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The motion of a sphere normal to a wall is investigated. The normal stress at the
surface of the sphere is calculated and the viscoelastic effects on the normal stress for
different separation distances are analysed. For small separation distances, when the
particle is moving away from the wall, a tensile normal stress exists at the trailing
edge if the fluid is Newtonian, while for a second-order fluid a larger tensile stress is
observed. When the particle is moving towards the wall, the stress is compressive at
the leading edge for a Newtonian fluid whereas a large tensile stress is observed for
a second-order fluid. The contribution of the second-order fluid to the overall force
applied to the particle is towards the wall in both situations. Results are obtained
using Stokes equations when α1 + α2 = 0. In addition, a perturbation method has
been utilized for a sphere very close to a wall and the effect of non-zero α1 + α2 is
discussed. Finally, viscoelastic potential flow is used and the results are compared
with the other methods.

1. Introduction
Expansion of the general stress function for slow and slowly varying motion gives

rise to the second-order fluid which is introduced by Coleman & Noll (1960) (see also
Rivlin & Ericksen 1995; Bird, Armstrong & Hassagner 1987; Joseph 1990). Correct
predictions have been obtained for second-order fluids for the orientation of a settling
long body, the evolution of the Jeffery orbit (Leal 1975) and the lateral migration of a
sphere in a non-homogeneous shear flow (Ho & Leal 1976). However, the predictions
of the fluid response to rapid motions have not been satisfactory.

The motion of bodies in viscoelastic fluids is completely different form that in a
Newtonian fluid. The broadside of a long body sedimenting in a Newtonian fluid
is perpendicular to the stream, which is due to inertia and is usually explained by
turning couples at the stagnation points. However the broad-side aligns parallel to
the stream in a viscoelastic fluid (Liu & Joseph 1993). Wang & Joseph (2004) have
utilized viscoelastic potential flow for second-order fluid around an ellipse. They
calculated the normal stress at the stagnation points of an ellipse and showed that
turning couples in the second-order fluid can be explained by calculating the moments
on the ellipse. Particle–particle interaction can be described as drafting, kissing and
tumbling in Newtonian fluid for non-zero-Reynolds-number flows (Fortes, Joseph &
Lundgren 1987) while for Stokes flows, the particle configuration remains unchanged
as the particles sediment (Ardekani & Rangel 2006). In contrast, if two spheres are
set into motion in a viscoelastic fluid in an initial side-by-side configuration in which
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the two spheres are separated by a smaller than critical gap, the spheres will attract,
turn and chain in the direction parallel to the stream. This can be explained by
looking at the normal stresses at the points of stagnation on the spheres, which are
compressive in Newtonian fluids and tensile in viscoelastic fluids (Wang & Joseph
2004). The cusped trailing edge of an air bubble rising in viscoelastic fluid can also
be qualitatively explained by examining normal stresses on the surface of the bubble
predicted by viscoelastic potential flow. In this paper, we study the effect of the second-
order fluid on the normal stresses and forces acting on a particle moving normal to
a wall.

This study is important in understanding particle–wall collision, which has been
investigated for Newtonian fluids by several researchers (Davis 1987; Joseph et al.
2001; Ardekani & Rangel 2007) not but apparently addressed in the context of
viscoelastic fluids. Understanding the particle–wall interaction in viscoelastic fluids
facilitates the study of collision processes. Small particles moving in such fluids near
walls occur in applications such as separation techniques, biological flows, sediment
transport, and the falling-sphere viscometer. The extension of the results presented
here to binary interactions of particles can be used in the calculation of properties
of a suspension of particles in second-order fluids. Sedimentation velocities, bulk
stresses, etc. for suspension of spheres in Newtonian fluids have been studied by
several researchers (e.g. Batchelor & Green 1972 and Jeffrey 1973). However, few
studies have discussed the stress in dilute suspension of spheres in second-order fluid
(Mifflin 1985; Sun & Jayaraman 1984; Koch & Subramanian 2006). An alternative
to the implementation in the present study would be twin method of expansion used
by Jeffrey (1973).

