
13

Rising bubbles

13.1 The dissipation approximation and viscous potential flow

Dissipation approximations have been used to calculate the drag on bubbles and drops; VCVPF can be used
for the same purpose. The viscous pressure correction on the interface can be expressed by a harmonic series.
The principal mode of this series is matched to the velocity potential and its coefficient is explicitly determined.
The other modes do not enter into the expression for the drag on bubbles and drops.

13.1.1 Pressure correction formulas

We consider separable solutions of ∇2φ = 0. For simplicity, we consider axisymmetric or planar problems and
use the orthogonal coordinate system (α, β); the gas-liquid interface is given by α=const. The solution of the
potential flow equations may be written as

φ = hk(α)fk(β), (13.1.1)

where fk(β) is the kth mode of the surface harmonics. A pressure correction function which is periodic or finite
at the gas-liquid interface may be expanded as a series of surface harmonics of integral orders:

− pv = Ckfk(β) + Σ
j 6=k

Cjfj(β), (13.1.2)

where fj(β)’s are surface harmonics and Cj ’s are constant coefficients.
Substitution of (13.1.2) into (12.6.1) leads to

Ck

∫

A

u · nfk(β) dA +
∑

j 6=k

Cj

∫

A

u · nfj(β) dA = Ps, (13.1.3)

where Ps is defined as Ps =
∫

A
u · tτs dA. We assume that the normal velocity is orthogonal to fj(β), j 6= k:

∫

A

u · nfj(β) dA = 0 when j 6= k (13.1.4)

which is a verifiable condition and is confirmed in each example we consider here. Now equation (13.1.3) gives
the coefficient Ck

Ck =
Ps∫

A
u · nfk(β) dA

. (13.1.5)

Using (13.1.5) for VCVPF we may write

− p = −pi +
Psfk(β)∫

A
u · nfk(β) dA

+ Σ
j 6=k

Cjfj(β). (13.1.6)

The term Psfk(β)/
∫

A
u · nfk(β) dA may be called the principal part of the viscous pressure correction; it is

proportional to the power integral of the uncompensated irrotational shear stress. It is the only term in the
pressure correction to enter into the power of traction integral, and into the direct calculation of the drag on
rising bubbles or drops. The principal part of the pressure correction is explicitly computable as we shall see in
the examples to follow. In general, the values of Cj , j 6= k are not known, but for the special case of a rising
spherical gas bubble, Kang & Leal (1988a) presented computable expressions for these coefficients.
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The expression (13.1.6) completes the formulation of the pressure correction in VCVPF up to the principal
part of the harmonic series.

We may compare the dissipation calculation and direct calculation of the drag using VPF and VCVPF. Let
D1 be the drag calculated by the dissipation method

D1 = D/U, (13.1.7)

and D2 be the drag by direct calculation

D2 =
∫

A

ex ·T · n dA =
∫

A

[ex · n(−p + τn) + ex · tτs] dA, (13.1.8)

where x is the direction of translation. The direct calculation using VPF leads to D2 = 0 even though the
dissipation is not zero, which is a known result (see, for example, Zierep 1984, Joseph & Liao 1994). The
dissipation approach involves a volume integral and the direct calculation involves a surface integral. The solution
to the Navier-Stokes equations in these nearly irrotational flows involves a leading order term (the irrotational
solution) and a viscous correction at the boundary. When using the dissipation approach, the leading order
calculation only involves the irrotational result. However, the viscous correction has to be considered to obtain
the leading order result when using the direct calculation. We shall focus on the direct calculation using VCVPF
in the following examples (Section 13.2 - 13.4) and show that D2 computed using VCVPF here is equal to D1

obtained by dissipation method in the literature.

13.2 Rising spherical gas bubble

Consider now a spherical gas bubble rising with a constant velocity Uex in a viscous fluid, for which

φ = −1
2
Ua3 cosθ

r2
. (13.2.1)

At the surface of the bubble, where r = a, we have

ur = Ucosθ, uθ = Usinθ/2;

τrr = −6µUcosθ/a, τrθ = −3µUsinθ/a; (13.2.2)

pi = p∞ +
ρ

2
U2(1− 9

4
sin2θ).

The dissipation is given by D = 12πµaU2 and Ps = 4πµaU2.

The pressure correction may be expanded as a spherical surface harmonic series
∞
Σ

j=0
CjPj(cosθ). Substitution

of ur and pv into (12.6.1) gives

−
∫ 1

−1

UP1(cosθ)


C1P1(cosθ) +

∑

j 6=1

CjPj(cosθ)


 2πa2 d(cosθ) = Ps. (13.2.3)

The coefficient C1 is then determined and the pressure correction is

− pv = −3µUP1(cosθ)/a + Σ
j 6=1

CjPj(cosθ), (13.2.4)

which is the same as the pressure correction by Kang & Leal (1988a) who obtained it by means of a general
relationship between the viscous pressure correction and the vorticity distribution for a spherical bubble in
an arbitrary axisymmetric flow. Kang and Leal demonstrated that the drag from direct calculation using the
pressure correction (13.2.4) is 12πµaU , the same as the drag by dissipation calculation.

13.3 Rising oblate ellipsoidal bubble (Moore 1965) ADD TO REFERENCE LIST

The equation of the ellipsoid is

x2 + y2

b2
+

z2

a2
= 1
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where b ≥ a. Orthogonal ellipsoidal coordinates (α, β, ω) are related to (x, y, z) by




x = κ[(1 + α2)(1− β2)]
1
2 cosω,

y = κ[(1 + α2)(1− β2)]
1
2 sinω,

z = καβ.

The ellipsoid is given by α = α0 provided that

κ(1 + α2
0)

1
2 = b, κα0 = a.

The potential for an oblate ellipsoid rising with a constant velocity Uez is

φ = −Uκqβ(1− αcot−1α), (13.3.1)

where q(α0) = (cot−1α0 − α0
1+α2

0
)−1. The velocity components in the ellipsoidal coordinates are (uα, uβ , 0), and

at the surface of the ellipsoid, we have

uα = Uβ

√
1 + α2

0

α2
0 + β2

, uβ = −Uq

√
1− β2

α2
0 + β2

(1− α0cot−1α0). (13.3.2)

The normal stress ταα and shear stress τβα are calculated using the potential flow, and their values at the
surface of the ellipsoid are

ταα = −2µ
Uβq(1 + 2α2

0 + β2)
(α2

0 + β2)2κ(1 + α2
0)

, τβα = 2µ
Uqα0

κ(α2
0 + β2)2

√
1− β2

1 + α2
0

. (13.3.3)

Then the power of the shear stress can be evaluated

Ps = −
∫

A

uβτβα dA = 4µπU2κq2(1− α0cot−1α0)[α0 + (1− α2
0)cot−1α0]/α2

0. (13.3.4)

Now we calculate the pressure correction pv. Noting that ellipsoidal harmonics Pj(β) (see Lamb 1932) are
appropriate in this case and the potential (13.3.1) is proportional to P1(β) = β, we write the pressure correction
as

− pv = C1P1(β) + Σ
j 6=1

CjPj(β). (13.3.5)

Inserting (13.3.5) into (12.6.1) and using dA = 2πκ2(1 + α2
0)

1
2 (α2

0 + β2)
1
2 dβ, we obtain

−
∫

A

uα(−pv) dA = −2πκ2U(1 + α2
0)

∫ 1

−1

P1(β)
[
C1P1(β) + Σ

j 6=1
CjPj(β)

]
dβ = Ps. (13.3.6)

The terms Pj (j 6= 1) do not contribute the integral; the coefficient C1 is determined. Then the pressure correction
is

− pv =
−3µUq2

κ(1 + α2
0)α

2
0

(1− α0cot−1α0)
[
α0 + (1− α2

0)cot−1α0

]
P1(β) + Σ

j 6=1
CjPj(β). (13.3.7)

At the limit α0 →∞ where the ellipsoid becomes a sphere, the pressure correction (13.3.7) reduces to

lim
α0→∞

−pv = −3µUcosθ/a + Σ
j 6=1

CjPj(cosθ) (13.3.8)

with β = cosθ at this limit being understood. This is in agreement with the pressure correction (13.2.4) for the
spherical gas bubble.

We calculate the drag by direct integration:

D2 =
∫

A

ez · eα(−pv + ταα) dA =
4µπUκq2

1 + α2
0

(
1
α0

+
1− α2

0

α2
0

cot−1α0), (13.3.9)

which is in agreement with the dissipation calculation of Moore (1965).
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13.4 A liquid drop rising in another liquid (Harper & Moore 1968)

The steady flow of a spherical liquid drop in another immiscible liquid can be approximated by Hill’s spherical
vortex inside, and potential flow outside. We use the superscript “o” for quantities outside the drop and “i” for
quantities inside. The stream and potential functions of the outer flow are

ψo =
1
2
Usin2θ

a3

r
and φ = −1

2
Ua3 cosθ

r2
, (13.4.1)

respectively. The stream function for a Hill’s vortex moving at a constant velocity relative to fixed coordinate
system is

ψi =
3Ur2

4
sin2θ(1− r2

a2
) +

1
2
Ur2sin2θ =

Ur2

4
sin2θ(5− 3r2

a2
). (13.4.2)

At the surface of the drop, where r = a, we have

ur = uo
r = ui

r = Ucosθ, uθ = uo
θ = ui

θ = Usinθ/2, (13.4.3)

τo
rr = −6µoUcosθ/a, τo

rθ = −3µoUsinθ/a, (13.4.4)

τ i
rr = −6µiUcosθ/a, τ i

rθ = 9µiUsinθ/(2a). (13.4.5)

This Hill’s vortex problem fits in the general framework discussed in this section in the sense that there is
a shear stress discontinuity at the interface which needs to be resolved by adding a pressure correction to the
irrotational pressure. However, it is somewhat different than gas-liquid interface problems because the shear
stress inside the drop is not zero but is determined by the Hill’s vortex. Again we seek the expression for the
pressure correction by comparing the VPF solution and the VCVPF solution. We proceed by calculating the
total dissipation of the system, which is equal to the sum of the power of traction on the outer and inner liquids
Po + Pi. There is only one way to calculate Pi, but Po may be evaluated on VPF or VCVPF. For VPF, τo

rr

and τo
rθ given by (13.4.4) are used to calculate Po and

D = Po + Pi = −
∫

A

[ur(−pi + τo
rr) + uθτ

o
rθ] dA + Pi. (13.4.6)

For VCVPF, a pressure correction is added to resolve the discontinuity between τo
rθ and τ i

rθ. Then the value of
the shear stress at the interface is τ i

rθ, not τo
rθ. The dissipation for VCVPF is

D = Po + Pi = −
∫

A

[ur(−pi − pv + τo
rr) + uθτ

i
rθ] dA + Pi. (13.4.7)

Since D, Pi, pi, τo
rr and u are the same in both cases, we find that

∫

A

ur(−pv) dA =
∫

A

uθ(τo
rθ − τ i

rθ) dA. (13.4.8)

Now we expand the pressure correction as a spherical surface harmonic series and equation (13.4.8) becomes

∫ 1

−1

Ucosθ


C1cosθ +

∑

j 6=1

CjPj(cosθ)


 2πa2 d(cosθ) = −4πaU2(µo + 3µi/2). (13.4.9)

The coefficient C1 is then obtained and the pressure correction is

− pv =
−3U

a
(µo +

3µi

2
)cosθ + Σ

j 6=1
CjPj(cosθ). (13.4.10)

If the inside liquid is gas, µi = 0 and the first term of (13.4.10) becomes −3µoUcosθ/a, which agrees with the
first term of the pressure correction (13.2.4) for a gas bubble. The pressure correction (13.4.10) can also be
tested by direct calculation of the drag D2 on the drop:

D2 =
∫

A

ex ·T · (−er) dA = −
∫

A

[cosθ(−pv + τo
rr)− sinθτ i

rθ] dA = 12πaU(µo +
3µi

2
) (13.4.11)

which is the same as the result from the dissipation approximation by Harper & Moore (1968).
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Fig. 13.1. (Matsumoto et al. 1999 ADD TO REFERENCE LIST) Photograph of a toroidal gas bubble in water.

13.5 Purely irrotational analysis of the toroidal bubble in a viscous fluid

Here we consider the problem of the rise of a toroidal gas bubble in a viscous liquid (figure 13.1) assuming that
the motion is purely irrotational. Earlier, this same problem was studied by Pedley (1968) who considered the
generation and diffusion of vorticity and more recently by Lundgren and Mansour (1991) for the case in which
the liquid is inviscid.

13.5.1 Prior work, experiments

Pedley rejected the purely irrotational analysis in which the viscous drag is computed from the viscous dissipation
of the irrotational flow. The purely irrotational method works well for the study of drag on other bubbles
considered in this chapter. Pedley argues that the toroidal bubble is an exception because of the way that
vorticity is generated and diffused by the toroidal bubble. He calls attention to a difference between the equations
of energy on which the irrotational theory is based and the equations of impulse in which he says the irrotational
viscous drag does not appear. He says that “... It is also shown that if the flow is assumed to remain approximately
irrotational in a viscous fluid, so that Lamb’s formulae may again be used almost as they stand, the equations
of impulse and energy yield conflicting results.” The equations of impulse are not often used today but similar
conclusions follow from the Kutta-Joukowski approach used by Lundgren and Mansour (1991) (see the discussion
following equation (13.5.49)).

Pedley argues that the dissipation argument, which works well for other bubbles, fails for the toroidal bubble
because the vorticity is contained as it diffuses and, following arguments presented by Moore (1963), there can
be no drag until the vorticity diffuses outward from the bubble surface and forms a wake. The toroidal bubble
may become unstable before this happens. Pedley gave an analysis of stability for an inviscid fluid. His analysis
is extended to the case of irrotational flow of a viscous fluid.

Pedley showed that in a viscous fluid, vorticity will continuously diffuse out from the bubble surface, with
irrotational flow outside. Pedley’s rotational solution does not differ greatly from the irrotational solution for
an inviscid liquid (see figure 13.2)

Here we are going to do the irrotational analysis of the toroidal gas bubble in the case in which an irrotational
viscous drag is added to force wrench in the impulse equation. In this case, the impulse equation and the energy
equation governing the rise of the bubble are the same. The solution of this equation is computed; after a
transient state the system evolves to a steady state in which the diameter, toroidal radius and rise velocity are
constant.

Experiments on vortex ring bubbles are sparse and inconclusive. All the experiments are for gas bubbles in
water. These experiments suggest that gas bubbles rising in a large expanse of water do not reach a steady state
before breaking up due to capillary instability.

Turner (1957) developed a theory for the motion of a buoyant ring in an inviscid liquid. The theory shows
that the buoyant force acts to increase the impulse of a ring. The ring diameter increases as the ring rises. He
also carried out experiments to verify the theory with small vortex rings formed in water, using methylated
spirits and salt to produce the density differences.
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Fig. 13.2. Evolution of the ring radius a and velocity U with time t, according to Pedley. The data for Pedley’s solution
for U are extracted from figure 3 in Pedley (1968). —˜— inviscid solution for a, —¦— Pedley’s viscous solution for a,
—4— inviscid solution for U , —×— Pedley’s viscous solution for U . FIGURE CROPPED NEED NEW FIGURE

Walters & Davidson (1963) observed that a rising toroidal bubble could be produced by release of a mass
of gas in water. The form of the bubble is a vortex ring with a buoyant air core. They created vortex rings by
rapidly opening and closing an air jet in the bottom of a water tank obtaining ring bubbles from 6 to 110 cm3.
These were observed to spread as they rise as Turner predicted, but there were no measurement of the rate of
spreading.

Matsumoto, Kunugi and Serizawa (1999) ADD TO REFERENCE LIST reported results for the numerical
simulation of ring-typed bubbles and they also presented results for experiments on ring bubbles of air in water
in a swimming pool of about 5 meters in depth and in a small acrylics box. In a private communication Prof.
Serizawa noted that in the ring bubbles in the acrylics box grew to ten centimeter and were stable. However,
the bubbles in the swimming pool grew to a few tens of cm in diameter expanding outwards and eventually
broke into air bubbles.

Lundgren and Mansour (1991) describe the ring bubbles as air vortex rings, with approximately constant
core volumes perhaps as large as a half a litre, which expand to be rings of the order of two feet in diameters
as they rise towards the free surface.

Experiments which give rise to reliable data to which various theories can be compared are not available. It
would be particularly valuable if experiments could be carried out in a highly viscous liquids, not only water.
The effects of lateral boundaries on the rise velocity could also be considered.

13.5.2 The energy equation

We will use the notation introduced by Pedley and summarized in figure 13.3. The radius of the ring is a and
the plane of this ring is horizontal. The center of this ring is instantaneously at the point O and the axis Oz

is the upward vertical. The cross section of the air core is assumed to be a circle with radius b. The circulation
around the air core is 2πΓ. (s, χ) are polar coordinates in a meridional plane, centered at the point A. The
bubble is rising vertically with velocity U and the radius a can be expanding at the same time. The volume of
the bubble V is given by 2π2ab2.

Pedley analyzed the motion of a toroidal bubble by two methods, the impulse equation and the energy
equation. The rate of change of the vertical impulse is

dP/dt = F, (13.5.1)

where F is the resultant force on the bubble in the vertical direction. Pedley argued that in this case, F is due
to the buoyancy of the bubble and there is no viscous drag. The energy equation is

d
dt

(T + Ω) = −D, (13.5.2)

where T and Ω are the kinetic and potential energies of the system and D is the dissipation. Pedley wrote the
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Fig. 13.3. Meridional section of the toroidal bubble.

rate of change of potential energy as

dΩ
dt

=
d
dt

(ρgV h) = −ρgV U, (13.5.3)

where ρ is the density of the ambient fluid, and h is the depth of the bubble beneath a fixed reference level.
Pedley first considered the ambient fluid to be inviscid and the motion to be irrotational. Under these

assumptions, the impulse and energy equations give rise to the same expressions for a and U as functions of t: a

ultimately increases as t1/2, and U decreases as t−1/2 ln t. Pedley then considered viscous fluid and assumed that
the flow remained approximately irrotational. He argued that the impulse equation would be the same as for
the inviscid fluid; however, the energy equation would be changed due to the viscous dissipation. Thus the two
methods yielded conflicting results, which led Pedley to conclude that the flow could not remain approximately
irrotational. Pedley then investigated the diffusion of vorticity from the bubble surface and showed that the
vorticity distribution became approximately Gaussian, with an effective radius b′ which also increased as t1/2.
The solution for a as a function of t turned out to be the same as in inviscid case, while U decreased as t−1/2.
Other results produced by Pedley’s analysis include an evaluation of the effect of a hydrostatic variation in
bubble volume, and a prediction of the time when the bubble becomes unstable under the action of surface
tension.

We consider the toroidal bubble under the assumption that the flow remains approximately irrotational and
the ambient fluid is viscous. Our analysis is purely irrotational and it is different than the one given by Pedley
because we include the viscous drag on the bubble in the impulse equation (13.5.1). This viscous drag can
be computed using the dissipation method, as was done by Levich (1949) in his calculation of the drag on a
spherical gas bubble in the irrotational flow of a viscous fluid. When the drag is added, the inconsistency between
the impulse equation and energy equation disappears. Our equations predict that initially the bubble expands
and rises in the fluid. The rise velocity U decreases as the ring radius a increases. Ultimately the viscous drag
balances the buoyant force and a steady solution is achieved, for which a and U become constants.

In our calculation, we assume that the circulation Γ and the bubble volume V are constant, and the ratio
b/a << 1. The same assumptions were adopted by Pedley (1968).

The flow around the toroidal bubble is approximated by the irrotational flow around a cylindrical bubble
of radius b. The translational velocities of the bubble include the vertical velocity U and horizontal velocity ȧ

(figure 13.3). We denote the resultant velocity as

W =
√

U2 + ȧ2. (13.5.4)

The rise velocity U may be calculated from the condition that there is no normal velocity across the bubble
surface. If the core cross-section is taken to be circular and the quantity ω/r uniform inside, where ω is the
vorticity, Lamb (1932, §163) gives

U =
Γ
2a

[
ln

8a

b
− n

]
, (13.5.5)

where n = 1/4. Hicks (1884) gives the value n = 1/2 for his hollow vortex-ring in which the core cross-section
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is not circular and ω/r is not uniform. The irrotational flow around a cylindrical bubble of radius b is given by
the velocity potential

φ = −W
b2

s
cosχ + Γχ, (13.5.6)

where the coordinates s and χ are shown in figure 13.3. The velocities can be obtained from the potential

us =
∂φ

∂s
, uχ =

1
s

∂φ

∂χ
. (13.5.7)

The kinetic energy for a 2D section is

T ′ =
1
2
ρ

∫ C0a

b

∫ 2π

0

(
u2

s + u2
χ

)
sdsdχ (13.5.8)

= ρπ

[
1
2
W 2b2

(
1− b2

C2
0a2

)
+ Γ2ln

C0a

b

]
, (13.5.9)

where the integration is from b to C0a rather than b to ∞ because of the logarithmic singularity. Multiply by
2πa, the circumference of the bubble, and obtain the total kinetic energy

T = ρπ2aW 2b2

(
1− b2

C2
0a2

)
+ 2ρπ2aΓ2ln

C0a

b
. (13.5.10)

The value of C0 may be determined by comparing (13.5.10) to the kinetic energy given by Pedley (1968).
Pedley used Lamb’s (1932) formula for the kinetic energy of an arbitrary axisymmetric distribution of azimuthal
vorticity and obtained

T = 2π2ρaΓ2

[
ln

8a

b
− 2 + O

(
b2

a2
ln

8a

b

)]
≈ 2π2ρaΓ2ln

(
8a

b
e−2

)
. (13.5.11)

The kinetic energy given by Pedley neglected the energy associated with the translation of the bubble. Comparing
this with the energy associated with the circulation in (13.5.10), we obtain

C0 = 8e−2 ≈ 1.0827. (13.5.12)

Since b << a, the energy (13.5.10) is approximately

T = ρπ2a

(
W 2b2 + 2Γ2ln

C0a

b

)
. (13.5.13)

The dissipation of the potential flow (13.5.6) can be evaluated as

D′ =
∫ 2π

0

∫ ∞

b

2µD : D sdsdχ = 8πµW 2 +
4πµΓ2

b2
, (13.5.14)

where D is the rate of strain tensor. The same dissipation was obtained by Ackeret (1952). After multiplying
2πa, we obtain the total dissipation

D = 8π2µa
(
2W 2 + Γ2/b2

)
. (13.5.15)

The part of the dissipation associated with the circulation Γ in (13.5.15) is the same as that given by Ped-
ley(1968). Pedley did not consider the dissipation associated with the translation W .

After inserting the kinetic energy (13.5.13), potential energy (13.5.3) and the dissipation (13.5.15) into the
energy equation (13.5.2), we obtain

1
2
V

dW 2

dt
+

(
2π2Γ2ȧ− gV Γ

2a

)(
ln

8a

b
− 1

2

)
= −16π2νa

(
W 2 + π2aΓ2/V

)
, (13.5.16)

where we have used n = 1/2 in the expression for U (13.5.5). Since b can be eliminated from V = 2π2ab2, a is
the only unknown in equation (13.5.16). If the fluid is inviscid and the kinetic energy associated with translation
is neglected, (13.5.16) reduces to

2π2Γ2ȧ− gV Γ
2a

= 0 ⇒ a2 = a2
0 +

gV

2π2Γ
t, (13.5.17)

where a0 is the value of a at t = 0. This equation is the same as the formula given by Pedley (1968) for both
inviscid and viscous fluids.
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The translational velocity W has the following form

W 2 =
Γ2

4a2

(
ln

8a

b
− 1

2

)2

+ ȧ2. (13.5.18)

The derivative of W 2 with respect to time in (13.5.16) leads to a second order ordinary differential equation for
a. We specify two initial conditions for a at t = 0. The first condition is

a = a0 at t = 0. (13.5.19)

The second condition is derived from (13.5.17)

ȧ(t = 0) =
gV

4π2Γa0
. (13.5.20)

This condition is justified if the energy and dissipation associated with the translation of the bubble is much
smaller than those associated with the circulation, and the viscous effects are small at t = 0. We will verify
these conditions in §13.5.4 when we insert the parameters taken from the experiments of Walters & Davidson
into our equations and compute the numerical results.

If the part of the energy and dissipation associated with W is relatively small at all times, (13.5.16) becomes
(

2π2Γȧ− gV

2a

)(
ln

8a

b
− 1

2

)
= −16π4νa2 Γ

V
. (13.5.21)

This is the same energy equations considered by Pedley (1968) under the assumption that the flow remains
approximately irrotational in a viscous fluid. Equation (13.5.21) is a first order ordinary differential equation for
a and the condition (13.5.19) will suffice. In §13.5.4 we will show that the solutions of (13.5.16) and (13.5.21)
are nearly the same when using the parameters taken from the experiments of Walters & Davidson.

13.5.3 The impulse equation

Pedley used Lamb’s formula for the impulse of an arbitrary axisymmetric distribution of azimuthal vorticity
and obtained

P = 2π2ρa2Γ
[
1 + O

(
b2

a2
ln

8a

b

)]
. (13.5.22)

Pedley included the buoyant force in the impulse equation and argued that the drag does not enter into this
problem even when the fluid is viscous. We propose to include the viscous drag on the bubble in the impulse
equation; then the inconsistency between the impulse equation and the energy equation disappears.

The viscous drag on a bubble may be computed using the dissipation method, which equates the power of
the drag to the dissipation. Levich (1949) used the dissipation method to calculate the drag on a spherical gas
bubble rising in the irrotational flow of a viscous fluid. Ackeret (1952) used the dissipation method to compute
the drag on a rotating cylinder in a uniform stream. If the flow around the toroidal bubble is approximated
by the irrotational flow around a cylindrical bubble with circulation, the velocity potential (13.5.6) is the same
as that used by Ackeret (1952). The irrotational dissipation is given by (13.5.15). In §13.5.4 we will show
that the dissipation associated with the translation W is small and ȧ is much smaller than U when using the
parameters taken from the experiments of Walters & Davidson. Therefore the drag in the vertical direction from
the dissipation method is approximately

D =
D
U

= 8π2µa
Γ2

b2U
. (13.5.23)

With this viscous drag, the impulse equation (13.5.1) becomes

2π2ρΓ
da2

dt
= ρgV − 8π2µa

Γ2

b2U
. (13.5.24)

After using the expression for U (13.5.5), we obtain
(

2π2Γȧ− gV

2a

)(
ln

8a

b
− 1

2

)
= −16π4νa2 Γ

V
, (13.5.25)

which is the same as the energy equation (13.5.21). Thus the impulse equation with the viscous drag included
is the same as the energy equation with the viscous dissipation.
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13.5.4 Comparison of irrotational solutions for inviscid and viscous fluids

We solve the equations (13.5.16) and (13.5.21) using the physical constants

g = 980cm s−2, ν = 0.011cm2s−1, (13.5.26)

and the parameters taken from the experiments of Walters & Davidson

Γ = 50cm2s−1, V = 21cm3, a0 = 2.5cm, b0 = 0.65cm. (13.5.27)

These parameters, except a0 and b0, are the same as those used by Pedley (1968); Pedley estimated a0 = 5 cm.
Our estimate of a0 is based on figure 7 of Walters & Davidson (1963) which shows the photos of the toroidal
bubble rising close to the free surface at the top of the tank. The caption in their figure 7 indicates that the
ring radius is about 4 cm. Because the ring expands as it rises, the initial ring radius should be less than 4 cm.
We estimate a0 to be 2.5 cm and b0/a0 ≈ 0.26.

We solve equation (13.5.16) with the initial conditions (13.5.19) and (13.5.20), and equation (13.5.21) with
(13.5.19). To highlight the viscous effects, we also solve (13.5.16) with ν = 0; the initial conditions for the
inviscid equation are still (13.5.19) and (13.5.20). The solutions for a as a function of time are plotted in figure
13.4. The rise velocity U is then computed from (13.5.5) and plotted in figure 13.5. Integration of U gives rise
to the height h − h0 of rise, where h0 is the initial position of the bubble. The plots for h − h0 against a are
given in figure 13.6.

The solution of the inviscid equation shows that a increases and U decreases with time. These solutions are
similar to those obtained by Pedley (1968) using irrotational flow of a inviscid fluid. The plot for h−h0 against
a from the inviscid solution demonstrates that the bubble rises and expands conically, which is consistent with
the solutions of Turner (1957) and Pedley (1968). Figure 13.4 shows that the two viscous equations (13.5.16)
and (13.5.21) lead to almost the same solution. This demonstrates that the energy and dissipation associated
with the translation W is relatively small, and that the choice of the initial condition (13.5.20) does not have
substantial effects on the solution. Figure 13.7 shows the ratio between the ring expansion velocity ȧ and the
rise velocity U obtained from the solution of (13.5.16). This plot demonstrates that ȧ is much smaller than U .
Initially the viscous solution is similar to the inviscid solution; ȧ increases and U decreases with time. As a/b2

increases, the viscous drag (13.5.23) increases and finally balances the buoyant force. Then a steady state is
reached, in which the toroidal bubble keeps its shape and rises at a constant velocity. Our viscous solutions give
a = 10.9 cm and U = 11.8 cm/s at the steady state. This steady state solution is consistent with the classical
description of the motion of a vortex ring. For example, Milne-Thomson (1968) says in § 19.41

“We may, however, observe that for points in the plane of the ring (considered as of infinitesimal cross-
section) there is no radial velocity. This follows at once from the Biot and Savart principle, explained in 19.23.
It therefore follows that the radius of the ring remains constant, and the ring moves forward with a velocity
which must be constant since the motion must be steady relatively to the ring.”

