

ρ f

∫
Ä

[
∂uh

∂t
+ (uh ·∇)uh

]
· v dx−

∫
Ä

ph∇ · v dx+ 2ν

∫
Ä

D(uh) : D(v) dx

+
J∑

j=1

(1− ρ f /ρ j )M j
dV j

dt
· Y j +

J∑
j=1

(1− ρ f /ρ j )I j
dω j

dt
θ j

−
J∑

j=1

〈λ jh, v− Y j − θ j ×
−−−→
G jhx 〉 jh = ρ f

∫
Ä

g · v dx

+
J∑

j=1

(1− ρ f /ρ j )M j g · Y j , ∀v ∈ V0h, ∀Y j ∈ R2, ∀θ j ∈ R,

(6.8)
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∫
Ä

q∇ · uh(t) dx = 0, ∀q ∈ L2
h, (6.9)

uh = g0h on0, (6.10)

〈µ jh, uh(t)− V j (t)− ω j (t)×
−−−−→
G jh(t)x〉 jh = 0, ∀µ jh ∈ 3 jh(t), ∀ j = 1, . . . , J,

(6.11)

dG jh

dt
= V j , ∀ j = 1, . . . , J, (6.12)

V j (0) = V0 j , G jh(0) = G0 jh, ω j (0) = ω0 j , Bjh(0) = B0 jh,

∀ j = 1, . . . , J, (6.13)

uh(x, 0) = u0h(x), ∀x ∈ Ä

∖ J⋃
j=1

B0 jh, uh(x, 0) = V0 j + ω0 j ×
−−−→
G0 jhx,

∀x ∈ B0 jh . (6.14)

In (6.10),g0h is an approximation ofg0 belonging to

γ Vh = {zh | zh ∈ (C0(0))2, zh = z̃h|0 with z̃h ∈ Vh}

and verifying
∫

0
g0h · n d0 = 0.

Remark 6.2. Thediscrete pressurein (6.7)–(6.14) is defined within to an additive con-
stant. In order to “fix” the pressure, we shall require it to verify∫

Ä

ph(t) dx = 0, ∀t > 0,

i.e., ph(t) ∈ L2
0h with L2

0h defined by

L2
0h =

{
qh | qh ∈ L2

h,

∫
Ä

qh dx = 0

}
.

Remark 6.3. From a practical point of view, the semidiscrete model (6.7)–(6.14) is
incomplete since we still have to include thevirtual power associated to thecollision
forces. Assuming that the rigid bodies are circular (d = 2) or spherical (d = 3), we shall
add to the right-hand side of Eq. (6.8) the term

J∑
j=1

Fr
j · Y j , (6.15)

where the repulsion forceFr
j is defined as in Section 5. If the rigid bodies are noncircular or

nonspherical we shall have to take into account the virtual power associated to the torque
of the collision forces.

Remark 6.4. Concerning the definition of themultiplier space3 jh(t), several options
are possible:

(i) If Bj is rotationally invariant(this will be the case for a circular or a spherical rigid
body) we define3 jh(t) from the triangulationT j

h (t) obtained fromT j
h (0) by translation.
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(ii) If Bj is not rotationally invariantwe can define3 jh(t) from a triangulationT j
h (t)

rigidly attachedto Bj .
(iii) We can also define3 jh(t) from the set of points

6 jh(t) = 6v
jh(t) ∪6σ

jh(t), (6.16)

where, in (6.16),6v
jh(t) is the set of vertices of the velocity gridTh which are contained in

Bj (t), and where6σ
jh(t) is a set of control points located∂ Bj (t). This “hybrid” approach is

(relatively) easy to implement and is particularly well suited to those situations where the
boundary∂ Bj has corners or edges.

Remark 6.5. In relation (6.8), we can replace 2
∫

Ä
D(uh) : D(v) dx by

∫
Ä
∇uh :∇v dx,

by taking Remark 4.4 into account.

Remark 6.6. Let hÄ (resp.,h j ) be the mesh size associated to the velocity meshTh

(resp., to the rigid body meshT j
h ); then a relation such as

hÄ < χ j h j < h j < 2hÄ, (6.17)

with 0 < χ j < 1, seems to be needed, from a theoretical point of view, in order to sat-
isfy some kind ofstability conditionof the Brezzi–Babuskatype (for generalities on the
approximation of mixed variational problems, such as (4.9)–(4.15), involvingLagrange
multipliers, see, for example, the publications by F. Brezzi and M. Fortin (Ref. [23]) and J.
E. Roberts and J. M. Thomas (Ref. [24])), actually, takingh j = hÄ seems to work fine in
practice.

Remark 6.7. In order to avoid the solution at each time step of complicatedtriangulation
intersection problems, we advocate the use of

〈λ jh, 5 j v− Y j − θ j ×
−−−−→
G jh(t)x〉 jh (6.18)

(resp.,

〈µ jh, 5 j uh(t)− V j (t)− ω j (t)×
−−−−→
G jh(t)x〉 jh) (6.19)

in (6.8) (resp., (6.11)), instead of

〈λ jh, v− Y j − θ j ×
−−−−→
G jh(t)x〉 jh (6.20)

(resp.,

〈µ jh, uh(t)− V j (t)− ω j (t)×
−−−−→
G jh(t)x〉 jh),

where, in (6.18) and (6.19),5 j : (C0(Ǟ))2→3 jh(t) is thepiecewise linear interpolation
operatorwhich to each functionw belonging to(C0(Ǟ))2 associates the unique element of
3 jh(t) defined from the values taken byw at the vertices ofT j

h (t).



378 GLOWINSKI ET AL.

Remark 6.8. In general, the functionu(t) has no more than the(H3/2(Ä))2-regularity.
This low regularity implies that we can not expect more thanO(h3/2) for the approximation
error‖uh(t)− u(t)‖(L2(Ä))2 andO(h1/2) for the approximation error|uh(t)− u(t)|(H1(Ä))2

(see Ref. [25]).

7. TIME DISCRETIZATION BY OPERATOR SPLITTING

7.1. Generalities

Following A. Chorin (Refs. [26]–[28]), most “modern” Navier–Stokes solvers are based
onoperator splittingschemes (see, e.g., Refs. [29], [30]) in order to force the incompress-
ibility condition via a Stokes solver or aL2-projection method. This approach still applies
to the initial value problem (6.7)–(6.14), which contains four numerical difficulties to each
of which can be associated a specific operator, namely,

(a) the incompressibility condition and the related unknown pressure,
(b) an advection–diffusion term,
(c) the rigid-body motion ofBj (t) and the related multiplierλ j (t), and
(d) the collision termsFr

j .

The operators in (a) and (c) are essentiallyprojection operators. From an abstract point of
view, problem (6.7)–(6.14) is a particular case of the class of initial value problems

dϕ

dt
+

4∑
i=1

Ai (ϕ, t) = f, ϕ(0) = ϕ0, (7.1)

where the operatorsAi can bemultivalued. Among the many operator-splitting methods
which can be employed to solve problem (7.1) we advocate (following, e.g., [31]) the very
simple one below; it is onlyfirst-order accurate, but its low-order accuracy is compensated
by good stability and robustness properties. Actually, this scheme can be madesecond-order
accurate by symmetrization(see, e.g., [32]–[34] for the application ofsymmetrized splitting
schemesto the solution of the Navier–Stokes equations).

A fractional step schemèa la Marchuk–Yanenko.With 1t (>0) as atime discretization
step, applying theMarchuk–Yanenko schemeto the initial value problem (7.1) leads to

ϕ0 = ϕ0, (7.2)

and forn ≥ 0, computeϕn+1 from ϕn via

ϕn+i /4− ϕn+(i−1)/4

1t
+ Ai

(
ϕn+i /4, (n+ 1)1t

) = f n+1
i , (7.3)

for i = 1, 2, 3, 4 with
∑4

i=1 f n+1
i = f n+1.

Remark 7.1. Recently, we have introduced a five-operator decomposition obtained by
treating separatelydiffusionandadvection. Some of the numerical results presented in this
article have been obtained with this new approach, which is briefly discussed in Section 7.3
(see Remark 7.2).
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7.2. Application of the Marchuk–Yanenko Scheme to the Solution
of Problem (6.7)–(6.14)

Applying scheme (7.2), (7.3) to problem (6.7)–(6.14), we obtain (after inclusion of the
collision terms and dropping some of the subscriptsh)

u0 = u0h,
{

V0
j

}J

j=1,
{
ω0

j

}J

j=1,
{

B0
j

}J

j=1, andG0 = {G0
j

}J

j=1 are given. (7.4)

For n ≥ 0, knowingun,
{

Vn
j

}J

j=1,
{
ωn

j

}J

j=1,
{

Bn
j

}J

j=1, andGn = {Gn
j

}J

j=1, we compute

un+1/4, pn+1/4 via the solution of

ρ f

∫
Ä

un+1/4− un

1t
· v dx−

∫
Ä

pn+1/4∇ · v dx = 0, ∀v ∈ V0h,∫
Ä

q∇ · un+1/4 dx = 0, ∀q ∈ L2
h,

un+1/4 ∈ Vh, un+1/4 = gn+1
0h on0, pn+1/4 ∈ L2

0h.