The interaction between a sphere and a vertical wall has been extensively studied
experimentally and numerically (Goldman, Cox & Brenner 1967; Joseph et al., 1994;
Becker, McKinley & Stone 1996; Singh & Joseph 2000). As these studies show, a
sedimenting particle is attracted to a vertical wall in viscoelastic fluids. Rodin (1995)
considered the squeezing of a film between two spheres in a power-law fluid using
asymptotic solutions. Viscoelastic squeezed films are also considered by Brindley,
Davies & Walters (1976) and Engmann, Servais & Burbidge (2005). Riddle, Narvaez
& Bird (1977) experimentally investigated the distance between two identical spheres
falling along their line of centers in viscoelastic fluids. They found that the spheres
attract if they are initially close and separate if they are not close. Brunn (1977)
considered the interaction of two identical spheres sedimenting in a quiescent second-
order fluid and observed that the distance between spheres decreases as they fall. His
analysis applies when the particle separation is large and he did not find a critical
separation distance for attraction. In this study, the motion of a spherical particle
perpendicularly to a wall in a second-order fluid is studied and the results obtained
by Stokes analysis are compared with those from a perturbation method and using
viscoelastic potential flow.

2. Theoretical development
The governing equations for a second-order fluid are as follows:

ρ

[
∂uuu

∂t
+ (uuu · ∇)uuu

]
= ∇ · T, ∇ · uuu = 0, (2.1)
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where uuu is the velocity field and ρ is the fluid density. The stress tensor T for an
incompressible second-order fluid is

T = −pI + µf A + α1B + α2A
2, (2.2)

where p is the pressure, µf is the zero shear viscosity, A = ∇uuu + ∇uuuT is twice the
symmetric part of the velocity gradient and

B =
∂A

∂t
+ (uuu · ∇)A + A∇uuu + ∇uuuT A; (2.3)

α1 = − 1
2
ψ1 and α2 = ψ1 + ψ2 where ψ1 and ψ2 are the first and second normal stress

coefficients.

3. Low-Reynolds-number results
In this study, a spherical particle moving normal to a wall with constant velocity is

considered. For low-Reynolds-number flows, in two dimensions or when α1 + α2 = 0,
the velocity field for a second-order fluid is the same as the one predicted by the
Stokes flow while pressure becomes

p = pN +
α1

µf

DpN

Dt
+

β

4
trA2, (3.1)

where β = 3α1 + 2α2 is the climbing constant and pN is the Stokes pressure. In this
case, the nonlinearities in the constitutive equation affect only the distribution of
normal stress (Tanner 1985). α1 + α2 is positive for the fluids known to us and for
simplification this constraint is applied to the fluid in this section. However, different
methods are utilized in the following sections and the constraint on normal stress
coefficients is removed.

The boundary conditions on the surface of the spheres are more easily expressed
in terms of bispherical coordinates. Cylindrical coordinates can be transformed to
bispherical coordinates as

r = c̃
sin η

cosh ξ − cos η
, z = c̃

sinh ξ

cosh ξ − cos η
, (3.2)

where the surface of the sphere is at ξ = α, coshα = h/a, c̃ = a sinhα, h is the
distance between the particle and the wall and a is the particle radius. Let µ = cos η,
then velocity gradient ∇u in bispherical coordinates can be written as

∇u|on particle =
cosh ξ − µ

c̃

×

⎛
⎜⎜⎜⎜⎜⎜⎝

∂uξ

∂ξ
− uη

sin η

cosh ξ − µ

∂uξ

∂η
+ uη

sinh ξ

cosh ξ − µ
0

∂uη

∂ξ
+ uξ

sin η

cosh ξ − µ

∂uη

∂η
− uξ

sinh ξ

cosh ξ − µ
0

0 0
−uξ sin η sinh ξ + uη(µ cosh ξ − 1)

sin η(cosh ξ − µ)

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.3)

The axisymmetric motion of a sphere towards a wall in Stokes flow has been studied by
Brenner (1961) and Maude (1961). Here we briefly summarize the results.
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Figure 1. A spherical particle moving perpendicular to a wall.

The stream function can be written as

ψ = (cosh ξ − µ)−3/2
∞∑

n=1

UXn (Pn−1(µ) − Pn+1(µ)), (3.4)

where U is the velocity of the particle Pn(µ) is the Legendre polynomial of degree n and

Xn = Ân cosh

(
n − 1

2

)
ξ + B̂n sinh

(
n − 1

2

)
ξ + Ĉn cosh

(
n +

3

2

)
ξ

+ D̂n sinh

(
n +

3

2

)
ξ. (3.5)

The coefficients Ân–D̂n are described by Brenner (1961). The pressure PN can be expressed
as an infinite summation of spherical harmonics (Pasol et al. 2005):

pN =
µf

c̃3
(cosh ξ − µ)(1/2)

∞∑
n=0

[
An cosh

(
n +

1

2

)
ξ + Bn sinh

(
n +

1

2

)
ξ

]
Pn(µ). (3.6)

