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Abstract

The forces acting on two fixed spheres in a second-order uniform flow are investigated. When

α1 + α2 = 0, where α1 and α2 are fluid parameters related to the first and second normal stress

coefficients, the velocity field for a second-order fluid is the same as the one predicted by the

Stokes equations while the pressure is modified. The Stokes solutions given by Stimson and Jeffery

[Proc. R. Soc. London, Ser. A 111, 110 (1926)] for the case when the flow direction is along

the line of centers and Goldman et al.[Chemical Eng. Science 21, 1151 (1966)] for the case when

the flow direction is perpendicular to the line of centers are utilized and the stresses and the

forces acting on the particles in a second-order fluid are calculated. For flow along the line of

centers or perpendicular to it, the net force is in the direction that tends to decrease the particle

separation distance. For the case of flow at arbitrary angle, unequal forces are applied to the

spheres perpendicularly to the line of centers. These forces result in a change of orientation of

the sedimenting spheres until the line of centers aligns with the flow direction. In addition, the

potential flow of a second-order fluid past two fixed spheres in uniform flow is investigated. The

normal stress at the surface of each sphere is calculated and the viscoelastic effects on the normal

stress for different separation distances are analyzed. The contribution of the potential flow of a

second-order fluid to the force applied to the particles is an attractive force. Our explanations

of the aggregation of particles in viscoelastic fluids rest on three pillars; the first is a viscoelastic

“pressure” generated by normal stresses due to shear. Secondly, the total time derivative of the

pressure is an important factor in the forces applied to moving particles. The third is associated

with a change in the normal stress at points of stagnation which is a purely extensional effect

unrelated to shearing.
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1. INTRODUCTION

The motion of small particles at low Reynolds number was comprehensively reviewed by

Happel and Brenner1 and by Goldsmith and Mason2. Extensive reviews on the motion of

particles in non-Newtonian fluids were reported by Caswell3 and Leal4. More recently, the

unsteady motion of solid spheres and their collisions have been studied by Ardekani and

Rangel5,6. In this study, the forces acting on two spherical particles in a second-order fluid

are investigated.

If two spheres are set into motion in a viscoelastic fluid in an initial side-by-side config-

uration in which the two spheres are separated by a smaller than critical gap, the spheres

will attract, turn and chain7. In the sedimentation of a transversely isotropic particle at

low Reynolds number through a quiescent fluid, the presence of even weak viscoelasticity

is responsible for adaption of a specific orientation independent of the initial configuration,

whereas in a Newtonian fluid, the particle configuration is indeterminant at zero Reynolds

number4. Similarly, two spherical particles sediment in a Newtonian fluid with constant ori-

entation equal to their initial orientation, whereas particles tend to line up in a viscoelastic

fluid. Our interest is to see if a second-order fluid model can predict the orientation of two

sedimenting particles.

Expansion of the general stress function for slow and slowly varying motion gives rise to

the second-order fluid introduced by Coleman and Noll8–11. Correct predictions have been

obtained for second-order fluids for the orientation of a settling long body, the evolution of

the Jeffery orbit12 and the lateral migration of a sphere in a non-homogeneous shear flow13.

However, the predictions of the fluid response to rapid motions have not been satisfactory.

The motion of a spherical particle normal to a wall in a second-order fluid was investigated

theoretically by Ardekani et al.14 who showed that the contribution of the second-order fluid

to the overall force applied to the particle is an attractive force towards the wall independent

of the direction of motion of the particle.

Riddle et al.15 experimentally studied the effect of the distance between two identical

spheres falling along their line of centers in viscoelastic fluids and found that the gradual

separation or coalescence of two spheres depends on their initial separation distance. Brunn16

considered the interaction of two identical spheres sedimenting in a quiescent second-order

fluid and observed that the distance between spheres decreases as they fall. His analysis
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applies when the particle separation is large and he did not find a critical separation distance

for attraction. Brunn17 analyzed sedimentation of particles of arbitrary shape in a second-

order fluid. His investigation shows that a transversely isotropic particle changes orientation

until it becomes either parallel or perpendicular to the direction of the external force.