(7.5)

Next, we computeun+2/4 via the solution of

ρ f

∫
Ä

un+2/4− un+1/4

1t
· v dx+ ν

∫
Ä

∇un+2/4 :∇v dx

+ ρ f

∫
Ä

(un+1/4 ·∇)un+2/4 · v dx = ρ f

∫
Ä

g · v dx, ∀v ∈ V0h,

un+2/4 ∈ Vh, un+2/4 = gn+1
0h on0,

(7.6)

and then, predict the position and the translation velocity of the center of mass as follows,
for j = 1, . . . , J:

TakeVn+2/4,0
j = Vn

j andGn+2/4,0
j = Gn

j ; then predict the new position and translation
velocity of Bj via the following subcycling (with the local time step1t/N) and predicting–
correcting technique:

For k = 1, . . . , N, compute

{
V̂n+2/4,k

j = Vn+2/4,k−1
j + (1t/N)g

+ (1t/2N)(1− ρ f /ρ j )
−1M−1

j Fr
j

(
Gn+2/4,k−1

)
,

(7.7)

Ĝn+2/4,k
j = Gn+2/4,k−1

j + (1t/4N)
(
V̂n+2/4,k

j + Vn+2/4,k−1
j

)
, (7.8){

Vn+2/4,k
j = Vn+2/4,k−1

j + (1t/N)g

+ (1t/4N)(1− ρ f /ρ j )
−1M−1

j

(
Fr

j

(
Ĝn+2/4,k

)+ Fr
j

(
Gn+2/4,k−1

))
,
(7.9)

Gn+2/4,k
j = Gn+2/4,k−1

j + (1t/4N)
(
Vn+2/4,k

j + Vn+2/4,k−1
j

)
, (7.10)

enddo; let

Vn+2/4
j = Vn+2/4,N

j , Gn+2/4
j = Gn+2/4,N

j . (7.11)
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Now, we computeun+3/4,
{
λ

n+3/4
j , Vn+3/4

j , ω
n+3/4
j

}J

j=1 via the solution of

ρ f

∫
Ä

un+3/4− un+2/4

1t
· v dx+

J∑
j=1

(1− ρ f /ρ j )M j
Vn+3/4

j − Vn+2/4
j

1t
· Y j

+
J∑

j=1

(1− ρ f /ρ j )I j
ω

n+3/4
j − ωn

j

1t
θ j

=∑J
j=1

〈
λ

n+3/4
j , v− Y j − θ j ×

−−−−→
Gn+2/4

j x
〉

jh, ∀v ∈ V0h, Y j ∈ R2, θ j ∈ R,

un+3/4 ∈ Vh, un+3/4 = gn+1
0h on0,λ

n+3/4
j ∈ 3

n+2/4
jh , Vn+3/4

j ∈ R2, ω
n+3/4
j ∈ R,

(7.12)

〈
µ j , un+3/4− Vn+3/4

j − ωn+3/4
j ×

−−−−→
Gn+2/4

j x
〉

jh
= 0, ∀µ j ∈ 3

n+2/4
jh . (7.13)

Finally, takeVn+1,0
j = Vn+3/4

j and Gn+1,0
j = Gn+2/4

j ; then predict the final position and
translation velocity ofBj as follows, for j = 1, . . . , J:

For k = 1, . . . , N, compute

V̂n+1,k
j =Vn+1,k−1

j + (1t/2N)(1− ρ f /ρ j )
−1M−1

j Fr
j (G

n+1,k−1), (7.14)

Ĝn+1,k
j =Gn+1,k−1

j + (1t/4N)
(
V̂n+1,k

j + Vn+1,k−1
j

)
, (7.15)

Vn+1,k
j =Vn+1,k−1

j + (1t/4N)(1−ρ f /ρ j )
−1M−1

j

(
Fr

j

(
Ĝn+1,k

j

)+Fr
j

(
Gn+1,k−1

j

))
, (7.16)

Gn+1,k
j =Gn+1,k−1

j + (1t/4N)
(
Vn+1,k

j + Vn+1,k−1
j

)
, (7.17)

enddo; let

Vn+1
j = Vn+1,N

j , Gn+1
j = Gn+1,N

j . (7.18)

We complete the final step by setting

un+1 = un+3/4,
{
ωn+1

j

}J

j=1
= {ωn+3/4

j

}J

j=1
. (7.19)

As shown above, one of the main advantages of the operator-splitting methodology is
that it allows the use of time steps much smaller than1t to predict and correct the position
and velocity of the centers of mass. For our calculations we have takenN = 10 or 20 in
relations (7.7)–(7.10) and (7.14)–(7.17); thus the local time step used to moved the particles
is 1t/N.

7.3. On the Solution of Subproblems (7.5), (7.6)
and (7.12), (7.13): Further Remarks

Problems (7.5) and (7.12), (7.13) are finite dimensional linear problems with the structure{
Ax + Bty = b,

Bx = c,
(7.20)

where, in (7.20), matrixA is symmetric; actually, the matrixA associated to problem (7.5)
(resp., (7.12), (7.13)) ispositive definite(resp.,positive definiteif ρ j > ρ f , ∀ j = 1, . . . , J).
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Problems such as (7.20) are known assaddle-point systemsand theiriterative solutionby
Uzawa/conjugate gradient algorithmsis discussed, with many details, in, e.g., Refs. [35],
[36]. The solution of problems (7.5) and (7.12), (7.13) by the algorithms in [35] and [36] is
discussed, again with many details, in Refs. [2], [3], [6], and [7]. The linear problem (7.6)
(of the advection–diffusiontype) can be solved by theleast-squares/conjugate gradient
algorithmsdiscussed in, e.g., Chapter 7 of Ref. [37].

We are now going to use this section for additional comments.

Remark 7.2. We are going to complete Remark 7.1 by observing that, viafurther split-
ting, we can replace theadvection–diffusionstep (7.6) by



∫
Ä

∂u
∂t
· v dx+

∫
Ä

(
un+1/5 ·∇)u · v dx = 0,

∀v ∈ Vn+1,−
0h , a.e. on(n1t, (n+ 1)1t),

u(n1t) = un+1/5,

u(t) ∈ Vh, u(t) = gn+1
0h on0n+1

− × (n1t, (n+ 1)1t),

(7.21)

un+2/5 = u((n+ 1)1t), (7.22)
ρ f

∫
Ä

un+3/5− un+2/5

1t
· v dx+ ν

∫
Ä

∇un+3/5 :∇v dx = ρ f

∫
Ä

g · v dx,

∀v ∈ V0h; un+3/5 ∈ Vh, un+3/5 = gn+1
0h on0,

(7.23)

with

(a) un+1/5 obtained fromun via the “incompressibility” step (7.5),
(b) 0n+1

− = {x | x ∈ 0, gn+1
0h (x) · n(x) < 0

}
,

(c) Vn+1,−
0h = {v | v ∈ Vh, v = 0 on0n+1

− }.
Problem (7.23) is adiscrete elliptic systemwhose iterative or direct solution is a quite
classical problem. On the other hand, solving thepure advection problem(7.21) is a more
delicate issue. Clearly, problem (7.21) can be solved by amethod of characteristics(see,
e.g., Refs. [29] and [38] and the references therein). An easy-to-implement alternative to the
method of characteristics is provided by thewave-like equationmethod briefly discussed
below (see [33] and [34] for more details):

Returning to (7.21), observe that this problem is the semidiscrete analogue of
∂u
∂t
+ (un+1/5 ·∇)u = 0 in Ä× (n1t, (n+ 1)1t),

u(n1t) = un+1/5,

u = gn+1
0

(=un+1/5
)

on0n+1
− × (n1t, (n+ 1)1t).

(7.24)

It follows from (7.24) that, after translation and dilation on the time axis, each component
of u is solution of a transport problem of the type

∂ϕ

∂t
+ V ·∇ϕ = 0 in Ä× (0, 1),

ϕ(0) = ϕ0,

ϕ = g on0− × (0, 1),

(7.25)
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with 0− = {x | x ∈ 0, V(x) · n(x) < 0} and∇ · V = 0, (∂V/∂t) = 0 and (∂g/∂t) = 0.
We can easily see that problem (7.25) is “equivalent” to the (formally) well-posed problem

∂2ϕ

∂t2
−∇ · ((V ·∇ϕ)V) = 0 in Ä× (0, 1),

ϕ(0) = ϕ0,
∂ϕ

∂t
(0) = −V ·∇ϕ0,

ϕ = g on0− × (0, 1), V · n
(

∂ϕ

∂t
+ V ·∇ϕ

)
= 0 on(0\0̄−)× (0, 1).

(7.26)

Solving thewave-like equation(7.26) by a classical finite element/time stepping method is
quite easy since avariational formulationof (7.26) is given by

∫
Ä

∂2ϕ

∂t2
v dx+

∫
Ä

(V ·∇ϕ)(V ·∇v) dx+
∫

0\0−
V · n∂ϕ

∂t
v d0 = 0, ∀v ∈ W0,

ϕ(0) = ϕ0,
∂ϕ

∂t
(0) = −V ·∇ϕ0,

ϕ = g on0− × (0, 1),

(7.27)
with

W0 = {v | v ∈ H1(Ä), v = 0 on0−}.