The comparison of our solutions to the experiments of Walters & Davidson (1963) is inconclusive. Walters
& Davidson did not provide data for the ring radius or the rise velocity as a function of time. The tank used in
their experiments is only 3 ft (91.44 cm) tall. Their figure 8 shows the computed circulation vs. time for only
0.6 second. For such a short time, we cannot even tell the difference between the viscous and inviscid solutions
in figures 13.4 and 13.5. It is not known whether the bubble will ultimately reach a steady state as predicted
by our viscous solution, or the ring radius will keep growing until instability occurs as in Pedley’s solution.
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Fig. 13.4. Evolution of the ring radius a with time. The dash-dotted line represents the inviscid solution obtained by
putting ν = 0 in (13.5.16). The solid line represents the viscous solution of (13.5.16) with the initial conditions (13.5.19)
and (13.5.20). The symbol 2 represents the viscous solution of (13.5.21) with the initial condition (13.5.19).
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Fig. 13.5. Evolution of the rise velocity U computed from (13.5.5) with time. The dash-dotted line represents the inviscid
solution obtained by putting ν = 0 in (13.5.16). The solid line represents the viscous solution of (13.5.16) with the initial
conditions (13.5.19) and (13.5.20). The symbol 2 represents the viscous solution of (13.5.21) with the initial condition
(13.5.19).
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Fig. 13.6. The height of rise h−h0 against the ring radius a. The dash-dotted line represents the inviscid solution obtained
by putting ν = 0 in (13.5.16). The solid line represents the viscous solution of (13.5.16) with the initial conditions (13.5.19)
and (13.5.20). The symbol 2 represents the viscous solution of (13.5.21) with the initial condition (13.5.19).
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Fig. 13.7. The ratio between the ring expansion velocity ȧ and the rise velocity U obtained from the solution of (13.5.16).
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13.5.5 Stability of the toroidal vortex

Ponstein (1959) and Pedley (1967) studied capillary stability of a vortex core with core curvature neglected.
This was the problem studied by Rayleigh (1892) with viscosity neglected and in chapter 16 with viscosity
included, in which a strong stabilizing of circulation is demonstrated. The swirl velocity vθ = Γ∗/2πr for r À a,
is irrotational. For axially symmetric disturbances of the form exp [i(kz − ωt)], the dispersion relation is given
by

ω2 = −kaK1(ka)
K0(ka)

[(
1− k2a2

) γ

ρa3
− Γ2

∗
4π2a4

]
. (13.5.28)

The flow is stable when ω2 is positive and it is stable for all k when

Γ2
∗ ≥ 4π2aγ/ρ. (13.5.29)

Pedley obtained the same result and concluded that the vortex core would eventually become unstable because
Γ∗ decreases due to the action of viscosity and b decreases in his dynamic solution.

Pedley notes that his stability analysis ignores viscosity, and “... is therefore likely to be valid only if dis-
turbance time scales are much shorter than the viscous diffusion time 362/8ν.” Here we construct a purely
irrotational analysis of the effects of viscosity on the stability of the same basic state using VPF. A viscous
diffusion time does not enter into this analysis. †

13.5.5.1 Basic flow

We are considering the stability of a potential vortex with circulation Γ∗ = 2πΓ. The velocity is purely azimuthal
u = eθVθ

Vθ =
Γ∗
2πr

=
Γ
r

. (13.5.30)

The pressure P is given by Bernoulli’s equation

P

ρ
=

P∞
ρ
− 1

2
V 2

θ =
P∞
ρ
− 1

2
Γ2
∗

4π2r2
, (13.5.31)

where P∞ is a constant. The normal stress balance at r = a is

P (a)− P0 = −γ

a
, (13.5.32)

where P0 is the uniform pressure in the vortex r < a.

13.5.5.2 Small disturbances

The velocity potential for a small disturbance of the basic flow satisfies Laplace’s equation

∂2φ

∂r2
+

1
r

∂φ

∂r
+

1
r2

∂2φ

∂θ2
+

∂2φ

∂z2
= 0. (13.5.33)

The free surface at r = a is disturbed

r = a + δ(θ, z, t). (13.5.34)

The disturbed surface satisfies
∂φ

∂r
=

∂δ

∂t
+

Vθ

r

∂δ

∂θ
. (13.5.35)

The disturbed normal stress balance on r = a is

Γ2
∗

4π2a2

δ

a
+ p− 2ν

∂2φ

∂r2
− 4ν

Γ
a3

∂δ

∂θ
=

γ

ρ

(
δ

a2
+

∂2δ

∂z2
+

1
a2

∂2δ

∂θ2

)
. (13.5.36)

We seek a solution of (13.5.33)-(13.5.36) in normal modes

φ = φ0(r) exp(ıkz − ıωt + ınθ) + c.c., (13.5.37)

δ = δ0 exp(ıkz − ıωt + ınθ) + c.c. (13.5.38)

† T.Funada, J.C.Padrino and D.D. Joseph, 2006 Purely irrotational theories of capillary instability of viscous liquids. Under
preparation (see http://www.aem.umn.edu/people/faculty/joseph/ViscousPotentialFlow/.)
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We find that φ0 = AIn(kr) + BKn(kr). Since In(kr) is unbounded as r →∞,

φ0 = BKn(kr). (13.5.39)

Then

p = −∂φ

∂t
− Γ

r2

∂φ

∂θ
=

(
ıω − ın

Γ
r2

)
BKn(kr) exp(ıkz − ıωt + ınθ) + c.c. (13.5.40)

and (13.5.35) implies that
(
−ıω + ın

Γ
a2

)
δ0 = BkK ′

n(ka). (13.5.41)

Hence

φ =
(
−ıω + ın

Γ
a2

)
δ0

Kn(kr)
kK ′

n(ka)
exp(ıkz − ıωt + ınθ) + c.c. (13.5.42)

The normal stress condition (13.5.36) becomes
(

ω − n
Γ
a2

)2
Kn(ka)

kaK ′
n(ka)

+ 2ı

(
ω − n

Γ
a2

)
νk2 K ′′

n(ka)
kaK ′

n(ka)

=
γ

ρa3

(
1− k2a2 − n2

)− Γ2
∗

4π2a4
+ 4ν

ınΓ
a4

. (13.5.43)

which is a relation for the eigenvalue ω. By taking n = 0 in (13.5.43), VPF dispersion relation for axisymmetric
disturbances is obtained

− ω2 K0(ka)
kaK1(ka)

− 2ıωνk2

(
K0(ka)

kaK1(ka)
+

1
k2a2

)
=

γ

ρa3

(
1− k2a2

)− Γ2

a4
, (13.5.44)

where standard formulae for the modified Bessel functions have been used. The dispersion relation (13.5.44)
gives the irrotational effects of viscosity on the stability of the basic flow. With ν = 0, (13.5.44) reduces to the
Ponstein/Pedley result (13.5.28) for inviscid fluids. Introducing the following dimensionless parameters

k = k̂/a, ω = ıσ̂

√
γ

ρa3
, Γ = Γ̂

√
γa

ρ
, (13.5.45)

and letting

α =
K0(k̂)

K1(k̂)
, (13.5.46)

expression (13.5.44) can be written as

ασ̂2 +
2√
J

k̂
(
1 + k̂α

)
σ̂ = k̂

(
1− k̂2 − Γ̂2

)
, (13.5.47)

where J = Oh2 = ργa/µ2 and Oh is the Ohnesorge number. Relation (13.5.47) is a quadratic equation for the
eigenvalue σ̂ with roots

σ̂ = −
k̂

(
1 + k̂α

)

α
√

J
±

√√√√√

 k̂

(
1 + k̂α

)

α
√

J




2

+
k̂

α

(
1− k̂2 − Γ̂2

)
. (13.5.48)

The motion is unstable to axisymmetric disturbances when Re[σ̂] > 0, which occurs if, and only if, Γ̂2 < 1− k̂2

for which σ̂ is real. Hence, when Γ̂2 ≥ 1 the motion is stable for all k̂ and when k̂ ≥ 1 it is stable for all Γ̂. When√
J → ∞, (13.5.47) goes to the inviscid result. Figure 13.8 shows the growth rate σ̂ versus the wave-number

k̂ according to VPF relation (13.5.48) compared to the inviscid result for four values of J= 10−3, 1, 100 and
106 and three values of the circulation Γ̂2= 0, 0.5 and 0.75. For small J (e.g., large viscosity) the difference
between VPF and the inviscid theory is significant and viscosity diminishes the growth rate. As J increases,
VPF results tend to the inviscid ones. For instance, for J = 106 no difference is discernible. Moreover, for J

fixed, the growth rate decreases and the minimum wavelength of the unstable waves increases with decreasing
Γ̂2 until instabilities totally vanish (Γ̂2 ≥ 1).
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Fig. 13.8. Growth rate σ̂ as a function of the wavenumber k̂ for a cylindrical bubble with circulation Γ̂2. Instability takes
place for the results shown. Four values of the parameter J are selected. The definition of the dimensionless quantities

σ̂, k̂ and Γ̂ is given in (13.5.45) and J = ργa/µ2.

13.5.6 Boundary integral study of vortex ring bubbles in a viscous liquid

Lundgren and Mansour (1991) studied toroidal bubbles with circulation by a boundary integral method and
by a physically motivated model equation (13.5.49). The numerical calculations were the first to reveal the
deformations of the bubble shape in a fully nonlinear context. Two series of computations were performed;

“... one set shows the starting motion of an initially spherical bubble as a gravitationally driven liquid jet penetrates
through the bubble from below causing a toroidal geometry to develop. The jet becomes broader as surface tension
increases and fails to penetrate if surface tension is too large. The dimensionless circulation that develops is not very
dependent on the surface tension. The second series of computations starts from a toroidal geometry, with circulation
determined from the earlier series, and follows the motion of the rising and spreading vortex ring. Some modifications
to the boundary-integral formulation were devised to handle the multiply connected geometry.”

The irrotational effects of viscosity were not studied but they can be obtained by boundary integral methods
following the work of Miksis et al. (1982), Georgescu et al. (2002) and Canot et al. (2003).

The physically motivated model of vortex ring bubbles proposed by Lundgren and Mansour is based on the
force-momentum balance on a section of a slender ring, treated as locally two-dimensional, given by

ρA
du

dt
= ρΓ∗t× u + ρAgez. (13.5.49)

The term on the left is the apparent mass per unit length times acceleration. The first term on the right is the
Kutta-Joukowski lift per unit length on a vortex in cross flow. It acts perpendicularly to the relative velocity

119



u. The unit vector t is along the centerline of the vortex, in the direction of the vorticity. The last term is the
buoyancy force per unit length acting in the upward direction.

Lundgren and Mansour consider the case in which the acceleration
du

dt
= 0 but the dimensionless ring radius

R = a/r0 changes with time. After expressing

u = eru + ezv

in dimensionless form with u̇, v̇ = 0, they find that v = 0,

u =
2

3ΓR
, R =

{
R2

0 +
4t

3Γ

}1/2

(13.5.50)

where Γ is a dimensionless circulation. They note “... that equation (13.5.50) is Turner’s result for a constant
volume buoyant vortex ring. Our interpretation is that the ring spreads radially at a velocity that gives just
enough downward cross flow lift to balance the upward buoyancy force. This is the direct physical reason for
the radial growth of the ring.”

As in the case of impulse, the addition of an irrotational viscous drag per unit length

−µD̃ez

to equation (13.5.49) alters the dynamics in a fundamental way. In this case the system evolves to steady state
in which the viscous drag balances the buoyant lift

µD̃ = ρgA

with no further increase of the radius of the core or ring.

13.5.7 Irrotational motion of a massless cylinder under the combined action of

Kutta-Joukowski lift, acceleration of added mass and viscous drag

Consider the irrotational motion of a cylinder of radius a in a viscous fluid with circulation Γ. Our analysis
follows that given by Lundgren and Mansour (1991) for the same problem in an inviscid fluid. Let

R(t) = X(t)i + Y (t)j (13.5.51)

be the instantaneous position of the center of the cylinder. The velocity is then

Ṙ = Ui + V j. (13.5.52)

The direction of the velocity n is

n =
U

W
i +

V

W
j with W =

√
U2 + V 2. (13.5.53)

The motion is approximated by a potential flow. The dissipation per unit length for a cylinder moving with a
speed W and a circulation Γ evaluated using the potential flow is (Wang and Joseph 2006a)

D = 8πµW 2 +
µΓ2

πa2
. (13.5.54)

The dissipation should be equal to the power of the drag and torque on the cylinder. Ackeret (1952) did not
consider the torque and used this dissipation to compute the drag on the cylinder:

D = D/W = 8πµW +
µΓ2

πa2W
. (13.5.55)

Here we use this drag for the purpose of illustration of the viscous effect on the dynamics of the cylinder.
Lundgren and Mansour (1991) derived an equation (their Equation A7) governing the motion of the cylinder

based on the assumption that the cylinder is a massless bubble and has no applied force. If the drag force
(13.5.55) is added, the governing equation for the motion becomes

ρπa2R̈ = ρΓk ×R−Dn, (13.5.56)
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that is, the apparent mass times acceleration is balanced by the Kutta-Joukowski lift and the viscous drag. To
make (13.5.56) dimensionless, we introduce the following scales

[length, velocity, time] ∼
[
a,

Γ
aπ

,
a2π

Γ

]
. (13.5.57)

In this analysis, we assume that the circulation Γ is a constant and does not depend on time. The dimensionless
equations are written in the scalar form as follows

˙̃U = −Ṽ − 1
Re

(
8W̃ +

1
W̃

)
Ũ

W̃
, (13.5.58)

˙̃V = Ũ − 1
Re

(
8W̃ +

1
W̃

)
Ṽ

W̃
, (13.5.59)

where “∼” indicates dimensionless parameters and the Reynolds number is defined as

Re =
ρΓ
µπ

. (13.5.60)

We set the initial conditions for (13.5.58) and (13.5.59) arbitrarily to be

Ũ(t = 0) = 10, and Ṽ (t = 0) = 0. (13.5.61)

The set of equations (13.5.58), (13.5.59) and (13.5.61) can be solved analytically. First we assume

Ũ = W̃ cos θ, Ṽ = W̃ sin θ, (13.5.62)

thus we have a set of equations:

dŨ

dt
=

dW̃

dt
cos θ − W̃ sin θ

dθ

dt
= −Ṽ − 1

Re

(
8W̃ +

1
W̃

)
Ũ

W̃

= −W̃ sin θ − 1
Re

(
8W̃ +

1
W̃

)
cos θ,

dṼ

dt
=

dW̃

dt
sin θ + W̃ cos θ

dθ

dt
= Ũ − 1

Re

(
8W̃ +

1
W̃

)
Ṽ

W̃

= W̃ cos θ − 1
Re

(
8W̃ +

1
W̃

)
sin θ.





(13.5.63)

Multiply the first of (13.5.63) by cos θ and the second by sin θ, then the sum gives

dW̃

dt
= − 1

Re

(
8W̃ +

1
W̃

)
→ d

dt

(
1
2
W̃ 2

)
= − 1

Re

(
8W̃ 2 + 1

)
(13.5.64)

W̃ 2 +
1
8

= C1 exp (−16t/Re) . (13.5.65)

Multiply the first by sin θ and the second by cos θ, then the subtraction gives

W̃
dθ

dt
= W̃ → dθ

dt
= 1 → θ = t + C2. (13.5.66)

The integration constants C1 and C2 are to be determined by initial conditions; C1 = 102 + 1
8 and C2 = 0.

When Re → ∞, W̃=constant and θ = t + C2. Ũ and Ṽ are integrated to obtain the position of the cylinder.
The calculation results are shown in figure 13.9.

When Re → ∞, the results tend to be the same as the inviscid solution given by Lundgren and Mansour
(1991); the cylinder moves with a constant speed along a circular path. When the Reynolds number is finite,
the cylinder moves in a spiral fashion. The speed decreased continuously because of the viscous effect and the
cylinder eventually stops. The dimensionless stopping time is about 8.36 for Re =20 and 41.79 for Re =100.
The paths from the start to the end of the motion are shown for Re =20 and 100 in figure 13.9.
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Fig. 13.9. The path of the cylinder at different Reynolds numbers. —: Re →∞; —: Re=100; —: Re=20.

13.6 The motion of a spherical gas bubble in viscous potential flow

A spherical gas bubble accelerates to steady motion in an irrotational flow of a viscous liquid induced by a
balance of the acceleration of the added mass of the liquid with the Levich drag. The equation of rectilinear
motion is linear and may be integrated giving rise to exponential decay with a decay constant 18νt/a2 where
ν is the kinematic viscosity of the liquid and a is the bubble radius. The problem of decay to rest of a bubble
moving initially when the forces maintaining motion are inactivated and the acceleration of a bubble initially at
rest to terminal velocity are considered. The equation of motion follows from the assumption that the motion
of the viscous liquid is irrotational. It is an elementary example of how potential flows can be used to study the
unsteady motions of a viscous liquid suitable for the instruction of undergraduate students.

We consider a body moving with the velocity U in an unbounded viscous potential flow. Let M be the mass
of the body and M ′ be the added mass, then the total kinetic energy of the fluid and body is

T =
1
2
(M + M ′)U2. (13.6.1)

Let D be the drag and F be the external force in the direction of motion, then the power of D and F should
be equal to the rate of the total kinetic energy,

(F + D)U =
dT

dt
= (M + M ′)U

dU

dt
. (13.6.2)

We next consider a spherical gas bubble, for which M = 0 and M ′ =
2
3
πa3ρf . The drag can be obtained by

direct integration using the irrotational viscous normal stress and a viscous pressure correction: D = −12πµaU

(see Joseph and Wang 2004). Suppose the external force just balances the drag, then the bubble moves with a
constant velocity U = U0. Imagine that the external force suddenly disappears, then (13.6.2) gives rise to

− 12πµaU =
2
3
πa3ρf

dU

dt
. (13.6.3)

The solution is

U = U0e−
18ν
a2 t, (13.6.4)

which shows that the velocity of the bubble approaches zero exponentially.

If gravity is considered, then F =
4
3
πa3ρfg. Suppose the bubble is at rest at t = 0 and starts to move due to
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the buoyant force. Equation (13.6.2) can be written as

4
3
πa3ρfg − 12πµaU =

2
3
πa3ρf

dU

dt
. (13.6.5)

The solution is

U =
a2g

9ν

(
1− e−

18ν
a2 t

)
, (13.6.6)

which indicates the bubble velocity approaches the steady state velocity

U =
a2g

9ν
(13.6.7)

exponentially.
Another way to obtain the equation of motion is to argue following Lamb (1932) and Levich (1949) that the

work done by the external force F is equal to the rate of the total kinetic energy and the dissipation:

FU = (M + M ′)U
dU

dt
+D. (13.6.8)

Since D = −DU , (13.6.8) is the same as (13.6.2).
The motion of a single spherical gas bubble in a viscous liquid has been considered by some authors. Typically,

these authors assemble terms arising in various situations, like Stokes flow (Hadamard-Rybczynski drag, Basset
memory integral) and high Reynolds number flow (Levich drag, boundary layer drag, induced mass) and other
terms into a single equation. Such general equations have been presented by Yang and Leal (1991) and by Park,
Klausner and Mei (1995) and they have been discussed in the review paper of Magnaudet and Eams (2000, see
their section 4). Yang and Leal’s equation has Stokes drag and no Levich drag. Our equation is not embedded
in their equation. Park et al. listed five terms for the force on a gas bubble; our equation may be obtained
from theirs if the free stream velocity U is put to zero, the memory term is dropped, and the boundary layer
contribution to the drag given by Moore (1963) is neglected. Park et al. did not write down the same equation
as our equation (13.6.5) and did not obtain the exponential decay.

It is generally believed that the added mass contribution, derived for potential flow is independent of viscosity.
Magnaudet and Eames say that “... results all indicate that the added mass coefficient is independent of the
Reynolds, strength of acceleration and ... boundary conditions.” This independence of added mass on viscosity
follows from the assumption that the motion of viscous fluids can be irrotational. The results cited by Magnaudet
and Eams seem to suggest that induced mass is also independent of vorticity.

Chen (1974) did a boundary layer analysis of the impulsive motion of a spherical gas bubble which shows
that the Levich drag 48/Re at short times evolves to the drag 48

Re

(
1− 2.21√

Re

)
obtained in a boundary layer

analysis by Moore (1963). The Moore drag cannot be distinguished from the Levich drag when Re is large. The
boundary layer contribution is vortical and is neglected in our potential flow analysis.

13.7 Steady motion of a deforming gas bubble in a viscous potential flow

Miksis, Vanden-Broeck and Keller (MVK, 1982) computed the shape of an axisymmetric rising bubble, or a
falling drop, in an incompressible fluid assuming that the flow in the liquid is irrotational but viscous. The
boundary condition for the normal stress including surface tension is satisfied but as in other problems of VPF,
the tangential stress is neglected. The shape function is obtained from the gravitational potential evaluated
on the free surface; two shape functions are computed, one on the top and one on the bottom of the bubble.
The shape is single valued on each function. The potential function is obtained from the values of the potential
on the free surface, using a Green’s function approach following ideas introduced by Longuet-Higgins and
Cokelet (1976), Vanden-Broeck and Keller (1980) and Miksis, Vanden-Broeck and Keller (1981). The system
of differential and integral equations are solved in a frame in which the bubble is stationary and the velocity
at infinity is U which is calculated by a drag balance in two ways. The first calculation is like that of Moore
(1959) in which the drag comes from the normal irrotational viscous stress leading to 32/R. This direct method
should not be used because of the additional contribution due to the irrotational viscous pressure.

This pressure is not easy to calculate in general, but the correct drag leading to 48/R can be obtained, and
was obtained by MVK in a second calculation using the dissipation method.

The solution of the system of governing equations was obtained as a power series in the Weber number and
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R−1 and is therefore restricted to low Weber numbers (large surface tension) and high Reynolds numbers (small
viscosity).

13.8 Dynamic simulations of the rise of many bubbles in a viscous potential flow

This problem was considered by Sangani and Didwania (1993). They placed N bubbles initially randomly within
a unit cell and assumed that the entire space is filled with copies of this cell. They determined the potential
flow around many bubbles exactly by using a multiple expansion. They computed a drag force on the bubbles
by two different methods: (1) compute the gradient of the total viscous energy based on the relative velocity
of individual bubbles (2) compute the bounce of colliding bubbles assuming that the collision time is short
compared to the timescale for the inertial motion and that the momentum and kinetic energy is conserved
in the motion (Sangani 1991). These are apparently quite different mechanisms; one depends on viscosity, the
other on inertia.

They did simulations in which they include buoyancy and viscous forces. They find that the state of uniform
bubbly liquids is unstable under the aforementioned conditions and that the bubbles form large aggregates
by arranging themselves in planes perpendicular to gravity. These aggregates form even when a swarm of gas
bubbles rises through a liquid at rest.

We think that the aggregates which form are due to the same inertial forces which turn long bodies broadside-
on and cause aircraft to stall. Colliding bubbles are unstable long bodies which look for a stable configuration
with line of centers across the stream. The dynamic scenario underway is called “drafting, kissing and tumbling.”
This scenario is discussed in §20.7.1 and §20.7.2.
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14

Purely irrotational theories of the effect of
the viscosity on the decay of waves

14.1 Decay of free gravity waves

It is generally believed that the major effects of viscosity are associated with vorticity. This belief is not always
well founded; major effects of viscosity cachap14-sep11-nocup.n be obtained from purely irrotational analysis
of flows of viscous fluids. Here we illustrate this point by a comparing irrotational solutions with Lamb’s 1932
exact solution of the problem of the decay of free gravity waves. Excellent agreements, even in fluids 107 more
viscous than water, are achieved for the decay rates n(k) for all wave numbers k excluding a small interval
around a critical value kc where progressive waves change to monotonic decay.

14.1.1 Introduction

Lamb (1932, §348, §349) performed an analysis of the effect of viscosity on free gravity waves. He computed the
decay rate by a dissipation method using the irrotational flow only. He also constructed an exact solution for
this problem, which satisfies both the normal and shear stress conditions at the interface.

Joseph & Wang (2004) studied Lamb’s problem using the theory of viscous potential flow (VPF) and obtained
a dispersion relation which gives rise to both the decay rate and wave-velocity. They also used VCVPF to obtain
another dispersion relation. Since VCVPF is an irrotational theory the shear stress cannot be made to vanish.
However, the shear stress in the energy balance can be eliminated in the mean by the selection of an irrotational
pressure which depends on viscosity.

Here we find that the viscous pressure correction gives rise to a higher order irrotational correction to the
velocity which is proportional to the viscosity and does not have a boundary layer structure. The corrected
velocity depends strongly on viscosity and is not related to vorticity. The corrected irrotational flow gives rise to
a dispersion relation which is in splendid agreement with Lamb’s exact solution, which has no explicit viscous
pressure. The agreement with the exact solution holds for fluids even 107 times more viscous than water and for
all wave numbers away from the cutoff wave number kc which marks the place where progressive waves change
to monotonic decay. We find that VCVPF gives rise to the same decay rate as in Lamb’s exact solution and
in his dissipation calculation when k < kc. The exact solution agrees with VPF when k > kc. The effects of
vorticity are evident only in a small interval centered on the cutoff wave number. We present a comprehensive
comparison for the decay rate and wave-velocity given by Lamb’s exact solution and Joseph and Wang’s VPF
and VCVPF theories.

14.1.2 Irrotational viscous corrections for the potential flow solution

The gravity wave problem is governed by the linearized Navier-Stokes equation and the continuity equation

∂u
∂t

= −1
ρ
∇p− gey + ν∇2u, (14.1.1)

∇ · u = 0, (14.1.2)

subject to the boundary conditions at the free surface (y ≈ 0)

Txy = 0, Tyy = 0, (14.1.3)
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where Txy and Tyy are components of the stress tensor and the surface tension is neglected. Surface tension
is important at high wavenumbers but, for simplicity, is neglected in the analyses given here. We divide the
velocity and pressure field into two parts

u = up + uv, p = pp + pv, (14.1.4)

where the subscript p denotes potential solutions and v denotes viscous corrections. The potential solutions
satisfy

up = ∇φ, ∇2φ = 0, (14.1.5)

and
∂up

∂t
= −1

ρ
∇pp − gey. (14.1.6)

The viscous corrections are governed by

∇ · uv = 0, (14.1.7)

∂uv

∂t
= −1

ρ
∇pv + ν∇2uv. (14.1.8)

We take the divergence of (14.1.8) and obtain

∇2pv = 0, (14.1.9)

which shows that the pressure correction must be harmonic. Next we introduce a stream function ψ so that
(14.1.7) is satisfied identically:

uv = −∂ψ

∂y
, vv =

∂ψ

∂x
. (14.1.10)

We eliminate pv from (14.1.8) by cross differentiation and obtain following equation for the stream function

∂

∂t
∇2ψ = ν∇4ψ. (14.1.11)

To determine the normal modes which are periodic in respect of x with a prescribed wave-length λ = 2π/k, we
assume that

ψ = Bent+ıkxemy, (14.1.12)

where m is to be determined from (14.1.11). Inserting (14.1.12) into (14.1.11), we obtain

(m2 − k2)
[
n− ν(m2 − k2)

]
= 0. (14.1.13)

The root m2 = k2 gives rise to irrotational flow; the root m2 = k2 + n/ν leads to the rotational component of
the flow. The rotational component cannot give rise to a harmonic pressure satisfying (14.1.9) because

∇2ent+ikxemy = (m2 − k2)ent+ikxemy (14.1.14)

does not vanish if m2 6= k2. Thus, the governing equation for the rotational part of the flow can be written as

∂ψ

∂t
= ν∇2ψ. (14.1.15)

This is the equation used by Lamb (1932) for the rotational part of his exact solution.
The effect of viscosity on the decay of a free gravity wave can be approximated by a purely irrotational theory

in which the explicit appearance of the irrotational shear stress in the mechanical energy equation is eliminated
by a viscous contribution pv to the irrotational pressure. In this theory u=∇φ and a stream function, which is
associated with vorticity, is not introduced. The kinetic energy, potential energy and dissipation of the flow can
be computed using the potential flow solution

φ = Aent+ky+ikx. (14.1.16)

We insert the potential flow solution into the mechanical energy equation (12.5.14)
∫

Sf

un

[
ρ

(
∂φ

∂t
+
|∇φ|2

2
+ gη

)
+ 2µ

∂2φ

∂n2
+ γ∇II · n

]
dSf = −

∫

Sf

τsusdSf , (14.1.17)
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where η is the elevation of the surface and D is the rate of strain tensor. The pressure correction pv satisfies
∫ λ

0

v(−pv)dx =
∫ λ

0

uτxydx. (14.1.18)

But in our problem here, there is no explicit viscous pressure function in the exact solution [see (14.1.23) and
(14.1.24)]. It turns out that the pressure correction defined here in the purely irrotational flow is related to
quantities in the exact solution in a complicated way which requires further analysis [see (14.1.30)].

Joseph & Wang (2004) solved for the harmonic pressure correction from (14.1.9), then determined the constant
in the expression of pv using (14.1.18), and obtained

pv = −2µk2Aent+ky+ikx. (14.1.19)

The velocity correction associated with this pressure correction can be obtained from (14.1.8). We seek normal
modes solution uv ∼ ent+ky+ıkx and equation (14.1.8) becomes

ρnuv = −∇pv. (14.1.20)

Hence, curl(uv) = 0 and uv is irrotational. After assuming uv = ∇φ1 and φ1 = A1ent+ky+ikx, we obtain

ρnφ1 = −pv ⇒ φ1 =
2µk2

ρn
Aent+ky+ikx. (14.1.21)

Given φ1, the correction η1 of η can be computed from the equation nη = ∂φ1/∂y.
This calculation shows that the velocity uv associated with the pressure correction is irrotational. The pres-

sure correction (14.1.19) is proportional to µ and it induces a correction φ1 given by (14.1.21), which is also
proportional to µ. The shear stress computed from uv = ∇φ1 is then proportional to µ2. To balance this
non-physical shear stress, one can add a pressure correction proportional to µ2, which will in turn induce a
correction for the velocity potential proportional to µ2. One can continue to build higher order corrections and
they will all be irrotational. The final velocity potential has the following form

φ = (A + A1 + A2 + · · · )ent+ky+ikx, (14.1.22)

where A1 ∼ µ, A2 ∼ µ2... Thus the VCVPF theory is an approximation to the exact solution based on solely
potential flow solutions, but the normal stress condition and n are not corrected.