Phillips18 developed a method to calculate the motion of N spherical particles suspended

in a quiescent second-order fluid in a low-Reynolds-number flow. Binous and Phillips19 used a

modified version of the Stokesian dynamics method to calculate directly the particle-particle

and particle-bead interactions. In their approach, a viscoelastic fluid is represented as a

suspension of finite-extension, non-linear, elastic dumbbells in a Newtonian solvent. They

showed that two sedimenting spheres are in most cases attracted to each other and turn in

such way that their line-of-centers is in the direction of gravity. Bot et al.20 experimentally

investigated the motion of two identical spheres along the center line of a cylindrical tube

filled with a Boger fluid. They observed that the spheres attract for large distances but

separate for small distances. Feng et al.21 presented a two-dimensional numerical study of

particle-particle and particle-wall interactions in an Oldroyd-B fluid and they observed that

two particles settling side by side attract and approach each other. The doublet rotates until

the line of centers is aligned with the direction of fall. More recently, Phillips and Talini22

studied hydrodynamic interactions between widely separated spheres utilizing a multipole

expansion and observed particles chaining in sedimentation and shear flows.

In the present study, two non-rotating and freely rotating, fixed spheres in a uniform flow

of a second-order fluid at an arbitrary direction using Stokes equations are discussed. The

results utilizing Stokes equations confirm that a viscoelastic pressure associated with high-

shear rates on the surface of particles promotes the attraction and alignment of particles

in the direction of sedimentation for any range of particles separation. For freely rotating

spheres, the time derivative of the Stokes pressure is non zero and it enhances the attraction

of the spheres. An important question is whether other mechanisms of attraction or repulsion

exist for particles in a second-order fluid. In order to answer this question, we examine the

normal stresses at the stagnation points as calculated from viscoelastic potential flow. The

literature shows that the sedimenting particles chain robustly in all flows: sedimentation,

fluidization, shear flows, oscillating shear flows, and elongational flows. This chaining occurs

for particles ranging in sizes from microns to centimeters7,22. Therefore, the cause must be

local and we believe the local mechanism is due to the change in the normal stress which
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we compute in the second-order order fluid. Locally, near the stagnation point, the flow is

slow and it could be argued that for this reason the local behavior is second order. Takagi

et al.23 similarly use the idea of a local Stokes flow at the boundary of a moving particle.

In addition, at the stagnation point, the no-slip condition is satisfied exactly while the slip

velocity is small in the vicinity of the stagnation point. This argument supports the idea of

examining the normal stresses in the neighborhood of the stagnation point in a second-order

fluid using viscoelastic potential flow.

As Harlen et al.24 noted polymers are fully extended in the wake and this generates

some problems in numerical simulations of flow around the sphere and the mathematical

tools might not be able to predict this full extension of polymeric chains. One might get

a large disagreement between the mathematical and experimental results at this region.

However, this does not impose any mathematical constraint on the use of the second-order

model when α1 + α2 = 0. Tanner25 calculated the normal stress difference for steady

elongational flow V = ε̇(xi− 1
2
yj− 1

2
zk) using a second-order fluid, where V is the velocity

field, is the strain rate, i, j, k are unit vectors along x, y, z directions. He found that

σxx − σyy = 3ε̇µf (1 + ε̇(α1 + α2)/µf ) leads to unacceptable results at some negative ε̇ with

large absolute value since the stress difference and the strain rate have different sign. In

this equation, σ and µf and represent the stress tensor and fluid viscosity, respectively. This

does not occur for the case in which we used the Stokes analysis since (α1 + α2). However,

for the viscoelastic potential flow analysis, we should consider small values of the Deborah

number to avoid this problem.

The governing equations are presented in Section 2. The forces acting on two non-rotating

fixed spheres in a uniform flow with arbitrary direction are discussed in Section 3. The forces

acting on freely rotating spheres in a free stream are considered in Section 4. It is known

that two torque-free spheres falling side by side in Newtonian fluid at low Reynolds number

rotate. Thus, in order to fully understand the behavior of falling spheres in a viscoelastic

fluid, the forces acting on rotating fixed spheres are calculated. The viscoelastic potential

analysis for these two particles in uniform flow along their line of center is presented in

section 5.
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2. THEORETICAL DEVELOPMENT

The governing equations for a second-order fluid are as follows:

ρf [
∂u

∂t
+ (u ·∇)u] = ∇ · T (1)

∇ · u = 0 (2)

where u is the velocity field and ρf is the fluid density. The stress tensor T for an incom-

pressible second-order fluid is

T = −pI + µfA + α1B + α2A
2 (3)

where p is the pressure, µf is the zero shear viscosity, A = ∇u+∇uT is the symmetric part

of velocity gradient and B is given as

B =
∂A

∂t
+ (u ·∇)A + A∇u +∇uTA (4)

with α1 = −ψ1

2
and α2 = ψ1 + ψ2 where ψ1 and ψ2 are the first and second normal stress

coefficients. In two dimensions or when α1 + α2 = 0, the velocity field for a second-order

fluid is the same as the one predicted by the Stokes flow while the pressure is modified as25

p = pN +
α1

µf

DpN

Dt
+

β

4
trA2 (5)

where pN is the Stokes pressure and β = 3α1 + 2α2 is the climbing constant. We shall

call β
4
trA2 a viscoelastic “pressure”; it is like a pressure because it is always compressive.