Of course when time stepping methods are used to solve subproblem (7.27), a CFL condition
has to be satisfied. This can be done easily by choosing as local time step1t/Q with integer
Q sufficiently large. Solution methods for the Navier–Stokes equations, taking advantage of
the “equivalence” between (7.25) and (7.26), (7.27) are discussed in [33], [34]; see also [39],
[40] (and Section 8.6) for further applications, including the simulation ofviscoelastic fluid
flow à la Oldroyd-B.

Remark 7.3. System (7.12), (7.13) is the discrete analogue of

ρ f

∫
Ä

un+3/4− un+2/4

1t
· v dx+

J∑
j=1

(1− ρ f /ρ j )M j
Vn+3/4

j − Vn+2/4
j

1t
· Y j

+
J∑

j=1

(1− ρ f /ρ j )I j
ω

n+3/4
j − ωn

j

1t
θ j

=∑J
j=1

〈
λ

n+3/4
J , v− Y j − θ j ×

−−−−→
Gn+2/4

j x
〉

j
, ∀v ∈ (H1

0 (Ä)
)2

,

Y j ∈ R2, θ j ∈ R; un+3/4 ∈ (H1(Ä))2,

un+3/4 = gn+1
0 on0,λ

n+3/4
j ∈ 3

n+2/4
j , Vn+3/4

j ∈ R2, ω
n+3/4
j ∈ R,

(7.28)

〈
µ j , un+3/4− Vn+3/4

j − ωn+3/4
j ×

−−−−→
Gn+2/4

j x
〉

j
= 0, ∀µ j ∈ 3

n+2/4
j . (7.29)

Actually, the analogy between (7.12), (7.13) and (7.28), (7.29) is formal due to the lack of
(H1(Ä))2-ellipticity of the bilinear functional{v, w} → ∫

Ä
v · w dx occurring in the left-

hand side of (7.28), implying that problem (7.28), (7.29) has no solution, in general, unlike
its discrete counterpart (7.12), (7.13). Suppose nevertheless that problem (7.28), (7.29)
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has a solution. Takingv ∈ (D(Ä\⋃J
j=1 B̄n+2/4

j ))2 and{Yj , θ j } = {0, 0}, ∀ j = 1, . . . , J, in
(7.28) yields∫

Ä\
⋃J

j=1
B̄n+2/4

j

(
un+3/4− un+2/4

) · v dx = 0, ∀v ∈
(
D
(

Ä

∖ J⋃
j=1

B̄n+2/4
j

))2

,

which implies in turn that

un+3/4 = un+2/4 onÄ

∖ J⋃
j=1

B̄n+2/4
j , (7.30)

above (see, e.g., [41] for details)

D(O) = {φ | φ ∈ C∞(Ō), φ has a compact support inO},

whereO is an open connected set ofRd, d ≥ 1.
We have then from (7.28), (7.29) and (7.30) that∀ j = 1, . . . , J,

un+3/4|Bn+2/4
j

(x) = Vn+3/4
j + ωn+3/4

j ×
−−−−→
Gn+2/4

J x, ∀x ∈ Bn+2/4
j , (7.31)

ρ f

∫
Bn+2/4

j

(
un+3/4− un+2/4

) · (Y j + θ j ×
−−−−→
Gn+2/4

j x
)
dx

+ (1− ρ f /ρ j )M j
(
Vn+3/4

j − Vn+2/4
j

) · Y j

+ (1− ρ f /ρ j )I j
(
ω

n+3/4
j − ωn

j

)
θ j = 0, ∀Y j ∈ R2, θ j ∈ R.

(7.32)

Combining (7.31) with (7.32) yields,∀ j = 1, . . . , J,

Vn+3/4
j = (2− ρ f /ρ j )

−1

[
(1− ρ f /ρ j )V

n+2/4
j + ρ j

M j

∫
Bn+2/4

j

un+2/4 dx
]
, (7.33)

and

ω
n+3/4
j = (2− ρ f /ρ j )

−1

[
(1− ρ f /ρ j )ω

n
j +

ρ j

I j

∫
Bn+2/4

j

−−−−→
Gn+2/4

j x× un+2/4 dx
]
. (7.34)

The practical implementation of (7.33) and (7.34)—via numerical integration methods—
is quite easy, and we observe that theneutrally buoyantcase (ρ j = ρ f ) does not present
any particular difficulty. After obtaining{Vn+3/4

j ,ω
n+3/4
j }Jj=1, we enforce the rigid body

motion inside the particle region by interpolation. However, one has to realize thatun+3/4

and{Vn+3/4
j ,ω

n+3/4
j }Jj=1 computed via (7.30), (7.31), (7.33), and (7.34)are not solutionsof

system (7.12), (7.13), in general, particularly if control points located on∂ Bn+2/4
j are used

to enforce the rigid body motion. Moreover, numerical results show that the results obtained
from the solution of the system (7.12), (7.13) are of better qualities than those provided by
(7.33), (7.34) (which is of course much cheaper and easier to implement).

Remark 7.4. There is nothing mysterious about relations (7.7)–(7.11) and (7.14)–(7.18).
Relations (7.7)–(7.11) (resp., (7.14)–(7.18)) follow from the time discretization,after op-
eratorsplitting, of

(1− ρ f /ρ j )M j
dV j

dt
= (1− ρ f /ρ j )M j g+ (1/2)Fr

j ,

dG j

dt
= V j /2
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(resp., 
(1− ρ f /ρ j )M j

dV j

dt
= (1/2)Fr

j ,

dG j

dt
= V j /2).

That is, the right-hand-side termsFr
j andV j have been equally distributed “over” the second

and forth fractional steps; other decompositions are possible.

8. NUMERICAL EXPERIMENTS

8.1. Synopsis

In this section, we are going to apply the computational methods discussed in Sections 4
to 7 to the numerical simulation of various two- and three-dimensional fluid/solid inter-
action phenomena, including sedimentation and fluidization for particulate flow and store
separation. Schematically, these numerical experiments can be divided in two families: the
first family concerns situations where the number of rigid bodies is small (from 1 to 3),
while the second family is concerned with fluid/solid interactions involving more than 103

particles; actually, we will present results concerning the direct numerical simulation of a
Rayleigh–Taylor instability for particulate flow, the number of particles being 6,400.

More numerical results obtained by the methods discussed in this article can be found in
Refs. [2–8].

8.2. Numerical Simulation of the Motion of a Ball Falling
in an Incompressible Viscous Fluid

8.2.1. Generalities and Motivation

In this section we consider the numerical simulation of themotion of a ball falling in
an incompressible Newtonian viscous fluidby the methods discussed in Sections 4 to 7.
Among the reasons to consider the above test problem let us mention its simplicity when
compared to some of the test problems to follow, and also the fact that it will give us the
possibility of validating our methods by comparing the computed terminal velocities with
the measured ones reported in Ref. [42].

8.2.2. Description of the Test Problem

The phenomenon that we intend to simulate is the following: a rigid ball of diameter
d and densityρs is located, at timet = 0, on the axis (assumed vertical, i.e., parallel to
the gravity vectorg) of an infinitely long circular cylinder of diameter 1. We suppose
that the cylinder is filled with a Newtonian incompressible viscous fluid of densityρf = 1
and viscosityν; we suppose also that the ball and the fluid are at rest initially (i.e.,VG(0) =
0,ω(0) = 0andu(0)(=u0) = 0)and thatu(t) = 0, ∀t ≥ 0, on the boundary of the cylinder.
Under the effect of gravity the ball is going to fall and slowed down by the fluid viscosity
will reach a constant falling velocity (the terminal velocity); this supposes that the Reynolds
number is small enough so that the falling ball will stay close enough to the axis not to
touch the wall of the cylinder. The related experiment is well documented in Ref. [42].
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TABLE 8.1

Comparison between Computed and Experimental

Terminal Velocities (ρs = 1.02 andd = 0.2)

ν Uc Uexp Relative error (%) Re

0.20 0.1354 0.1317 2.8 0.135
0.15 0.1762 0.1750 0.7 0.234
0.10 0.2567 0.2571 0.2 0.513
0.05 0.4844 0.4603 5.2 1.93
0.02 0.9480 0.9129 3.8 9.48
0.01 1.310 1.411 7.1 26.2

8.2.3. A Short Description of the Computational Methodology

The initial computational domain isÄ(0) = (0, 1)× (0, 1)× (0, 2.5); then it moves with
the center of the ball (we shall callÄ(t) the corresponding position at timet). The truncated
circular cylinder is contained (embedded) in the computational domain and we force the
velocity field outside the cylinder to be zero by another distributed Lagrange multiplier. To
approximate the velocity we divideÄ(t) into elementary cubes of lengthhÄ, then divide
each elementary cube into six tetrahedra of heighthÄ and base areah2

Ä/2; the set of these
elementary tetrahedra will be the “triangulation”Th(t) used to approximate the velocity.
The pressure will be approximated using a twice coarser similar “triangulation.”