Prosperetti (1976) considered viscous effects on standing free gravity waves using the same governing equa-
tions (14.1.7) and (14.1.8) for the viscous correction terms. If we adapt our VCPVF method to treat standing
waves represented by the potential φ = k−1(da/dt)eky cos kx, we can obtain −pv = 2µk(da/dt)eky cos kx, which
is exactly the same pressure correction obtained by Prosperetti (1976) using a different method.

14.1.3 Relation between the pressure correction and Lamb’s exact solution

It has been conjectured and is widely believed (Moore 1963; Harper and Moore 1968; Joseph and Wang 2004)
that a viscous pressure correction arises in the vortical boundary layer at the free surface which is neglected in
the irrotational analysis. However, no viscous pressure correction arises in Lamb’s exact solution. His solution
is given by a potential φ and a stream function ψ:

u =
∂φ

∂x
− ∂ψ

∂y
, v =

∂φ

∂y
+

∂ψ

∂x
,

p

ρ
= −∂φ

∂t
− gy, (14.1.23)

satisfying

∇2φ = 0, ∂ψ/∂t = ν∇2ψ. (14.1.24)

The stream function gives rise to the rotational part of the flow. No pressure term enters into the stream function
equation, as we have shown in the previous section that the only harmonic pressure for the rotational part is
zero. The pressure p comes from Bernoulli’s equation in (14.1.23) and no explicit viscous pressure exists, though
p depends on the viscosity through the velocity potential. Lamb shows that (14.1.24) can be solved with normal
modes

φ = Aekyeikx+nt, ψ = Cemyeikx+nt, m2 = k2 + n/ν, (14.1.25)

where A and C are constants.
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k pv/ρ term1 term2 term 3 term 4
0.01 −2.063× 10−6 −1.325× 10−9+ −2.063× 10−6− −1.325× 10−9 5.300× 10−9 +

ı2.01× 10−4 ı2.01× 10−4 ı5.300× 10−9

0.1 −2.057× 10−4 −7.441× 10−7+ −2.071× 10−4− −7.461× 10−7 2.980× 10−6+
ı0.00358 ı0.00358 ı2.980× 10−6

1 −0.02022 −4.207× 10−4+ −0.02106− −4.186× 10−4 0.001679+
ı0.06272 ı0.06440 ı0.001679

10 −1.881 −0.3131 + ı0.6303 −2.423− ı1.513 −0.1829 1.038 + ı0.8830

Table 14.1. The value of each term in (14.1.30) normalized by AE for SO10000 oil at different wave numbers;
term1 = ∂

(
φJ − φE

)
/∂t, term2 = g(ηJ − ηE), term3 =2ν∂2

(
φJ − φE

)
/∂y2, and term4 = 2ν∂2ψE/∂x∂y.

It is therefore of interest to derive the connection between the viscous pressure correction pv in our VCVPF
theory and Lamb’s exact solution; superscript E represents Lamb’s exact solution and J represent Joseph and
Wang’s VCVPF theory. The irrotational pressure in the two solutions are

pE = −ρ
∂φE

∂t
− ρgηE , pJ

i = −ρ
∂φJ

∂t
− ρgηJ . (14.1.26)

The elevation η is obtained from the kinematic condition at y ≈ 0

∂η

∂t

E

=
∂φE

∂y
+

∂ψE

∂x
,

∂η

∂t

J

=
∂φJ

∂y
. (14.1.27)

The normal stress balance for the two solutions is

TE
yy = −pE + 2µ

∂2φE

∂2y
+ 2µ

∂2ψE

∂x∂y
= 0, (14.1.28)

T J
yy = −pJ

i − pv + 2µ
∂2φJ

∂2y
= 0. (14.1.29)

Therefore TE
yy − T J

yy = 0 and we can obtain

pv

ρ
=

∂
(
φJ − φE

)

∂t
+ g(ηJ − ηE) + 2ν

∂2
(
φJ − φE

)

∂y2
− 2ν

∂2ψE

∂x∂y
. (14.1.30)

The amplitude A for the potential is different in Lamb’s exact solution and in VCPVF:

φE = AEent+ky+ikx, φJ = AJent+ky+ikx, AE 6= AJ . (14.1.31)

To make the two solutions comparable, we compute the relation between AE and AJ by equating the dissipation
evaluated using Lamb’s exact solution and evaluated using VCVPF. In Table 14.1 we list the values of each
term in (14.1.30) normalized by AE . It seems that the term g(ηJ − ηE) gives the most important contribution
to pv, but the other terms are not negligible.

14.1.4 Comparison of the decay rate and wave-velocity given by the exact solution, VPF and

VCVPF

When the surface tension is ignored, Lamb’s exact solution gives rise to the following dispersion relation:

n2 + 4νk2n + 4ν2k4 + gk = 4ν2k3
√

k2 + n/ν. (14.1.32)

Lamb considered the solution of (14.1.32) in the limits of small k and large k. When k ¿ kc = (g/ν2)1/3, he
obtained approximately

n = −2νk2 ± ik
√

g/k, (14.1.33)

which gives rise to the decay rate –2νk2, in agreement with the dissipation result, and the wave-velocity
√

g/k,
which is the same as the wave-velocity for inviscid potential flow. When k À kc = (g/ν2)1/3, Lamb noted that
the two roots of (14.1.32) are both real. One of them is

n1 = − g

2νk
, (14.1.34)
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and the other one is

n2 = −0.91νk2. (14.1.35)

Lamb pointed out n1 is the more important root because the motion corresponding to n2 dies out very rapidly.

14.1.4.1 VPF results

Joseph & Wang (2004) treated this problem using VPF and obtained the following dispersion relation

n2 + 2νk2n + gk = 0. (14.1.36)

When k < kc = (g/ν2)1/3, the solution of (14.1.36) is

n = −νk2 ± ik
√

g/k − ν2k2. (14.1.37)

We note that the decay rate –νk2 is half of that in (14.1.33) and the wave-velocity
√

g/k − ν2k2 is slower than
the inviscid wave-velocity. When k > kc = (g/ν2)1/3, the two roots of (14.1.36) are both real and they are

n = −νk2 ±
√

ν2k4 − gk. (14.1.38)

If k À kc = (g/ν2)1/3, the above two roots are approximately

n1 = − g

2νk
, (14.1.39)

and

n2 = −2νk2 +
g

2νk
. (14.1.40)

We note that (14.1.39) is the same as (14.1.34), and the magnitude of (14.1.40) is approximately twice of
(14.1.35).

14.1.4.2 VCVPF results

Joseph & Wang (2004) computed a pressure correction and added it to the normal stress balance to obtain

n2 + 4νk2n + gk = 0, (14.1.41)

which is the dispersion relation for VCVPF theory. When k < k′c = (g/4ν2)1/3, the solution of (14.1.41) is

n = −2νk2 ± ik
√

g/k − 4ν2k2. (14.1.42)

We note that the decay rate –2νk2 is the same as in (14.1.33) and the wave-velocity
√

g/k − 4ν2k2 is slower
than the inviscid wave-velocity. When k > k′c =(g/4ν2)1/3, the two roots of (14.1.41) are both real and they are

n = −2νk2 ±
√

4ν2k4 − gk. (14.1.43)

If k À k′c = (g/4ν2)1/3, the above two roots are approximately

n1 = − g

4νk
, (14.1.44)

and

n2 = −4νk2 +
g

4νk
. (14.1.45)

We note that (14.1.44) is half of (14.1.34), and the magnitude of (14.1.45) is approximately four times of
(14.1.35).
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Fluid water glycerin SO10000 –
ν(m2/s) 10−6 6.21× 10−4 1.03× 10−2 10
kc(1/m) 21399.7 294.1 45.2 0.461

Table 14.2. The values for the cutoff wave number kc for water, glycerin, SO10000 oil and the liquid with ν=
10 m2/s. kc decreases as the viscosity increases.
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Fig. 14.1. Decay rate −Re(n) vs. wave number k for water, ν = 10−6 m2/s. Re(n) is computed for the exact solution
from (14.1.32), for VPF from (14.1.36) and for VCVPF from (14.1.41). When k < kc, the decay rate −2νk2 for VCVPF
is in good agreement with the exact solution, whereas the decay rate −νk2 for VPF is only half of the exact solution.
When k > kc, n has two real solutions in each theory. In this figure, we plot the decay rate n1 corresponding to (14.1.34),
(14.1.39) and (14.1.44). The exact solution can be approximated by −g/(2νk); the decay rate −g/(2νk) for VPF is in
agreement with the exact solution, whereas the decay rate −g/(4νk) for VCVPF is only half of the exact solution.

14.1.4.3 Comparison of the exact and purely irrotational solutions

We compute the solution of (14.1.32) and compare the real and imaginary part of n with those obtained by
solving (14.1.36) and (14.1.41). Water, glycerin and SO10000 oil, for which the kinematic viscosity is 10−6,
6.21× 10−4, and 1.03× 10−2 m2/s, respectively, are chosen as examples. Figures 14.1 and 14.2 show the decay
rate −Re(n) for water; the root n1 when k > kc is shown in figure 14.1 and the root n2 in figure 14.2. The
imaginary part of n, i.e. the wave-velocity multiplied by k, is plotted in figure 14.3 for water. For glycerin and
SO10000 oil (figures 14.4 and 14.5), we only plot the decay rate corresponding to the more important root n1;
the plots for the root n2 and the wave-velocity are omitted. Figure 14.6 shows the decay rate corresponding
to the root n1 for ν = 10 m2/s, which is 1000 times more viscous than SO10000 oil; the comparison between
the exact solution and VPF, VCVPF is still excellent. The cutoff wave number kc = (g/ν2)1/3 decreases as the
viscosity increases. In Table 14.2 we list the values of kc for water, glycerin, SO10000 oil and the liquid with ν=
10 m2/s. In practice waves associated with different wave numbers may exist simultaneously. For very viscous
fluids, kc is small and the majority of the wave numbers are above kc, therefore the motion of monotonic decay
dominates; for less viscous fluids, the motion of progressive waves may dominate.

14.1.5 Why does the exact solution agree with VCVPF when k < kc and with VPF when k > kc?

Our VCVPF solution and Lamb’s dissipation calculation are based on the assumption that the energy equation
(14.1.17) for the exact solution is well approximated by an irrotational solution. To verify this, we computed
and compared the rates of change of the kinetic energy, the potential energy and dissipation terms in (14.1.17)
for Lamb’s exact solution and for the purely irrotational part of his solution. The agreement is excellent when
k < kc. This shows that the vorticity may be neglected in the computation of terms in the energy balance when
k < kc, and is consistent with results given in §14.1.4 which demonstrate that the decay rates from VCVPF
and the dissipation calculation agree with the exact solution when k is small. The agreement is poor for k in
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Fig. 14.2. Decay rate −Re(n) vs. wave number k for water, ν = 10−6 m2/s. Re(n) is computed for the exact solution
from (14.1.32), for VPF from (14.1.36) and for VCVPF from (14.1.41). When k > kc, n has two real solutions in each
theory. In this figure, we plot the decay rate n2 corresponding to (14.1.35), (14.1.40) and (14.1.45). The decay rate for
the exact solution can be approximated by −0.91νk2; the decay rate ≈ −2νk2 for VPF is closer to the exact solution
than the decay rate ≈ −4νk2 for VCVPF.
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Fig. 14.3. Im(n), i.e. the wave-velocity multiplied by k, vs. wave number k for water, ν=10−6m2/s. Im(n) is computed
for the exact solution from (14.1.32), for VPF from (14.1.36) and for VCVPF from (14.1.41). When k < kc, the three
theories give almost the same wave-velocity. When k > kc, all the three theories give zero imaginary part of n.

the vicinity of kc, therefore the decay rates from VCVPF deviate from the exact solution near kc as shown in
figures 14.1-14.6.

When k is much larger than kc, the energy equation is not well approximated by the irrotational part of the
exact solution. However, this result does not mean that the vorticity is important. Lamb pointed out m ≈ k

when k is large, which is confirmed in our calculation. It follows that the vorticity of the exact solution is

∇2ψ =
(
m2 − k2

)
Cemy+ikx+nt ≈ 0; (14.1.46)

the vorticity is negligible when k is large. The result that the wave is nearly irrotational for large k was also
pointed out by Tait (1890). Consequently, the decay rate −g/(2νk) from VPF is in good agreement with the
exact solution and no pressure correction is needed.
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Fig. 14.4. Decay rate −Re(n) vs. wave number k for glycerin, ν = 6.21 × 10−4m2/s. Re(n) is computed for the exact
solution from (14.1.32), for VPF from (14.1.36) and for VCVPF from (14.1.41). When k < kc, the decay rate −2νk2 for
VCVPF is in good agreement with the exact solution, whereas the decay rate −νk2 for VPF is only half of the exact
solution. When k > kc, n has two real solutions in each theory. In this figure, we plot the decay rate n1 corresponding
to (14.1.34), (14.1.39) and (14.1.44). The decay rate for the exact solution can be approximated by −g/(2νk); the decay
rate −g/(2νk) for VPF is in agreement with the exact solution, whereas the decay rate −g/(4νk) for VCVPF is only
half of the exact solution.
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Fig. 14.5. Decay rate −Re(n) vs. wave number k for SO10000 oil, ν = 1.03×10−2 m2/s. Re(n) is computed for the exact
solution from (14.1.32), for VPF from (14.1.36) and for VCVPF from (14.1.41). When k < kc, the decay rate −2νk2 for
VCVPF is in good agreement with the exact solution, whereas the decay rate −νk2 for VPF is only half of the exact
solution. When k > kc, n has two real solutions in each theory. In this figure, we plot the decay rate n1 corresponding
to (14.1.34), (14.1.39) and (14.1.44). The decay rate for the exact solution can be approximated by −g/(2νk); the decay
rate −g/(2νk) for VPF is in agreement with the exact solution, whereas the decay rate −g/(4νk) for VCVPF is only
half of the exact solution.

14.1.6 Conclusion and discussion

The problem of decay of free gravity waves due to viscosity was analyzed using two different theories of viscous
potential flow, VPF and VCVPF. The pressure correction leads to a hierarchy of potential flows in powers of
viscosity. These higher order contributions vanish more rapidly than the principal correction which is propor-
tional to µ. The higher order corrections do not have a boundary layer structure and may not have a physical
significance.

The irrotational theory is in splendid agreement with Lamb’s exact solution for all wave numbers k except
for those in a small interval around kc where progressive waves change to monotonic decay. VCVPF agrees with
Lamb’s solution when k < kc (progressive waves) and VPF agrees with Lamb’s exact solution when k > kc

(monotonic decay). The cutoff wave number kc = (g/ν2)1/3 decreases as the viscosity increases. In practice
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Fig. 14.6. Decay rate −Re(n) vs. wave number k for ν=10 m2/s. Re(n) is computed for the exact solution from (14.1.32),
for VPF from (14.1.36) and for VCVPF from (14.1.41). When k < kc, the decay rate −2νk2 for VCVPF is in good
agreement with the exact solution, whereas the decay rate −νk2 for VPF is only half of the exact solution. When k > kc,
n has two real solutions in each theory. In this figure, we plot the decay rate n1 corresponding to (14.1.34), (14.1.39) and
(14.1.44). The decay rate for the exact solution can be approximated by −g/(2νk); the decay rate −g/(2νk) for VPF is
in agreement with the exact solution, whereas the decay rate −g/(4νk) for VCVPF is only half of the exact solution.

waves associated with different wave numbers may exist simultaneously. For very viscous fluids, kc is small and
the majority of the wave numbers are above kc, therefore the motion of monotonic decay dominates; for less
viscous fluids, the motion of progressive waves may dominate.

There is a boundary layer of vorticity associated with the back and forth motion of the progressive waves. The
confined vorticity layer has almost no effect on the solution except for k near kc. There is no explicit pressure
correction in the exact solution. The vortical part of the exact solution does not generate a pressure correction;
the pressure depends on the viscosity through the velocity potential and the surface elevation; it is related to
the potential and vortical parts of the exact solution in a complicated way. The vortical part is not dominant
and the pressure correction is not primarily associated with a boundary layer [see (14.1.30) and Table 14.1].

The analysis of capillary instability of liquid in gas (Wang, Joseph & Funada 2005) is very much like the
analysis of the decay of free gravity waves. The purely potential flow analysis is in splendid agreement with
Tomotika’s (1935) exact solution which has no explicit dependence on viscous pressure. In the case of capillary
instability, the best result is based on VCVPF because the short waves which give rise to a sluggish decay in
Lamb’s problem are stabilized by surface tension.

14.1.7 Quasipotential approximation – vorticity layers

A tractable theory for weakly damped, nonlinear Stokes waves was formulated by Ruvinsky and Freidman
(1985a, b; 1987). This theory has come to known as the quasi-potential approximation. The approximation is
based on a Helmholtz decomposition

u = ∇φ + v (14.1.47)

where v is the rotational part. They apply a boundary-layer approximation to v and obtain the following system
of coupled equations

∇2φ = 0,
∂φ

∂z
→ 0, as z →∞ (14.1.48)

and, on z = η

∂φ

∂t
+

1
2
|∇φ|2 + gη − γ

ρ
κ + 2ν

∂2φ

∂z2
= 0, (14.1.49)

∂η

∂t
+

∂η

∂x

∂φ

∂x
=

∂φ

∂z
+ vz (14.1.50)
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where κ =
(
∂2η/∂x2

)
/

(
1 + (∂η/∂x)2

)3/2

and vz is the vertical component of the rotational velocity satisfying

∂vz

∂t
= 2ν

∂3φ

∂x2∂z
. (14.1.51)

These are three equations in φ, η and vz. The derivation of these is such that vz is assumed small. This is one
reason why the quasipotential approximation is said to model weak effects of viscosity.

Spivak et al. 2002 applied the quasi-potential methodology, for a slightly viscous fluid and small surface
elasticity, to numerically compute typical free surface profiles induced by a moving pressure distribution under
the combined effects of gravity, viscosity, surface tension and film elasticity.

Ruvinsky, Feldstein and Freidman 1991 carried out simulations of ripple excitation by steep gravity capillary
waves. They note that when describing the capillary-gravity excitation phenomenon, dissipative processes must
be taken into account. “In an exact formulation, this problem has not yet been solved even with a computer.”
To solve their problem they used the quasi-potential methodology.

Longuet-Higgins 1992 gave a simplified derivation of the quasi-potential methodology in an application to
the theory of weakly damped Stokes waves. He gave a simpler form of the equations by applying the boundary
conditions on a slightly displaced surface.

Are the principal effects of viscosity associated with vorticity or are they purely irrotational? In his 1992
paper Longuet-Higgins says that “... Lamb 1932 ... showed that for most wavelengths of interest the effects
of viscosity on linear, deep-water waves are confined to a thin vortex layer near the free surface, of thickness
D0 = (2ν/γ)1/2 (where ν denotes the kinematic viscosity and σ the radian frequency). When kD0 ¿ 1 (k the
wavenumber) we may say that the waves are weakly damped.”

The foregoing statement by Longuet-Higgins is not correct. The effects of viscosity are not confined to a thin
vortex layer; the main effects of viscosity on the decay of waves are irrotational. Typically the effects of viscosity
arising from the boundary layer at a gas-liquid surface are small because the rates of strain in these layers are
no larger than in the irrotational flow and the layer thickness is small. In a later work, Longuet-Higgins 1997
(§14.3.2) calculated the decay of nonlinear capillary-gravity waves by computing the viscous dissipation of the
irrotational flow without vorticity or vorticity layers.

14.2 Viscous decay of capillary waves on drops and bubbles

Now we consider the problem of decay of capillary waves on free surfaces of spherical form. Free-surfaces are
gas-liquid surfaces in which the dynamical effects of the gas is neglected. A drop is a liquid sphere with gas
outside; a bubble is a gas sphere with liquid outside.

We may consider two types of waves on a spherical surface, capillary waves and gravity waves. Capillary
waves are driven by surface tension. Gravity waves are driven by gravity; in the case of spheres some form of
central gravity law must be adopted.

In the limit of a large radius of the spherical surface we obtain a plane problem such as the problem of free
gravity waves considered in the previous section. The problem of decay of capillary waves or capillary-gravity
waves on plane or spherical surfaces can be considered.

In the last section we studied the decay of gravity waves on a plane free surface. The short waves decay
monotonically and are well approximated by VPF. The long waves are progressive and the decay of these
progressive waves are well approximates by VCVPF. Here we shall show that the same result holds for capillary
waves and hence may be expected for capillary-gravity waves.

In the sequel, we shall confine our attention to capillary waves on a spherical surface. The problem of the
viscous decay of gravity waves on a globe was considered by Lamb 1932.

The following citation from Lamb §355 makes the point about viscosity and irrotationality in oscillations
of a liquid globe. He gives the formula for decay constant τ for exp(−t/τ) from the dissipation analysis τ =
a2/(n− 1)(2n + 1)ν and says that

the most remarkable feature of this result is the excessively minute extent to which the oscillations of a globe of moderate
dimensions are affected by such a degree of viscosity as is ordinarily met in nature. For a globe of the size of the earth,
and of the same kinematic viscosity as water, we have, on the cgs system, a = 6.37× 108, ν = 0.0178 and the value of τ
for the gravitational oscillation of longest period (n = 2) is therefore

τ = 1.44× 1011 years.
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Even with the value found by Darwin (1878) for the viscosity of pitch near the freezing temperature, viz µ = 1.3×108×g,
we find, taking g = 980, the value

τ = 180 h

for the modules of decay of the slowest oscillation of a globe the size of the earth, having the density of water and the
viscosity of pitch. Since this is still large compared with the period of 1 h 34 min found in Art 262, it appears that such
a globe would oscillate almost like a perfect fluid.

Padrino et al. 2006 have shown how to improve Lamb’s 1932 analysis of dissipation (DM). Lamb’s analysis
predicts the effects of viscosity on the rate of decay of the waves but not on the frequency. The effects of viscosity
on the frequency of irrotational waves were obtained using VCVPF. Furthermore, it was shown that DM and
VCVPF give the same dispersion relation. This result goes farther than Lamb’s, since the effects of viscosity on
the wave frequency can be obtained from DM.

The analysis in this chapter is developed for the problem of decay of irrotational waves on an interface
between two liquids. This kind of problem is not perfectly suited to analysis based on purely irrotational flow;
the analysis is in §16.1 16.1 of capillary instability of one liquid in another shows that vorticity is important
for long waves but less important for short waves. The results we need for the free surface problems in which
purely irrotational theories give excellent results will be obtained as limits of two fluid case.

14.2.1 Introduction

A viscous liquid drop surrounded by a quiescent gas or a gas bubble immersed in a viscous liquid tends to an
equilibrium spherical shape if the effects of surface tension are significantly large in comparison with gravitational
effects. When the spherical interface of the bubble or drop is slightly perturbed by an external agent, the bubble
or drop will recover their original spherical configuration through an oscillatory motion of decreasing amplitude.
In the case of the drop, depending upon its size and physical properties, the return to the spherical shape may
consist of monotonically decaying standing waves. For a drop immersed in another viscous liquid, decaying
oscillatory waves always occur at the liquid-liquid interface.

Early studies on the subject for inviscid liquids are due to Kelvin (1890) and Rayleigh (1896). The former
obtained an expression for the frequencies of small oscillations of an inviscid liquid globe that tends to the
spherical shape by the existence of an internal gravitational potential in the absence of surface tension. The
latter included surface tension instead of gravitation. Lamb (1881, 1932) considered the effect of viscosity on
the rate of decay of the oscillations of a liquid globe assuming an irrotational velocity field using the dissipation
method. Lamb’s result is independent of the nature of the forces that drive the interface to the spherical shape.
Chandrasekhar (1959) studied fully viscous effects on the small oscillations of a liquid globe with self-gravitation
forces neglecting surface tension. The same form of the solution was also obtained by Reid (1960) when surface
tension instead of self-gravitation is the force that tends to maintain the spherical shape. A good account of
both solutions is presented in the treatise by Chandrasekhar (1961). Following Lamb’s reasoning, Valentine,
Sather & Heideger (1965) applied the dissipation method to the case of a drop surrounded by another viscous
liquid.

A comprehensive analysis of viscous effects in a drop embeded in liquid was presented by Miller & Scriven
(1968) who also included rheological properties of the interface. The limiting cases of a drop in a vacuum or a
bubble surrounded by a liquid were considered. However, no numerical results were given. Prosperetti (1980a)
presented numerical results for the eigenvalue problem for modes ` = 2 to ` = 6. He showed that the spectrum is
continuous when the liquid outside is unbounded. Previous studies relied on normal-modes. Prosperetti (1977,
1980b) considered the initial-value fully-viscous problem posed by small perturbations about the spherical shape
of a drop or a bubble in which no ‘a priori’ form of the time dependence is assumed. The solution showed that
the normal-mode results are recovered for large times.

Finite size disturbances have received some attention. Tsamopoulus & Brown (1983) considered the small-
to-moderate-amplitude inviscid oscillations using perturbations methods. Lundgren & Mansour (1988) and
Patzek et al. (1991) studied the inviscid problem posed by large oscillations applying the boundary-integral
and the finite-element methods, respectively. Lundgren & Mansour also investigated the effect of a ‘small’
viscosity on drop oscillations. Basaran (1992) carried out the numerical analysis of moderate-to-large-amplitude
axisymmetric oscillations of a viscous liquid drop.

In this section, approximate solutions of the linearized problem for small departures from the spherical shape
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for a drop surrounded by a gas of negligible density and viscosity or a bubble embedded in a liquid are sought
using VPF and VCVPF. These solutions are compared with each other, with IPF, and with exact solutions.

14.2.2 VPF analysis of a single spherical drop immersed in another fluid

Consider a single spherical drop of radius a filled with a fluid with density ρl and viscosity µl immersed in
another fluid with density ρa and viscosity µa. The coefficient of interfacial tension is denoted as γ. Both fluids
are incompressible and Newtonian with gravity neglected. At the basic or undisturbed state both fluids are at
rest and the pressure jump across the spherical interface is balanced by surface tension.

When the basic state is disturbed with small irrotational perturbations, the resulting velocity field can be
written as the gradient of a potential. The disturbance of the spherical interface is denoted by ζ ≡ ζ(t, θ, ϕ);
the interface position is r = a + ζ.

For irrotational flow the incompressible Navier–Stokes equations reduce to the Bernoulli equation. The re-
sulting pressure field can be decomposed into the undisturbed pressure plus a ‘small’ disturbance.

After subtracting the basic state from the disturbed fluid motion and performing standard linearization of
the resulting expressions by neglecting products of the small fluctuations and products of their derivatives, one
obtains, for the interior motion (0 ≤ r < a),

∇2φl = 0, (14.2.1)

pl = −ρl
∂φl

∂t
, (14.2.2)

and, for the exterior motion (a < r < ∞),

∇2φa = 0, (14.2.3)

pa = −ρa
∂φa

∂t
. (14.2.4)

where φ is the velocity potential and p is the pressure disturbance. For irrotational motion, the boundary
conditions at the interface require the continuity of the radial velocity and the balance of the normal stresses
by interfacial tension. For small departures about the spherical shape, a >> ζ and the boundary conditions can
be written as

ul
r = ua

r , (14.2.5)

for the continuity of the radial velocity at r = a and
[[
−p + 2µ

∂ur

∂r

]]
=

γ

a2
(L2 − 2)ζ, (14.2.6)

for the balance of normal stresses across the interface r = a, written in linearized form, accounting for the
pressure balance in the undisturbed state. The notation [[·]] = (·)r=b+−(·)r=b− is being used to denote the jump
across the interface located at r = a. The linearized kinematic condition is

ur =
∂ζ

∂t
, (14.2.7)

at r = a with, ur = ∂φ/∂r. The R.H.S. of (14.2.6) is obtained from the linearized form of the divergence of
the outward unit normal vector to the disturbed interface for the interior fluid. The operator L2 is also known
as the spherical Laplacian and emerges, for instance, in the solution of the Laplace equation using spherical
coordinates by applying the method of separation of variables. It is defined as

− L2ζ =
1

sin θ

∂

∂θ

(
sin θ

∂ζ

∂θ

)
+

1
sin2 θ

∂2ζ

∂ϕ2
. (14.2.8)

Solutions of (14.2.1) and (14.2.3) for the interior and exterior of a sphere, respectively, can be sought in the
form

φl(r, θ, ϕ, t) =
∞∑

`=0

A`

( r

a

)`

e−σ`tS`(θ, ϕ) + c.c. 0 ≤ r < a, (14.2.9)
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φa(r, θ, ϕ, t) =
∞∑

`=0

C`

( r

a

)−`−1

e−σ`tS`(θ, ϕ) + c.c. a < r < ∞, (14.2.10)

such that φl is finite at r = 0 and φa remains bounded as r →∞; σ` is an eigenvalue to be determined. It will
be shown that σ` does not depend upon the index m. The symbol c.c. designates the complex conjugate of the
previous term. The functions S` are the surface harmonics of integral order

S`(θ, ϕ) =
∑̀

m=−`

B`mY m
` (θ, ϕ), (14.2.11)

which, with the choice B̄`m = B`,−m, are real functions. The functions Y m
` (θ, ϕ) are known as the spherical

harmonics (Strauss 1992)

Y m
` (θ, ϕ) = P

|m|
` (cos θ)eimϕ, (14.2.12)

where P
|m|
` are the associated Legendre functions. The spherical harmonics satisfy

L2Y m
` (θ, ϕ) = `(` + 1)Y m

` (θ, ϕ), (14.2.13)

for ` = 0, 1, 2, . . . and m = −`, . . . ,−1, 0, 1, . . . , `. The operator L2 has been defined in (14.2.8). Expressions
for the radial components of the velocity can be obtained from (14.2.9) and (14.2.10) by applying ur = ∂φ/∂r.
Then, the pressure disturbances pl and pa can be obtained from (14.2.2) and (14.2.4).