The viscoelastic pressure is large when trA2 is large and it is large at points on the body

where the flow is fastest; just the opposite of inertia. α1

µf

DpN

Dt
is zero for non-rotating spheres

and is non-zero for rotating spheres. For unsteady problems, it could generate a tensile

or compressive normal stress. The effect of this term on the forces applied on a sphere

moving normal to a wall in a second-order fluid is discussed by Ardekani et al.14. For a

particle nearly touching the wall, α1

µf

DpN

Dt
is much larger than β

4
trA2 and this results in a

large deviation from the Newtonian case and yields a tensile stress at the stagnation point

close to the wall.
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FIG. 1: Two spherical particles in a arbitrary-direction free stream

3. FORCES ACTING ON TWO NON-ROTATING FIXED SPHERES IN A

SECOND-ORDER FLUID

The shear and normal stresses applied to two non-rotating fixed particles in a second-

order fluid in a uniform free stream are calculated. The schematic of the problem is shown

in figure 1. Since the problem is steady and the particles are fixed, a few simplifications can

be made and the stress tensor can be written as

T|on particle = −
(

PN +
β

4
A : A

)
I + µfA + α1A∇u + α1∇uTA + α2A

2 (6)

The boundary conditions on the surface of the spheres are more easily expressed in terms of

bispherical coordinates. Cylindrical coordinates (r, z, ϕ) can be transformed to bispherical

coordinates (ξ, η, ϕ) as

r = c
sin η

cosh ξ − cos η
z = c

sinh ξ

cosh ξ − cos η
(7)

The coordinates (ξ, η, ϕ) vary in the interval [−α, α], [0, π], [0, 2π], respectively, where the

surface of the spheres are at ξ = ±α and α and c can be calculated by using the following

equations

cosh α =
h

a
c = a sinh α (8)
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Let µ = cos η. Then ∇u in bispherical coordinates can be written as

∇u|on particle =
cosh ξ − µ

c
×




∂uξ

∂ξ
− uη

sin η
cosh ξ−µ

∂uξ

∂η
+ uη

sinh ξ
cosh ξ−µ

1
sin η

∂uξ

∂ϕ
+

uφ sin η sinh ξ

sin η(cosh ξ−µ)

∂uη

∂ξ
+ uξ

sin η
cosh ξ−µ

∂uη

∂η
− uξ

sinh ξ
cosh ξ−µ

1
sin η

∂uη

∂ϕ
− uφ(µ cosh ξ−1)

sin η(cosh ξ−µ)

∂uϕ

∂ξ

∂uϕ

∂η
1

sin η

∂uϕ

∂ϕ
+

−uξ sin η sinh ξ+uη(µ cosh ξ−1)

sin η(cosh ξ−µ)


 (9)

A. Free stream along the line of centers

Stimson and Jeffery26 solved the axisymmetric problem where two spheres translate along

their line of centers using bispherical coordinates. Here we only summarize the results.

The stream function for two translating particles in a quiescent unbounded flow can be

written as

ψ = (cosh ξ − µ)−
3
2

∞∑
n=1

UXn (Pn−1(µ)− Pn+1(µ)) (10)

where U is the particle velocity, Pn(µ) is the Legendre polynomial of degree n and its

derivatives can be written as

dm

dµm
Pn(µ) =

(−1)m

√
1− µ2

m Pm
n (µ) (11)

Xn = Ân cosh(n− 1

2
)ξ + B̂n sinh(n− 1

2
)ξ

+ Ĉn cosh(n +
3

2
)ξ + D̂n sinh(n +

3

2
)ξ (12)

The coefficients Ân through D̂n are described by Stimson and Jeffery26. From the continuity

equation in bispherical coordinates and also using a Galilian transformation since we are
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interested in the problem of two fixed spheres in a free stream, we can write

uξ = U
cosh ξµ− 1

cosh ξ − µ
− (cosh ξ − µ)2

c2

∂ψ

∂µ

uη = U
sinh ξ sin η

cosh ξ − µ
− (cosh ξ − µ)2

c2 sin η

∂ψ

∂ξ
(13)

The pressure PN can be expressed as an infinite summation of spherical harmonics as

follows27,28

pN =
1

c3
(cosh ξ − µ)