The coefficients An and Bn are defined by Pasol et al. (2005). Calculating uξ , uη, and PN

and using (2.2) and (2.3) the stress tensor in bispherical coordinates (Tb) can be calculated.
Using the rotation matrix from cylindrical to bispherical coordinates we have

R1 =

⎛
⎜⎜⎜⎜⎝

cosh ξ − µ

c̃

∂r

∂ξ

cosh ξ − µ

c̃

∂z

∂ξ
0

cosh ξ − µ

c̃

∂r

∂η

cosh ξ − µ

c̃

∂z

∂η
0

0 0 1

⎞
⎟⎟⎟⎟⎠ , Tcyl = RT

1 TTT bR1. (3.7)

To calculate the stress tensor in spherical coordinates centred at the sphere center, we have

R2 =

⎛
⎝ sin θ cos θ 0

cos θ − sin θ 0
0 0 1

⎞
⎠ , Tsph = RT

2 TcylR2, (3.8)

where θ is the polar angle as shown in figure 1. Figure 2(a) shows the dimensionless normal
stress as a function of θ for different separation distances when the particle is moving away
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Figure 2. A spherical particle moving normal to a wall at Re = 0.05, De = 0.168: (a) away
from the wall; (b) towards the wall.

from the wall. The stress is non-dimensionalized by 1/2ρU 2 and c∗ = c/(2a) = h/a. Results
for low Reynolds and Deborah numbers are shown (Re = 0.05 and De = |α1U |/(µf a) =
0.168). For small separation distances, a tensile normal stress occurs at the trailing edge
when the fluid is Newtonian, while a larger tensile stress is observed for a second-order
fluid. In figure 2(b), the particle is moving towards the wall. The stress is compressive at
the leading edge for a Newtonian fluid whereas a large tensile stress is observed for a
second-order fluid. This tensile stress arises from the modified pressure, (α1/µf )(∂pN/∂t). If
one calculates Tn + p at this point, the result is zero because the shear rate is zero at this
point. This is in agreement with the results by Joseph & Feng (1996). For a large separation
distance, the last term in (3.1), which is related to the shear rate, and second term of the
right-hand side of (3.1), which generates an extensional normal stress, are of the same order
and relatively small compared to the overall force applied to the particle. For a particle
nearly touching the wall, (α1/µf )(DpN/Dt) is much larger than 1

4
βtrA2 and this results

in a large deviation from the Newtonian case. The shear stress in a second-order fluid is
similar to that in the Newtonian fluid when the separation distance is large. However, as
the separation distance decreases, the shear stress differs from that of a Newtonian fluid
because of the term α1(∂A/∂t). The total force acting on the particle moving away from
or towards the wall is plotted in figure 3(a). It can be observed that the contribution
of the second-order fluid to the overall force applied to the particle is towards the wall
independently of the direction of motion of the particle.

4. Motion of a particle very close to a wall
In this section, a perturbation method is used when De and ε = h/a − 1 are small and

there is no constraint on α1 and α2. The dimensionless stretched cylindrical coordinates are
defined as Z = z/aε and R = r/a

√
ε. It can be shown that the dimensionless velocity and

pressure are scaled as

u∗
r =

√
ε

[
U ∗

1r +
De

ε
U ∗

2r + h.o.t.

]
, u∗

z = U ∗
1z +

De

ε
U ∗

2z + h.o.t.,

p∗ = ε−2

[
P ∗

1 +
De

ε
P ∗

2 + h.o.t.

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.1)

and De/ε is a small quantity compared to one. Superscript ∗ refers to dimensionless
variables. The surface of the sphere is described by Z = H = 1 + 1

2
R2 + O(ε). The terms
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Figure 3. (a) Force F ∗ = F/(6πµf aU ) acting on a spherical particle moving away from or
towards the wall at Re = 0.05. (b) Dimensionless pressure for a sphere moving towards the
wall at Re = 0.05 and c∗ = 1.01.