Let us write the disturbance of the spherical shape of the interface as a series expansion,

ζ(θ, ϕ, t) =
∞∑

`=0

ζ`(θ, ϕ)e−σ`t + c.c.. (14.2.14)

By considering ζ`(θ, ϕ) = ζ0`S`(θ, ϕ), where ζ0` is a constant, and using conditions (14.2.5) and (14.2.7) one
obtains

− σ`ζ0` =
(

`

a

)
A`, σ`ζ0` =

(
` + 1

a

)
C`. (14.2.15)

In addition, we have

(L2 − 2)ζ =
∞∑

`=0

{`(` + 1)− 2}ζ0`e−σ`tS` + c.c. =
∞∑

`=0

(` + 2)(`− 1)ζ0`e−σ`tS` + c.c., (14.2.16)

by virtue of (14.2.13) and (14.2.14). Substituting normal-mode expressions for ur and p, obtained using (14.2.9)
and (14.2.10), into the L.H.S. of (14.2.6), applying the result (14.2.16) and replacing A` and C` with (14.2.15)
yields the dispersion relation for the eigenvalue σ`, which, after some manipulation, may be written as

(
ρl(` + 1) + ρa`

)
σ2 −

(
2µl

a2
(` + 1)`(`− 1) +

2µa

a2
(` + 2)(` + 1)`

)
σ

+
γ

a3
(` + 2)(` + 1)`(`− 1) = 0, (14.2.17)

for ` = 0, 1, 2, . . ., where the subscript ` has been dropped from σ for convenience. Expression (14.2.17) may be
written in dimensionless form with the following choices of dimensionless parameters (Funada & Joseph 2002),

l̂ =
ρa

ρl
, m̂ =

µa

µl
, σ̂ = σ

a

U
with U =

√
γ

ρla
, (14.2.18)

In dimensionless form, expression (14.2.17) becomes,
(
(` + 1) + l̂`

)
σ̂2

` −
2√
J

((` + 1)`(`− 1) + m̂(` + 2)(` + 1)`) σ̂

+(` + 2)(` + 1)`(`− 1) = 0 (14.2.19)

with a Reynolds number

J =
ρlV a

µl
= Oh2 with V =

γ

µl
, (14.2.20)
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where Oh is the Ohnesorge number. Therefore, the eigenvalue σ̂ for viscous potential flow (VPF) can be
computed from

σ̂ =
(` + 1)`(`− 1) + m̂(` + 2)(` + 1)`

√
J

(
(` + 1) + l̂`

)

±

√√√√
[

(` + 1)`(`− 1) + m̂(` + 2)(` + 1)`√
J((` + 1) + l̂`)

]2

− (` + 2)(` + 1)`(`− 1)

(` + 1) + l̂`
, (14.2.21)

which has two different real roots or two complex roots. In the former case, the interface does not oscillate
and the disturbances are damped. In the latter case, σ̂ = σ̂R ± iσ̂I where the real part represents the damping
coefficient while the imaginary part corresponds to the frequency of the damped oscillations.

When both fluids are considered inviscid (IPF), expression (14.2.21) simplifies to (m̂ → 0 and
√

J →∞)

σ̂ = ±i

√
(` + 2)(` + 1)`(`− 1)

(` + 1) + l̂`
. (14.2.22)

The same expression found by Lamb (1932).

Drop: If the external fluid has negligible density and viscosity (l̂ → 0 and m̂ → 0), a drop surrounded by a
dynamically inactive ambient fluid is obtained, in which case expression (14.2.21) becomes,

σ̂ =
`(`− 1)√

J
±

√[
`(`− 1)√

J

]2

− (` + 2)`(`− 1). (14.2.23)

Moreover, for an inviscid drop
√

J →∞ and (14.2.23) reduces to

σ̂D = ±i
√

(` + 2)`(`− 1) = ±iσ̂∗D, (14.2.24)

and the drop oscillates about the spherical form. This result was also obtained by Lamb (1932), p. 475.
Using the expression obtained from VPF in (14.2.23), one can readily find two roots for the rate of decay as

J → 0 in the drop (e.g., high viscosity). The relevant root on physical grounds is given by

σ̂ = σ̂∗2D

√
J

1
2`(`− 1)

. (14.2.25)

In the case J → ∞ (low viscosity, say), the eigenvalues are complex, and then one encounters progressive
decaying waves. These eigenvalues behave as

σ̂ =
`(`− 1)√

J
± iσ̂∗D. (14.2.26)

Bubble: By taking ρl → 0 and µl → 0 in (14.2.17), the eigenvalue relation for a bubble of negligible density
and viscosity embedded in a liquid is obtained for VPF

σ̂ =
(` + 2)(` + 1)√

J
±

√[
(` + 2)(` + 1)√

J

]2

− (` + 2)(` + 1)(`− 1), (14.2.27)

where J is defined in terms of the liquid properties. In the limit of an inviscid external fluid
√

J → ∞ in
(14.2.27) and we obtain

σ̂B = ±i
√

(` + 2)(` + 1)(`− 1) = ±iσ̂∗B , (14.2.28)

and the bubble oscillates about the spherical shape without damping. This expression was obtained by Lamb
(1932).

The dispersion relation obtained from VPF in (14.2.27) can be used to study the trend followed by the
disturbances when J → 0 in the case of the bubble. For this case, monotonically decaying waves are predicted
with decay rate

σ̂ = σ̂∗2B

√
J

1
2(` + 2)(` + 1)

. (14.2.29)
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In the case of J →∞, VPF analysis for the bubble yields

σ̂ =
(` + 2)(` + 1)√

J
± iσ̂∗B . (14.2.30)

Therefore, progressive decaying waves are found.

14.2.3 VCVPF analysis of a single spherical drop immersed in another fluid

For irrotational motion, continuity of shear stress at the drop‘s interface is not satisfied. Following Wang et
al (2005b), a pressure correction pv can be added to the irrotational pressure pi in order to compensate for
this discontinuity. They showed that the power of the viscous pressure correction pv equals the power of the
irrotational shear stress

∫

A

(−pv
l + pv

a)undA =
∫

A

(τ s
l us

l − τ s
aus

a)dA (14.2.31)

where the continuity of the normal velocity un = u · n1 at the interface A is considered. We use the notation

τSuS ≡ n1 ·T · (u− unn1) ,

where n1 is the outward unit normal vector at the interface for the interior fluid and T is the stress tensor.
For small disturbances, after linearization, the pressure corrections pv

l and pv
a are harmonic functions, such

that

∇2pv
l = 0 and ∇2pv

a = 0 (14.2.32)

For the interior and exterior of a sphere of radius a, respectively, the following expressions solve (14.2.32)

− pv
l =

∞∑

k=0

Dk

( r

a

)k

e−σktSk(θ, ϕ) + c.c., (14.2.33)

and

− pv
a =

∞∑

k=0

Gk

( r

a

)−k−1

e−σktSk(θ, ϕ) + c.c., (14.2.34)

where Dk and Gk are constants. The balance of the normal stress at the sphere’s interface r = a is modified by
adding the extra-pressures pv

l and pv
a

− pi
a − pv

a + pi
l + pv

l + 2µa
∂2φa

∂r2
− 2µl

∂2φl

∂r2
=

γ

a2

(
L2 − 2

)
ζ. (14.2.35)

Substitution into (14.2.35) of the solutions for pv
l (14.2.33) and pv

a (14.2.34) and using (14.2.9), (14.2.10),
(14.2.16) and the normal-mode expression for the irrotational pressure disturbance as in §2 yields,

(
ρl(` + 1) + ρa`

)
A`σ

2
` − (` + 1)(D` −G`)σ`

−
(

2µl

a2
(` + 1)`(`− 1) +

2µa

a2
(` + 2)`(` + 1)

)
A`σ` +

γ

a3
(` + 2)(` + 1)`(`− 1)A` = 0, (14.2.36)

where the relation `A` = −(` + 1)C`, readily obtained from (14.2.15), has been used. For a sphere of radius
a, the integrals in (14.2.31) can be written in terms of the velocity and shear stress components in spherical
coordinates

∫

A

(−pv
l + pv

a)urdA =
∫

A

(
τ l
rθu

l
θ + τ l

rϕul
ϕ − τa

rθu
a
θ − τa

rϕua
ϕ

)
dA, (14.2.37)

with ua
r = ul

r = ur by continuity of normal velocities at r = a. The velocity components in spherical coordinates
can be computed from well-known formulas for the gradient of a scalar field. Then, the shear stress components
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in spherical coordinates are found from standard expressions for a Newtonian fluid. By applying this procedure,
the L.H.S. of (14.2.37) becomes,

∫

A

(−pv
l + pv

a)urdA = 2Re
[ ∞∑

`=0

∞∑

k=0

a2(D` −G`)e−σ`t

(
k

a

)(
Ake−σkt

+ Āke−σ̄kt

) ∫ 2π

0

∫ π

0

S`Sk sin θdθdϕ

]
, (14.2.38)

where Re[z] delivers the real part of a complex number z. The equality in (14.2.38) follows from the formula
∫

A

(
B + B̄

) (
C + C̄

)
dA = 2

∫

A

Re
[
BC + BC̄

]
dA = 2Re

[∫

A

(
BC + BC̄

)
dA

]
(14.2.39)

where A represents the domain of integration (e.g., volume) and B and C are complex fields. This formula is
also used in the integration of the right-hand side of (14.2.37). Using the definition of S` in (14.2.11), the double
integral in (14.2.38) can be written as

∫ 2π

0

∫ π

0

S`Sk sin θdθdϕ =
∑̀

m=−`

k∑

j=−k

B`mB̄kj

∫ 2π

0

∫ π

0

P
|m|
` (cos θ)P |j|k (cos θ)ei(m−j)ϕ sin θdθdϕ, (14.2.40)

since Sk is real (i.e. Sk = S̄k). This integral is zero for all the different duplets (`,m) 6= (k, j). Then, we have

∫ 2π

0

∫ π

0

[S`(θ, ϕ)]2 sin θdθdϕ =
∑̀
m=0

2πF`m

∫ π

0

[Pm
` (cos θ)]2 sin θdθ

=
∑̀
m=0

F`m

[
4π

(2` + 1)
(` + m)!
(`−m)!

]
, (14.2.41)

using a standard result for the integral in the second term. Here, F`m represent real constants. Then, from
(14.2.38) the power of the pressure correction can be expressed as

∫

A

(−pv
l + pv

a)urdA = 2 Re
[ ∞∑

`=0

∑̀
m=0

F`m4πa(D` −G`)e−σ`t(A`e
−σ`t

+ Ā`e
−σ̄`t)

`

(2` + 1)
(` + m)!
(`−m)!

]
. (14.2.42)

Similarly, the right-hand side of (14.2.37) yields,

∫

A

(
τ l
rθu

l
θ + τ l

rϕul
ϕ − τa

rθu
a
θ − τa

rϕua
ϕ

)
dA = 2Re

[ ∞∑

`=0

∞∑

k=0

2
a
A`e

−σ`t

(
µl(`− 1)

+µa
`(` + 2)
(` + 1)

k

(k + 1)

)
(Ake−σkt + Āke−σ̄kt)

∫ 2π

0

∫ π

0

(
sin θ

∂S`

∂θ

∂Sk

∂θ
+

1
sin θ

∂S`

∂ϕ

∂Sk

∂ϕ

)
dθdϕ

]
. (14.2.43)

Using standard formulae (Bowman, Senior & Uslenghi 1987) for the double integral in the right-hand side of
(14.2.43), we find that the power of the shear stress can be expressed as

∫

A

(τ l
rθu

l
θ + τ l

rϕul
ϕ − τa

rθu
a
θ − τa

rϕua
ϕ)dA = 2 Re

[ ∞∑

`=0

∑̀
m=0

F`m
8π

a
A`e

−σ`t(A`e
−σ`t +

+ Ā`e
−σ̄`t)

(
µl(` + 1)(`− 1) + µa

`2(` + 2)
` + 1

)
`

(2` + 1)
(` + m)!
(`−m)!

]
. (14.2.44)

By virtue of (14.2.37), equating (14.2.42) and (14.2.44) yields the relation

D` −G` = 2
A`

a2

(
µl(` + 1)(`− 1) + µa

`2(` + 2)
` + 1

)
. (14.2.45)

Replacing D`−G` from (14.2.45) in (14.2.36) yields the dispersion relation for the complex eigenvalue σ` arising
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from VCVPF (again we drop the subscript ` for convenience),
(

ρl(` + 1) + ρa`

)
σ2 − 2µl

a2
(2` + 1)(` + 1)(`− 1)σ

− 2µa

a2
(2` + 1)(` + 2)`σ +

γ

a3
(` + 2)(` + 1)`(`− 1) = 0. (14.2.46)

In dimensionless form, expression (14.2.46) becomes,
(

(` + 1) + ˆ̀̀
)

σ̂2 − 2√
J

(2` + 1)(` + 1)(`− 1)σ̂

− 2m̂√
J

(2` + 1)(` + 2)`σ̂ + (` + 2)(` + 1)`(`− 1) = 0. (14.2.47)

with eigenvalues

σ̂ =
(2` + 1)(` + 1)(`− 1) + m̂(2` + 1)(` + 2)`

√
J

(
(` + 1) + l̂`

)

±

√√√√
[

(2` + 1)(` + 1)(`− 1) + m̂(2` + 1)(` + 2)`√
J((` + 1) + l̂`)

]2

− (` + 2)(` + 1)`(`− 1)

(` + 1) + l̂`
, (14.2.48)

which has two different real roots or a complex-conjugate pair of roots. The former case corresponds to mono-
tonically decaying waves while the latter implies progressive decaying waves.

Drop: In the case of a drop surrounded by a gas of negligible density and viscosity, we have l̂ → 0 and m̂ → 0
in (14.2.48) and the eigenvalues become,

σ̂ =
(2` + 1)(`− 1)√

J
±

√[
(2` + 1)(`− 1)√

J

]2

− (` + 2)`(`− 1), (14.2.49)

where the dimensionless parameter σ̂ and the Reynolds number J have been defined in (14.2.18) and (14.2.20),
respectively. In the case of progressive waves, the rate of decay (2`+1)(`−1)/

√
J was obtained by Lamb (1932)

in §355 through the dissipation method. In the present calculations, the relation (14.2.49) gives the decay rate
of progressive waves (Im(σ̂) 6= 0) as well as the wave velocity. For Im(σ̂) = 0, the monotonically decay rate for
standing waves including the effect of surface tension is obtained. Expression (14.2.49) can be compared with
(14.2.23) from VPF and (14.2.24) from IPF.

As J → 0, VCVPF produces two roots for the rate of decay from (??); the following gives the lowest rate of
decay,

σ̂ = σ̂∗2D

√
J

1
2(2` + 1)(`− 1)

. (14.2.50)

In the case of J →∞ the eigenvalues are complex,

σ̂ =
(2` + 1)(`− 1)√

J
± iσ̂∗D. (14.2.51)

Hence, one finds progressive–decaying waves. The definition of σ̂∗D is given in (14.2.24).
Prosperetti (1977) studied the initial value problem posed by small departures from the spherical shape of a

viscous drop surrounded by another viscous liquid. In the limiting case of a drop in a vacuum, he found (14.2.49)
in the limit t → 0 if an irrotational initial condition is assumed. We remark that (14.2.49) was obtained here by
a different method. Similarly, in the limiting case of a bubble, Prosperetti’s initial-value-problem analysis with
an irrotational initial condition yields, for t →0, the same dispersion relation as the one obtained from VCVPF
in (??).

Bubble: The dispersion relation from VCVPF for a bubble of negligible density and viscosity immersed in a
viscous liquid can be determined from (14.2.46) taking ρl → 0 and µl → 0, which gives rise to the following
expression for the eigenvalues,

σ̂ =
(2` + 1)(` + 2)√

J
±

√[
(2` + 1)(` + 2)√

J

]2

− (` + 2)(` + 1)(`− 1), (14.2.52)
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with J determined from the liquid properties. In the case of small oscillations, the rate of decay given in (14.2.52)
as (2` + 1)(` + 2)/

√
J is the same as the rate computed by Lamb (1932) using the dissipation method without

the explicit inclusion of the surface tension effects in the formulation.
VCVPF expression (14.2.52) yields the following result as J → 0 (ν →∞, say) for the bubble,

σ̂ = σ̂∗2B

√
J

1
2(2` + 1)(` + 2)

, (14.2.53)

and thus monotonically decaying waves with σ̂∗B defined in (14.2.28).
In the case of J →∞ (ν → 0, say), VCVPF predicts progressive-decaying waves with eigenvalues

σ̂ =
(2` + 1)(` + 2)√

J
± iσ̂∗B . (14.2.54)

14.2.4 Dissipation approximation (DM)

Lamb (1932) applied a dissipation approximation to compute the decay rate for small progressive waves in the
free surface of a liquid spherical drop immersed in gas and a spherical bubble surrounded by liquid. Lamb’s
approach was extended to a drop surrounded by another viscous liquid by Valentine, Sather & Heideger (1965).
We showed in Chapter 12 that in gas-liquid flows VCVPF gives rise to the same results as DM. The construction
of VCVPF theories for progressive waves gives rise to a frequency which depends on viscosity. This dependence
of frequency on viscosity was not obtained either by Lamb or Valentine et al., who assumed the frequency of
an inviscid fluid in his dissipation calculation. In §14.3.1 the correction of frequency due to viscosity using the
dissipation method is calculated for capillary-gravity waves. The same kind of analysis can be applied in the
case of two fluids.

In the case of a viscous liquid drop surrounded by another viscous liquid, addition of the mechanical energy
equations for the interior and exterior domains gives rise to the expression

d

dt

∫

Va

ρa
|ua|2

2
dV +

d

dt

∫

Vl

ρl
|ul|2

2
dV

= −
∫

A

n1 · T a · uadA +
∫

A

n1 · T l · uldA−
∫

Va

2µaDa : DadV −
∫

Vl

2µlDl : DldV. (14.2.55)

where Va and Vl are the volumes occupied by the exterior and interior fluid, respectively; D is the strain-rate
tensor and n1 denotes the outward unit normal for the interior fluid. The last two terms in (14.2.55) represent
the viscous dissipation. The first two integrals in the R.H.S of (14.2.55) can be expanded in terms of the pressure
and viscous-stress components. Then,we assume that continuity of normal velocity and stress and continuity of
tangential velocity and stress are satisfied at the interface r = a and (14.2.55) reduces to

d

dt

∫

Va

ρa
|ua|2

2
dV +

d

dt

∫

Vl

ρl
|ul|2

2
dV

= −
∫

A

γ

a2
(L2 − 2)ζurdA +

∫

A

n1 · 2µaDa · uadA−
∫

A

n1 · 2µlDl · uldA, (14.2.56)

where potential flow is assumed for the entire fluid domain, such that the dissipation volume integrals give rise
to the last to terms in (14.2.56). With |u|2 = u2

r + u2
θ + u2

ϕ and the components of D expressed in spherical
coordinates, such that n1 · 2µD · u = τrrur + τrθuθ + τrϕuϕ computed from potential flow, the integrals in
(14.2.56) can be evaluated (we use the standard results for the double integrals as presented in the VCVPF
calculation). This calculation, which is omitted for brevity, yields the same dispersion relation (14.2.46) obtained
from VCVPF.

14.2.5 Exact solution of the linearized free surface problem

In this section we present the dispersion relation for the effect of viscosity on small oscillations of a drop immersed
in a vacuum and a bubble of negligible density and viscosity embedded in a viscous liquid obtained from the
solution of the linearized equations of motion without the assumption of irrotational flow. The result for the
drop was presented by Reid (1960) whereas the solution for the bubble can be obtained following a similar path.
In both cases, the dispersion relation shall coincide with the corresponding limiting results presented by Miller
and Scriven (1968) and Prosperetti (1980a), who posed and solved the most general two-fluid problem.
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The linearized Navier-Stokes equations govern this problem

ρ
∂u

∂t
= −∇p + µ∇2u, (14.2.57)

with ∇ · u = 0 in 0 ≤ r < a for the drop and in a < r < ∞ for the bubble. Continuity of velocity and shear
stresses at r = a are satisfied.

14.2.5.1 Spherical drop

Reid (1960) obtained the dispersion relation for the eigenvalue σ

α4 = 2q2 (`− 1)

[
` + (` + 1)

q − 2`QJ
`+1/2

q − 2QJ
`+1/2

]
− q4, (14.2.58)

with

QJ
`+1/2(q) = J`+3/2(q)/J`+1/2(q), α2 =

σ∗Da2

ν
= σ̂∗D

√
J,

q2

α2
=

σ

σ∗D
=

σ̂

σ̂∗D
, (14.2.59)

where σ∗D is the frequency of oscillations from inviscid potential flow (IPF) given in (14.2.24). A thorough
discussion on the solution of (14.2.58) is presented by Chandrasekhar (1959, 1961) when q is real. Considering
` fixed, the R.H.S. of (14.2.58) is a function of q, Φ(q) say. The graph of this function on the axis of positive
q reveals that there is an infinite number of intervals where Φ(q) is positive. The first of these intervals, which
contains q = 0, encloses a maximum (α2

max). For α2 < α2
max this first interval gives two real roots of (14.2.58),

which determine the slowest rates of decay. Since α2 = σ̂∗D
√

J , for every mode `, the magnitude of the Reynolds
number J defines the roots. In the other intervals, one has 0 ≤ Φ(q) < ∞. When α2 > α2

max, (14.2.58) admits
complex-conjugate eigenvalues with positive real parts which give the lowest rate of decay; these waves oscillate
as they decay. Results from this dispersion relation are presented and discussed in §14.2.7.

As J → 0, the rate of decay from the exact solution of a drop surrounded by gas behaves as

σ̂ = σ̂∗2D

√
J

2` + 1
2(`− 1)(2`2 + 4` + 3)

. (14.2.60)

From the exact solution given above the behavior of the complex eigenvalue σ for the drop as J →∞ is

σ̂ =
(2` + 1)(`− 1)√

J
± iσ̂∗D. (14.2.61)

These expressions were also obtained by Chandrasekhar (1959, 1961) and Miller & Scriven (1968). The result
given in (14.2.51) from VCVPF is the same as the expression obtained in (14.2.61) from the exact solution.

14.2.5.2 Spherical bubble

A procedure similar to the one applied to the drop gives rise to the following dispersion relation for the bubble

α4 = (` + 2) q2
(2` + 1) q2 − 2 (` + 1) (`− 1)

[
(2` + 1)− qQH

`+1/2

]

(2` + 1) + q2/2− qQH
`+1/2

− q4, (14.2.62)

with

QH
`+1/2 = H

(1)
`+3/2(q)/H

(1)
`+1/2(q), (14.2.63)

and using the relations (??). In these relations, σ∗B from IPF given in (14.2.28) for a bubble is used instead of
σ∗D.

Expression (14.2.62) is the same dispersion relation found by Miller & Scriven (1968). Prosperetti (1980a)
indicates that this dispersion relation only admits complex roots as a consequence of the character of the Hankel
functions. Therefore, for a bubble, only progressive–decaying waves are predicted. For a drop, we recall that
real eigenvalues can be found. Another feature of the dispersion relation is that the solutions occur in conjugate
pairs, as in the drop case, since, for Im(σ) < 0, one can choose the Hankel function of the second kind in (??),
and (14.2.62) is satisfied.

For a gas bubble in a viscous liquid, a real σ can be approximated as J → 0,

σ̂ = σ̂∗2B

√
J

2` + 1
2(2`2 + 1)(` + 2)

, (14.2.64)
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For J →∞, damped-progressive waves take place with eigenvalues

σ̂ =
(2` + 1)(` + 2)√

J
± iσ̂∗B . (14.2.65)

Both results presented by Miller & Scriven (1968). As in the case of the drop, the result obtained from VCVPF
in (14.2.54) is the same as the expression given in (14.2.65) from the exact solution.

14.2.6 VPF and VCVPF analyses for waves acting on a plane interface considering surface

tension – comparison with Lamb’s solution

The problem of the viscous effects on free gravity waves was solved exactly by Lamb (1932). In his analysis,
surface tension effects were included. Joseph & Wang (2004) gave a solution to this problem using viscous
potential flow (VPF). They also added a viscous correction to the irrotational pressure and obtained another
dispersion relation for the complex eigenvalue σ. In their analysis they neglected the surface tension effects and
considered gravity effects. Here we find the rate of decay and wave velocity for free waves on an otherwise plane
interface neglecting gravity effects and including surface tension. These expressions are found as limiting results
from our VPF and VCVPF analyses of waves on the surface of a liquid drop surrounded by gas presented at
the end of §14.2.3 and §14.2.4, respectively. This procedure considers taking the limits ` →∞ and a →∞ such
that `/a → k in the expressions for the complex eigenvalue σ (Miller & Scriven 1968).

For VPF, in the case of k > kc = γ/ρν2, the decay rate is

σ = νk2 ±
√

(νk2)2 − γk3/ρ. (14.2.66)

If k < kc = γ/ρν2 then we have

σ = νk2 ± ik
√

γk/ρ− ν2k2, (14.2.67)

such that the wave-velocity is c =
√

γk/ρ− ν2k2 and the rate of decay is νk2.
Studying the asymptotic behavior for k >> kc = γ/ρν2, the rate of decay goes as

σ1 =
γk

2ρν
and σ2 = 2νk2. (14.2.68)

Then, σ1 gives the slowest rate of decay for large k.
On the other hand, the asymptotic behavior as k << kc = γ/ρν2 can be expressed as

σ = νk2 ± ik
√

γk/ρ, (14.2.69)

such that the wave velocity is given by c =
√

γk/ρ; this is the same result from IPF as shown below. The rate
of decay goes as νk2.

For VCVPF, in the case of k > kc = γ/4ρν2, the rate of decay is

σ = 2νk2 ±
√

(2νk2)2 − γk3/ρ. (14.2.70)

If k < kc = γ/4ρν2 then we have

σ = 2νk2 ± ik
√

γk/ρ− 4ν2k2, (14.2.71)

such that the wave-velocity is c =
√

γk/ρ− 4ν2k2 and the rate of decay is 2νk2.
Studying the asymptotic behavior for k >> kc = γ/4ρν2 the rate of decay goes as

σ1 =
γk

4ρν
and σ2 = 4νk2. (14.2.72)

Hence, σ1 gives the slowest rate of decay for large k.
On the other hand, the asymptotic behavior as k << kc = γ/4ρν2 can be expressed as

σ = 2νk2 ± ik
√

γk/ρ, (14.2.73)

such that the wave velocity is given by c =
√

γk/ρ, which is the same result from inviscid potential flow (IPF)
as shown below. In this case the rate of decay goes as 2νk2. It can be verified that the same results are found
if one starts from the VPF and VCVPF solutions obtained for a bubble surrounded by a viscous liquid.
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Lamb (1932) solved the problem of free gravity waves exactly considering the effects of surface tension (art.
349, pp. 625). Lamb’s dispersion relation, neglecting gravitational effects, is

(
σ − 2νk2

)2
+

γ

ρ
k3 = 4ν2k3m, (14.2.74)

with

m2 = k2 − σ/ν.

Therefore, the dispersion relation is biquadratic. As the viscosity goes to zero, Lamb found that the complex
eigenvalue σ behaves as

σ = 2νk2 ± ik
√

γk/ρ, (14.2.75)

which is exactly the result from VCVPF in the case of k << kc = γ/4ρν2 as shown in (14.2.73). In the limit
ν → 0 Lamb’s exact solution reduces to

σ2
P = γk3/ρ, (14.2.76)

corresponding to IPF analysis. Then, the wave-velocity for inviscid flow is c =
√

γk/ρ, as mentioned above.
For the case of ν →∞, Lamb (1932) found two real roots from his exact solution neglecting surface tension.

Following the same procedure but neglecting gravity effects and keeping surface tension, we find that the relevant
root on physical grounds is

σ =
γk

2ρν
, (14.2.77)

which is the same result obtained from VPF in (14.2.68). Using asymptotic formulas for Bessel functions of
large order and large variable such that a → ∞ and ` → ∞ for fixed k, Prosperetti (1980a) showed that the
dispersion relation for the bubble (14.2.62) reduces to Lamb’s result (14.2.74). Prosperetti (1976) posed and
solved the initial-value problem for small disturbances of the infinite plane without assuming an exponential
decay with time. For an irrotational initial condition and neglecting gravity, in the limit t → 0, his dispersion
relation is the same as (14.2.71), obtained here by a different method.

14.2.7 Results and discussion

In this section, a detailed comparison of the results for the decay rate and frequency of the waves according to
VPF and VCVPF with the exact solutions of the fully viscous linear problem are presented for a drop and a
bubble. A wide interval is selected for the mode number ` ranging from ` = 2 up to ` = 100. The smallest value
of ` = 2 is chosen since lower values yield compressive or expansive motions of the drop interface which are not
compatible with the incompressibility assumption or a non-physical static disturbed interface. For higher values
of `, the exact fully viscous solution for the drop predicts oscillations that decay faster (Miller & Scriven 1968).
The same lowest value of ` = 2 is selected for the bubble case.

Figure 14.7(a) shows the critical Reynolds number Jc as a function of ` for a drop. The critical Reynolds
number is defined as the value of J at a given ` for which transition from monotonically decaying waves (standing
waves) to progressive waves (oscillations) occurs. For J ≤ Jc the eigenvalues σ̂ are real and monotonically
decaying waves take place, whereas for J > Jc the eigenvalues are complex and the waves decay through
oscillations. Figure 14.7 (b) presents the trends of Jc with ` for VPF and VCVPF for a bubble. Recall that the
exact solution always predicts decaying oscillations (i.e. complex eigenvalues) in the bubble case. Therefore, the
exact solution does not give rise to a critical J . If VCVPF predicts progressive decaying waves, then VPF gives
the same prediction. If VPF predicts standing waves, then the same behavior is obtained from VCVPF.

For a drop, the decay rate and wave frequency as a function of the Reynolds number J are presented in
Figures 14.8 (a) and (b), respectively, for ` = 2 as predicted by VPF, VCVPF and the exact solution. The
wave frequency given by IPF is also included for comparison. For large J , VCVPF and the exact solution show
excellent agreement, whereas VPF is off the mark. The wave frequencies from the three viscous theories tend
to the inviscid solution for large J . As J decreases (below J = 10, say), transition from the progressive waves
regime to the standing waves regime occurs. In the point of transition, the frequency becomes identically zero
and the curve of Re(σ̂) bifurcates yielding two real and different roots. In Figure 14.8 (a), the lowest root,
representing the least damped mode of decay, is presented.
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Fig. 14.7. Critical Reynolds number Jc as a function of the mode number ` for a drop and a bubble. At a given `, for
J > Jc progressive decaying waves (oscillations) are predicted (i.e. the eigenvalues σ̂ are complex), whereas for J ≤ Jc

monotonically decaying waves are obtained (i.e. the eigenvalues σ̂ are real). The results are presented for VPF, VCVPF
and the exact solution. Notice that the exact solution does not provide a crossover value, since the imaginary part is
never identically zero.