The resulting discrete problem has been solved using the techniques discussed in Section 4
to 7 with hÄ = 1/64 and1t = 5× 10−4, implying that the number of velocity (resp.,
pressure) grid points is of the order of 650,000 (resp. 82,000). To approximate the multiplier
space3h(t) we have used the “hybrid” approach defined by (6.16) in Remark 6.4, and on
that space used〈., .〉 jh defined by (6.6). Finally, the linear advection–diffusion problems
(7.6) have been solved using the least-squares/conjugate gradient algorithms discussed in
[34, Chap. 7] (see also [43]).

8.2.4. Description of the Numerical Results and Comparison with Experimental Data

The fall of the ball in the viscous fluid has been simulated ford = 0.2, 0.3, 0.4, ρs =
1.02, 1.14, andν = 0.2, 0.15, 0.1, 0.05, 0.02, 0.01. Assuming that att = 0 the ball is lo-
cated atG(0) = {.5, .5, .5} we obtain the computed terminal velocities(Uc) reported in
Tables 8.1 to 8.6; we have also reported in these tables the corresponding experimental

TABLE 8.2

Comparison between Computed and Experimental Terminal

Velocities (ρs = 1.02 andd = 0.3)

ν Uc Uexp Relative error (%) Re

0.20 0.2144 0.2164 0.9 0.321
0.15 0.2794 0.2840 1.6 0.558
0.10 0.4072 0.4047 0.6 1.22
0.05 0.7599 0.7493 1.4 4.56
0.02 1.392 1.4359 3.0 20.85
0.01 1.831 2.107 13.1 54.9
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TABLE 8.3

Comparison between Computed and Experimental

Terminal Velocities (ρs = 1.02 andd = 0.4)

ν Uc Uexp Relative error (%) Re

0.20 0.2536 0.2487 2 0.507
0.15 0.3299 0.3362 1.9 0.88
0.10 0.4799 0.4977 3.6 1.92
0.05 0.8930 0.8600 3.8 7.14
0.02 1.625 1.695 4.2 32.5
0.01 2.098 2.422 13.4 84

TABLE 8.4

Comparison between Computed and Experimental

Terminal Velocities (ρs = 1.14 andd = 0.2)

ν Uc Uexp Relative error (%) Re

0.20 0.9367 0.8707 7.6 0.937
0.15 1.203 1.102 9.2 1.60
0.10 1.672 1.552 7.7 3.34
0.05 2.617 2.489 5.1 10.5
0.02 3.812 4.334 12 38.1

TABLE 8.5

Comparison between Computed and Experimental

Terminal Velocities (ρs = 1.14 andd = 0.3)

ν Uc Uexp Relative error (%) Re

0.20 1.478 1.401 5.5 2.22
0.15 1.888 1.786 5.7 3.78
0.10 2.574 2.426 6.1 7.71
0.05 3.823 3.972 3.7 22.9
0.02 5.216 6.283 17 78.3

TABLE 8.6

Comparison between Computed and Experimental

Terminal Velocities (ρs = 1.14 andd = 0.4)

ν Uc Uexp Relative error (%) Re

0.20 1.746 1.673 4.3 3.49
0.15 2.226 2.057 8.2 5.93
0.10 3.031 2.868 5.7 12.1
0.05 4.448 4.573 2.7 35.6
0.02 5.892 6.946 15.2 118
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terminal velocities (Uexp) (obtained from [42]), the associated relative errors, and the cor-
responding Reynolds number (based on the formula Re= Ucd/ν).

It is our opinion that the agreement between computed and experimental terminal veloci-
ties is quite good, particularly if one takes into consideration that the experimental terminal
velocities taken from Ref. [42] are obtained, in fact, by multiplying the terminal velocities
of a ball falling in an unbounded flow region (in practice a region very large compared to
the size of the ball) by a wall correction factor. This explains the large number of digits
in the experimental data and suggests, also, that these data contain other errors than those
due to measurement. Actually, the large discrepancies observed forν = 0.01, ρs = 1.02
andν = 0.02, ρs = 1.14 are very likely caused by the fact that when the falling velocity
becomes sufficiently large asymmetry breakingtakes place, and the ball “leaves” the axis
of the cylinder and falls along a spiraling trajectory. For more details about the test case
discussed in this section and further comparisons with experimental data see Ref. [44].

8.3. Numerical Simulation of the Sedimentation of a Circular Disk

8.3.1. Description of the Test Problem

The objective of this test problem is to simulate the fall of a rigid circular disk in a
bounded cavityÄ filled with an incompressible Newtonian viscous fluid. Simulating the
impact of the cylinder with the bottom boundary of the cavity is part of the computational
experiment.

8.3.2. On the Computational Methodology

The computational techniques used for the simulations are those discussed in Sections 4
to 7. To construct the triangulationsTh used to approximate the velocity, we have first
divided the cavityÄ into elementary squares of lengthhÄ and then each square into two
triangles as shown in Fig. 8.1.

We proceed similarly to construct the (twice coarser) pressure grid. The multiplier space
3(t) and the pairing〈., .〉 have been approximated as in Section 8.2.3. Concerning now the
treatment of the advection–diffusion two approaches have been implemented, namely the

FIG. 8.1. Division of an elementary square.
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global approach where advection and diffusion are treated at once as in Section 8.2.3 and
the approach advocated in Remark 7.2 where a wave-like equation method is used to treat
the advection after decoupling from diffusion via an additional fractional step in scheme
(7.4)–(7.19) (see Remark 7.2 for details). Actually, we have used these two approaches in
order to cross-validate our computational methods.

8.3.3. On the Geometry, Initial and Boundary Conditions, and Other Parameters

• The computational domain isÄ = (0, 2)× (0, 6).
• The diameter of the disk isd = 0.25.
• The centerG of the disk is located at{1, 4} at timet = 0.
• The fluid and the disk are initially at rest, i.e.,u(0)(=u0) = 0, Ġ(0) = ω(0) = 0.
• The fluid velocity is0, ∀t ≥ 0, on the boundary ofÄ.
• The fluid density isρf = 1.
• The disk densityρs is either 1.25 or 1.5.
• The fluid viscosityν is either 0.1 or 0.01.
• The velocity mesh sizehÄ is either 1/192 or 1/256 or 1/384; the pressure mesh

size ishp = 2hÄ.
• The time discretization step1t is either 10−3 or 7.5× 10−4 or 5× 10−4.
• The parameterε used in the collision model is of the order of 10−5.

From the above characteristics we can see that we have (approximately) 440,000, 786,000,
and 1.77× 106 (resp., 110,000, 196,000, and 442,000) vertices for the three velocity (resp.,
pressure) triangulations used for the simulations.

8.3.4. Description of the Numerical Results

In Fig. 8.2 we have visualized the flow and the particle position att = 0.3 for ρs = 1.25
and ν = 0.1. The figures associated tohÄ = 1/192, 1t = 10−3 are practically undis-
cernible of those obtained withhÄ = 1/256, 1t = 7.5× 10−4, andhÄ = 1/384, 1t =
5× 10−4. Similarly, the figures associated to the least-squares/conjugate gradient treat-
ment of the advection–diffusion and those obtained from the wave-like equation treatment
of the advection are essentially identical. Further results and comparisons are shown in
Figs. 8.3 to 8.5.

The above figures show that, in practice, the cylinder quickly reaches a uniform falling
velocity until it hits the bottom of the cavity. A careful examination of Fig. 8.3 shows
that a symmetry breaking of small amplitude is taking place with the disk moving slightly
on the right, away from the vertical symmetry axis of the cavity. Figure 8.5 shows that
the rotational component of the kinetic energy is small compared to the translational one.
The maximal computed disk Reynolds numbers are 17.27 forhÄ = 1/192, 1t = 10−3 and
17.31 forhÄ = 1/256, 1t = 7.5× 10−3.

The results obtained using the wave-like equation approach to treat advection (once
decoupled from diffusion) are very close to those which have been reported above. An
evidence of this very good agreement is provided by Fig. 8.6 where we have compared the
kinetic energies obtained by both approaches.

Another evidence of the good agreement between both approaches is that the maximum
disk Reynolds numbers obtained via the wave-like equation method are 17.44 forhÄ =
1/192, 1t = 10−3 and 17.51 forhÄ = 1/256, 1t = 7.5× 10−4, to be compared to 17.27
and 17.31.
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FIG. 8.2. Particle position and flow field visualization att = 0.3 (ρs= 1.25, ν= 0.1, hÄ= 1/256, 1t =
7.5× 10−4).

From the good agreement between both approaches and since the wave-like equation
approach is computationally faster (see Section 8.3.5 for precise comparisons) and easier
to implement, it has been selected as the method of choice for most of the two-dimensional
test problems which follow (its 3-D implementation is currently in progress). This applies in
particular to the variant of the above test problem where, this time,ρs = 1.5 andν = 0.01,
everything else remaining the same. From the increased density of the disk and reduced
viscosity of the fluid we can expect the disk motion to be much faster and the symmetry
breaking to be more pronounced than in the previous experiment. These predictions are
confirmed by the results shown in Figs. 8.7–8.11.