1
2

∞∑
n=0

[An cosh(n +
1

2
)ξ + Bn sinh(n +

1

2
)ξ]Pn(µ) (14)

The coefficients An and Bn are defined by Pasol et al.27. Calculating uξ, uη, and PN and

using equations (6) and (9) gives the stress tensor Tb in bispherical coordinates. Using the

rotation matrix from cylindrical to bispherical coordinates we have

R1 =




cosh ξ−µ
c

∂r
∂ξ

cosh ξ−µ
c

∂z
∂ξ

0

cosh ξ−µ
c

∂r
∂η

cosh ξ−µ
c

∂z
∂η

0

0 0 1


 , Tcyl = RT

1 TbR1 (15)

To calculate the stress tensor in spherical coordinates centered at the sphere center (ρ, θ, ϕ),

we have

R2 =




sin θ cos θ 0

cos θ − sin θ 0

0 0 1


 , Tsph = RT

2 TcylR2 (16)

Finally, the force applied to each particle can be written as

F = 2πa2

∫ π

0

(Tρρ cos θ − Tρθ sin θ) sin θdθ (17)

with λ defined as

λ =
F

6πµfaU
= λN + λDeDe (18)
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where De = |α1|U
µa

is the Deborah number. Examining the normal stress in equation (6),

the first and third terms result in a force which is the same as the one in a Newtonian

liquid. The remaining terms result in a force which is only present in a second-order fluid

and is proportional to De. Thus λ, the force on the particle normalized with the Stokes

Law drag, is divided into Newtonian and non-Newtonian terms. A schematic of the forces

acting on the particles is shown in figure 2 (forces are not to scale). As it can be seen, the

contribution of a second-order fluid to the force applied to the particles is attractive. This

is in agreement with experimental results by Riddle et al.15 and analytical ones by Brunn16.

Riddle et al.15 found that the distance between two identical spheres falling along their line

of centers gradually increases if their separation is larger than a critical value and decreases

otherwise. Brunn16 analysis applies when the particle separation is large and he did not

find a critical separation distance for attraction. Our analysis is valid when the particle

separation distance is small and it does not predict any critical separation distance. The

normalized force applied to each particle in a Newtonian and a second-order fluid is shown

in figure 3(a). This force varies linearly with De. The nondimensional coefficient λDe is

shown in figure 3(b). As it can be seen, this attractive force decreases as the separation

distance between the particles increases. The present results are quantitatively compared

by the results with Brunn16 in figure 3(b). For large separation between particles, the

solutions are the same. However, for small separation distances, Brunn’s results overpredict

the attraction between particles. The normal and shear stresses and the pressure on the

surface of sphere I is shown in figure 4. Superscript * refers to dimensionless parameters.

The stresses and pressure are non-dimensionalized by 1
2
ρU2. The shear stress is the same for

the Newtonian and the second-order fluid. The normal stress and the pressure are also the

same for both fluids at the leading (θ = 0) and trailing (θ = π) edges. However, they differ

noticeably at other angles. A large compressive stress is observed at the side of the sphere

for the second-order fluid. The increase in intensity of the compressive normal stresses due

to larger shear rate means that the turning couples which rotate long bodies into the stream

and the attractive stresses which cause spherical particles to aggregate are all increased.

These calculations can be used for sedimenting particles when the particles reach their

terminal velocity and their approaching velocity is small compared to their terminal velocity.

The present results are valid for a fluid in which the second normal stress coefficient

is equal to the negative one half of the first normal stress coefficient. However, α1 + α2 is
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FIG. 2: Schematic of forces acting on two particles. (a) Newtonian fluid. (b) 2nd-order
fluid.
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positive for the fluids known to us and for simplification this constraint is applied to the fluid

in this section. However, a different method is utilized in the section 5 and the constraint

on normal stress coefficients is removed. Ardekani et al.14 utilized a perturbation method

for a spherical particle moving normal to a wall when ε = h
a
− 1 and De

ε
are small and there

is no constraint on α1 and α2. They concluded that the difference between the forces acting

on the sphere in second-order and Newtonian fluids is more pronounced as |α2

α1
| is increased

and the force applied to the particle can be written as follows

F = −6πµfUa

ε

[
1 +

De

10ε
(2− 3

α2

α1

)
]

(19)

The same calculation can be used for this problem when the particles are close to each

other.