For a bubble, the rate of decay and wave frequency are presented in Figures 14.9 (a) and (b), respectively for
` = 2. Notice that the results follow similar trends as those described above for the drop. An important difference,
however, is that the exact solution does not predict transition to the aperiodic standing waves regime, but the
wave frequency tends smoothly to zero as J decreases (the viscosity increases, say). On the other hand, the
irrotational viscous theories, VPF and VCVPF do render a cross-over Jc for which transition to monotonically
decaying waves occurs.

For large values of J , if one of the fluids has negligible density and viscosity, a thin boundary layer results
(Miller & Scriven 1968). Thus, an irrotational velocity field works as a good approximation with a pressure
correction arising within the boundary layer and resolving the discrepancy between the non-zero irrotational
shear stress and the actual zero shear stress at the interface. These considerations explain the excellent agreement
of VCVPF and the exact solution for large J . In terms of the dissipation approximation, such a thin boundary
layer yields a negligible contribution to the total viscous dissipation, which is thus determined by the irrotational
flow. By contrast, as J decreases (e.g., the liquid viscosity increases), the boundary layer becomes thicker and
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Fig. 14.8. Decay rate and wave frequency for the fundamental mode ` = 2 as function of the Reynolds number J for a
drop from the exact solution, VPF, VCVPF and IPF. The decay rate predicted by IPF is identically zero for all `.

the performance of the irrotational approximations (VPF and VCVPF) deteriorates. A non-negligible boundary
layer flow contributes substantially to the rate of viscous dissipation. The motion for small J , as discussed by
Prosperetti (1980a), is restrained in such a drastic way that the energy dissipation per unit time, and thus the
decay rate, decrease with the Reynolds number J .

The sharp cross-over from the progressive waves regime to the standing waves regime can be readily obtained
from the dispersion relations (Figure 14.8). For a bubble, oscillatory decaying waves are always predicted by the
exact linearized theory yet the smooth region where the decay-rate graph reaches a maximum as a function of
the Reynolds number J suggests a transition in the structure of the flow (Figure 14.9). This was associated by
Prosperetti (1980a) with the two length scales characteristic of the problem, namely, the sphere’s radius a and
the vorticity diffusion length of order (ν/ωB)1/2, where ωB is the frequency of the oscillations for the inviscid
case given in (14.2.28). When a >> (ν/ωB)1/2, which represents the right branch of the exact solution in Figure
14.9 (a), a thin vorticity layer at the interface occurs, having a minute effect on the rate of viscous dissipation.
On the other hand, the left branch in Figure 14.9 (a), for which the rate of decay is reduced with decreasing J ,
as explained above, is associated with a relatively thicker vorticity layer such that a << (ν/ωB)1/2.

Computations carried out for several higher modes (` = 3, 4 and 10) have shown that the features commented
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Fig. 14.9. Decay rate and wave frequency for the fundamental mode ` = 2 as function of the Reynolds number J for a
bubble from the exact solution, VPF, VCVPF and IPF. The decay rate predicted by IPF is identically zero for all `.

for the fundamental mode are also observed for these other modes. The general trend is that the rate of decay
increases with increasing `. The analysis of the predictions from the exact solution indicates that the change-
over from progressive waves to standing waves takes place for a larger critical J as ` increases for a drop. Even
though no transition to standing waves occur, a somewhat similar behavior occurs for the bubble. The viscous
irrotational theories follow these tendencies. These results show that viscosity damps the motion more effectively
for shorter waves.

For a drop, Figures 14.10 through 14.12 show predictions from VPF, VCVPF and the exact solution for the
rate of decay and frequency of the oscillations for several values of the Reynolds number J , namely, J =10−3, 40
and 106 as a function of `. Results from IPF are only presented for the frequency. When J is small, in the standing
waves regime, VCVPF gives a better approximation to the exact solution than VPF for the fundamental mode
` = 2, as can be observed in Figure 14.10 for J = 10−3. By contrast, for larger ` (i.e. shorter waves), VPF
shows a better performance. As J increases, the waves start to oscillate. For instance, in the case of J = 40,
the cross-over values of ` according to every viscous theory enters the analysis (see Figure 14.11). In this case,
progressive waves are fully inhibited according to the viscous theories for ` < `VCVPF, whereas these theories
agree and predict standing waves for ` > `exact. According to Figure 14.7 (a), this trend seems to hold for J ≥ 6.
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In Figure 14.12 for J = 106, the cross-over `c obtained from each viscous theory is larger than 100 and lie out
of the figure. For large J , in the regime of progressive waves, the region of good agreement between VCVPF
and the exact solution extends to higher values of ` (e.g., 2 ≤ ` ≤ 100 for J = 106 in Figure 14.12), while VPF
shows poor agreement in comparison. At least for values of ` << `exact in the neighborhood of ` = 2, VCVPF
provides the better approximation of the decay rate.

For very small values of J , as in the case of J = 10−3, the exact solution, VPF and VCVPF predict zero
frequency, while IPF is off the mark giving rise to a non-zero frequency for non-decaying waves (see Figure
14.10 b). For moderate to large values of J , the oscillatory regime appears for a certain ` interval starting with
` = 2. This interval becomes wider with increasing J . The cross-over `c moves to the right as J increases and
the agreement in terms of the frequency becomes much better in particular for low values of ` (Figure 14.11 b).
On the other hand, since the cross over value `VPF is larger than `VCVPF, VPF follows the trend of the exact
solution in the oscillatory regime for a wider interval. For very large values of J , the three approximations for
the frequency cannot be distinguished from the predictions given by the exact solution for a wide ` interval
(e.g., 2 ≤ ` ≤ 100 for J = 106 in Figure 14.12 b).

To some extend, similar trends as those described for the drop are observed for the bubble. However, a
noteworthy difference is that, for low to moderate J (from 10−3 to 500, say), VPF predicts decay rates closer
to the values from the exact solution than VCVPF. This trend is reversed for large J .

Kojo and Ueno (2006) present experimental results for oscillatory bubbles under ultrasonic vibration. Figure
14.13 shows the time series of shape oscillations for an air bubble in water under ultrasonic vibration of 20 kHz
and the predicted shape with spherical harmonics. Several other figures showing the trends described above are
included in the work by Padrino et al. (2006) available from the URL: http://www.aem.umn.edu/people/faculty/joseph/ViscousPotentialFlow/.

Concluding remarks

The results obtained from the viscous purely irrotational approximations for the decay rate and frequency
of the oscillations for a drop and a bubble are in good to reasonable agreement with the exact solution of
the linearized problem. The damping role of viscosity in the dynamics of the waves is adequately described
by the viscous irrotational theories through the modeling of the decay rate and frequency of the oscillations,
whereas the classical inviscid theory predicts undamped oscillations, and thus, an identically-zero decay rate.
Some features are noteworthy from the comparison carried out in this study for the drop and the bubble:

• In the limit of short waves (i.e., large mode number `), VPF gives a very good approximation of the decay
rate for standing waves for both the drop and the bubble. On the other hand, VCVPF gives rise to values of
the decay rate in closer agreement with the exact solution within a certain ` interval, including ` = 2, in the
progressive waves regime (i.e. long waves) for large values of the Reynolds number J . This trend resembles the
tendencies obtained for free gravity waves perturbing a plane interface by Wang & Joseph (2006) presented
in §14.1.4. Nonetheless, a notable difference between their results and those given here is that surface tension
has a stronger regularizing effect on short waves than gravity.

• VPF also follows the trend described by the exact solution for the frequency of the oscillations, since the
transition from progressive to standing waves predicted by this irrotational theory occurs at a higher critical
value of ` than the threshold given by VCVPF.

• The viscous irrotational approximations predict effects of viscosity on the frequency of the oscillations. For
every mode, there is a Reynolds number J for which transition from progressive waves to monotonically
decaying waves occurs for either the drop or the bubble. Whereas a transitional value of J is predicted by
the exact solution for a drop, only progressive waves are found by this theory for a bubble. In this case, very
small frequencies are obtained as J → 0 (e.g., ν →∞).

• The viscous irrotational theories do not give rise to a continuos spectrum of eigenvalues for the bubble as has
been found for the exact solution by Prosperetti (1980a).

• After carrying out the calculations, it is verified that the dissipation approximation yields the same dispersion
relation as VCVPF. A general proof of this equivalence was shown in chapter 12.
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Fig. 14.10. Decay rate Re(σ̂1) and wave frequency Im(σ̂1) for J = 10−3 versus the mode number ` for a drop. For the
interval of ` shown, the eigenvalues from the viscous theories are real and different. The lowest decay rate is plotted in
(a) and the trend exhibited by Im(σ̂1) is shown in (b) for IPF, which predicts oscillatory waves with constant amplitude.

14.3 Irrotational dissipation of capillary-gravity waves

In §14.1 we considered irrotational theories of the effect of viscosity on the decay of free gravity waves. In §14.2
we considered the same problem for capillary waves on a spherical surface. Capillary-gravity waves combine
these two mechanisms of propagation and decay. The dissipation of irrotational waves was considered by Stokes
1851 and applied extensively by Lamb 1932. Here we consider extensions of Lamb’s dissipation method to obtain
the effect of viscosity on frequency and to nonlinear effects.

14.3.1 Correction of the wave frequency assumed by Lamb

The dissipation method stems from the mechanical energy equation. To apply the dissipation approximation to
capillary-gravity waves, the working equation is obtained after subtracting the basic state of rest from the incom-
pressible Navier-Stokes equation and then taking the scalar (‘dot’) product with the velocity vector. Integration
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Fig. 14.11. Decay rate Re(σ̂1) and wave frequency Im(σ̂1) for J = 40 versus the mode number ` for a drop. In this case,
the eigenvalues are a pair of complex conjugates for the interval of ` < `c and they are real and different for ` ≥ `c.
For the latter case, the lowest decay rate is plotted in (a). The symbol `c stands for the highest value of ` for which a
non-zero imaginary part is obtained, i.e. progressive waves occur. For instance, `exact = `c from fully viscous flow theory
(exact solution); analogous definitions can be set for VPF (`VPF) and VCVPF (`VCVPF).

over the region of interest yields the mechanical energy equation for the flow disturbances in integral form.
Next, it is assumed that the zero-shear-stress condition at the interface is satisfied. After some manipulation,
this equation can be written as

d
dt

(∫

V

ρ |u|2 /2 dV +
∫ λ

0

ρgη2/2 dx

)
=

∫ λ

0

vγ
∂2η

∂x2
dx−

∫

V

2µD : D dV , (14.3.1)

where γ is the surface tension. Setting γ = 0 yields expression (14.1.17). The last term in (14.3.1) gives the
viscous dissipation. This term is computed assuming that the fluid motion is irrotational, neglecting the thickness
of the vorticity layer at the free surface. For irrotational flow, the following identity holds,

∫

V

2µD : DdV =
∫

A

n · 2µD · udA. (14.3.2)

which is used in the calculation of the viscous dissipation; in (14.3.2), n is the outward normal. The integration
of (14.3.1) is carried out with the velocity potential given in (14.1.16) over the region defined by 0 ≤ x ≤ λ

and −∞ < y ≤ 0. Periodic boundary conditions at x = 0 and x = λ and vanishingly small disturbances
(both velocity and pressure) as y → −∞ are taken into account in (14.3.1). Therefore, the surface integrals are
evaluated at y = 0. As a result, the following expression is obtained for the eigenvalues

n = −2νk2 ± ik
√

(g/k + γ′k)− 4ν2k2, (14.3.3)

with γ′ = γ/ρ. For 2νk2 ≥
√

gk + γ′k3, the eigenvalues are real and monotonically decaying waves occur. On
the other hand, for 2νk2 ≤

√
gk + γ′k3 we find progressive decaying waves with rate of decay −2νk2. This is the

same value computed by Lamb (1932) via the dissipation method. However, Lamb’s approach did not account
for the effects of viscosity in the wave speed of traveling decaying waves. For this type of waves, the wave speed
is extracted from (14.3.3) as

c =
√

(g/k + γ′k)− 4ν2k2 (14.3.4)

which is slower than the inviscid result
√

g/k + γ′k used by Lamb (1932, §348) . Therefore, these calculations
indicate that effects of viscosity, considered through the viscous dissipation of the mechanical energy, decrease
the traveling speed of capillary-gravity waves. This trend also holds for either zero gravity or zero surface tension,
as can be deduced from (14.3.4).

It turns out that the result given in (14.3.3) is exactly the same obtained from VCVPF according to Padrino
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Fig. 14.12. Decay rate Re(σ̂1) and wave frequency Im(σ̂1) for J = 106 versus the mode number ` for a drop. In this case,
the eigenvalues are a pair of complex conjugates for the interval of ` considered in this study.

et al. (2006). More details on the various aspects of the VPF, VCVPF and DM analyses for capillary-gravity
waves are presented there.

14.3.2 Irrotational dissipation of nonlinear capillary-gravity waves

Many studies of nonlinear irrotational waves can be found in the literature but the only study of the effects of
viscosity on the decay of these waves known to us is due to Longuet-Higgins (1997) who used the dissipation
method to determine the decay due to viscosity of irrotational steep capillary-gravity waves in deep water. He
finds that the limiting rate of decay for small amplitude solitary waves are twice those for linear periodic waves
computed by the dissipation method. The dissipation of very steep waves can be more than ten times more
than linear waves due to the sharply increased curvature in wave troughs. He assumes that the nonlinear wave
maintains its steady form while decaying under the action of viscosity. The wave shape could change radically
from its steady shape in very steep waves.
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(a) Experiments.

(b) Predictions.

Fig. 14.13. Experimental and theoretical time evolution of shape oscillations of an air bubble in water with oscillation
mode (`,m) = (15,0) under ultrasonic vibration of 20 kHz. The bar at the top of the left frame in (a) corresponds to 1.0
mm (Kojo and Ueno 2006).
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15

Irrotational Faraday waves on a viscous fluid

When a vessel containing liquid is made to vibrate vertically with constant frequency and amplitude a pattern of
standing waves on the gas-liquid surface can appear. For some combinations of frequency and amplitude waves
appear, for other combinations the free surface remains flat. These waves were first studied in the experiments
of Faraday (1831), who noticed that the frequency of the liquid vibrations was only half that of the vessel.
Nowadays, this would be described as a symmetry breaking vibration of a type that characterized the motion
of a simple pendulum subjected to a vertical oscillation of its purpose.

The first mathematical study of Faraday waves are due to Rayleigh (1883a, b) but the first definitive study
is due to Benjamin and Ursell (1954) who remark that “... The present work has been made possible by the
development of the theory of Mathieu functions.”

Faraday’s problem is a rich source of problems in pattern formation, bifurcation, chaos and other topics
in the frame of fluid mechanics applications in the modern theory of dynamical system. Under the excitation
of different parameters governing the Faraday system different patterns, stripes, squares, hexagons and time
dependent states can be observed. These features have spawned a large recent literature on Faraday waves.
The experiments of Ciliberto and Gollub (1985) and Simonelli and Gollub (1989) on chaos, symmetry and
mode interactions are often cited. Theoretical approaches are restricted to “weak nonlinearities;” practically,
some forms of expansion truncated at low order are used. The theoretical studies of Miles (1967), Ockendon
and Ockendon (1973), Gu and Sethna (1987) and Feng and Sethna (1989) are weakly nonlinear studies of
the Faraday instability for an inviscid fluid. Vega et al. (2001) and Higuera et al. (2005, 2006) studied weakly
nonlinear and nearly inviscid Faraday waves with weak viscous effect, driven from boundary layers at the bottom
of the containers and at the free surface.

Here we study the effects of viscosity of Faraday waves. There are two kinds of effects, those associated with
vorticity and purely irrotational effects. The purely irrotational effects have not been considered before and they
are studied here.

Effects associated with boundary layers at which vorticity is generated have been discussed by Miles (1967)
who notes that

“... the damping of surface waves in closed basins appears to be due to (a) viscous dissipation at the boundary of
the surrounding basin, (b) viscous dissipation at the surface in consequence of surface contamination, and (c) capillary
hysteresis associated with the meniscus surrounding the free surface.”

Free surfaces are a source for the generation of vorticity due to the fact that the shear stress vanishes there
but the shear stress computed on irrotational flow does not vanish. Vorticity generation does not have a strong
effect on damping even for progressive waves (§14.1), much less for Rayleigh-Taylor waves which are closely
related to the Faraday waves studied here.

Miles (1984) used a Lagrangina/Hamiltonian approach and included weak linear damping in treating the
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Faraday wave problem while retaining the inviscid approximation. Miles (1984) and Miles and Henderson (1990)
advocate an empirical approach to these damping effects. Miles and Henderson note that

“Weak linear damping may be incorporated ... by introducing the dissipation function D = 1
2
αn

`
p2

n + q2
n

´
where αn ≡

δn/ε and δn is the ratio of actual to critical damping for free oscillations in the n-th mode [δn is best determined
experimentally, although theoretical estimates are available (Miles 1967)] ...”

The possibility that viscous damping can be rigorously calculated from purely irrotational theories without
boundary layers has not been considered. Here we show that this possibility can be realized in the linearized case.
The same kind of techniques can be used to calculate damping in nonlinear problems based on the equations of
potential flow of an inviscid fluid. Of particular interest are the bifurcation studies on nonlinear Faraday waves
on an inviscid fluid by Feng and Sethna (1989) and Gu and Sethna (1987) which are discussed in §15.8.

15.1 Introduction

The seminal paper of Benjamin & Ursell (1954) (referred to as BU hereafter) on the stability of the plane free
surface of a liquid in vertical periodic motion has spawned a huge literature which extends their analysis to
include effects of viscosity, two liquids, side wall, bottom and free surface boundary layers and nonlinear effects
associated with bifurcation and pattern formation. Review papers emphasizing different aspects of this problem
have been prepared by Miles & Henderson (1990), Dias & Kharif (1999), and Perlin & Schultz (2000). This
paper focuses of the effects of viscosity using viscous potential flow for exactly the same problem, in exactly the
same formulation as Benjamin & Ursell (1954).

We have derived the following two damped Mathieu equations from systematic analysis of the irrotational
motion of viscous fluids in the formulation and using the notations introduced by BU. Thus

äm + Nνȧmk2
m + km tanh (kmh)

[
γ

ρ
k2

m + (g − f cos (ωt))
]

am = 0 (15.1.1)

where km is an eigenvalue of the vibrating membrane equation

∂2Sm

∂x2
+

∂2Sm

∂y2
+ k2

mSm = 0 (15.1.2)

and

N = 2 (VPF), N = 4 (VCVPF).

The number N = 4 also appears in the approximation called phenomenological by Kumar and Tuckerman
(KT) (1994) who incorporated damping using a damping coefficient given by Landau and Lifshitz (1987),
§25. They say that “... for small damping (i.e. for λ2ω À ν) and for small deformation of the interface ...,
the flow can be considered to be irrotational except for a thin layer around the interface. The restriction to
small deformations of the interface is required for linearization, but the restriction to small damping, to small
viscosities is not implied by any mathematical argument and, in fact, is erroneous. The damping coefficient of
Landau and Lifshitz (1987) is correct for gas-liquid flow but the application of this damping coefficient by KT
(1994) to waves on the interface between two liquids is less justified and will lead to large errors for the long
waves (§16.1.8) which occur in the Faraday problem. We find that the damped Mathieu equation (15.1.1) with
N = 2 gives a better approximation to small amplitude Faraday dynamics than N = 4 for which the waves are
“overdamped.”
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15.2 Energy equation

The energy equation is the basis of our VCVPF theory. We derive the mechanical energy equation from Navier-
Stokes equations

ρ
du

dt
= ∇ ·T + ρ (g − f cos(ωt)) ez (15.2.1)

in the usual way; scalar multiply (15.2.1) by u, integrate over the fluid domain V , apply Reynolds’ transport
theorem and Gauss’ theorem, to find

d
dt

∫

V

1
2
ρ |u|2 dV =

∫

Af

u ·T · ndA +
∫

Aw

u ·T · ndA−
∫

V

2µD : DdV + (g − f cos(ωt))
∫

V

ρ
dz

dt
dV,(15.2.2)

where Af is the free surface, Aw represents both the side walls and the bottom wall, and n is the outward

normal of V on A. The integrals
∫

Af

u ·T · ndA and
∫

Aw

u ·T · ndA are the power of traction. On the free

surface n ≈ −ez and we can show readily that

u ·T · n = − (uxTxz + uyTyz + uzTzz) . (15.2.3)

We shall be considering the potential flow of viscous fluids called VPF. For these flows, the no-slip conditions
usually cannot be satisfied and they are replaced with (15.3.1) below. The stresses on the free surface are
evaluated using potential flow

Txz = τ i
xz = µ

(
∂ux

∂z
+

∂uz

∂x

)
,

Tyz = τ i
yz = µ

(
∂uy

∂z
+

∂uz

∂y

)
,

Tzz = −pi + τ i
zz = −pi + 2µ

∂uz

∂z
,





(15.2.4)

where pi is the irrotational pressure computed from the Bernoulli equation. Then the mechanical energy equation
for VPF may be written as

d
dt

∫

V

1
2
ρ |u|2 dV =

∫

Af

− [
uxτ i

xz + uyτ i
yz + uz

(−pi + τ i
zz

)]
dA +

∫

Aw

u ·T · ndA

−
∫

V

2µD : DdV + (g − f cos(ωt))
∫

V

ρ
dz

dt
dV .

(15.2.5)

The shear stresses τ i
xz and τ i

yz from the potential flow are not zero at the free surface. However, the shear
stresses should be zero physically. Txz and Tyz cannot be made zero in irrotational flows, but we can remove

the power by the shear stress
∫

Af

(
uxτ i

xz + uyτ i
yz

)
dA from the mechanical energy equation. At the same time,

a pressure correction pv is added to pi to compensate for the shear stresses. The mechanical energy equation
for VCVPF is then written as

d
dt

∫

V

1
2
ρ |u|2 dV =

∫

Af

− [
uz

(−pi − pv + τ i
zz

)]
dA +

∫

Aw

u ·T · ndA

−
∫

V

2µD : DdV + (g − f cos(ωt))
∫

V

ρ
dz

dt
dV .

(15.2.6)

A comparison of (15.2.5) and (15.2.6) gives rise to the relation between the pressure correction and the irrota-
tional shear stresses ∫

Af

[
uxτ i

xz + uyτ i
yz

]
dA =

∫

Af

(−pvuz) dA. (15.2.7)

15.3 VPF & VCVPF

The two theories VPF and VCVPF give rise to different results. Our experience with other problems is such as
to suggest that VCVPF is closer to exact results for progressive waves, and VPF is closer to exact results when
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waves do not propagate, more precisely, in this case the eigenvalues are real. This second case, in which VPF is
better, applies here to irrotational Faraday waves on viscous fluids.

15.3.1 Potential flow

The velocity u = ∇φ = (ux, uy, uz) is expressed in terms of a harmonic potential ∇2φ = 0 in a coordinate
system moving with the container. Boundary conditions at the container walls are given by

∂φ

∂n
= 0 on the side walls,

∂φ

∂z
= 0 on the bottom wall at z = h.





(15.3.1)

A harmonic solution satisfying (15.3.1) can be written as

φ(x, y, z, t) =
∞∑

m=0

fm(t) cosh [km (h− z)]Sm(x, y), (15.3.2)

where the eigenfunctions Sm(x, y) satisfy

∂Sm

∂n
= 0, (15.3.3)

on the side wall. The condition at the bottom wall gives
(

∂φ

∂z

)

z=h

=
∞∑

m=0

fm(t) (−km) sinh [km (h− z)]Sm(x, y)

∣∣∣∣∣
z=h

= 0. (15.3.4)

The normal stress balance at the free surface

z = ζ(x, y, t), (15.3.5)

in the linearized approximation, is
(

p− 2µ
∂uz

∂z

)

z=0

= γ

(
∂2ζ

∂x2
+

∂2ζ

∂y2

)
. (15.3.6)

For VPF, p = pi where pi is given by the Bernoulli equation. For VCVPF, p = pi + pv where pv is a viscous
correction of the irrotational pressure pi.

15.3.2 Amplitude equations for the elevation of the free surface

Now consider the kinematic condition at z = 0

∂ζ

∂t
= uz =

∂φ

∂z
at z = 0 (15.3.7)

where
(

∂φ

∂z

)

z=0

=
∞∑

m=0

fm(t) (−km) sinh (kmh) Sm(x, y). (15.3.8)

If we write the surface elevation as

ζ =
∞∑

m=0

am(t)Sm(x, y), (15.3.9)

then

∂ζ

∂t
=

∞∑
m=0

dam

dt
Sm(x, y). (15.3.10)
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Since the total volume of fluid is constant, a0(t) is constant

da0

dt
= 0

and

γ

ρ

(
∂2ζ

∂x2
+

∂2ζ

∂y2

)
= −γ

ρ

∞∑
m=1

k2
mam(t)Sm(x, y). (15.3.11)

Since k0 = 0, (15.3.11) and (15.3.8) show that f0(t) is undetermined. BU showed that a0(t) can be put to zero.

For m ≥ 1, (15.3.7), (15.3.8) and (15.3.10) give

dam

dt
Sm(x, y) = fm(t) (−km) sinh (kmh) Sm(x, y), hence fm(t) = −dam

dt

1
km sinh (kmh)

,

so that the potential is given by

φ(x, y, z, t) = −
∞∑

m=1

dam

dt

cosh [km (h− z)]
km sinh (kmh)

Sm(x, y). (15.3.12)

The Bernoulli’s equation is

pi

ρ
+

∂φ

∂t
− (g − f cos(ωt)) z = 0. (15.3.13)

The normal stress balance (15.3.6) is
(

pi + pv − 2µ
∂uz

∂z

)

z=0

= γ

(
∂2ζ

∂x2
+

∂2ζ

∂y2

)
. (15.3.14)

Linearized governing equations for the viscous corrections are

ρ
∂uv

∂t
= −∇pv + µ∇2uv, ∇ · uv = 0. (15.3.15)

Hence,

∇2pv = 0. (15.3.16)

The solution of (15.3.16) may be written as

− pv =
∞∑

m=0

Cmr̂m(t)θm(z)Sm(x, y), θm = cm1ekmz + cm2e−kmz. (15.3.17)

At z = 0,

− pv(z = 0) =
∞∑

m=0

Cmrm(t)Sm(x, y), (15.3.18)

where rm = r̂m(t) (cm1 + cm2).

We may eliminate pi from (15.3.14) using (15.3.13)
[
pv + ρ (g − f cos (ωt)) ζ − ρ

∂φ

∂t
− 2µ

∂2φ

∂z2

]

x=0

= γ

(
∂2ζ

∂x2
+

∂2ζ

∂y2

)
. (15.3.19)

Equation (15.3.19) may be evaluated on modal functions using (15.3.9), (15.3.11),

2µ
∂2φ

∂z2
= −2µ

∞∑
m=1

dam

dt
km

cosh [km (h− z)]
sinh (kmh)

Sm(x, y) (15.3.20)

and

∂φ

∂t
= −

∞∑
m=1

d2am

dt2
coth [km (h− z)]
km sinh (kmh)

Sm(x, y). (15.3.21)
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Hence
∞∑

m=1

[
−Cmrm(t) + ρ (g − f cos (ωt)) am(t) + ρ

d2am

dt2
coth (kmh)

km

+2µ
dam

dt
km coth (kmh) + γk2

mam(t)
]

Sm(x, y) = 0. (15.3.22)

The coefficients of the linearly independent functions Sm(x, y) vanish. Hence the amplitude equation for VCVPF
is

d2am

dt2
+ 2νk2

m

dam

dt
+ km tanh (kmh)

[
γ

ρ
k2

m + g − f cos(ωt)
]

am

−km

ρ
tanh (kmh) Cmrm(t) = 0. (15.3.23)

To evaluate Cmrm(t) in (15.3.23) we need to work only with mode m. To simplify the writing we shall suppress
the subscript m and write

ux = −da

dt

coth (kh)
k

∂S

∂x
, (15.3.24)

τxz = 2µ
da

dt

∂S

∂x
, (15.3.25)

uy = −da

dt

coth (kh)
k

∂S

∂y
, (15.3.26)

τyz = 2µ
da

dt

∂S

∂y
, (15.3.27)

uz =
da

dt
S, (15.3.28)

pv = −Cr(t)S, (15.3.29)

τzz = −2µ
da

dt
k coth (kh)S, (15.3.30)

∫

A

[uxτxz + uyτyz + pvuz] dA =
∫

A

{
−2µ

(
da

dt

)2 coth (kh)
k

[(
∂S

∂x

)2

+
(

∂S

∂y

)2
]
−Cr(t)

da

dt
S2

}
dA = 0.

Using Gauss’ theorem and the boundary condition on the side wall (15.3.3), we obtain
∫

A

[
∂

∂x

(
S

∂S

∂x

)
+

∂

∂y

(
S

∂S

∂y

)]
dA =

∫

L

[
S

∂S

∂n

]
dL = 0,

where L is the boundary of the free surface A and L is on the side wall. With the condition ∇2
2S = −k2S, we

can show that
∫

A

[(
∂S

∂x

)2

+
(

∂S

∂y

)2
]

dA = −
∫

A

S∇2
2SdA = k2

∫

A

S2dA. (15.3.31)

We find that
(

2µ

(
da

dt

)2

k coth (kh) + Cr(t)
da

dt

)∫
S2dA = 0 (15.3.32)

and

Cmrm(t) = Cr(t) = −2µk
da

dt
coth (kh) . (15.3.33)

Inserting (15.3.33) into (15.3.23) we find the amplitude equation for VCVPF

d2a

dt2
+ 4νk2 da

dt
+ k tanh (kh)

[
γ

ρ
k2 + g − f cos(ωt)

]
a = 0. (15.3.34)
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Viscous potential flow VPF is the same as VCVPF without the pressure correction pv. If pv is set to zero,
we find that

d2a

dt2
+ 2νk2 da

dt
+ k tanh (kh)

[
γ

ρ
k2 + g − f cos(ωt)

]
a = 0. (15.3.35)

The damping term can be written as

Nνk2 da

dt
(15.3.36)

with N = 2 for VPF and N = 4 for VCVPF.