With the exception of the rotational kinetic energy (for which we still have “qualitative”
agreement) the computed results are in good quantitative agreement for the various values
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FIG. 8.3. Histories of thex-coordinate (left) andy-coordinate (right) of the center of the disk forρs= 1.25
andν= 0.1(hÄ= 1/192 and1t = 10−3, solid lines;hÄ= 1/256 and1t = 7.5× 10−4, dashed–dotted lines). Least-
squares/conjugate gradient treatment of advection–diffusion.

FIG. 8.4. Histories of thex-component (left) andy-component (right) of the translation velocity of the disk
for ρs= 1.25 andν= 0.1(hÄ= 1/192 and1t = 10−3, solid lines;hÄ= 1/256 and1t = 7.5× 10−4, dashed–dotted
lines). Least-squares/conjugate gradient treatment of advection–diffusion.

FIG. 8.5. Histories of translational (left) and rotational (right) kinetic energies of the disk forρs= 1.25 and
ν= 0.1(hÄ= 1/192 and1t = 10−3, solid lines;hÄ= 1/256 and1t = 7.5× 10−4, dashed–dotted lines). Least-
squares/conjugate gradient treatment of advection–diffusion.
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FIG. 8.6. Histories of translational (left) and rotational (right) kinetic energies of the disk forρs= 1.25 and
ν= 0.1. Least-squares/conjugate gradient treatment of advection–diffusion withhÄ= 1/192 and1t = 10−3 (solid
line) and withhÄ= 1/256 and1t = 7.5× 10−4 (dashed line). Wave-like equation treatment of advection with
hÄ= 1/192 and1t = 10−3 (dashed–dotted line) and withhÄ= 1/256 and1t = 7.5× 10−4 (dotted line).

FIG. 8.7. Particle position and flow field visualization att = 0.3 (left), t = 0.4 (center), andt = 0.5 (right)
(ρs= 1.5, ν= 0.01,hÄ= 1/384, 1t = 5× 10−4; wave-like equation treatment of the advection).
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FIG. 8.8. Histories of thex-coordinate (left) andy-coordinate (right) of the center of the disk forρs= 1.5
andν= 0.01 (hÄ= 1/256 and1t = 7.5× 10−4, solid lines;hÄ= 1/384 and1t = 5× 10−4, dashed–dotted lines;
wave-like equation treatment of the advection).

FIG. 8.9. Histories of thex-coordinate (left) andy-coordinate (right) of the translation velocity of the disk
for ρs= 1.5 andν= 0.01(hÄ= 1/256 and1t = 7.5× 10−4, solid lines;hÄ= 1/384 and1t = 5× 10−4, dashed–
dotted lines; wave-like equation treatment of the advection).

FIG. 8.10. History of the angular velocity of the disk forρs= 1.5 andν= 0.01 (hÄ= 1/256 and1t =
7.5× 10−4, solid line;hÄ= 1/384 and1t = 5× 10−4, dashed–dotted line; wave-like equation treatment of the
advection).
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FIG. 8.11. Histories of the translational (left) and rotational (right) kinetic energies of the disk forρs= 1.5
andν= 0.01 (hÄ= 1/256 and1t = 7.5× 10−4, solid lines;hÄ= 1/384 and1t = 5× 10−4, dashed–dotted lines;
wave-like equation treatment of the advection).

of hÄ and1t . In particular, the maximum computed disk Reynolds numbers are 438.6
for hÄ = 1/192 and1t = 10−3, 450.7 forhÄ = 1/256 and1t = 7.5× 10−4, and 466 for
hÄ = 1/384 and1t = 5× 10−4; this is quite good agreement if one considers that one
is dealing with a highly nonlinear phenomenon involving symmetry breaking. Actually,
the above figures show that the symmetry breaking weakens ash and1t decrease. This
is not surprising since the above symmetry breaking is triggered by the (non-symmetric)
perturbations associated to our numerical methods (our triangulations, for example, are
not symmetric with respect to the cavity axis (i.e., the linex1 = 3)); ash decreases the
quality of the approximation increases implying that the level of perturbation decreases,
leading to symmetry breakings of smaller amplitude. Let us observe that forhÄ = 1/384
the velocity (resp., pressure) triangulation has approximately 1.77× 106 (resp., 442,000)
vertices, respectable numbers indeed.

8.3.5. Further Details on Implementation

Let us provide some further information concerning the computer implementation of
the methods discussed in Sections 3 to 7, when applied to the test problem described in
Sections 8.3.1 and 8.3.3. Without going into excruciating detail, let us say that:

• We have takenε ranging from 5× 10−5 to 5× 10−6 in the collision model associated
to relation (5.2). The parameterρ in (5.2) (the thickness of the safety zone) has been taken
of the order of 2.5hÄ.
• The number of conjugate gradient iterations necessary to force the discrete incom-

pressibility is of the order of 12.
• If the least-squares/conjugate gradient methodology advocated in [37] and [43] is

used to treat the advection–diffusion it requires two (preconditioned) iterations at most.
• If one uses the wave-like equation approach to treat the advection the number of

sub-time steps used to integrate the wave-like equation (7.26) is of the order of five.
• The number of iterations necessary to force the rigidity inside the disk varies from

70 to 100 (it increases with the maximal Reynolds number). This may seem quite large, but
things have to be put in perspective for the following reasons:

(i) The dimension of the discrete multiplier space3h is small compared to the
dimensions of the velocity spaceVh and pressure spacePh. We have indeed
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TABLE 8.7

CPU per Time Step (in Seconds)

ρs ν h 1t Adv. treat. CPU/timestep(s)

1.25 0.1 1/192 10−3 l.s./c.g. 29.7
1.25 0.1 1/192 10−3 w.-l. eq. 25.6
1.25 0.1 1/256 7.5× 10−4 l.s./c.g. 60.8
1.25 0.1 1/256 7.5× 10−4 w.-l. eq. 60.6
1.5 10−2 1/192 10−3 w.-l. eq. 31
1.5 10−2 1/256 7.5× 10−4 w.-l. eq. 54.8
1.5 10−2 1/384 5× 10−4 w.-l. eq. 140.8

dimVh ' 880,000, dimPh ' 110,000, and dim3h ' 3,700 if h = 1/192,
dimVh ' 1.57× 106, dimPh ' 196,000, and dim3h ' 6,400 if h = 1/256,
dimVh ' 3.54× 106, dimPh ' 42,000, and dim3h ' 14,600 if h = 1/384.

(ii) The problems of type (7.20) encountered in this application have been solved
by a diagonally preconditioned conjugate gradient algorithm implying that each iteration
is quite inexpensive.

From the above reasons, most of the CPU time is spent in solving the Navier–Stokes equa-
tions. Of course for those situations with many particles, where the ratio solid volume/fluid
volume is of order 1 it may be worthwhile to precondition the conjugate gradient algorithm,
used to compute the multipliers, by the symmetric and positive definite matrices associated
to the scalar products (4.16) or (4.17) restricted to3 jh .

• The discrete Poisson problems encountered in computing the discrete pressure and
forcing the discrete incompressibility condition “take place” on a regular grid; we can
therefore usefast Poisson Solversbased oncyclic reductionto solve these problems (see,
e.g., Ref. [45] for a discussion of cyclic reduction methods). Similarly, the elliptic problems
encountered when treating diffusion (with or without advection) can be solved by fast direct
solvers based on cyclic reduction.
• The wave-like equation-based methodology (w.-l. eq.) seems to be 20% faster than

the one based on the least-squares/conjugate gradient treatment (l.s./c.g.) of advection–
diffusion; it is also easier to implement.
• The computational times per time step on a one-processor DEC Alpha 500-au work-

station are given in Table 8.7 (where the notation is self-explanatory). These figures can be
substantially reduced via parallelization since the good potential for parallelization of the
fictitious domain methods has not been taken advantage of in these simulations (see, e.g.,
ref. [46] for the parallelization of the fictitious domain methods discussed in this article).

8.4. Numerical Simulation of the Motion and Interaction of Two Circular Disks
Sedimenting in an Incompressible Newtonian Viscous Fluid

8.4.1. Description of the Test Problem

The objective of this test problem is to simulate the motion and the interaction of two
identical rigid circular disks sedimenting in a vertical channel. The two disks are initially at
rest on the axis of the channel, the distance between their centers being one disk diameter.
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We expect the simulations to reproduce the well documenteddrafting, kissing, and tumbling
phenomenon; this phenomenon has been observed in laboratory experiments and also via
simulations based on computational methods different of the ones discussed in this article
(see, for example, [47, 48], and the references therein).

The computational methods used for this test problem are those already employed for
the test problems of Section 8.3.

8.4.2. On the Geometry, Initial and Boundary Conditions, and Other Parameters

• The computational domain at timet = 0 is Ä(0) = (0, 2)× (0, 6) and is moving
with the disks.
• The diameter of the disks isd = 0.25.
• The initial positions of the disk centers are{1, 4.5} and{1, 5}.
• The fluid and the disks are initially at rest.
• The fluid velocity is0, ∀t ≥ 0, on the boundary of the channel.
• The fluid density isρf = 1.
• The disk density isρs = 1.5.
• The fluid viscosity isν = 0.01.
• The discretization parameters are{hÄ, 1t} = {1/192, 10−3}, {1/256, 7.5× 10−4},

{1/384, 5× 10−4}.
• The collision parameter isε = 5× 10−6.
• The safety zone thicknessρ in the collision model ranges from 2hÄ to 4hÄ.