U ∗
1r , U ∗

1z, and P ∗
1 are determined by Jeffrey & Corless (1988) as

U ∗
1r =

3R(Z2 − HZ)

H 3
, U ∗

1z = −2Z3 − 3HZ2

H 3
+

3R2(Z3 − HZ2)

H 4
P ∗

1 = − 3

H 2
. (4.2)

The solution at the first order of De can be determined using the following equations:

∂P ∗
2 /∂Z = −∂

(
B∗

1zz +
α2

α1
A∗2

1zz

) /
∂Z

∂P ∗
2 /∂R = − 1

R

[
∂R

(
B∗

1rr +
α2

α1
A∗2

1rr

) /
∂R

]
− ∂

(
B∗

1rz +
α2

α1
A∗2

1rz

) /
∂Z + ∂2U ∗

2r/∂Z2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

∂(RU ∗
2r )/∂R + R∂U ∗

2z/∂Z = 0 (4.3)

where B∗
1 is the dimensionless tensor B (defined in (2.3)) for velocity field U∗

1. The boundary
conditions to be applied are: U∗

2(Z = 0) = U∗
2(Z = H ) = 0. Since u∗ is a function of R, Z,

and ε, the term ∂A∗
1/∂t∗∣∣

r,z
can be calculated as follows:

∂A∗
1

∂t∗

∣∣∣∣
r,z

= − R

2ε

∂A∗
1

∂R

∣∣∣∣
Z,ε

− Z

ε

∂A∗
1

∂Z

∣∣∣∣
R,ε

+
∂A∗

1

∂ε

∣∣∣∣
R,Z

. (4.4)

Solving (4.3), U ∗
2r , U ∗

2z, and P ∗
2 can be determined. The dimensionless pressure is plotted

in figure 3(b). As can be seen, the results from § 3 and this section are in agreement when
α1 + α2 = 0, as expected. The difference between pressure in second-order and Newtonian
fluids at the stagnation point is more pronounced as |α2/α1| is increased. The pressure at
the stagnation point can be written as

p|Z=H,R=0 = −3
µf U

a

[
1

ε2
+

De

10ε3

(
14 − 6

α2

α1

)]
. (4.5)

The total force acting on the particle can be written as

F ∗ = −1

ε

[
1 +

De

10ε3

(
2 − 3

α2

α1

)]
. (4.6)

Equation (4.6) is in agreement with the results shown in figure 3(a).

Motavalizadeh
Rectangle
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5. Viscoelastic potential flow
Irrotational normal stresses produced by potential flow of a second-order fluid give rise

to motion of solid bodies which agrees with experimental observations as explained in the
introduction. The shear stress and tangential velocity on the boundaries are in general
discontinuous in viscous and viscoelastic irrotational flows. Potential flow of a viscous or
viscoelastic liquid is incompatible with the no-slip condition at the boundary of the liquid
and solid. However, to consider particle interaction in viscoelastic flow, we could look
at viscoelastic potential flow locally. The literature shows that the sedimenting particles
chain robustly in all flows: sedimentation, fluidization, shear flows, oscillating shear flows,
and elongational flows. This chaining occurs for particles ranging in sizes from microns
to centimeters (Joseph, Funada & Wang 2007). Therefore the cause must be local and we
believe the local mechanism is due to the change in the normal stress which we compute
in the second-order order fluid. Locally, near the stagnation point, the flow is slow and
it could be argued that for this reason the local behaviour is second order. Takagi et al.
(2003) similarly use the idea of a local Stokes flow at the boundary of a moving particle.
In addition, at the stagnation point, the no-slip condition is satisfied exactly while the slip
velocity is small in the vicinity of the stagnation point. This is a valid argument to look at
the normal stresses in the neighbourhood of the stagnation point in a second-order fluid
using viscoelastic potential flow.

It has been shown that for potential flow where u = ∇φ (Joseph 1992)

∇ · (α1B + α2A
2) = (3α1 + 2α2)∇χ, χ =

∂2φ

∂xi∂xj

∂2φ

∂xi∂xj

=
1

4
trA2. (5.1)

Thus, divergence of the stress is irrotational. Using (5.1), the pressure can be calculated
using the Bernoulli equation. Thus, the stress tensor for viscoelastic potential flow can be
written as

T =

[
ρ

∂φ

∂t
+

1

2
ρ|∇φ|2 − βχ − C(t)

]
I +

[
µf + α1

(
∂

∂t
+ uuu · ∇

)]
A + (α1 + α2)A

2. (5.2)

For a spherical particle moving perpendicularly to a wall as shown in figure 1, the
potential flow solution can be obtained using the image of a doublet source in a sphere and
is given as the series (Lamb 1945)

φ = U

(
µ0 cos γ

d2
+

µ1 cos γ1

d2
1

+
µ2 cos γ2

d2
2

+ ...

)

+ U

(
µ0 cos γ ′

d
′2

+
µ1 cos γ ′

1

d
′2
1

+
µ2 cos γ ′

2

d
′2
2

+ ...