B. Free stream perpendicular to the line of centers

The motion of two spherical particles perpendicularly to their line of centers has been

studied by several investigators29,30. Here, the results by Goldman et al.29 are utilized and

briefly summarized. The pressure and velocity components can be described as follows

p†N = µf
U

c
W † cos ϕ (20)

u†r = U

(
−1 +

1

2c
[rW † + c(X† + Y †)]

)
cos ϕ = ũ†r cos ϕ (21)

u†ϕ = U

(
1 +

1

2
[(X† − Y †)]

)
sin ϕ = ũ†ϕ sin ϕ (22)

u†z =
1

2c
U(zW † + 2cZ†) cos ϕ = ũ†z cos ϕ (23)
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where the auxiliary functions W †, X†, Y †, and Z† can be written as

Z† = (cosh ξ − µ)
1
2 sin η

∞∑
n=1

[A†
n sinh(n +

1

2
)ξ]P ′

n(µ) (24)

W † = (cosh ξ − µ)
1
2 sin η

∞∑
n=1

[B†
n cosh(n +

1

2
)ξ + C†

n sinh(n +
1

2
)ξ]P ′

n(µ) (25)

Y † = (cosh ξ − µ)
1
2

∞∑
n=1

[D†
n cosh(n +

1

2
)ξ + E†

n sinh(n +
1

2
)ξ]Pn(µ) (26)

X† = (cosh ξ − µ)
1
2 sin2 η

∞∑
n=1

[F †
n sinh(n +

1

2
)ξ + G†

n sinh(n +
1

2
)ξ]P ′′

n (µ) (27)

where the coefficients A†
n through G†

n are given by Goldman et al.29 and Goldman31. Cal-

culating the velocity field, ∇u in cylindrical coordinates becomes

∇u|on particle =




∂ũr

∂r
cos ϕ ∂ũr

∂z
cos ϕ − ũr+ũϕ

r
sin ϕ

∂ũz

∂r
cos ϕ ∂ũz

∂z
cos ϕ − ũz

r
sin ϕ

∂ũϕ

∂r
sin ϕ ∂ũϕ

∂z
sin ϕ ũϕ+ũr

r
cos ϕ


 (28)

For a Newtonian fluid, the lift and drag forces can be calculated as

F
N

l = a2

∫ 2π

0

∫ π

0

(T
N

ρρ cos θ − T
N

ρθ sin θ) sin θdθdϕ = 0 (29)

F
N

d = a2

∫ 2π

0

∫ π

0

(T
N

ρρ sin θ cos ϕ + T
N

ρθ cos θ cos ϕ− T
N

ρϕ sin ϕ) sin θdθdϕ

= πa2

∫ π

0

(T̃
N

ρρ sin θ + T̃
N

ρθ cos θ − T̃
N

ρϕ) sin θdθ (30)

F
N

l is zero since
∫ 2π

0
cos ϕdϕ = 0. In calculating F

N

d , all terms are proportional to either
∫ 2π

0
cos ϕ2dϕ or

∫ 2π

0
sin ϕ2dϕ which gives rise to the π in front of the integral.

For the second-order fluid, after some simplifications, it can be shown that the lift and

drag forces can be determined as

Fl = πa2

∫ π

0

(T̃ρρ cos θ − T̃ρθ sin θ) sin θdθ 6= 0 (31)
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FIG. 5: Schematic of the forces acting to two particles

Fd = F
N

d (32)

The contribution of a second-order fluid to the lift force is proportional to either
∫ 2π

0
cos ϕ2dϕ

or
∫ 2π

0
sin ϕ2dϕ thus a non-zero lift is applied to the particles. However, the contribution to

the drag force is proportional to sin ϕ and cos ϕ or their cubes which all have zero integrals

from 0 to π. Thus, the drag force in a second-order fluid is the same as for a Newtonian

fluid. A schematic of the forces acting on the spheres in a Newtonian and a second-order

fluid is shown in figure 5. If we define

λd =
Fd

6πµfaU
, and λl =

Fl

6πµfaU
= λDeDe (33)

the behavior of these coefficients versus particle separation are shown in figure 6. As it can

be seen, the lift force decreases as the separation distance increases. One can show that the

torque applied to these particles in a second-order fluid is the same as for a Newtonian fluid.