8.4.3. Description of the Numerical Results

The results shown below have been obtained using the wave-like equation approach of
Section 7.3, Remark 7.2, to treat the advection.

The drafting, kissing, and tumbling phenomenon mentioned above is clearly observed in
Fig. 8.12. The accepted explanation of this phenomenon is as follows:

The lower disk, when falling, creates a pressure drop in its wake. This implies that—
if initially close enough—the upper disk encounters less resistance from the fluid than
the lower one and falls faster. Falling faster, the upper disk touches (or almost touches)
the lower one. Once in contact (or quasi-contact), the two disks act as an elongated body
falling in an incompressible viscous fluid. As is well known, elongated bodies falling suf-
ficiently fast in a Newtonian incompressible viscous fluid have a tendency to rotate so
that their broad sides become perpendicular to the flow direction. Indeed rotation takes
place, as seen is Fig. 8.12 att = 0.2, but the two-disks assemblage is unstable and the
two disks separate. The maximum computeddisk Reynolds numberis 664 (resp., 680 and
689) for {hÄ, 1t} = {1/192, 10−3} (resp.,{1/256, 7.5× 10−4} and {1/384, 5× 10−4}).
The computedminimal distancebetween the two disks is 1.26hÄ, 1.03hÄ, and 2.1hÄ

for {hÄ, 1t} = {1/192, 10−3}, {1/256, 7.5× 10−4} and {1/394, 5× 10−4}; it occurs at
t = 0.157, 0.161, and 0.163, respectively. Considering that drafting, kissing, and tum-
bling is a violent phenomenon (see Fig. 8.14 for evidence of this violence) the agree-
ment between the computed results for the various values ofhÄ and1t is quite good.
Calculations done withρs = 1.25 confirm the above results; actually, the agreement is
even better since the disk motions and fluid flow are slower due to the smaller value of
ρs− ρf .
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FIG. 8.12. Disks positions and flow field visualization att = 0.15, 0.2, and 0.3 (ρs= 1.5, ν= 10−2, hÄ=
1/384,1t = 5× 10−4). Wave-like equation treatment of the advection.

The various observations and comments done in Section 8.3.3 (for the sedimentation of
one disk) still apply to the present test problem (see Figs. 8.13–8.15). Actually, the costs
and numbers of iterations associated to the solution of the various subproblems are close,
although the two-disk simulation is a bit more expensive than the one-disk one, since it

FIG. 8.13. Histories of thex-coordinate (left) andy-coordinate (right) of the centers of the disks forρs=
1.5 andν= 10−2 (hÄ= 1/256,1t = 7.5× 10−4, solid lines;hÄ= 1/384,1t = 5× 10−4, dashed–dotted lines).
Wave-like equation treatment of the advection.
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FIG. 8.14. Histories of thex-coordinate (left) andy-coordinate (right) of the translational velocity of the
disks for ρs= 1.5 and ν= 10−2 (hÄ= 1/256, 1t = 7.5× 10−4, solid lines; andhÄ= 1/384, 1t = 5× 10−4,
dashed–dotted lines). Wave-like equation treatment of the advection.

leads to higher Reynolds numbers for the same values ofρs, ρf , andν. For example, the
CPU times per time-step on the same DEC Alpha 500-au workstation are 44, 79, and 200 s
for {hÄ, 1t} = {1/192, 10−3}, {1/256, 7.5× 10−4}, and{1/384, 5× 10−4}, respectively
(compared to 31, 55, and 141 s for the one-disk problem).

8.5. Numerical Simulation of the Motions and Interaction of Two Balls
Sedimenting in an Incompressible Viscous Fluid

The fourth test problem considered here concerns the simulation of the motions and in-
teraction of two sedimenting identical balls in a vertical cylinder with square cross-section.
The computational domain isÄ = (0, 1)× (0, 1)× (0, 4). The diameterd of the two balls
is 1/6 and at timet = 0, the centers of the two balls are located on the axis of the cylinder at
{0.5, 0.5, 3.5}and{0.5, 0.5, 3.16̄}. The initial translational and angular velocities of the balls
are zero. The density of the fluid isρf = 1.0 and the density of the balls isρs = 1.14. The vis-
cosity of the fluid isνf = 0.01. The initial condition for the fluid flow isu(0)(=u0) = 0while
the boundary condition isu(t) = 0 on the boundary of the cylinder,∀t ≥ 0. The simulation

FIG. 8.15. Histories of the angular velocities of the disks (left) and of their distance (right) forρs= 1.5 and
ν= 10−2 (hÄ= 1/256,1t = 7.5× 10−4, solid lines;hÄ= 1/384,1t = 5× 10−4, dashed–dotted lines). Wave-like
equation treatment of the advection.
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FIG. 8.16. Ball positions att = 0, 0.27075, and 0.31425(ρs= 1.14, ρf = 1, ν= 10−2, hÄ= 1/80, 1t =
7.5× 10−4).

has been done with{hÄ, 1t} = {1/60, 10−3} and{1/80, 7.5× 10−4}, andhp = 2hÄ, im-
plying that the corresponding velocity meshes (resp., pressure meshes) have, approximately,
897,000 and 2.1× 106 vertices (resp., 116,000 and 271,000 vertices). The advection–
diffusion step has been treated by the least squares/conjugate gradient method discussed
in Refs. [37, 43], while the various elliptic problems involved in our methodology have
been treated by fast elliptic solvers based on cyclic reduction. Concerning the collision
model, we have takenε = 10−4 andρ = 1/60 as thickness of the safety zone. The sim-
ulation takes about 120 (resp., 304) s per time step on a DEC Alpha 500-au workstation
for {hÄ, 1t} = {1/60, 10−3} (resp.,{1/80, 7.5× 10−4}). The maximum particle Reynolds
number during the entire evolution is 111.46 (resp., 117.28) for{hÄ, 1t} = {1/60, 10−3}
(resp.,{1/80, 7.5× 10−4}). In Figs. 8.16 and 8.17 we have visualized the positions of the
balls att = 0, 0.27075, 0.31425, 0.45075, 0.53475, and 0.72975, obtained with{hÄ, 1t} =
{1/80, 7.5× 10−4}; on these figures we clearly observe that the anticipated drafting, kissing,
and tumbling phenomenon (Ref. [49]) is indeed taking place.

On the following Figs. 8.18 to 8.21 we have reported comparisons between quantities
computed with{hÄ, 1t} = {1/60, 10−3} and{1/80, 7.5× 10−4}; these figures show good
agreement considering, once again, that the kissing, drafting, and tumbling phenomenon is
a non-smooth one, involving several symmetry breakings.

8.6. Sedimentation of Two Disks in an Oldroyd-B Visco-elastic Fluid

8.6.1. Generalities and Synopsis

The test problem considered now is singular in the sense that it is the only one, in this arti-
cle, related to fluid/rigid solid interaction when the fluid is non-Newtonian. Since we intend
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FIG. 8.17. Ball positions att = 0.45075, 0.53475, and 0.72925(ρs= 1.14, ρf = 1, ν= 10−2, hÄ= 1/80,
1t = 7.5× 10−4).

to publish, in the not too far future, an article specifically dedicated to the direct numerical
simulation of visco-elastic particulate flow, our “visit” to the non-Newtonian realm will be
rather brief; actually, our main intention is to show some fundamental differences between
the behavior of Newtonian and visco-elastic fluids when sedimentation is concerned. We
consider thus the simulation of two rigid disks sedimenting in a two-dimensional cavity
filled with anOldroyd-B visco-elastic fluid. The equations describing the rigid body motions
are as in Section 2; concerning the flow model we have to complete Equations (2.1)–(2.4)

FIG. 8.18. Histories of thex-component of the ball centers (left) and of thex-component of the ball translation
velocity (right) forρs= 1.14,ρf = 1, andν= 10−2 (hÄ= 1/60,1t = 10−3, solid lines;hÄ= 1/80,1t = 7.5× 10−4,
dashed–dotted lines).
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FIG. 8.19. Histories of they-component of the ball centers (left) and of they-component of the ball translation
velocity (right) forρs= 1.14,ρf = 1, andν= 10−2 (hÄ= 1/60,1t = 10−3, solid lines;hÄ= 1/80,1t = 7.5× 10−4,
dashed–dotted lines).

with (see [45, pp. 185–187])

τ + λ1
∇
τ = 2η(τ + λ2

∇
D(u)), (8.1)

where in (8.1):

• A d × d tensorA being given,
∇
A denotes the upper convected derivative ofA,

defined by

∇
A = ∂A

∂t
+ (u · ∇)A − (∇u)A − A(∇u)t ; (8.2)

• λ1 is the relaxation time;
• λ2 is the retardation time;
• η = (λ1/λ2)νf , whereνf is the fluid viscosity,
• D(u) = (∇u+∇ut )/2.