)
, (5.3)

where µ0 = 1
2
a3, a is the particle radius, U is the particle velocity, A is the center of a

sphere moving towards the wall, B is the center of the imaginary sphere on the other side
of the wall, d = AP , d ′ = BP , d1 = A1P , d ′

1 = B1P , etc., are the distances between the
doublets and a fixed point P . AA1 = f1, AA2 = f2, etc. can be defined using

f1 = c − a2

c
, f2 =

a2

f1
,

µ1

µ0
= −a3

c3
,

µ2

µ1
= − a3

f 3
1

,

f3 = c − a2

c − f2
, f4 =

a2

f3
,

µ3

µ2
= − a3

(c − f2)3
,

µ4

µ3
= − a3

f 3
3

, . . . ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.4)

where c is twice the separation distance between the sphere and the wall. Using (5.3) and
(5.4), we have

φ = Uϕ(r, z, c) ⇒ ∂φ

∂t
= acϕ + 2U 2 ∂ϕ

∂c
, (5.5)
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Figure 4. A spherical particle moving away from the wall at Re = 0.05, De = 0.168, and
α2/α1 = −1.78 (a) Second-order fluid, (b) Newtonian fluid.

where ac is the sphere acceleration. Also,

A = U Ã = 2U

⎛
⎜⎜⎜⎜⎜⎜⎝

∂2ϕ

∂r2

∂2ϕ

∂r∂z
0

∂2ϕ

∂r∂z

∂2ϕ

∂z2
0

0 0
1

r

∂ϕ

∂r

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5.6)

Thus, the stress tensor can be written as

T + CI = µf ÃU + (ρϕI + α1Ã)ac +

([
2ρ

∂ϕ

∂c
+

1

2
ρ

{(
∂ϕ

∂r

)2

+

(
∂ϕ

∂z

)2
}

− β

{(
∂2ϕ

∂r2

)2

+

(
1

r

∂ϕ

∂r

)2

+

(
∂2ϕ

∂z2

)2

+ 2

(
∂2ϕ

∂r∂z

)2
}]

I

+ 2α1
∂Ã

∂c
+ α1ũuu · ∇Ã + (α1 + α2)Ã

2
)

U 2. (5.7)

The normal stress Tn and the shear stress Tt are

Tn = Trr sin2 θ + Tzz cos2 θ + Trz sin 2θ Tt =
Trr − Tzz

2
sin 2θ + Trz cos 2θ. (5.8)

Using (5.3), (5.7) and (5.8), the normal stress is computed at the surface of a sphere moving
with constant velocity U perpendicularly to the wall. Figure 4 shows the dimensionless
normal stress as a function of θ for different separation distances when the particle is
moving away from the wall for Re = 0.05 and De = 0.168 which agree with the published
results by Wang & Joseph (2004) when c → ∞. It can be seen that for small separation
distances, a tensile normal stress occurs at the trailing edge when the fluid is Newtonian,
while a larger tensile stress is observed for a second-order fluid. In figure 5, the particle is
moving towards the wall. The stress is compressive at the leading edge for a Newtonian
fluid whereas a large tensile stress is observed for a second-order fluid. This behaviour
can be explained by examination of (5.7). The first term is the same for Newtonian and
second-order fluids while for a non-accelerating particle, the second term is zero. The third
term, which strongly depends on viscoelasticity, is proportional to U 2 and is independent
of the direction of motion. Thus, a tensile stress is observed on the sphere surface at θ = π
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Figure 5. A spherical particle moving towards the wall at Re = 0.05, De = 0.168, and
α2/α1 = −1.78 (a) Second-order fluid, (b) Newtonian fluid.

in both cases when the particle is moving away from or towards the wall. The Stokes and
potential flows give different but complementary results when the motion is steady, due to
the shear rate and extensional normal stresses, respectively. For unsteady flows, the Stokes
flow evaluation of the stresses also gives rise to tension at a point of stagnation.

6. Conclusions
The force predicted by Stokes equations for a spherical particle moving perpendicularly

to a wall in a second-order fluid with α1 + α2 = 0 is calculated and it is shown that the
contribution of the second-order fluid to this force is independent of the direction of motion
of the particle and it is always an attractive force towards the wall. The perturbation method
for the case with non-zero α1 +α2 small De for a sphere very close to a wall is utilized. The
difference between the normal stress of second-order and Newtonian fluids at the stagnation
point is more pronounced as |α2/α1| is increased. Moreover, the viscoelastic potential flow
for a spherical particle moving normal to a wall is obtained for a second-order fluid and the
results are compared with those predicted by a Stokes analysis and a perturbation method.

The first author thanks Mr. Sadegh Dabiri for valuable discussions.
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