15.4 Dissipation method

The dissipation method leads to the same amplitude equation (15.3.34) which we derived for VCVPF. The
two theories are equivalent, but no pressure, whatever is required to implement the dissipation method. In the
dissipation calculation, the power of the pressure correction is replaced with the power of shear tractions (see
(12.6.1)).

The dissipation calculation gives the same results as VCVPF. (15.3.34) is also in agreement with (4.21) of
Kumar & Tuckerman(1994).

15.5 Stability analysis

The amplitude equations are

ä + Nνȧk2 + k tanh (kh)
[
γ

ρ
k2 + (g − f cos (ωt))

]
a = 0 (15.5.1)

where

N = 2 (VPF), N = 4 (VCVPF). (15.5.2)

In the fourth order RK integration, we may take time difference ∆t = π/212 = π/4096 for which time at n steps
is given by t = n×∆t and periodic time T may be defined as

T =
[

t

2π

]
(15.5.3)

with Gauss’ symbol [ ]. According to Floquet theory, we may represent the solutions of (15.5.1) in the unstable
region as

ln (a(t)) = σt + β = σ2πT + β (15.5.4)

where exp(β(t)) = b(t) is periodic in t but constant in T , and the growth rate σ is positive; σ = 0 at the
marginal state. To check exp(β(t)) = b(t), we may use Fourier series expressed as

b(t) =
∞∑

n=−∞
An exp(int) (15.5.5)

where the Fourier coefficient A−n is the complex conjugate of An. The coefficient is evaluated as

Am =
1
2π

∫ t+2π

t

b(t) exp(−imt)dt =
1
2π

8192∑

j=1

[b(tj) exp(−imtj) + b(tj−1) exp(−imtj−1)]
∆t

2
(15.5.6)

with the trapezoidal rule; tj = t + j ×∆t.

The solution of (15.5.1) can be written in Floquet form.

a(t) = eσtb(t) (15.5.7)
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where σ is the growth rate and b(t) is a bounded oscillatory function which is periodic when

σ = 0 (marginal state) (15.5.8)

or

σ > 0 (unstable state). (15.5.9)

A growth rate curve is given by

σ = σ(k) = σ(−k) (15.5.10)

which is an even function of k.

The maximum growth rate is

σm =
Max

k > 0 [σ(k)] = σ(km). (15.5.11)

The flow is stable when k > kc

σ(k) < 0, k > kc (15.5.12)

where kc is called the cut off wave number. This says that short waves are stable.

The governing equation (15.5.1) for the oscillation amplitude in a deep liquid h →∞ is

ä + Nνȧk2 + k

[
γ

ρ
k2 + (g − f cos (ωt))

]
a = 0 (15.5.13)

where N = 2 (VPF) or N = 4 (VCVPF). The main goal of this calculation is to show that for any value of
the kinematic viscosity ν, the other parameters being constant, N = 2 has a larger maximum growth rate than
N = 4. Hence, the irrotational theory associated with the direct effects of the viscous normal stress (VPF) on
the motion of the waves will give a better description of the effects of viscosity on the waves, than the value
N = 4 (VCVPF) which has been universally used by researchers in this subject since the study of Kumar &
Tuckerman(1994).

Cerda & Tirapegui (1998) considered Faraday’s instability in a viscous fluid and found a Mathieu equation
based on lubrication theory rather than potential flow. They interpret the irrotational theory leading to N = 4
as appropriate to weak dissipation. Our irrotational theories are not restricted to small viscosity, but they do
not account for vorticity generated by the no-slip condition on the container side walls or bottom. For periodic
disturbances on deep water the irrotational theories are valid for all values of ν.

Our results apply to silicon oils with kinematic viscoucities ranging from zero to 10 cm2/sec, the density of
0.97 g/cm3 and surface tension of γ = 21 dyne/cm. The frequency ω = 15.87× 2π sec−1 is fixed and (g, f) =
(981, 981) cm/sec2.

In figure 15.1 and 15.2 we present graphs and tables for the Floquet representation a = eσtb(t) for the stability
of Faraday waves on an inviscid and a viscous fluid.

In figure 15.3 we have plotted σm vs ν for Faraday waves on an inviscid fluid (N = 0) and on a viscous fluid
using VPF (N = 2) and VCVPF (N = 4). These theories are all irrotational. VCVPF gives the same results
as the dissipation method as shown here in section 15.4. Previously, the dissipation theory with N = 4, was
proposed by Kumar & Tuckerman(1994) from heurestic considerations. In figure 15.4 we plot the critical wave
number km vs ν. The growth rates and critical wave number are largest for N = 0 and are larger for VPF than
for VCVPF at each fixed ν.
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Fig. 15.1. Floquet theory a = eσtb(t) for Faraday waves on an inviscid fluid (N = 0); ρ = 0.97 g/cm3, γ = 21 dyne/cm,
g = 981 cm/sec2, ω = 2π × 15.87 sec−1, f = g cm/sec2. (a) ln (a) vs t/ (2π), (b) ae−σt = b(t) = b(t + 2π) vs t/ (2π), (c)
σ(Nν) vs k. σm = 11.1274 sec−1 at km = 2.4246 cm−1.
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Fig. 15.2. Floquet theory a = eσtb(t) for Faraday waves on a viscous liquid ν = 1 cm2/sec with N = 2 (VPF);
ρ = 0.97 g/cm3, γ = 21 dyne/cm, g = 981 cm/sec2, ω = 2π × 15.87 sec−1, f = g cm/sec2. (a) ln (a) vs t/ (2π), (b)
ae−σt = b(t) = b(t + 2π), (c) σ vs k. σm = 5.8790 sec−1 at km = 2.1874 cm−1. The dissipation theory with N = 4
(VCVPF) is stable <{σ} < 0.
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15.6 Rayleigh-Taylor instability and Faraday waves

This section follows the work of Kumar (2000) who compared wave number selection in Rayleigh-Taylor (RT)
instability and Faraday instability on deep and highly viscous liquids. He used the dissipation theory (VCVPF)
of Faraday instability with N = 4, first proposed by Kumar & Tuckerman(1994). Our main goal is to introduce
VPF with N = 2 into this comparison. We shall also revise slightly the comparisons made by Kumar (2000) so
that a direct comparison of maximum growth rates in the two problems can be made.

Kumar (2000) compared a critical kc = km at f = fc (where σ(km) = 0, σ < 0 for k 6= km = kc) for Faraday
waves with the maximum growth rate of RT waves when the gravitational acceleration is replaced with

āc =
ω

π

∫ 5π/2ω

3π/2ω

[fc cos (ωt)− g] dt =
2
π

fc − g. (15.6.1)

This value of āc is an average upward acceleration in the Faraday problem. He used (15.6.1) with N = 4 in his
calculation.

The maximum growth rate for RT instability can be computed from the exact linear theory given by equation
(18) in Joseph, Belanger & Beavers (1999) or more easily and with good accuracy by the purely irrotational
theory by equation (28) with ν = µ2/ρ2 and g replaced by āc. In this case, their (28) gives

σ = −k2ν ±
√

kāc − k3γ

ρ
+ k4ν2. (15.6.2)

The function km(āc) is given by maximizing σ given by (15.6.2) with respect to k.

dσ

dk
= −2νk +

1
2

ā− 3γ
ρ k2 + 4k3ν2

√
āk − γ

ρ k3 + k4ν2
= 0 (15.6.3)

which can be arranged as

8ν2k3

(
ā +

γ

ρ
k2

)
=

(
ā− 3

γ

ρ
k2

)2

. (15.6.4)

This is a fifth order algebraic equation for k = km. When ā is large, we have

8ν2k3ā = (ā)2 . (15.6.5)

Hence

km =
( ā

8ν2

)1/3

(15.6.6)

gives the maximum growth rate for large ā.

The maximum growth rate σm = σ(km) and the wave number k = km of maximum growth rate for RT
instability and dissipative Faraday waves are compared in figures 15.5, 15.6 and 15.7. These figures show that
the dissipative theory with N = 4 introduced by Kumar & Tuckerman(1994) and used by Kumar (2000) are
more damped than the dissipative potential flow solution VPF with N = 2; damped solutions with σm < 0
at small values of f/g are shown in figures 15.6 and 15.7. We can say that the demonstration that damped
Faraday waves at large viscosities are driven by the same acceleration mechanism which produce RT waves is
better demonstrated by VPF with N = 2 than by the dissipative theory which is equivalent to our irrotational
VCVPF with N = 4.
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Fig. 15.5. (a) km versus f/g and (b) σm versus f/g, for ν = 1 cm2/sec. (c), (d) σ versus k for N = 4 in a transition
region, in which the mark ∗ denotes the maximum growth rate.
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Fig. 15.7. (a) km versus f/g and (b) σm versus f/g, for ν = 300 cm2/sec. For small values of f/g the potential flow
solutions for Faraday waves are stable, σm < 0 but N = 2 is less stable and more like RT waves than N = 4.
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15.7 Comparison of purely irrotational solutions with exact solutions

Kumar & Tuckerman(1994) presented a linear stability analysis of the interface between two viscous fluids.
Starting from the Navier-Stokes equations, they derived the relevant equations describing the hydrodynamic
system in the presence of parametric forcing and carried out a Floquet analysis to solve the stability problem.
The viscous problem does not reduce to a system of Mathieu equations with a linear damping term, which
is traditionally considered to represent the effect of viscosity. The traditional approach ignores the viscous
boundary conditions at the interface of two fluids. To determine the effect of neglecting these, they compared
their exact viscous fluid results with those derived from the traditional phenomenological approach. They call
the exact theory FHS (fully hydrodynamic system). The traditional phenomenological approach is an application
of the dissipation method; it is called a model. When applied to an air/liquid system the model is the same as
the dissipation method which is the same as our irrotational theory VCVPF with damping proportional to 4ν.

They compared the results of the FHS and of the model to experimental results obtained in a viscous
glycerine-water mixture (Edwards & Fauve 1993) in contact with air. They considered the glycerine-water
nixture to be a layer of finite height h = 0.29 cm, in contact with a layer of air of infinite height. In their figure
3 (our 15.8) they plotted the experimental data for the critical wavelength λc and amplitude fc as a function
of forcing frequency. The solid and dashed curves are obtained from the FHS and from the model with finite
depth corrections, respectively. They noted, however, that the values for the surface tension γ and the viscosity
ν were chosen so as to best fit the FHS to the experimental data. This led to values γ = 67.6× 10−3 N/m and
ν = 1.02× 10−4 m2/sec, which are in good agreement with the corresponding values given in the literature for
the mixture composed of 88% (by weight) glycerol and 12% water, at temperature 23 ◦C. With these values,
both the model and the FHS agree reasonably well with the experimentally measured wavelengths. They noted
that “... the experimentally measured amplitudes agree quite well with the FHS over the entire frequency range,
and not at all with the model. It is impossible to improve the fit of the critical amplitudes to the model by
varying γ and ν.”

The model results shown in the inset for fc/g in figure 15.8 are for the dissipative approximation VCVPF
(N = 4).

In figure 15.9 we have compared the exact solution with the irrotational approximation for N = 4 and N = 2.
It is apparent that the fit of the critical amplitudes to the model with N = 2 is rather good.

Fig. 15.8. Dispersion relation for glycerine-water mixture in contact with air at atmospheric pressure. Fitting the exper-
imental data (Edwards & Fauve 1993) with the results of the FHS (solid lines) leads to γ = 67.6 × 10−3 N/m. Inset:
Fitting of the experimental data for the stability threshold leads to ν = 1.02× 10−4 m2/sec.
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Fig. 15.9. fC/g versus ω/(2π). Based on the data of λC = λC(ω/(2π)) for their exact solution in figure 15.8 of Kumar
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15.8 Bifurcation of Faraday waves in a nearly square container

This problem has been studied using techniques of the theory of dynamical systems by Feng and Sethna (1989).
Their study is of interest here since it is based on the nonlinear equations governing the potential flow of an
inviscid fluid and can be updated to include the irrotational effects of viscosity. Their equations are the same as
those given by BU. They look for a harmonic potential φ satisfying n · ∇φ = 0 on side walls and the container
bottom, such that

∂φ

∂z
=

∂η

∂t
+

∂φ

∂x

∂η

∂x
+

∂φ

∂y

∂η

∂y
, (15.8.1)

and
γ

ρ
(κ1 + κ2) +

∂φ

∂t
+

1
2
|∇φ|2 − (g − f cos ωt) η = 0. (15.8.2)

Surface tension γ = 0 in the analysis of Feng and Sethna (1989). In our studies of purely irrotational effects of
viscosity in the linear problem, we found the less damped of the irrotational studies gave better results; VPF
was closer to experiments and exact analysis than VCVPF and the dissipation method. To implement VPF in
the nonlinear problem, we add 2µn · (∇⊗∇φ) · n to the left side (15.8.2)

It would be of interest to see how the addition of surface tension and viscosity alter the agreements between
theory and experiment reported by Miles and Henderson (1990) cited below.

“Feng & Sethna (1989) and Simonelli & Gollub (1989) have measured the stability boundaries for square and almost
square cylinders. Feng & Sethna’s experiments confirm some, and do not qualitatively contradict any, of their theoretical
predictions. Simonelli & Gollub’s experiments in square containers are in qualitative accord with Feng & Sethna’s theory
for |β1 − β2| ¿ 1. However, their experiments reveal a much richer structure than those of either Ciliberto & Gollub
(1985) or Feng & Sethna. In particular, they find that the transition between the various states may be hysteretic and
associate this with a subcritical bifurcation. For an almost square container, their experiments appear to be compatible
with Feng & Sethna’s theory, although direct comparison is difficult owing to different choices of control parameters. In
particular, they find that the parameter space includes a region of time-dependent behavior but no region of a stable
superposition of the two modes. Feng & Sethna do find the stable coexistence of the pure modes. In addition, they report
slow rotational (about a vertical axis) motions not observed by Simonelli & Gollub. Experiments on standing waves in
square cylinders also have been reported by Douady & Fauve (1988).”

15.9 Conclusion

We developed two purely irrotational theories for the effects of viscosity on Faraday waves. In both theories the
velocity is computed from the potential and the viscous term in the normal stress balance at the free surface
is evaluated on potential flow. In one theory, called VPF, the pressure is given by the Bernoulli equation;
it is the same pressure as would be computed for an inviscid fluid. The second irrotational theory, called
VCVPF, is the same as the first except for the introduction of an additional pressure generated to remove the
unphysical irrotational shear stress from the energy balance. The first theory leads to an amplitude equation
with a damping coefficient proportional to 2ν. The second theory leads to the same amplitude equation except
that the damping coefficient is proportional 4ν. We show that the VCVPF theory with damping coefficcient
4ν is identical to the well known dissipation theory in which no pressure, inviscid or viscous, appears. We
show then that the dissipation theory is identical to the damped theory which was introduced by Kumar &
Tuckerman(1994) following a heuristic argument. This theory, equivalent to VCVPF, with damping 4ν has been
universally regarded as the correct irrotational approximation for viscous damping for small ν. Here, we show
that both these ideas are not correct; the VPF theory with damping equal to 2ν is a better approximation and
the approximation is not restricted to small viscosities.

171



16

Stability of a liquid jet into incompressible
gases and liquids

In this chapter we carry out an analysis of the stability of a liquid jet into a gas or another fluid using viscous
potential flow. This instability may be driven by Kelvin-Helmholtz KH instability due to a velocity difference and
a neckdown due to capillary instability. KH instabilities are driven by pressures generated by a dynamically active
ambient flow, gas or liquid. On the other hand, capillary instability can occur in a vacuum; the ambient can be
neglected. KH instability is included by a discontinuity of the velocity at a two-fluid interface. This discontinuity
is inconsistent with the no-slip condition for Navier-Stokes studies of viscous fluids, but is consistent with the
theory of potential flow of a viscous fluid. We shall start our study with an analysis of capillary instability.

16.1 Capillary instability of a liquid cylinder in another fluid

The studty of this problem is especially valuable because it can be solved exactly and was solved by Tomotika
1935. This solution allows one to compute the effects of vorticity generated by the no-slip condition. The
exact solution can be compared with irrotational solutions of the same problem. One effect of viscosity on the
irrotational motion may be introduced by evaluating the viscous normal stress at the liquid-liquid interface on
the irrotational motions. In a second approximation, the explicit effects of the discontinuity of the shear stress
and tangential component of velocity which cannot be resolved pointwise in irrotational flows, can be removed
in the mean from the energy equation by the selection of two viscous corrections of the irrotational pressure. We
include the irrotational stress and pressure correction in the normal stress balance and compare the computed
growth rates to the growth rates of the exact viscous flow solution. The agreement is excellent when one of the
liquids is a gas; for two viscous liquids, the agreement is good to reasonable for the maximum growth rates but
poor for long waves. Calculations show that good agreement is obtained when the vorticity is relatively small
or the irrotational part is dominant in the exact viscous solution. We show that the irrotational viscous flow
with pressure corrections gives rise to exactly the same dispersion relation as the dissipation method in which
no pressure at all is required and the viscous effect is accounted for by evaluating the viscous dissipation using
the irrotational flow.

16.1.1 Introduction

A liquid thread of mean radius R immersed in another liquid is subject to capillary instability. The capillary
collapse can be described as a neck-down due to the surface tension γ in which the liquid is ejected from the
throat of the neck, as seen in Fig. 16.1. Capillary instability is responsible for drop formation in applications
such as ink-jet printing, fiber spinning and silicon chip technology.

The dynamical theory of instability of a long cylindrical column of liquid of radius R under the action of
capillary force was given by Rayleigh (1879) following earlier work by Plateau (1873) who showed that a long
cylinder of liquid is unstable to disturbances with wavelengths greater than 2πR. Rayleigh showed that the effect
of inertia is such that the wavelength λ corresponding to the mode of maximum instability is λ = 4.51 × 2R,
exceeding considerably the circumference of the cylinder. The idea that the wavelength associated with fastest
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R
u

Capillary Force g/r

r = R+h

Fig. 16.1. Capillary instability. The force γ/r drives fluid away from the throat, leading to collapse.

growing growth rate would become dominant and be observed in practice was first put forward by Rayleigh
(1879). The analysis of Rayleigh is based on potential flow of an inviscid liquid neglecting the effect of the
outside fluid. An attempt to account for viscous effects was made by Rayleigh (1892) again neglecting the effect
of the surrounding fluid. One of the effects considered is meant to account for the forward motion of an inviscid
fluid with a resistance proportional to velocity. The effect of viscosity is treated in the special case in which the
viscosity is so great that inertia may be neglected. He showed that the wavelength for maximum growth is very
large, strictly infinite. Weber (1931) extended Rayleigh’s theory by considering an effect of viscosity and that
of surrounding air on the stability of a columnar jet. The effect of viscosity on the stability of a liquid cylinder
when the surrounding fluid is neglected and on a hollow (dynamically passive) cylinder in a viscous liquid was
treated briefly by Chandrasekhar (1961). Eggers (1997) has given a comprehensive review of nonlinear dynamics
and breakup of free surface flows.

Tomotika (1935) studied capillary instability and gave an exact normal mode solution of the linearized Navier-
Stokes equations. Funada and Joseph (2002) analyzed the same problem using VPF. Wang, Joseph and Funada
(2004) considered capillary instability in cases in which one liquid is viscous and the other is a gas of negligible
density and viscosity. They included the pressure correction in the normal stress balance at the free surface and
showed that the growth rates computed using VCVPF are almost indistinguishable from the exact solution.

Here, we extend the VCVPF analysis to cases involving the interface of two viscous fluids. The formulation
for the pressure correction is derived and used to compute growth rates for capillary instability of two viscous
fluids. The computed values of the maximum growth rate and the associated wave-number computed from
VCVPF are close to those from the exact solution; but the growth rates at small wave-numbers are not in good
agreement.

16.1.2 Linearized equations governing capillary instability

Consider the stability of a liquid cylinder of radius R with viscosity µl and density ρl surrounded by another
fluid with viscosity µa and density ρa under capillary forces generated by interfacial tension γ. Note that we use
the subscript “l” for the inside fluid and “a” for the outside fluid. The analysis is done in cylindrical coordinates
(r, θ, z) and only axisymmetric disturbances independent of θ are considered. The linearized Navier-Stokes
equations and interfacial conditions are made dimensionless with the following scales:

[length, velocity, time, pressure] = [D, U, D/U, p0]

where D is the diameter of the liquid cylinder, U =
√

γ/(ρlD), p0 = ρlU
2 = γ/D. The three dimensionless

parameters controlling the solution are m = µa/µl, l = ρa/ρl and a Reynolds number J = V Dρl/µl = Oh2

where V = γ/µl and Oh is the Ohnesorge number. The governing equations are

∂ul

∂r
+

ul

r
+

∂wl

∂z
= 0, (16.1.1)

173



∂ul

∂t
= −∂pl

∂r
+

1√
J

(
∇2ul − ul

r2

)
,

∂wl

∂t
= −∂pl

∂z
+

1√
J
∇2wl, (16.1.2)

∂ua

∂r
+

ua

r
+

∂wa

∂z
= 0, (16.1.3)

l
∂ua

∂t
= −∂pa

∂r
+

m√
J

(
∇2ua − ua

r2

)
, l

∂wa

∂t
= −∂pa

∂z
+

m√
J
∇2wa, (16.1.4)

with ∇2 =
∂2

∂r2
+

1
r

∂

∂r
+

∂2

∂z2
. The kinematic condition at the interface r = 1/2 + η (where η is the varicose

displacement) is given by

∂η

∂t
= ul,

∂η

∂t
= ua. (16.1.5)

The normal stress balance at the interface is given by

pa − pl +
2√
J

∂ul

∂r
− 2m√

J

∂ua

∂r
=

∂2η

∂z2
+

η

R2
. (16.1.6)

The tangential stress balance at the interface is given by
(

∂ul

∂z
+

∂wl

∂r

)
= m

(
∂ua

∂z
+

∂wa

∂r

)
. (16.1.7)

The continuity of the velocity at the interface requires

ul = ua, (16.1.8)

wl = wa. (16.1.9)

16.1.3 Fully viscous flow analysis (Tomotika 1935)

Tomotika (1935) gave a normal mode solution to the linearized governing equations. This is an exact solution
which satisfies all the four interfacial conditions in (16.1.6)–(16.1.9). He expressed the velocities with a stream
function ψ(r, z, t):

u =
1
r

∂ψ

∂z
, w = −1

r

∂ψ

∂r
, (16.1.10)

and the basic variables are expressed in normal modes:

ψl = [A1rI1(kr) + A2rI1(klr)] exp(σt + ikz), (16.1.11)

ψa = [B1rK1(kr) + B2rK1(kar)] exp(σt + ikz), (16.1.12)

η = H exp(σt + ikz), (16.1.13)

where σ is the complex growth rate and k is the wave-number; the modified Bessel functions of the first order
are denoted by I1 for the first kind and K1 for the second kind. Substitution of (16.1.11)–(16.1.13) to (16.1.6)–
(16.1.9) leads to the solvability condition, which is given as the dispersion relation:

∣∣∣∣∣∣∣∣

I1(kR) I1(klR) K1(kR) K1(kaR)
kI0(kR) klI0(klR) −kK0(kR) −kaK0(kaR)

2k2I1(kR)
(
k2 + k2

l

)
I1(klR) 2mk2K1(kR) m

(
k2 + k2

a

)
K1(kaR)

F1 F2 F3 F4

∣∣∣∣∣∣∣∣
= 0, (16.1.14)

where

F1 = iσI0(kR) + 2i
k2

√
J

(
dI1(kR)
d(kR)

)
−

(
1

R2
− k2

)
i
k

σ
I1(kR), (16.1.15)
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F2 = 2i
kkl√

J

(
dI1(klR)
d(klR)

)
−

(
1

R2
− k2

)
i
k

σ
I1(klR), (16.1.16)

F3 = −ilσK0(kR) + 2i
mk2

√
J

(
dK1(kR)
d(kR)

)
, F4 = 2i

mkka√
J

(
dK1(kaR)
d(kaR)

)
, (16.1.17)

with

kl =
√

k2 +
√

Jσ, ka =

√
k2 +

l

m

√
Jσ. (16.1.18)

16.1.4 Viscous potential flow analysis (Funada and Joseph 2002)

The potential flow solution is given by u = ∇φ, ∇2φ = 0, where φ is the velocity potential. The normal stress
balance (16.1.6) and normal velocity continuity (16.1.8) are satisfied; the shear stress and tangential velocity
conditions (16.1.7) and (16.1.9) cannot be enforced. The potential solution can be expressed as

ψl = A1rI1(kr) exp(σt + ikz), (16.1.19)

ψa = B1rK1(kr) exp(σt + ikz), (16.1.20)

η = H exp(σt + ikz), (16.1.21)

for which the dispersion relation is given by

(αl + lαa)σ2 +
2k2

√
J

(βl + mβa)σ =
(

1
R2

− k2

)
k, (16.1.22)

with

αl =
I0(kR)
I1(kR)

, αa =
K0(kR)
K1(kR)

, βl = αl − 1
kR

, and βa = αa +
1

kR
. (16.1.23)

Solving (16.1.22), we obtain

σ = −k2(βl + mβa)√
J(αl + lαa)

±
√[

k2(βl + mβa)√
J(αl + lαa)

]2

+
(

1
R2

− k2

)
k

αl + lαa
. (16.1.24)

Thus instability arises in 0 < kR < 1, for which the dimensionless critical wave-number kc = 1/R = 2. When√
J →∞, (16.1.24) reduces to

σ = ±
√(

1
R2

− k2

)
k

αl + lαa
, (16.1.25)

which is just the dispersion relation in inviscid potential flow (IPF); the same dispersion relation was obtained
by Christiansen and Hixson (1957).

16.1.5 Pressure correction for viscous potential flow

Joseph and Wang (2004) derived a viscous correction for the irrotational pressure at free surfaces of steady flows,
which is induced by the discrepancy between the non-zero irrotational shear stress and the zero-shear-stress
condition at free surfaces. In the VPF analysis of capillary instability, the interface between two viscous fluids is
involved and the two potential flows are unsteady. We will derive the pressure correction for capillary instability
from the basic mechanical energy equation.

If we ignore the small deformation η in the linear problem, we have n1 = er as the outward normal at the
interface for the inside fluid; n2 = −n1 is the outward normal for the outside fluid; t = ez is the unit tangential
vector. We use the superscript “i” for “irrotational” and “v” for “viscous.” The normal and shear parts of the
viscous stress are represented by τn and τ s, respectively.
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The velocities and stresses are evaluated using the potentials, which are expressed by stream functions
(16.1.19) and (16.1.20). The mechanical energy equations for the outside and inside fluids are respectively

d
dt

∫

Va

ρa

2
|ua|2 dV =

∫

A

[ua ·Ta · n2] dA−
∫

Va

2µaDa : DadV

= −
∫

A

[
ua · n1

(−pi
a + τn

a

)
+ ua · tτ s

a

]
dA−

∫

Va

2µaDa : DadV ,

(16.1.26)

d
dt

∫

Vl

ρl

2
|ul|2 dV =

∫

A

[ul ·Tl · n1] dA−
∫

Vl

2µlDl : DldV

=
∫

A

[
ul · n1

(−pi
l + τn

l

)
+ ul · tτ s

l

]
dA−

∫

Vl

2µlDl : DldV .

(16.1.27)

With the continuity of the normal velocity

ua · n1 = ul · n1 = un, (16.1.28)

the sum of (16.1.26) and (16.1.27) can be written as

d
dt

∫

Va

ρa

2
|ua|2 dV +

d
dt

∫

Vl

ρl

2
|ul|2 dV =

∫

A

[
un

(−pi
l + τn

l + pi
a − τn

a

)

+ul · tτ s
l − ua · tτ s

a ] dA−
∫

Va

2µaDa : DadV −
∫

Vl

2µlDl : DldV .

(16.1.29)

Now consider the boundary layer approximation of viscous potential flow. We propose two pressure correc-
tions, pv

l and pv
a, for the inside and outside potential flows respectively, together with the continuity conditions

τ s
a = τ s

l = τ s, and ua · t = ul · t = us. (16.1.30)

We assume that the boundary layer approximation has a negligible effect on the flow in the bulk liquid but it
changes the pressure and continuity conditions at the interface. Hence, the mechanical energy equations become

d
dt

∫

Vl

ρl

2
|ul|2 dV =

∫

A

[
un

(−pi
l − pv

l + τn
l

)
+ usτ

s
]
dA−

∫

Vl

2µlDl : DldV, (16.1.31)

d
dt

∫

Va

ρa

2
|ua|2 dV = −

∫

A

[
un

(−pi
a − pv

a + τn
a

)
+ usτ

s
]
dA−

∫

Va

2µaDa : DadV. (16.1.32)

The sum of (16.1.31) and (16.1.32) can be written as

d
dt

∫

Va

ρa

2
|ua|2 dV +

d
dt

∫

Vl

ρl

2
|ul|2 dV =

∫

A

[
un

(−pi
l − pv

l + τn
l + pi

a + pv
a − τn

a

)]
dA

−
∫

Va

2µaDa : DadV −
∫

Vl

2µlDl : DldV .