FIG. 8.20. Histories of thez-component of the ball centers (left) and of thez-component of the ball translation
velocity (right) forρs= 1.14,ρf = 1, andν= 10−2 (hÄ= 1/60,1t = 10−3, solid lines;hÄ= 1/80,1t = 7.5× 10−4,
dashed–dotted lines).
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FIG. 8.21. History of the distance between the two balls forρs= 1.14, ρf = 1, andν= 10−2 (hÄ= 1/60,
1t = 10−3, solid lines;hÄ= 1/80,1t = 7.5× 10−4, dashed–dotted lines).

Generalizing the splitting scheme (7.4)–(7.19) to accommodate the additional relation (8.1)
is not difficult; we can, in particular, use the wave-like equation approach discussed in
Section 7.3 to treat the advection term∂τ/∂t + (u · ∇)τ occurring in (8.1) (from (8.2))
and apply a time stepping method to the resulting problem (this approach was followed in
Ref. [39]).

Remark 8.1. Detailed discussions on the modeling and simulation of theflow of visco-
elastic liquidscan be found in Refs. [50, 51]; see also the many references therein.

8.6.2. Formulation of the Test Problem and Numerical Results

As already mentioned, this fifth test problem is concerned with the direct simulation of
the sedimentation of two rigid disks in a two-dimensional cavity filled with an Oldroyd-B
visco-elastic fluid. The computational domain isÄ = (0, 2)× (0, 6). The initial condition
for the fluid velocity field isu(0)(=u0) = 0. The boundary condition for the velocity is
u(t) = 0 on 0, ∀t ≥ 0. The density of the fluid isρf = 1 and the viscosity isνf = 0.25.
The relaxation time isλ1 = 1.4, while the retardation time isλ2 = 0.7. The diameter of
the disks isd = 0.25, while their density isρs = 1.01. The initial translation and angular
velocities of the disks are zeros. At timet = 0, the centers of the two disks are located
on the vertical symmetry axis of the cavity at{1, 5.25} and {1, 4.75}. In the simulation,
the mesh size for the velocity fieldhÄ = 1/128; it is hp = 2hÄ = 1/64 for the pressure
andhτ = hÄ = 1/128 for the stress tensorτ . The time step is1t = 10−3. We let the two
disks fall in the cavity. Before touching the bottom, we can see in Fig. 8.22 the fundamental
features of a pair of identical disks sedimenting in an Oldroyd-B viscoelastic fluid, namely
a drafting, kissing, and chaining phenomenon (see [52] for more details). The averaged
terminal velocity is 0.29 in this simulation, implying that the corresponding

• Deborah numberis De= 1.624
• Reynolds numberis Re= 0.29
• Visco-elastic Mach numberis M = 0.686
• Elasticity numberis E = 5.6
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FIG. 8.22. Sedimentation and chaining of two disks in an Oldroyd-B viscoelastic fluid att = 3, 11, 15, 18,
22.5, and 27 (from left to right and from top to bottom).
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(see, e.g., Ref. [51] for a precise definition of De,M , andE). The simulation has been done
using the wave-like equation approach, discussed in Section 7.3, to treat the advection ofu
andτ .

8.7. Direct Numerical Simulation of Incompressible Viscous
Flow around Moving Airfoils

8.7.1. Motivation and Synopsis

The rigid bodies considered so far have been circular disks or spherical balls. Another
salient feature of the previous test problems and simulations has been that the rotational
kinetic energy was always small compared to the translational kinetic energy. The main
goals of the following two test problems are:

(i) To show that the computational methods discussed in Sections 4 to 7 apply (at least
in 2-D) to rigid bodies of shape more complicated than disks and balls.

(ii) To show that the above methods apply when the rotational kinetic energy is com-
parable, or even larger, to the translational one and still can bring accurate results.

The following test problems concern flow around one or several NACA0012 airfoils.

8.7.2. Flow around a NACA0012 Airfoil with Fixed Center of Mass

We consider here an incompressible viscous flow around a NACA0012 airfoil that has
a fixedcenter of mass and isfree to rotatedue to hydrodynamical forces; the surrounding
regionÄ is the rectangle (−4, 16)× (−2, 2). The characteristic length, namely the airfoil
length, is 1.009 and the fixed center of mass of the airfoil is at (0.42, 0). Initial angular
velocity and incident angle are zero. The density of the fluid isρf = 1 and the density of
the airfoil isρs = 1.1. The viscosity of the fluid isνf = 10−2. The initial condition for the
fluid flow is u(0)(=u0) = 0 and the boundary datag0 is given by

g0(x, t) =
{

0 if x2 = −2 or 2,
(1− e−50t )

(1
0

)
if x1 = −4 or 16,

for t ≥ 0. Hence the Reynolds number is about 101 with respect to the length of the airfoil
and the maximum inflow speed. For this test problem we have chosen two sets{hÄ, 1t}
of discretization parameters, namely{1/64, 1.5× 10−3} and{1/96, 10−3}, to validate the
simulation results; the mesh size for pressure is, again,hp = 2hÄ. We have thus, approxi-
mately, 330,00 and 740,000 velocity vertices for the triangulations used to approximate the
velocity.

To enforce the rigid body motion inside the airfoil at each time step, using the multiplier
space defined by (6.16), we have taken all the grid points from the velocity mesh contained
in the airfoil at that time completed by a selected set of points belonging to the boundary of
the airfoil (and containing the trailing edge; see Fig. 8.23) and then used as scalar product
over3h(t) the one defined by (6.6).

For these rotating airfoil simulations, we have used the previously mentioned least
squares/conjugate gradient technique to solve the advection-diffusion subproblems. The
NACA0012 airfoil is fixed up tot = 1. A steady flow around it is obtained. Aftert = 1,
we allow the NACA0012 airfoil to rotate freely. In Fig. 8.24, we observe that the histories
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FIG. 8.23. Part of the velocity mesh and example of mesh points used in (6.16) to enforce the rigid body
motion inside the NACA0012 airfoil.

corresponding to the two sets{hÄ, 1t} are in very good agreement. The airfoil intends
to keep its broadside perpendicular to the in-flow direction which is a stable position for
non-circular particles settling in a channel at small Reynolds numbers (cf. Ref. [53]) and it
quickly reaches a periodic motion.

The CPU/time step is 53 s (resp., 107 s if{hÄ, 1t} = {1/64, 1.5× 10−3} (resp.,{1/96,
10−3}) on one node of an IBM SP2. The same methodology has been (successfully)
applied to the more challenging case whereνf = 1.25× 10−3 (i.e., Re= 807) the other
data and parameters staying the same. The corresponding results are discussed in [6,
Sect. 6].

Remark 8.2. For the test case discussed here the fact that we used a fine uniform mesh
may appear as a drawback. Actually, this test problem was considered for validation purposes
and also to show that our methodology can handle non-circular bodies. Also, when simulat-
ing the flow of mixtures with over 100 particles highly dispersed in the flow region (see the
test problems in Sections 8.8 and 8.9), which is the main goal of the distributed Lagrange
multiplier method discussed here, using a fine uniform mesh everywhere is not a drawback
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FIG. 8.24. Histories of the angle (hÄ= 1/64,1t = 1.5× 10−3, dotted line;hÄ= 1/96,1t = 10−3, dashed–
dotted line) and of the angular velocity (hÄ= 1/64, 1t = 1.5× 10−3, dashed line;hÄ= 1/96, 1t = 10−3, solid
line). The measures are in rad and rad/s.

FIG. 8.25. Flow visualization att = 1.
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anymore (particularly for a flow where the ratiosolid volume/fluid volumeis of the order of
one or more).

Of course—as in [54]—one can combine locally adapted mesh with boundary Lagrange
multiplier in order to avoid using fine mesh everywhere. One can also use unstructured
meshes and force the rigid body motion by collocation like the one done in [22].

Remark 8.3. For the above test problem, we have imposedu = 0 on the top and bottom
boundaries ofÄ. Actually, with the methodology discussed in this article, there would

FIG. 8.26. Flow visualization (top) and vorticity density (bottom) att = 1.3.
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have been no problem imposingu = u∞(6=0) on the inflow, top and bottom boundaries
of Ä andνf(∂u/∂n)− np = 0 (or σn = 0) on the outflow boundary. We can justify the
boundary conditions used here by the fact that the experimental results concerning flow
around cylinders are obtained by putting the cylinders in channels where they are fixed or
free to rotate, the boundary conditions on the boundary of the channel being close to those
used in this article.

Remark 8.4. Using the parallelization techniques discussed in [46], the computational
times given above have been divided by factors of the order of 10 (see [46] for details).

FIG. 8.27. Flow visualization (top) and vorticity density (bottom) att = 1.5.
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8.7.3. Simulation of a Two-Dimensional Multi-store Separation Phenomenon

The main goal of this test problem is the direct numerical simulation of a multi-store
separation phenomenon in two-dimensions. A more precise description of the problem is
as follows: several bodies, rigidly attached up to some timet∗, are located in a space region
containing an incompressibly Newtonian viscous fluid; at timet = t∗, some of the bodies are
released and are going to fall under the effect of gravity. Our goal is to simulate the motion
of the various bodies and the flow they induce when moving down. The computational
domain isÄ = (−4, 12.047)× (−2, 2). The boundary conditions verified byu(t) on the

FIG. 8.28. Flow visualization (top) and vorticity density (bottom) att = 1.75.
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boundary0 of Ä are defined by

u(x, t) =
{

0 for x2 = ±2, x1 ∈ [−4, 12.047],

(1− e−50t )
(
1− x2

2/4
)(1

0

)
for x1 = −4 or 12.047 and|x2| ≤ 2.