λt = Torque
8πµf Ua2 is plotted in figure 7. The shear and normal stresses on the surface of sphere I

are shown in figure 8 for ϕ = 0 and in figure 9 for ϕ = π
2
. The overall behavior is the same as

in the case when the free stream is along the particles line of centers. The shear stress is the

same in the second-order flow as in the Newtonian case. The normal stress and the pressure

are not affected at the stagnation point θ = π
2
, whereas at other angles, a large compressive

normal stress is observed (θ = 0). For ϕ = π
2
, the normal and shear stresses are zero in the

Newtonian fluid but the pressure and normal stress are nonzero for the second-order fluid,

as shown in figure 9.
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C. Two spherical particles in a free stream at an arbitrary angle

In this section, the more general case is studied when ζ (figure 1) is nonzero. Since the

velocity field is obtained from the linear Stokes equations, superposition can be utilized to

calculate the velocity field. However, the stress is nonlinear for a second-order fluid and the

forces must be recalculated. ∇u for the case when the free stream is perpendicular to the

line of centers is given by equation (28) while for the case when the flow is along the line

of centers, the velocity does not depend on ϕ and the last column and row in equation (9)

are zero. One could now write A∇u, ∇uTA, and A2 where u = u⊥ +u‖. Interestingly, the

force due to the terms produced by products of ⊥ and ‖ are zero when one calculates the

force along the line of centers. Thus, this force can be simply calculated by superposition of

forces along the line of centers from the two previous sections. For the force perpendicular

to the line of centers, the terms produced by products of ⊥ and ‖ are non-zero. Thus,
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FIG. 8: Stresses on the surface of particle I in a second-order fluid when the flow is
perpendicular to the line of centers. Re = 0.05, De = 3.35, h
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= 1.543, ϕ = 0.
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perpendicular to the line of centers. (∗) shear stress, (o) normal stress and pressure in

second-order fluid. Re = 0.05, De = 3.35, h
a

= 1.543, ϕ = π
2
.

non-equal forces are applied to the particles perpendicularly to their line of centers. Figure

10 shows schematics of the forces acting on the particles. For this case

λ⊥ = λd + DeλDe =
F⊥

6πµfaU
(34)

where F⊥ is the force perpendicular to the line of centers. Figure 11(a) shows that the

forces acting on the particles tend to rotate the line of centers until it becomes parallel to

the free stream. This force decreases as the particles separate from each other and has a

maximum when ζ = 45o and is zero at ζ = 0o or 90o as shown in figure 11(b).
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FIG. 11: Forces acting on particle I in a second-order fluid in a free stream at an arbitrary
angle. (a) λDe versus particle separation distance when ζ = π

4
(b)λDe versus the free

stream angle when h
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= 1.543

4. FORCES ACTING ON TWO FREELY-ROTATING FIXED SPHERES IN A

FREE STREAM OF A SECOND-ORDER FLUID

As shown in figure 7, there is a torque experienced by non-rotating spheres in a free

stream. Sedimenting spheres, unless experiencing an external torque (for example, generated

by an electric field), cannot bear this torque and are hence prone to rotate such that they

experience no torque. In order to analyze the forces applied to freely-rotating spheres in

a free stream, one constructs a composite flow by adding the flow of two spheres counter-

rotating in a quiescent fluid to the flow of two non-rotating spheres in a free stream examined

previously.
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At first, the forces acting on two rotating fixed spheres in a quiescent second-order fluid

are considered. Sphere I is rotating with angular velocity +Ω and sphere II is rotating with

angular velocity −Ω along y direction. The rotation rate Ω is chosen such that the torque

experienced by each sphere in the composite flow is zero. In other words, the torque on

the non-rotating sphere in the streaming flow is canceled by the torque acting on the same

sphere rotating in a quiescent fluid. The pressure and velocity components can be described

as follows

pr†
N = µfΩW r† cos ϕ (35)

ur†
r =

1

2
Ω[rW r† + c(Xr† + Y r†)] cos ϕ = ũr†

r cos ϕ (36)

ur†
ϕ =

1

2
Ωc[(Xr† − Y r†)] sin ϕ = ũr†

ϕ sin ϕ (37)

ur†
z =

1

2
Ω(zW r† + 2cZr†) cos ϕ = ũr†

z cos ϕ (38)

where the auxiliary functions W r†, Xr†, Y r†, and Zr† are defined in equations (24)-(27)

replacing † with r† while the coefficients Ar†
n through Gr†

n are given by Goldman et al.29 and

Goldman31. The forces acting on the spheres can be calculated in a manner similar to that

of Section 3 B and are shown in figure 12 where

λd =
Fd

6πµfa2Ω
, and λl =

Fl

6πµfa2Ω
= λDeDe (39)

It should be noted that the substantial time derivative of the Newtonian pressure plays a

role here since the velocity of the surface of the spheres is not zero. The torque applied to

the spheres rotating in a quiescent second-order fluid is the same as that for a Newtonian

fluid. λt = Torque
8πµfΩa3 is plotted in figure 13. As mentioned above, the rotation rate Ω can be

calculated such that the torque experienced by each sphere in the composite flow is zero.