(16.1.33)

Comparing (16.1.29) and (16.1.33), we obtain an equation which relates the pressure corrections to the uncom-
pensated irrotational shear stresses

∫

A

un (−pv
l + pv

a) dA =
∫

A

(ul · tτ s
l − ua · tτ s

a) dA. (16.1.34)

Joseph and Wang (2004) showed that in linearized problems, the governing equation for the pressure correc-
tions is

∇2pv = 0. (16.1.35)

Solving equation (16.1.35), we obtain the two pressure corrections

− pv
l =

∞∑

j=0

C ′j iI0

(
2π

λ
jr

)
exp

(
σt + i

2π

λ
jz

)
, (16.1.36)
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− pv
a =

∞∑

j=0

D′
j iK0

(
2π

λ
jr

)
exp

(
σt + i

2π

λ
jz

)
, (16.1.37)

where C ′j and D′
j are constants to be determined, j is an integer and λ is the period in z direction. Suppose

2πj0/λ = k, C ′j0 = Ck and D′
j0

= Dk, then the two pressure corrections can be written as

− pv
l = CkiI0(kr) exp(σt + ikz) +

∑

j 6=j0

C ′j iI0

(
2π

λ
jr

)
exp

(
σt + i

2π

λ
jz

)
, (16.1.38)

− pv
a = DkiK0(kr) exp(σt + ikz) +

∑

j 6=j0

D′
j iK0

(
2π

λ
jr

)
exp

(
σt + i

2π

λ
jz

)
. (16.1.39)

With the pressure corrections, the normal stress balance has the following form

pi
a + pv

a − pi
l − pv

l +
2√
J

∂ul

∂r
− 2m√

J

∂ua

∂r
=

∂2η

∂z2
+

η

R2
, (16.1.40)

which gives rise to




lB1K0(kR)σ −DkK0(kR) + A1σI0(kR) + CkI0(kR)

+
2k2

√
J

A1

[
I0(kR)− I1(kR)

kR

]
+

2mk2

√
J

B1

[
K0(kR) +

K1(kR)
kR

]




exp(σt + ikz)

+
∑

j 6=j0

[
C ′jI0

(
2π

λ
jR

)
−D′

jK0

(
2π

λ
jR

)]
exp

(
σt + i

2π

λ
jz

)

= A1
k

σ
I1(kR)

(
1

R2
− k2

)
exp(σt + ikz).

(16.1.41)

By orthogonality of the Fourier series, we obtain

lB1K0(kR)σ −DkK0(kR) + A1σI0(kR) + CkI0(kR) +
2k2

√
J

A1

[
I0(kR)− I1(kR)

kR

]

+
2mk2

√
J

B1

[
K0(kR) +

K1(kR)
kR

]
= A1

k

σ
I1(kR)

(
1

R2
− k2

)
,

(16.1.42)

and

C ′jI0

(
2π

λ
jR

)
−D′

jK0

(
2π

λ
jR

)
= 0 when j 6= j0. (16.1.43)

Equation (16.1.42) replaces the normal stress balance and can be solved for the growth rate σ. However, the
undetermined part CkI0(kR) − DkK0(kR) has to be computed from (16.1.34) before we can solve (16.1.42).
Substitution of (16.1.38), (16.1.39) and (16.1.43) into the left hand side of (16.1.34) gives rise to

∫

A

ūn (−pv
l + pv

a) dA =
∫ 2π

0

Rdθ

∫ z+λ

z

ūn (−pv
l + pv

a) dz

= 2πRλ
[
Ā1CkI0(kR)I1(kR)− B̄1DkK0(kR)K1(kR)

]
k exp(σ + σ̄)t, (16.1.44)

where ūn is the conjugate of un. The right hand side of (16.1.34) can be evaluated
∫

A

[(
ul · t

)
τ s
l −

(
ua · t

)
τ s
a

]
dA

=
4πRλ√

J

[
Ā1A1I0(kR)I1(kR) + mB̄1B1K0(kR)K1(kR)

]
k3 exp(σ + σ̄)t.

(16.1.45)

Combining (16.1.44) and (16.1.45), we obtain

Ā1CkI0(kR)I1(kR)− B̄1DkK0(kR)K1(kR)

=
2√
J

Ā1A1k
2I0(kR)I1(kR) +

2m√
J

B̄1B1k
2K0(kR)K1(kR). (16.1.46)
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Table 16.1. The properties of the five pairs of fluids used to study capillary instability and the controlling
dimensionless parameters l, m and J .

case 1 2 3 4 5

Fluids Mercury- Water- Glycerin- Goldensyrup- Goldensyrup-
water benzene mercury paraffin BBoil

ρl(kg m−3) 13500 1000 1257 1400 1400

ρa(kg m−3) 1000 0.001 13500 1600 900

µl(kg/m s) 0.00156 860 0.782 11.0 11.0

µa(kg/m s) 0.001 0.00065 0.00156 0.0034 6.0

γ(N/m) 0.375 0.0328 0.375 0.023 0.017

l = ρa/ρl 0.07407 0.86 10.74 1.143 0.6429

m = µa/µl 0.6410 0.65 1.995×10−3 3.091×10−4 0.5455

J = ρlγD/µ2
l 2.080×107 3.280×105 7.708 2.661×10−3 1.967×10−3

The normal velocity continuity condition (16.1.28) leads to

B1 = A1
I1(kR)
K1(kR)

. (16.1.47)

Substitution of (16.1.47) into (16.1.46) leads to

CkI0(kR)−DkK0(kR) =
2√
J

A1k
2I0(kR) +

2m√
J

A1k
2I1(kR)K0(kR)/K1(kR). (16.1.48)

Inserting (16.1.47) and (16.1.48) into (16.1.42), we obtain the dispersion relation

(αl + lαa) σ2 +
2k2

√
J

[(αl + βl) + m (αa + βa)]σ =
(

1
R2

− k2

)
k, (16.1.49)

where αl, αa, βa and βl are defined in (16.1.23). Solving (16.1.49), we obtain the growth rate

σ = −k2 [(αl + βl) + m (αa + βa)]√
J (αl + lαa)

±
√[

k2 [(αl + βl) + m (αa + βa)]√
J (αl + lαa)

]2

+
(

1
R2

− k2

)
k

αl + lαa
. (16.1.50)

16.1.6 Comparison of growth rates

We calculate the growth rate σ using IPF (16.1.25), VPF (16.1.24) and VCVPF (16.1.50) and compare these
results with the exact solution (16.1.14). We choose five pairs of fluids to study capillary instability and the
properties of the fluids and controlling dimensionless parameters are listed in Table 16.1.

We are essentially comparing solutions assuming irrotational flows to the exact solution. To better understand
the potential flow approximation to the fully viscous flow, we may evaluate the vorticity

ω =
∂ur

∂z
− ∂uz

∂r
=

∂u

∂z
− ∂w

∂r
(16.1.51)

in the interior and exterior fluids from the exact solution. When the vorticity is great, the potential flow cannot
give a satisfactory approximation.

The vorticity is

ωl = A2I1(klr)
(
k2

l − k2
)
exp(σt + ikz) = A2I1(klr)

√
Jσ exp(σt + ikz) (16.1.52)
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in the interior fluid and is

ωa = B2K1(kar)
(
k2

a − k2
)
exp(σt + ikz) = B2K1(kar)

l

m

√
Jσ exp(σt + ikz) (16.1.53)

in the exterior fluid. The magnitudes of ωl and ωa are proportional to A2 and B2, respectively. We normalize
them by B2 so that the two magnitudes are measured by the same scale and can be compared. The normalized
magnitudes of the vorticities at the interface (r ≈ R) are

ω∗l = −A2

B2
I1(klR)

√
Jσ and ω∗a = K1(kaR)

l

m

√
Jσ. (16.1.54)

Note that we add a minus sign for ω∗l . The reason is that the vorticity vectors in the interior and exterior fluids
are in opposite directions, leading to vorticities of opposite signs. By adding a minus sign for ω∗l , we obtain the
absolute value of the vorticity in the interior fluid. To compute (16.1.54), we need to know the value of A2/B2.
This can be achieved by manipulation of the dispersion relation (16.1.14)




I1(kR) I1(klR) K1(kR)
kI0(kR) klI0(klR) −kK0(kR)

2k2I1(kR) (k2 + k2
l )I1(klR) 2mk2K1(kR)







A1/B2

A2/B2

B1/B2


 =




−K1(kaR)
kaK0(kaR)

−m(k2 + k2
a)K1(kaR)


 , (16.1.55)

from which we can solve for A1/B2, A2/B2 and B1/B2.

We note that the stream functions (16.1.11) and (16.1.12) in the exact solution can be divided into the
irrotational part and rotational part:

ψi
l = A1rI1(kr) exp(σt + ikz), ψr

l = A2rI1(klr) exp(σt + ikz); (16.1.56)

ψi
a = B1rK1(kr) exp(σt + ikz), ψr

a = B2rK1(kar) exp(σt + ikz). (16.1.57)

The irrotational parts are exactly the potential flow solution, whereas the vorticities are solely determined by
the rotational parts. When the irrotational parts dominate, potential flows can give good approximation to the
exact solution; when the rotational parts are important, the approximation cannot be satisfactory. We define
two ratios of the irrotational part to the rotational part:

fl =
∣∣∣∣
ψi

l(r = R)
ψr

l (r = R)

∣∣∣∣ =
∣∣∣∣
A1I1(kR)
A2I1(klR)

∣∣∣∣ , (16.1.58)

fa =
∣∣∣∣
ψi

a(r = R)
ψr

a(r = R)

∣∣∣∣ =
∣∣∣∣

B1K1(kR)
B2K1(kaR)

∣∣∣∣ . (16.1.59)

These two ratios characterize the relative importance of the irrotational and rotational parts at the interface.
When the Reynolds number is large, we expect the values of the ratios to be high.

We present the comparison of the growth rates computed from IPF, VPF, VCVPF and the exact solution
in Figs. 16.2–16.6 for the five pairs of fluids listed in Table 16.1. In each case, a growth rate vs. wave-number
plot, a vorticity vs. wave-number plot, and a plot for the two ratios fl and fa vs. wave-number are shown. The
vorticity plot and the plot for the two ratios can help to understand the agreement and disagreement between
the growth rates from potential-based solutions and from the exact solution.

When the Reynolds number is high (Figs. 16.2 and 16.3), the three potential flow based solutions are essen-
tially the same; they are in good agreement with the exact solution in the maximum growth region (see Table
16.2) but deviate from the exact solution when k ¿ 1. When the Reynolds number is lower (Figs. 16.4 and
16.5), IPF and VPF deviate from the exact solution in the maximum growth region whereas VCVPF can give
almost the same maximum growth rate σm and the associated wave-number km as the exact solution. However,
VCVPF dose not differ greatly from IPF or VPF when k ¿ 1. Figure 16.6 shows the results for case 5 in which
the Reynolds number is low and the viscosity ratio m ∼ O(1); VCVPF does not give the correct values of σm

and km in this case.

The vorticity as a function of the wave-number k helps to understand the non-uniform agreement between
the VCVPF results and the exact results. In cases 1, 2 and 3 (Figs. 16.2, 16.3 and 16.4), the magnitude of the
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Table 16.2. Data of the maximum growth rate and the associated wave-number.

IPF EXACT
case km σm km σm

1 1.3909616e+00 9.6377400e-01 1.3893986e+00 9.5517399e-01

2 1.3585050e+00 8.9589722e-01 1.3508895e+00 8.4918585e-01

3 1.1897181e+00 5.5734616e-01 9.9496394e-01 3.4140194e-01

4 1.3493716e+00 8.7507633e-01 2.7032697e-01 1.6552208e-02

5 1.3661634e+00 9.1303869e-01 1.0632024e+00 4.3484116e-03

VPF VCVPF
case km σm km σm

1 1.3909616e+00 9.6337186e-01 1.3893986e+00 9.6289992e-01

2 1.3569785e+00 8.9325293e-01 1.3539306e+00 8.9017625e-01

3 1.0716030e+00 4.7575270e-01 9.1862735e-01 3.6760629e-01

4 2.9643429e-01 4.8733702e-02 1.7693239e-01 1.6878141e-02

5 2.0203403e-01 2.7575187e-02 1.3433168e-01 1.2291103e-02

vorticity is large when k ¿ 1 and small in the maximum growth region. This could explain the good agreement
in the maximum growth region and poor agreement when k ¿ 1. In cases 4 and 5 (Figs. 16.5 and 16.6), the
magnitude of the vorticity is large at almost all the values of k except when k is very close to kc = 2. The
distribution of the vorticity is helpful for understanding the growth rate calculation but a clear explanation for
the non-uniform agreement is not obtained in cases 4 and 5.

We find that the values of the two ratios fl and fa are close to 1 when k ¿ 1 in all the cases, indicating that
the rotational parts are important for long waves even at high Reynolds number. This is consistent with our
growth rate calculation, which shows that the agreement between VCVPF and the exact solution is poor for
long waves. In the maximum growth region (k close to 1), the values of fl and fa are larger than for long waves.
When the Reynolds number is large, the maximum value of fl and fa is large, indicating that the irrotational
parts dominate the solution; at the same time, we observe good agreement between VCVPF and the exact
solution for wave numbers near km. When the Reynolds number is small, the values of fl and fa are close to
1 in the whole range of k; at the same time, we observe that the agreement between VCVPF and the exact
solution is poor at almost all the values of k.

16.1.7 Dissipation calculation for capillary instability

We have shown in Chapter 12 that the dissipation method gives the same result as VCVPF for gas-liquid flows.
This is also true for the two-fluid problem considered in §16.1.5 as the following calculation shows. Here we
extend the dissipation calculation to capillary instability of two viscous fluids.

The sum of the mechanical energy equations of the interior and exterior fluids can be written as

d
dt

∫

Va

ρa

2
|ua|2 dV +

d
dt

∫

Vl

ρl

2
|ul|2 dV =

∫

A

[un (−pl + τn
l + pa − τn

a )

+ul · tτ s
l − ua · tτ s

a ] dA−
∫

Va

2µaDa : DadV −
∫

Vl

2µlDl : DldV .

(16.1.60)

We assume that the normal stress balance

pa − τn
a − pl + τn

l =
∂2η

∂z2
+

η

R2
, (16.1.61)
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Fig. 16.2. (a) The growth rate σ vs. k for case 1, mercury in water. The three potential flow based analyses agree with
the exact solution well but deviate from it slightly when k ¿ 1. (b) The vorticities ω∗l and ω∗a vs. k for case 1. The
magnitude of the vorticity is large when k ¿ 1 and small when k is about 1. (c) The two ratios fl and fa vs. k for case
1. The irrotational parts dominate when k is close to 1; the irrotational and rotational parts are comparable when k ¿ 1
or k ≈ 2. The dominance of the irrotational part in the maximum growth region is understandable because the Reynolds
number is very high, 2.080×107. Both the vorticities and the two ratios could help to understand the deviation of the
potential based analyses from the exact solution when k ¿ 1.

and the continuity of the tangential velocity and stress

τ s
a = τ s

l = τ s, and ua · t = ul · t = us, (16.1.62)

are all satisfied at the interface. At the same time, the flow in the bulk of the fluids are approximated by
potential flow, for which the following identity can be easily proved

∫

V

2µD : DdV =
∫

A

n · 2µD · udA, (16.1.63)

where A is the surface of V and n is the unit normal pointing outward. Inserting (16.1.61), (16.1.62) and
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Fig. 16.3. (a) The growth rate σ vs. k for case 2, water in benzene. The three potential flow based analyses agree with
the exact solution in the maximum growth region but deviate from it considerably when k is small. (b) The vorticities
ω∗l and ω∗a vs. k for case 2. The magnitude of the vorticity is large when k ¿ 1 and small in the maximum growth region.
(c) The two ratios fl and fa vs. k for case 2. The ratios are high when k is close to 1 but close to 1 when k ¿ 1 or k ≈ 2.
The maximum value of fl is 10.37 here, smaller than the value 66.82 in case 1. The reason is that the Reynolds number
in case 2 is smaller than in case 1. Both the vorticities and the two ratios could help to understand the good agreement
in the maximum growth region and poor agreement when k ¿ 1 as shown in (a).

(16.1.63) into (16.1.60), we obtain

d
dt

∫

Va

ρa

2
|ua|2 dV +

d
dt

∫

Vl

ρl

2
|ul|2 dV =

∫

A

unγ

(
∂2η

∂z2
+

η

R2

)
dA

+
∫

A

n1 · 2µaDa · uadV −
∫

A

n1 · 2µlDl · uldV .

(16.1.64)

The dimensionless form of (16.1.64) is

l
d
dt

∫

Va

1
2
|ua|2 dV +

d
dt

∫

Vl

1
2
|ul|2 dV =

∫

A

un

(
∂2η

∂z2
+

η

R2

)
dA

+
m√
J

∫

A

n1 · 2Da · uadA− 1√
J

∫

A

n1 · 2Dl · uldA.

(16.1.65)
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Fig. 16.4. (a) The growth rate σ vs. k for case 3, glycerin in mercury. In the maximum region, IPF and VPF overestimate
the growth rate whereas VCVPF gives almost the same value as EXACT. IPF, VPF and VCVPF deviate from the exact
solution considerably when k ¿ 1. (b) The vorticities ω∗l and ω∗a vs. k for case 3. The magnitude of the vorticity is large
when k ¿ 1 and small in the maximum growth region. (c) The two ratios fl and fa vs. k for case 3. The ratios are
high when k is close to 1 but close to 1 when k ¿ 1 or k ≈ 2. The maximum value of fl is 1.83, much smaller than in
case 1 and case 2. At the same time the Reynolds number is also much smaller than in case 1 and case 2. It is noted
that the maximum value of fa is 17.19, much larger than fl. The reason is that the value of fa should correspond to the
Reynolds number based on ρa and µa, which is 2.08×107 in case 3. Both the vorticities and the two ratios could help to
understand the good agreement in the maximum growth region and poor agreement when k ¿ 1 as shown in (a).

The integrals in (16.1.65) are evaluated

d
dt

∫

Vl

|ul|2
2

dV =
d
dt

∫ 2π

0

dθ

∫ z+λ

z

∫ R

0

|ul|2
2

r drdz

= |A1|2 πλR2kI0(kR)I1(kR)(σ + σ̄) exp(σ + σ̄)t, (16.1.66)

l
d
dt

∫

Va

|ua|2
2

dV = l
d
dt

∫ 2π

0

dθ

∫ z+λ

z

∫ ∞

R

|ua|2
2

r drdz

= l |B1|2 πλR2kK0(kR)K1(kR)(σ + σ̄) exp(σ + σ̄)t, (16.1.67)
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Fig. 16.5. (a) The growth rate σ vs. k for case 4, goldensyrup in paraffin. IPF and VPF deviate from the exact solution
considerably in the whole range of k ≤ kc = 2. VCVPF is still in good agreement with the exact solution in the maximum
growth region. (b) The vorticities ω∗l and ω∗a vs. k for case 4. The magnitude of the vorticity is large at almost all the
values of k except when k is very close to kc = 2. (c) The two ratios fl and fa vs. k for case 4. The maximum value
of fl and fa does not exceed 1.3, indicating that the rotational parts are important in the whole range of k. This could
explain the deviation of IPF and VPF from the exact solution in the whole range. At the same time, the curve for fa

shows that the ratio is higher in the maximum growth region than in the region where k ¿ 1 or k ≈ 2. This may help to
understand the good agreement between VCVPF and the exact solution in the neighborhood of the maximum growth
rate.

∫

A

(
∂2η

∂z2
+

η

R2

)
uldA = 2 |A1|2 πλR

k2

σ
I2
1 (kR)

(
1

R2
− k2

)
exp(σ + σ̄)t, (16.1.68)

1√
J

∫

A

n1 · 2Dl · uldA =
4√
J
|A1|2 πλRk3I1(kR)

[
2I0(kR)− I1(kR)

kR

]
exp(σ + σ̄)t, (16.1.69)

m√
J

∫

A

n1 · 2Da · uadA =
4m√

J
|A1|2 πλRk3K1(kR)

[
2K0(kR) +

K1(kR)
kR

]
exp(σ + σ̄)t. (16.1.70)

Inserting (16.1.66)–(16.1.70) into (16.1.65), we obtain

(αl + lαa)
σ + σ̄

2
+

2k2

√
J

[(αl + βl) + m(αa + βa)] =
(

1
R2

− k2

)
k

σ
, (16.1.71)
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Fig. 16.6. (a) The growth rate σ vs. k for case 5, goldensyrup in BBoil. The agreement between IPF, VPF and VCVPF
with the exact solution is poor at almost all the values of k. (b) The vorticities ω∗l and ω∗a vs. k for case 5. The magnitude
of the vorticity is relatively large at almost all the values of k, and becomes small only when k is very close to kc = 2.
(c) The two ratios fl and fa vs. k for case 5. The maximum value of fl and fa does not exceed 1.000035, indicating that
the irrotational and rotational parts are almost equally important in the whole range of k. Both the vorticities and the
two ratios could help to understand the poor agreement between IPF, VPF and VCVPF with the exact solution shown
in (a).

where αl, αa, βa and βl are defined in (16.1.23). If we assume that σ is real, (16.1.71) is the same as the dispersion
relation (16.1.49) from the VCVPF solution. The solution of the dispersion relation is given in (16.1.50). In the
range 0 < k ≤ 1/R = 2, σ is real and our assumption is satisfied. Therefore, the growth rate computed by the
dissipation calculation is the same as that computed by the VCVPF.

16.1.8 Discussion of the pressure corrections at the interface of two viscous fluids

Our pressure corrections arise in a boundary layer induced by the discontinuity of the tangential velocity and
shear stress at the interface evaluated using the potential solution. We assume that the boundary layer is
thin and when the boundary layer is considered, the tangential velocity and shear stress are continuous at the
interface. This assumption leads to good agreements between the exact solution and VCVPF for the liquid-gas
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cases and less good agreements, better than what might be expected, in the cases of two fluids for which the
boundary layer assumptions do not hold uniformly and will be discussed in this section. In the boundary layer
near the interface, we divide the velocity and pressure into irrotational part and viscous correction part

u = ui + uv, w = wi + wv, p = pi + pv. (16.1.72)

The irrotational tangential velocities at the interface are

wi
l = −A1kI0(kR) exp(σt + ikz), (16.1.73)

wi
a = A1k

I1(kR)
K1(kR)

K0(kR) exp(σt + ikz). (16.1.74)

The tangential stresses at the interface evaluated using the potential flows are

τ s
l = −

(
2/
√

J
)

A1k
2I1(kR) exp(σt + ikz), (16.1.75)

τ s
a = −

(
2m/

√
J
)

A1k
2I1(kR) exp(σt + ikz). (16.1.76)

The continuity of the tangential velocity requires

wi
l + wv

l = wi
a + wv

a, (16.1.77)

which gives rise to

wv
l −A1kI0(kR) exp(σt + ikz) = wv

a + A1k
I1(kR)
K1(kR)

K0(kR) exp(σt + ikz). (16.1.78)

If we assume wv
a = qwv

l , (16.1.78) can be written as

wv
l (1− q) = A1k

[
I0(kR) +

I1(kR)
K1(kR)

K0(kR)
]

exp(σt + ikz). (16.1.79)

The continuity of the shear stress requires

1√
J

(
∂uv

l

∂z
+

∂wv
l

∂r

)
− 2√

J
A1k

2I1(kR) exp(σt + ikz)

=
m√
J

(
∂uv

a

∂z
+

∂wv
a

∂r

)
− 2

m√
J

A1k
2I1(kR) exp(σt + ikz).

(16.1.80)

Since the potential flow solution satisfies the continuity of the normal velocity ui
l = ui

a, the viscous corrections
to the normal velocity in the boundary layer should be very small. Thus ∂uv

l /∂z and ∂uv
a/∂z can be ignored

and (16.1.80) becomes

∂

∂r
(wv

l −mwv
a) = 2(1−m)A1k

2I1(kR) exp(σt + ikz). (16.1.81)

Assuming that the boundary layer thickness δ is small, we can write (16.1.81) approximately as

wv
l (1−mq) /δ = 2(1−m)A1k

2I1(kR) exp(σt + ikz). (16.1.82)

Comparing (16.1.79) and (16.1.82), we obtain

1−mq

(1− q)(1−m)
1
δ

=
2kI1(kR)

I0(kR) + I1(kR)
K0(kR)
K1(kR)

. (16.1.83)

Therefore, (16.1.83) needs to be satisfied if the continuities of the tangential velocity and stress are to be
enforced. In other words, the assumptions on which VCVPF is based are valid only if (16.1.83) is satisfied. Since
we do not solve the boundary layer problem, q and δ are unknown and we are not able to determine if (16.1.83) is
satisfied. However, we may assume that δ is very small and estimate the possibility of satisfying (16.1.83) under
different conditions, i.e. different values of m and k. We have the following observations regarding (16.1.83).

(1) Since δ is supposed to be small, (16.1.83) is easier to satisfy when the right hand side is larger. Calculation
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shows that the right hand side of (16.1.83) is 5×10−7 when k =0.001 and is 1.36 when k = 2. Therefore, (16.1.83)
can be satisfied for k close to kc =2 but is very difficult to satisfy for small k. This observation could help to
understand the results of the growth rate calculation, i.e., the agreement between VCVPF and the exact solution
is good for k close to kc but is poor when k ¿ 1.

(2) The term on the left hand side of (16.1.83)

1−mq

(1− q)(1−m)
(16.1.84)

should be comparable to or even smaller than δ, so that (16.1.83) can be satisfied. We find that for certain
values of q, (16.1.84) is small when m is much smaller than 1 and is large when m is close to 1. For example,
if we fix q at 10, the value of (16.1.84) is 0.0125 when m = 0.11 and is 8.89 when m = 0.9. This observation
may help to understand our growth rate calculation at low Reynolds numbers. In case 4, m = 3.091× 10−4 and
VCVPF is in good agreement with the exact solution in the region of maximum growth; in case 5, m = 0.5455
and VCVPF does not give the correct maximum growth rate σm and the associated wave-number km. The value
of m does not seem to be important at high Reynolds numbers. In case 1 and 2, IPF, VPF, VCVPF all agree
well with the exact solution in the region of maximum growth even when the value of m is relatively close to 1.
This is because the boundary layer and the viscous correction are not important at high Reynolds numbers.

We have shown that the condition (16.1.83) can be satisfied in some cases (k close to kc = 2 and m ¿ 1), and
is very difficult to satisfy in other cases (k ¿ 1 or m close to 1). When (16.1.83) is satisfied, the assumption of
continuous tangential velocity and stress is realized approximately and our calculation does show good agreement
between VCVPF and VPF. When (16.1.83) is difficult to satisfy, VCVPF may not give a good approximation to
the exact solution, especially at low Reynolds numbers. Thus, viscous potential flows with pressure corrections
can be used to approximate viscous flows in problems involving the interface of two viscous fluids, but this
approximation is not uniformly valid.

When the viscous corrections for the velocity and pressure are added to the irrotational flow, the complete
form of the normal stress balance is

pi
a + pv

a − pi
l − pv

l +
2√
J

(
∂ui

l

∂r
+

∂uv
l

∂r

)
− 2m√

J

(
∂ui

a

∂r
+

∂uv
a

∂r

)
=

∂2η

∂z2
+

η

R2
. (16.1.85)

The viscous corrections of the velocity satisfy the continuity equation

∂uv
l

∂r
+

uv
l

r
+

∂wv
l

∂z
= 0. (16.1.86)

We may estimate the order of the terms in (16.1.86)

2
uv

l

δ
∼ wv

l

λ
. (16.1.87)

Combining (16.1.82) and (16.1.87), we obtain

∂uv
l

∂r
∼ uv

l

δ
∼ δ

λ

1−m

1−mq
A1k

2I1(kR). (16.1.88)

At the same time, we have

∂ui
l

∂r
∼ A1k

2

(
I0(kR)− I1(kR)

kR

)
. (16.1.89)

If (1−m)/(1−mq) is not a very big value, ∂uv
l /∂r may be significantly smaller than ∂ui

l/∂r. A similar argument
can show that ∂uv

a/∂r could be significantly smaller than ∂ui
a/∂r. Therefore, ∂uv

l /∂r and ∂uv
a/∂r can be ignored

in (16.1.85) and we obtain the normal stress balance equation (16.1.40) used in VCVPF calculation. Admittedly,
omission of ∂uv

l /∂r and ∂uv
a/∂r is not justified for certain values of m and q, which may be partially responsible

for the poor agreement between VCVPF and the exact solution in some cases.
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Fluids (1) Mercury-air (2) Water-air (3) SO100-air (4) Glycerine-air (5) SO10000-air

ρl (kg m−3) 1.35× 104 1.00× 103 9.69× 102 1.26× 103 9.69× 102

µl (kg/m s) 1.56× 10−3 1.0× 10−3 0.1 0.782 10.0
γ (N/m) 0.482 7.28× 10−2 2.1× 10−2 6.34× 10−2 2.1× 10−2

J = ρlγD/µ2
l 2.67×107 7.28×105 20.4 1.30 2.04×10−3

Table 16.3. The properties of five fluids surrounded by air used to study capillary instability and the Reynolds
number J = Oh2 where Oh is the Ohnesorge number.

16.1.9 Capillary instability when one fluid is a dynamically inactive gas

There are two cases; (i) the exterior fluid is a gas or (ii) the interior fluid is a gas. The gas is dynamically
inactive when m = ` = 0. Dispersion relations for the cases in which one fluid is a dynamically inactive gas can
be obtained by putting m = ` = 0 in the fluid formulas

VPF (eq16.1.16.2.24)
IPF (eq16.1.16.2.25)

VCVPF (eq16.1.16.2.50)
ES (eq16.1.16.2.14)

where ES stands for the exact solution of Tomotika 1935.

(i) Exterior fluid is a gas

VPF : σ = − k2βl√
Jαl

±
√[

k2βl√
Jαl

]2

+
(

1
R2

− k2

)
k

αl
; (16.1.90)

IPF : σ = ±
√(

1
R2

− k2

)
k

αl
; (16.1.91)

VCVPF : σ = −k2(αl + βl)√
Jαl

±
√[

k2(αl + βl)√
Jαl

]2

+
(

1
R2

− k2

)
k

αl
; (16.1.92)

ES : σ isthesolutionof∣∣∣∣
2k2I1(kR) (k2 + k2

l )I1(klR)
F1 F2

∣∣∣∣ = 0, (16.1.93)

where F1 and F2 are defined in (16.1.15) and (16.1.16).

Calculations using these formulas were carried out for the five liquids listed in Table 16.3.