The initial condition for the velocity isu(0)(=u0) = 0. We suppose that the rigid bodies
are three NACA0012 airfoils, two of them of length 1 and the third of length 1.25. At
time t = 0 the centers of mass of the airfoils are located at{0.5, 1.5} for the large one
and at{−0.25, 1.25} and {1, 1.25} for the two smaller ones (see Fig. 8.25). The airfoils

FIG. 8.29. Flow visualization (top) and vorticity density (bottom) att = 2.
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are at rest att = 0. The two smaller airfoils are released att = t∗ = 1 and start moving
down under the effect of gravity; the largest one is supposed fixed. The fluid density is
ρf = 1 while the fluid viscosity isνf = 10−3, implying that the moving airfoils’ Reynolds
number is 103. The moving airfoils’ density isρs = 1.1. The methods of Sections 4 to
7 have been applied (without collision model) to the simulation of the above separation
phenomenon. We have usedhÄ = 2/225 to discretize the velocity,hp = 2hÄ to discretize
the pressure, and1t = 5× 10−4 for the time discretization. We have thus about 106 velocity
grid points and 250,000 pressure grid points. The advection–diffusion has been treated by
a least-squares/conjugate gradient method.

FIG. 8.30. Flow visualization (top) and vorticity density (bottom) att = 2.5.
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In Fig. 8.25 we have visualized the flow att = 1 (just before the release of the two small
airfoils), while in Figs. 8.26 to 8.30 we have visualized the flow velocity and the vorticity
distribution att = 1.3, 1.5, 1.75, 2 and 2.5.

The computational time for this test problem is 51 sec./time step on 4 nodes of an SGI
Origin 2000 parallel computer.

FIG. 8.31. Sedimentation of 6400 particles: positions att = 0, 0.4, 0.5, 0.6 (from left to right and from top to
bottom), and visualization of the Rayleigh–Taylor instability.
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8.8. Sedimentation of 6,400 Circular Particles in a Two-Dimensional Cavity:
Rayleigh–Taylor Instability for Particulate Flow

8.8.1. Generalities and Synopsis

The test problems discussed in this section, and in the following Section 8.9, differ
significantly from the ones considered so far. The main difference lies with the much larger

FIG. 8.32. Sedimentation of 6400 particles:t = 1.
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numbers of rigid bodies (particles, indeed) that we are going to consider, these numbers
being over 103. Indeed, these test problems can be viewed as particulate flow problems and
we shall see that the computational methods discussed in Sections 4 to 7 apply to those
more challenging situations.

FIG. 8.33. Sedimentation of 6400 particles:t = 2.6.
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The specific problem discussed in this section concerns the sedimentation of 6,400 disks
settling down in a rectangular cavity filled with an incompressible Newtonian viscous
fluid. In Section 8.9 we shall discuss the fluidization of 1,204 spherical particles in a
three-dimensional tube (bed). Since several articles specifically dedicated to the above test

FIG. 8.34. Sedimentation of 6400 particles:t = 3.
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problems are in preparation, their discussion in this review article will be shorter than the
one they really deserve.

For a review of the many aspects of particulate flow we refer to [55] (and to the many
references therein).

FIG. 8.35. Sedimentation of 6400 particles:t = 5.
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8.8.2. Formulation of the Test Problem and Numerical Results

The test problem that we consider now concerns the simulation of the motion of 6,400
sedimenting circular disks in the closed cavityÄ = (0, 8)× (0, 12). The diameterd of the
disks is 1/12 and the position of the disks at timet = 0 is shown in Fig. 8.31. The solid

FIG. 8.36. Sedimentation of 6400 particles:t = 7.
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fraction in this test case is 34.9%. The disks and the fluid are at rest a timet = 0. The
density of the fluid isρf = 1 and the density of the disks isρs = 1.1. The viscosity of the
fluid is νf = 10−2. The time step is 10−3. The mesh size for the velocity field ishÄ = 1/192
(the velocity triangulation has thus about 3.5× 106 vertices) while the pressure mesh size
is hp = 2hÄ, implying approximately 885,000 vertices for the pressure triangulation. For

FIG. 8.37. Sedimentation of 6400 particles:t = 9.
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this test problem where many particles “move around” a fine mesh is required essentially
everywhere. The wave-like equation approach has been chosen to treat the advection, the
parameterε occurring in the collision model has been taken equal to 10−6, while for the
thicknessρ of the safety zone we have usedρ = 2hÄ. The computational time per time step
is approximately 10 min on a DEC Alpha 500-au workstation, implying that to simulate

FIG. 8.38. Sedimentation of 6400 particles:t = 11.
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FIG. 8.39. Sedimentation of 6400 particles:t = 13.

one time unitof the phenomenon under considerationwe need, practically, a full week. The
evolution of the 6,400 disks sedimenting inÄ is shown in Figs. 8.31 to 8.39. The maximum
particle Reynolds number in the entire evolution is 72.64. Figure 8.31 clearly shows the
development of a “text-book”Rayleigh–Taylor instability. This instability develops into
a fingering phenomenon and many symmetry breaking and other bifurcation phenomena,
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including drafting, kissing, and tumbling, take place at various scales and times; similarly
vortices of various scales develop and for a while the phenomenon is clearly chaotic, which
is not surprising after all for a 6400-body problem. Finally, the particles settle at the bottom
of the cavity and the fluid returns to rest.

Actually, the authors of the present article are currently preparing another one where it
will be shown that the analytical theory of Rayleigh–Taylor instabilities, when applied to
the situation prevailing here att = 0, predicts a behavior of the mixture for 0≤ t ≤ 1 very
close, quantitatively, to that directly simulated via the computational techniques discussed
in this article.

Remark 8.5. In the above calculation we have assumed that the disks have identical
diameterd and densityρs; in fact the methods discussed in this article can handle those
situations where diameters and densities (and even shapes) differ.

8.9. Fluidization of a Bed of 1,204 Spherical Particles

We consider here the simulation of fluidization in a bed of 1204 spherical particles. The
computational domain isÄ = (0, 0.6858)× (0, 20.3997)× (0, 44.577). The thickness of

FIG. 8.40. Fluidization of 1204 spherical particles: positions of the particles att = 0 and 1.5.
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this bed is slightly larger than the diameter of the particles, which isd = 0.635, so there is
only one layer of balls in the 0x2 direction. In [49] many experimental results related to this
type of “almost two-dimensional” beds are presented. The fluid is incompressible, viscous,
and Newtonian; its density isρf = 1 and its viscosity isνf = 10−2. We suppose that att = 0
the fluid and the particles are at rest. The boundary condition for the velocity field is

u(t) =


0 on the four vertical walls,

5

 0
0

1− e−50t

 on the two horizontal walls.

The density of the balls isρs = 1.14. We suppose that the fluid can enter and leave the
bed but that the balls have to stay in it; i.e., they cannot cross0 (=∂Ä) to leave the
bed. The mesh size for the velocity field ishÄ = 0.06858 (corresponding to 2× 106 ver-
tices for the velocity mesh), while it ishp = 2hÄ for the pressure (corresponding to 2.9×
105 vertices for the pressure mesh). The time step is1t = 10−3. The parameterε used in
the collision model is 5× 10−7 and we takeρ = hÄ as the thickness of the safety zone

FIG. 8.41. Fluidization of 1204 spherical particles: positions of the particles att = 3 and 4.5.
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FIG. 8.42. Fluidization of 1204 spherical particles: positions of the particles att = 6 and 7.

around each particle. The initial position of the balls is shown in Fig. 8.40. After we be-
gin pushing the balls up, we observe that the inflow creates cavities propagating among
the balls in the bed. Since the inflow velocity is much higher than the critical fluidization
velocity (of order 2.5 here), many balls are pushed directly to the top of the bed. Those
balls at the top of the bed are stable and closely packed while the others are circling around
at the bottom of the bed. These numerical results are very close to experimental ones
and have been visualized in Figs. 8.40 to 8.43. In the simulation, the maximum particle
Reynolds number is 1512 while the maximum averaged particle Reynolds number is 285.
The computations were done on an SGI Origin 2000, using a partially parallelized code;
the computational time is approximately 110 s/time step. The advection–diffusion has been
treated by a least-squares/conjugate gradient.

The authors of this article are currently preparing an article specifically dedicated to
the above simulations; it will contain comparisons between the results obtained by direct
numerical simulation and the experimental ones measured in the laboratory of the fourth
author at the University of Minnesota.
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FIG. 8.43. Fluidization of 1204 spherical particles: positions of the particles att = 8 and 10.

9. CONCLUSION

We have presented in this article a distributed Lagrange-multiplier-based fictitious domain
methodology for the simulation of flow with moving boundaries. This novel methodology
allows thedirect numerical simulationof fairly complicated phenomena such as particulate
flow, including sedimentation and fluidization. Other goals include:

• 3-D particulate flow with large numbers of particles of different sizes, shapes, and
densities;
• particulate flow for viscoelastic liquids, such as Oldroyd-B.
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