The rotation rate Ω for freely rotating spheres in a free stream of second-order fluid is plotted

in figure 14.

In order to compute the attractive forces between the freely rotating spheres, the velocity

field for two non-rotating spheres in a free stream and two rotating spheres in a quiescent

flow will be superimposed and the stresses for this new field will be calculated. The shear-

rate distribution on a sphere for both the freely-rotating and non-rotating cases is shown in
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FIG. 12: Force acting on the particle I while the spheres are rotating in a quiescent
second-order fluid.
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figure 15a). The shear-rate is smaller on the outermost edges (θ = 0 for sphere I) of freely

rotating spheres and larger on the innermost edges. The viscoelastic pressure is proportional

to the square of the local shear rate As it can be seen, the modification of the pressure due
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FIG. 14: Rotation rate of freely-rotating spheres in a free stream of a second-order fluid.
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FIG. 16: The distribution of DeDp∗
Dt∗ and pressure on the surface of sphere I for

non-rotating and freely rotating spheres. Re = 0.05, De = 3.35, h
a

= 1.543, ϕ = 0.
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FIG. 18: Forces acting on the particle sphere I for non-rotating and freely rotating spheres.

to shear rate enhances the attraction between the spheres for the freely-rotating case. P ∗
N ,

DeDp∗
Dt∗ , and p∗ are shown in figure 15b), 16a), and b). In fact, all three terms in equation

5, the Stokes pressure, time derivative of Stokes pressure, and viscoelastic pressure, change

the pressure in the same way and enhance the attraction force. However, the total lift force

on the particles is less than the one for non-rotating particles due to the modification of the

first and second Rivlin-Ericson tensors. The normal and shear stresses are plotted in figure

17. The drag and lift forces on the particles are shown in figure 18. As it can be seen, a

larger drag and smaller lift forces act on freely rotating spheres as compared to non-rotating

ones.

It can be concluded that rotation of the spheres mitigates the attraction. The substantial

time derivative of the pressure is taken into account since the velocity is non-zero on the

surface of the spheres. The effect of rotation is only a small percentage of the effect of

translation on the particles’ attraction as shown in figure 18.

5. VISCOUS POTENTIAL FLOW

The shear stress and tangential velocity on the boundary are in general discontinuous

in viscous and viscoelastic irrotational flows. However, in some cases such as flow near

the stagnation points, the amount of shear is small32. In this section, normal stresses on

the surface of two spheres in a uniform free stream along their line of centers are analyzed

utilizing viscoelastic potential flow. A similar calculation is performed by ardekani et al.14

for a particle moving normal to a wall. A summary of the calculations is given here for
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completeness.

It has been shown that for potential flow where u = ∇φ33

∇ · (α1B + α2A
2) = (3α1 + 2α2)∇χ (40)

where

χ =
∂2φ

∂xi∂xj

∂2φ

∂xi∂xj

=
1

4
trA2 (41)

Thus, the divergence of the stress is irrotational. Using equations (40) and (41), Wang and

Joseph34 noted that the pressure can be calculated using the Bernoulli equation as

ρ
∂φ

∂t
+

1

2
ρ|∇φ|2 + p− βχ = C(t) (42)

Using equations (3) and (42), the stress tensor for viscoelastic potential flow becomes

T =

[
ρ
∂φ

∂t
+

1

2
ρ|∇φ|2 − βχ− C(t)

]
I +

[
µ + α1

(
∂

∂t
+ u ·∇

)]
A + (α1 + α2)A

2 (43)

For two spherical particles in a free stream as shown in Figure 19, the potential-flow

solution can be obtained using the image of a doublet source in a sphere and is given as the
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following series35

φ = −Uz + U(
µ0 cos γ

d2
+

µ1 cos γ1

d2
1

+
µ2 cos γ2

d2
2

+ ...)

− U(
µ0 cos γ′

d′2
+

µ1 cos γ′1
d
′2
1

+
µ2 cos γ′2

d
′2
2

+ ...) (44)

where µ0 = 1
2
a3, U is the particle velocity, A is the center of sphere I, and B is the center

of sphere II, d = AP , d′ = BP , d1 = A1P , d′1 = B1P , etc., are the distances between the

doublets and a fixed point P which can be defined using

f1 = c′ − a2

c′
, f2 =

a2

f1

,
µ1

µ0

= −a3

c′3
,

µ2

µ1

= −a3

f 3
1

f3 = c′ − a2

c′ − f2

, f4 =
a2

f3

,
µ3

µ2

= − a3

(c′ − f2)3
,

µ4

µ3

= −a3

f 3
3

f5 = c′ − a2

c′ − f4

, f6 =
a2

f5

,
µ5

µ4

= − a3

(c′ − f4)3
,

µ6

µ5

= −a3

f 3
5

, ... (45)

where c′ = 2h is twice of the separation distance between the two spheres; AA1 = f1,

AA2 = f2, etc. (γ, d, and other parameters are shown in figure 19 for clarification.)

A = UÃ = 2U




∂2ϕ
∂r2

∂2ϕ
∂r∂z

0

∂2ϕ
∂r∂z

∂2ϕ
∂z2 0

0 0 1
r

∂ϕ
∂r


 (46)

where r and z are cylindrical coordinates as shown in figure 19. The stress tensor can be

written as

T + CI = µÃU +

([
1

2
ρ

{
(
∂ϕ

∂r
)2 + (

∂ϕ

∂z
)2

}

− β

{
(
∂2ϕ

∂r2
)2 + (

1

r

∂ϕ

∂r
)2 + (

∂2ϕ

∂z2
)2 + 2(

∂2ϕ

∂r∂z
)2

}]
I

+ α1ũ ·∇Ã + (α1 + α2)Ã
2
)

U2 (47)
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FIG. 20: Two spherical particles in a free stream at Re = 0.05, a = 1cm, De = 0.168,
c∗ = c

2a
. Normal stress at surface of sphere I is shown.

while the normal stress Tn and the shear stress Tt are

Tn = Trr sin2 θ + Tzz cos2 θ + Trz sin 2θ

Tt =
Trr − Tzz

2
sin 2θ + Trz cos 2θ (48)

Using equations (44), (47), and (48), the normal stress is computed on the surface of

sphere I in a free stream. Properties of liquid M1 with density ρ = 0.895 gcm−3, α1 = −3,

and α2 = 5.34 gcm−136 are utilized. Figure 20 shows the dimensionless normal stress on

the surface of sphere I as a function of θ for different separation distances between the two

particles. All terms of equation (43) are included in figures 20, 21, and 22. Results for

Re = 0.05 and De = 0.168 are shown which agree with the published results by Wang and

Joseph34 when c →∞. It can be seen that for large separation distances, a tensile normal

stress occurs at the trailing edge when the fluid is Newtonian, and that for a second-order

fluid, this tensile stress is even larger. When the particle separation decreases in either a

Newtonian or a second-order fluid, the tensile stress at the trailing edge of sphere I decreases

whereas the normal stress at the leading edge does not change. In figure 21, the normal

stress acting on the surface of sphere II is shown. The normal stress at the stagnation

point predicted by viscoelastic potential flow (VPF) is noticeably different in the Newtonian

and the second-order fluid, a result which disagrees with the results obtained employing
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. Normal stress at surface of sphere II is shown.
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FIG. 22: Two spherical particles in a free stream at Re = 0.05, De = 0.168.

the Stokes equations. The normal stress is integrated over the sphere surface and the forces

applied to the particles are calculated and shown in figures 22(a) and 22(b). These forces are

not necessary quantitatively correct since our argument for the use of VPF is only valid near

the stagnation points. A smaller drag force acts on the leading sphere in the Newtonian fluid,

whereas a larger drag force acts on the leading sphere in the second-order fluid. A repulsive

force is predicted using VPF in the Newtonian case while an attractive force is obtained in

the second-order fluid. The repulsive force acting on the particles in a Newtonian fluid is

due to inertia. These results show that if one adds the effect of inertia to the results of the

previous sections, critical separation in the second-order fluid might be predicted. Finally,
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our explanations of the aggregation of particles in viscoelastic fluids rest on three pillars;

the first is a viscoelastic “pressure” generated by normal stresses due to shear. Secondly, the

total time derivative of the pressure is an important factor in the forces applied to moving

particles. The third is associated with a change in the normal stress at points of stagnation

which is a purely extensional effect unrelated to shearing.

6. CONCLUSIONS

The forces acting on two non-rotating spherical particles in a second-order fluid in Stokes

flow are calculated. The results are in agreement with experimental observations. The

contribution of the second-order fluid to the forces acting on the particles is an attractive

force when the free stream is along or perpendicular to the line of centers. For flow at

an angle, these forces act in the direction that rotates the line of centers until it becomes

parallel to the free stream.

The results for freely rotating spheres show that rotation of the spheres mitigates the

attraction. The substantial time derivative of the pressure is taken into account since the

velocity is non-zero on the surface of the spheres and it enhances the attraction. However,

the effect of rotation is only a small percentage of the effect of translation on the particles’

attraction.
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