At high Reynolds numbers, the results using IPF, VPF, VCVPF and ES are essentially the same (all the
theories give rise to essentially the same result in the case of water or mercury; refer readers to Funada & Joseph
(2002)). At lower Reynolds numbers, IPF overestimates the growth rate considerably in the maximum growth
region; the growth rate by VPF is in better agreement with the ES solution; the curves for VCVPF are almost
indistinguishable from the ES curves (figure 16.7 and 16.8). The remarkably good agreement between VCVPF
and ES seems universal; it is observed for 10−3 < J < 107 and for any k < kc = 2 (see table 16.4).

(ii) The interior fluid is a gas Next we consider cases in which the interior fluid is a gas with negligible
viscosity and density; these are the inverse cases of those in § 5. We shall omit the details of the VCVPF
calculation because they are similar to those presented in § 5. We directly present the growth rates computed
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Fig. 16.7. The growth rate σ vs. k for case 3, SO100 in air. IPF and VPF slightly overestimate the growth rate in the
region near the peak; the curve for the corrected solution (VCPVF) is almost indistinguishable from the exact solution
(ES). FVF in the figure should be replaces by ES.
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Fig. 16.8. The growth rate σ vs. k for case 4, glycerine in air (a) and for case 5, SO10000 in air (b). The growth rates
computed from IPF and VPF deviate considerably from the exact solution (ES), but the growth rates from the corrected
solution (VCVPF) are nearly the same as the exact solution (see table 16.4). FVF in the figure should be replaces by
ES.

by IPF, VPF, VCVPF and ES as following.

IPF : σ = ±
√(

1
R2

− k2

)
k

αa
; (16.1.94)

VPF : σ = − k2βa√
J ′αa

±
√[

k2βa√
J ′αa

]2

+
(

1
R2

− k2

)
k

αa
; (16.1.95)

VCVPF : σ = −k2(αa + βa)√
J ′αa

±
√[

k2(αa + βa)√
J ′αa

]2

+
(

1
R2

− k2

)
k

αa
; (16.1.96)

ES: σ is the solution of
∣∣∣∣

2k2K1(kR)
(
k2 + k′2a

)
K1(k′aR)

F5 F6

∣∣∣∣ = 0, (16.1.97)

where αa, βa are defined in (4.5) and

F5 = −σK0(kR)− 2k2

√
J ′

(
dK1(kR)
d(kR)

)
+

(
1

R2
− k2

)
k

σ
K1(kR), (16.1.98)

F6 = −2kk′a√
J ′

(
dK1(k′aR)
d(k′aR)

)
+

(
1

R2
− k2

)
k

σ
K1(k′aR), (16.1.99)
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VCVPF (A) ES (A) VCVPF (B) ES (B)
Case km σm km σm km σm km σm

1 1.39 0.97 1.39 0.97 0.97 2.32 0.97 2.31
2 1.39 0.97 1.39 0.97 0.96 2.31 0.96 2.31
3 1.06 0.58 1.09 0.59 0.53 1.58 0.60 1.61
4 0.72 0.27 0.74 0.28 0.21 0.84 0.28 0.86
5 0.17 0.015 0.17 0.015 0.0066 0.045 0.013 0.045

Table 16.4. Maximum growth rate σm and the associated wavenumber km for VCVPF and ES in the 5 cases
shown in table 16.1 (A) and in the 5 inverse cases (B) (see § 7), e.g. air-mercury.
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Fig. 16.9. The growth rate σ vs. k for case 5 (inverse), air in SO10000. The growth rate by IPF is significantly larger
than that by ES; the results by VPF, VCVPF and ES are almost the same (see table 16.2). FVF in the figure should be
replaces by ES.

with

k′a =
√

k2 +
√

J ′σ, J ′ =
ρaDγ

µ2
a

. (16.1.100)

We calculate the growth rate curves for the inverse cases of those listed in table 16.1. Example curves are plotted
in figure 16.9 for air in SO10000. At low Reynolds numbers (figure 16.9), the growth rate by IPF is significantly
larger than that by ES for any k < kc = 2; VPF and VCVPF both give good approximations to ES. At higher
Reynolds numbers, the growth rate curves computed using IPF, VPF, VCVPF and ES are almost the same.

16.1.10 Conclusions

Purely irrotational theories of capillary instability of one viscous fluid cylinder in another viscous fluid were
derived and compared with Tomotika’s exact theory. In the case of two liquids the continuity condition, like
no-slip and continuity of shear stresses, generate regions of vorticity which have an important effect on viscous
decay. The exact solution, however, in surprisingly well approximated by VCVPF for waves near the peak value
of the growth rate curve but is not well approximated by VCVPF for long waves.

The extra pressure derived for VCVPF is generally thought to arise in a vorticity layer at the gas liquid
boundary. This idea still needs clarification, but in any case it is not used or needed in our purely irrotational
theories.

In the cases in which one of the fluids is a dynamically passive gas (or vacuum), the purely irrotational theory
of VCVPF with an extra pressure gives rise to a dispersion relation which is almost indistinguishable from the
exact one, uniformly in the wave number. The same dispersion relation as given by VCVPF can be derived from
the dissipation method. The approximation to the exact solution ES generated by VCVPF is much better than
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VPF. As a rule of thumb, we can say that VPF gives a good approximation of the viscous effects in the case
of short waves and VCVPF gives a good approximation for long waves. In the capillary instability problems
studied here the short waves are stabilized by surface tension and do enter into the stability analysis.

16.2 Stability of a liquid jet into incompressible gases: temporal, convective and absolute
instability

We carry out an analysis of the stability of a liquid jet into a gas or another liquid using viscous potential
flow. The nstability may be driven by Kelvin-Helmholtz KH instability due to a velocity difference and a
neckdown due to capillary instability. An explicit dispersion relation is derived and analyzed for temporal
and convective/absolute (C/A) instability. We find that for all values of the relevant parameters, there are
wavenumbers for which the liquid jet is temporally unstable. The cut-off wavenumber and wavenumber of
maximum growth are most important; the variation of these quantities with the density and viscosity ratios,
the Weber number and Reynolds is computed and displayed as graphs and asymptotic formulas. The instabilities
of a liquid jet are due to capillary and KH instabilities. We show that KH instability cannot occur in a vacuum
but capillary instability (and Rayleigh-Taylor instability) can occur in vacuum. We present comprehensive
results, based on viscous potential flow, of the effects of the ambient.

Temporally unstable liquid jet flows can be analyzed for spatial instabilities by C/A theory; they are either
convectively unstable or absolutely unstable depending on the sign of the temporal growth rate at a singularity of
the dispersion relation. The study of such singularities is greatly simplified by the analysis here which leads to an
explicit dispersion relation; an algebraic function of a complex frequency and complex wavenumber. Analysis of
this function gives rise to an accurate Weber-Reynolds criterion for the border between absolute and convective
instabilities. Some problems of the applicability to physics of C/A analysis of stability of spatially uniform and
nearly uniform flows are discussed.

16.2.1 Introduction

This chapter is also allied to the analysis of temporal instability of the capillary jet given by Funada & Joseph
(2002). Their analysis generalizes the inviscid analysis of Rayleigh (1878) in two ways: by accounting (i) for the
viscosity of the jet and (ii) for the viscosity anddensity of the ambient media. The liquid jet is prey to capillary
instability and Kelvin-Helmholtz instability due to the difference of the velocity of the jet and of the ambient
media. The effects of discontinuous velocity can be obtained by a Galilean transformation to a fixed coordinate
system relative to which the jet is moving with a velocity U . As a practical matter, the transformation z → z+Ut

transforms disturbances of the form exp[i(kz − ωt)] to exp[i(kz − ω̃t)] where ω̃ = ω − kU . A Kelvin-Helmholtz
instability due to velocity discontinuity cannot occur when the no-slip condition is applied.

We compute in a coordinate system fixed on the ambient fluid relative to which the jet velocity is U . We
consider temporal, convective and absolute instability. The analysis of these instabilities is greatly simplified by
viscous potential flow which leads to an explicit dispersion relation D(k, ω) = 0, in which the ambient media
with viscosity µa and density ρa is fully represented. Moreover, the analysis applies equally to jets into liquid
and jet into gas; ρa and µa stand for “air” for jets into air and for “ambient” for jets into liquid. This chapter
is organized so as to emphasize the case of jets into air which can be compared to the prior literature, which is
reviewed below. The case of jets of viscous liquids into viscous liquids can be analyzed because viscous potential
flow is consistent with a discontinuous velocity across the jet boundary.

The liquid jet is subject to Kelvin-Helmholtz instability due to the discontinuous velocity and to capillary
instability due to surface tension. We show that Kelvin-Helmholtz instabilities cannot occur in a vacuum. The
only other paper to treat the case of combined KH and capillary instability is that of Lin & Lian (1989) who
analyzed the viscous problem using the Navier-Stokes equations but neglecting the effects of shear from the
viscous gas.
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Other papers relevant to the stability of the liquid jet neglect viscosity altogether or neglect the effects of
the ambient. Rayleigh’s 1878 study of temporal instability, the study of spatial instability of Keller, Rubinow
& Tu (1973), and Leib & Goldstein’s 1986a study of C/A instability neglect viscosity and the effects of the
ambient. Leib & Goldstein (1986b) and Le Dizès (1997) account for the jet viscosity but neglect the ambient.
Many examples of transition from convective to absolute instability arising in the breakup of sheets and jets are
presented in the monograph of S.P.Lin (2003). In particular, Lin has an interesting discussion of the relevance
of this transition to the transition from dripping to jetting under gravity. The comparisons are suggestive but
the agreement between C/A theory and experiments is not definitive.

16.2.2 Problem formulation

A long liquid cylinder of density ρ, viscosity µ and of mean radius a moves with a uniform axial velocity U

relative to an ambient gas (air) of ρa, µa. With a cylindrical frame (r, θ, z) fixed on the gas, the liquid cylinder
is put in the region of 0 ≤ r < a + η and −∞ < z < ∞, where η = η(z, t) is the varicose interface displacement.
The governing Navier-Stokes equations and interface conditions for disturbances of the cylinder and gas are
made dimensionless with the following scales:

[length, velocity, time, pressure] =
[
2a, U,

2a

U
, ρU2

]
. (16.2.1)

In terms of this normalization, we may define Weber number W , Reynolds number R, density ratio ` and
viscosity ratio m:

W =
γ

ρ2aU2
, R =

U2a

ν
, ` =

ρa

ρ
, m =

µa

µ
, (16.2.2)

where γ is the surface tension coefficient, ν = µ/ρ, νa = µa/ρa and m/` = νa/ν.

This problem is a combination of capillary instability and Kelvin-Helmholtz instability. When W = 0 (γ = 0)
the instability is generated by the velocity difference. An interesting feature of this instability is that even
though the density and viscosity of the gas is much smaller than the liquid, the dynamical effects of the gas
cannot be neglected. The relevant physical quantity is the kinematic viscosity ν = µ/ρ; Funada & Joseph (2001)
found that the stability limit for viscous potential flow is nearly independent of the viscosity when ν` > νa,
with a sensible dependence when ν` < νa, for small viscosities, the opposite of what intuition would suggest.
Essentially the same result holds for Kelvin-Helmholtz of liquid jet, studied here. The other limit W → ∞
or U → 0 leads to capillary instability which was studied using viscous potential flow, by Funada & Joseph
(2002). Our scaling fails when U tends to zero; in the case the scale velocity is γ/µ which is the characteristic
velocity for capillary collapse and the relevant Reynolds number is J = ργ2a/µ2. The basic flow in dimensionless
coordinates is (∂Φ/∂z, ∂Φa/∂z) = (1, 0) in terms of the velocity potential Φ and Φa.

For the liquid cylinder in a disturbed state (0 ≤ r < 1/2 + η and −∞ < z < ∞), the velocity potential
φ ≡ φ(r, z, t) of an axisymmetric disturbance satisfies the Laplace equation:

(
∂2

∂r2
+

1
r

∂

∂r
+

∂2

∂z2

)
φ = 0, (16.2.3)

and the Bernoulli equation:

∂φ

∂t
+

∂φ

∂z
+

1
2

(
∂φ

∂r

)2

+
1
2

(
∂φ

∂z

)2

+ p = f(t), (16.2.4)

where p ≡ p(r, z, t) is the pressure, and f(t) is an arbitrary function of time t which may be put to zero. For the
gas disturbance of infinite extent (1/2 + η < r < ∞ and −∞ < z < ∞), the velocity potential φa ≡ φa(r, z, t)
satisfies the equations:

(
∂2

∂r2
+

1
r

∂

∂r
+

∂2

∂z2

)
φa = 0, (16.2.5)
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`

[
∂φa

∂t
+

1
2

(
∂φa

∂r

)2

+
1
2

(
∂φa

∂z

)2
]

+ pa = fa(t). (16.2.6)

The kinematic condition at the interface r = 1/2 + η is given for each fluid by

∂η

∂t
+

∂η

∂z
+

∂φ

∂z

∂η

∂z
=

∂φ

∂r
,

∂η

∂t
+

∂φa

∂z

∂η

∂z
=

∂φa

∂r
, (16.2.7)

and the normal stress balance at r = 1/2 + η is given by

p− pa − 1
R

τ +
m

R
τa = −W





∂2η

∂z2

[
1 +

(
∂η

∂z

)2
]−3/2

− (1/2 + η)−1

[
1 +

(
∂η

∂z

)2
]−1/2

+ 2



 , (16.2.8)

where the pressures at the interface are expressed by (16.2.4) and (16.2.6), and τ and τa denote the normal
viscous stresses acting on the interface:

τ = 2

[
∂2φ

∂r2
− 2

∂2φ

∂r∂z

∂η

∂z
+

∂2φ

∂z2

(
∂η

∂z

)2
][

1 +
(

∂η

∂z

)2
]−1

, (16.2.9)

τa = 2

[
∂2φa

∂r2
− 2

∂2φa

∂r∂z

∂η

∂z
+

∂2φa

∂z2

(
∂η

∂z

)2
][

1 +
(

∂η

∂z

)2
]−1

. (16.2.10)

For a case of the interface displacement small compared with the mean radius, (16.2.7)-(16.2.10) may be ex-
panded around r = 1/2 to give a linear system of boundary conditions for small disturbances. We do not require
the continuity of tangential velocity and shear stress. The other conditions are that the liquid velocity is finite
at the center r = 0, and the gas velocity should vanish as r →∞.

16.2.3 Dispersion relation

The potentials φ and φa are determined by (16.2.3) and (16.2.5). At the interface approximated by r = 1/2,
the kinematic conditions are given by

∂η

∂t
+

∂η

∂z
=

∂φ

∂r
,

∂η

∂t
=

∂φa

∂r
, (16.2.11)

and the normal stress balance is given by

−
(

∂φ

∂t
+

∂φ

∂z

)
+ `

∂φa

∂t
− 2

R

∂2φ

∂r2
+

2m

R

∂2φa

∂r2
= −W

(
∂2η

∂z2
+ 4η

)
. (16.2.12)

Thus, we may have the solutions of the form

η = AE + c.c., φ = A1I0(kr)E + c.c., φa = A2K0(kr)E + c.c., (16.2.13)

where A, A1 and A2 are the complex amplitudes, E ≡ exp (ikz − iωt), ω ≡ ωR + iωI denotes the complex
angular frequency, k ≡ kR + ikI the complex wavenumber, i =

√−1 and c.c. stands for the complex conjugate
of the preceding expression; I0(kr) and K0(kr) denote the zeroth order of modified Bessel functions of the first
and second kind. Then φ gives the finite velocity at r = 0 and φa gives the velocity which vanishes as r →∞.

Substitution of (16.2.13) into (16.2.11) and (16.2.12) gives the dispersion relation,

D(k, ω) = (ω − k)2 α + `ω2αa + i
2k2

R
(ω − k) b + i

2mk2

R
ωba −W

(
k3 − 4k

)
= 0

which is a quadratic equation in ω

c2ω
2 + 2c1ω + c0 = 0 (16.2.14)
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Fig. 16.10. Functions α, ba, b and αa versus real k; these functions tend to one for k > 10. The neutral curves of inviscid
and viscous potential flow for ` = m are identical when k > 10; this will be seen in (16.2.33). The functions for k > 10
will lead to the asymptotic forms (16.2.23), (16.2.24) and (16.2.39)-(16.2.46).

with the coefficients c2 ≡ c2(k), c1 ≡ c1(k) and c0 ≡ c0(k):

c2 = α + `αa, c1 = −kα + i
k2

R
(b + mba) = c1R + ic1I ,

c0 = k2α− i
2k3

R
b−W

(
k3 − 4k

)
= c0R + ic0I ,





(16.2.15)

where α, αa, b and ba are defined as

α =
I0(k/2)
I1(k/2)

, αa =
K0(k/2)
K1(k/2)

, b = α− 2
k

, ba = αa +
2
k

. (16.2.16)

It is noted for real k that kα → 4 and αa → 0 as k → 0, while α → 1 and αa → 1 as k →∞; this will be shown
in figure 16.10. Apart from the Bessel functions, (16.2.14) is a cubic equation in k; numerical calculations show
that for each and every fixed set of parameters studied here, (16.2.14) gives rise to three complex roots.

16.2.4 Temporal instability

For this case k is real and ω = ωR + iωI . Recalling that W = γ/(ρ2aU2), we obtain pure KH instability with
W = 0, and pure capillary instability with W →∞. A temporal growth rate curve is depicted as in figure 16.11,
by which the maximum growth rate ωIm, the associated wavenumber km and the cut-off wavenumber kc are
defined.
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Fig. 16.11. Example of a growth rate curve defined in section 16.2.4, showing the main features: the shape, maximum
ωIm, km and the cut-off wavenumber kc.
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16.2.4.1 Inviscid fluids

When the fluids are both inviscid as R →∞, (16.2.14)-(16.3.83) reduce to

(α + `αa)ω2 − 2kαω + k2α−W
(
k3 − 4k

)
= 0. (16.2.17)

The complex angular frequency ω = ωR + iωI is given by

ωR =
kα

α + `αa
, ωI = ±

√
k2`ααa

(α + `αa)2
− W (k3 − 4k)

α + `αa
(16.2.18)

in the unstable case, and

ωR =
kα

α + `αa
±

√
− k2`ααa

(α + `αa)2
+

W (k3 − 4k)
α + `αa

, ωI = 0, (16.2.19)

in the stable case. The neutral state is defined by ωI = 0; either k = 0 or W = Wc where

W−1
c =

[
α + `αa

`ααa

(
k − 4

k

)]

k=kc

. (16.2.20)

Instability may arise in 0 < k < kc, where the cut-off wavenumber kc (kc ≥ 2 for which W−1
c ≥ 0) is evaluated

by (16.2.20) for given values of ` and Wc. For k large for which α and αa approach 1 (see figure 16.10), (16.2.20)
is approximated as W−1

c =
(
`−1 + 1

)
kc.

The effects of surface tension, leading to capillary instability are absent when W = 0; hence W = 0 is pure
KH instability. Inspection of (16.2.18) shows that KH instability cannot occur when ` = 0; the viscosity and
density of the ambient vanish so the KH instability cannot occur in vacuum (no pressure can be generated in
vacuum). Pure KH instability is Hadamard unstable† with growth rate proportional to k; the short waves grow
exponentially with k at fixed t. The regularizing effect of surface tension is to stabilize short waves with k > kc

given by (16.2.20). The maximum growth rate

ωIm =
max

k ωI(k) = ωI(km) (16.2.21)

may be obtained from (16.2.18) at an interior maximum for which

∂ωI/∂k = 0. (16.2.22)

This computation is slightly complicated by that α(k) and αa(k) depend on k weakly. The values ωIm and km

depend on W and are plotted in figure 4.2. For large k, α(k) = αa(k) = 1, and we find that

ωIm =
2`
√

`

3
√

3 (1 + `)2 W
(16.2.23)

and

km =
2`

3 (1 + `) W
. (16.2.24)

Equations (16.2.23) and (16.2.24) show that the maximum growth rate and the associated wavenumber tend
to infinity for small W like 1/W ; the wavelength λm = 2π/km tends to zero with W . Viscosity regularizes the
growth rate but the wave length tends to zero with W as in the inviscid case (see figure 16.13).

For pure capillary instability with W → ∞, the neutral boundaries are given by k = 0 and kc = 2. In this
limiting case, we may rescale as ω = ω̂

√
W , by which (16.2.17) is expressed as

(α + `αa) ω2 −W
(
k3 − 4k

)
= 0 → (α + `αa) ω̂2 − (

k3 − 4k
)

= 0, (16.2.25)

† Hadamard instability is defined differently by different authors. For stability studies the growth rates σ(k) goes to infinity with k,
the growth rates are not bounded for short waves. Say, for example σ = k; the disturbance amplitude is proportional to exp(kt).
This is a very bad instability; the amplitude tends to infinity with k for any fixed t no matter how small k; the more you refine
the mesh the worse is the result; they are very unstable to short waves. See Joseph (1990) and Joseph & Saut (1990).
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Fig. 16.12. (a) ωIm versus W−1 and (b) km versus W−1, for ` = 0 (solid line), 0.0012 (broken line), 0.012 (dashed line),
0.1 (dotted line), 0.3455 (broken dotted line), 0.5 (dash dotted line). For large W−1 and ` 6= 0, the curves approach the
asymptotic form given respectively by (16.2.23) and (16.2.24).

so that the solution ω̂ is given by

ω̂ = ω̂R + iω̂I = ±
√

k3 − 4k

α + `αa
; (16.2.26)

hence instability (ω̂ = iω̂I) may arise in 0 < k < 2. Disturbances with k > 2 are stable and have an angular
frequency ω̂ = ω̂R. The single column with ` = 0 is the case that Lord Rayleigh analyzed in 1878.

16.2.4.2 Viscous fluids

For ω = ωR + iωI , the quadratic equation (16.2.14) is separated into the real and imaginary parts

c2

(
ω2

R − ω2
I

)
+ 2 (c1RωR − c1IωI) + c0R = 0, (16.2.27)

2c2ωRωI + 2 (c1RωI + c1IωR) + c0I = 0 → ωR = −2c1RωI + c0I

2c2ωI + 2c1I
, (16.2.28)

to give the quartic equation in ωI alone:

a4ω
4
I + a3ω

3
I + a2ω

2
I + a1ωI + a0 = 0, (16.2.29)

with

a4 = c3
2, a3 = 4c2

2c1I , a2 = c2c
2
1R + 5c2c

2
1I − c2

2c0R,

a1 = 2c2
1Rc1I + 2c3

1I − 2c2c1Ic0R, a0 = c1Rc1Ic0I − c2
1Ic0R − 1

4
c2c

2
0I .



 (16.2.30)
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Neutral curves Neutral curves, ωI = 0 in (16.2.29), are generated by the condition a0 = 0:

a0 = − k6

R2

(
m2αb2

a + `b2αa

)
+

k4

R2
(b + mba)2 W

(
k3 − 4k

)
= 0. (16.2.31)

One root of (16.2.31) is k = 0 and it is the only root when W = 0 (Kelvin-Helmholtz instability). The other
roots are given by

W−1 =
(b + mba)2

m2αb2
a + `b2αa

(
k − 4

k

)
, (16.2.32)

which has the general form shown in figure 16.13. Equations (16.2.29) and (16.2.31) show that when ` = 0,
m = 0, the only instability is due to capillarity. KH instability is not possible in vacuum. An identical conclusion
for KH instability of stratified gas-liquid flow in a horizontal rectangular channel follows from equation (3.4) in
the paper by Funada & Joseph (2001). For large values of k, b, ba, α and αa tend to 1 and (16.2.32) reduces to

W−1 =
(1 + m)2

m2 + `
k. (16.2.33)

When ` = m (ν = νa), this reduces to (` + 1) k/` which is the same as the inviscid case given by (16.2.20).

A striking conclusion which follows from (16.2.31) and (16.2.32) is that the cut-off wavenumber k = kc

satisfying (16.2.32) is independent of the Reynolds number R; when k > kc, the liquid jet is stable.

A further comparison, (16.2.32) and (16.2.20), of inviscid and viscous potential flow shows that the neutral
curves are identical under the condition that mαba = `bαa. Figure 16.10 shows that αba = bαa for k > 10; in
this case the neutral curves are identical when ` = m (or ν = νa). It is of interest that for jets of liquid into air
` ¿ 1 and m ¿ 1. In this limit both (16.2.32) and (16.2.20) reduce to

W−1 =
1

`αa

(
k − 4

k

)
. (16.2.34)

This surprising and anti-intuitive result says that the neutral condition for a highly viscous liquid m → 0 is the
same as for two inviscid fluids provided that ` ¿ 1.

The ratio (16.2.32)/(16.2.20) may be written as

W−1
V PF

W−1
IPF

=
(b + mba)2 `ααa

(m2αb2
a + `b2αa) (α + `αa)

(16.2.35)

where VPF and IPF stand for viscous and inviscid potential flow. For large k > 10, this reduces to

W−1
V PF

W−1
IPF

=
(1 + m)2 `

(m2 + `) (1 + `)
. (16.2.36)

For m = 0 (the viscosity of the jet is much larger than the ambient)

W−1
V PF

W−1
IPF

=
1

1 + `
≤ 1. (16.2.37)

For m →∞ (the viscosity of the jet is much smaller than the ambient)

W−1
V PF

W−1
IPF

=
`

1 + `
≤ 1. (16.2.38)

In general, the neutral curve for viscous potential flow is below (or at least not above) that of inviscid potential
flow.

For all values of `, R and W , there are wave numbers for which ωI > 0; the liquid jet is always unstable to
temporal disturbances in analysis based on viscous potential flow.
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Fig. 16.13. (a) ωIm versus W−1 (= ρ2aU2/γ) and (b) kc (the upper curves) and km (the lower curves) versus W−1 for
R = 100; the solid curve is for ` = 0 and m = 0, the broken line for ` = 0.0012 and m = 0, the dashed line for ` = 0.0012
and m = 0.018, the dotted line for ` = 0 and m = 0.018. Kelvin-Helmholtz (KH) instability for the liquid jet corresponds
to γ → 0 or W−1 → ∞. The neutral curve is independent of the Reynolds number R. If surface tension and gravity
are zero, KH flows are unstable for all k (see equation (2.27) in Funada & Joseph 2001). When U → 0, we get capillary
instability which is unstable to all waves with 0 < k < 2. The interval of unstable wave 0 < k < kc increases as the
Weber number decreases (larger U , smaller γ). In general, the neutral curve for viscous potential flow lies above that for
inviscid potential flow with equality for a given k when mαba = `bαa and for large k > 10, when ` = m (ν = νa) (see
eqs(16.2.36)–(16.2.38)). The values km(W−1) for which the growth is maximum depends on R. The maximum growth
rates ωIm are finite for W → 0 but the associated wavenumbers are proportional to 1/W for small W .

Growth rate curves An example of a growth rate curve is shown as figure 16.11. All of the growth rate
curves have this same form and may be characterized by three parameters: the maximum growth rate ωIm and
wavenumber km, ωIm = ωI(km) and the cut-off wavenumber kc, as shown in figure 16.11. ωIm and km depend
on R, but kc is independent of R.

The variation of ωIm and km with W−1 is shown in figure 4.3. The effect of viscosity is to regularize the
Hadamard instability, ωIm tends to a finite value as W →∞ (cf, figures 4.3 and 4.4). For large values of W−1,
KH instability dominates. The great difference between stability in vacuum (`,m) = (0, 0) and inviscid gas
m = 0, ` 6= 0 is apparent for large values of W−1.

For large k (> 10) for which α = αa = b = ba = 1, the imaginary part of the dispersion relation (16.2.28)
gives ωR:

ωR =
kωI +

k3

R

(1 + `) ωI +
k2

R
(1 + m)

=
k

(1 + `) X

[
X +

k2

R
(`−m)

]
, (16.2.39)
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where X is defined as

X = (1 + `) ωI +
k2

R
(1 + m) . (16.2.40)

The real part of the dispersion relation (16.2.27) leads to the quadratic equation of X2:

k2

X2

k4

R2
(`−m)2 −X2 + 2Y = 0, (16.2.41)

with

Y =
1
2

[
k4

R2
(1 + m)2 + `k2 − (1 + `) W

(
k3 − 4k

)]
, (16.2.42)

whence the solution to (16.2.41) is expressed as

X = (1 + `)ωI +
k2

R
(1 + m) =

[
Y +

√
Y 2 +

k6

R2
(`−m)2

]1/2

, (16.2.43)

When ` = m, the solution (16.2.43) reduces to

X = (1 + `) ωI +
k2

R
(1 + m) =

√
2Y . (16.2.44)

When R →∞, the solution (16.2.43) reduces to the inviscid case:

X = (1 + `) ωI =
[
`k2 − (1 + `) W

(
k3 − 4k

)]1/2
. (16.2.45)

The solution (16.2.43) is available to have the maximum growth rate and the cut-off wavenumber when those
exist in large k under the condition that ` 6= 0 or m 6= 0, for which W−1 is large.

The extremum value of ωI is given by differentiating (16.2.43) and imposing ∂ωI/∂k = 0 at k = km:

ωIm = −k2
m

R

(1 + m)
(1 + `)

+
R/ (1 + m)
4km (1 + `)

{
∂Y

∂k
+

[
Y

∂Y

∂k
+

3k5

R2
(`−m)2

] [
Y 2 +

k6

R2
(`−m)2

]−1/2
}

k=km

.(16.2.46)

The expression for km is rather cumbersome; it shows that km ∝ 1/W for small W even though ωI(km) is
bounded as W → 0 (figures 4.3 and 4.4). It follows that the wave length λm = 2π/km tends to zero with W . If
this KH disturbance leads to breakup, we would find small liquid fragments even to fine mist.

200



0.0001

0.001

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000 10000 100000 1e+006

(a)

0.1

1

10

100

1000

10000

0.01 0.1 1 10 100 1000 10000 100000 1e+006

(b)

Fig. 16.14. (a) ωIm versus W−1 and (b) km versus W−1 for R = 100, m = 0 and various `; ` = 0 (solid line), 0.0012
(broken line), 0.012 (dashed line), 0.1 (dotted line), 0.5 (broken dotted line), 1 (dash dotted line). For large W−1 and
` 6= 0, the curves approach the asymptotic form given by (16.2.46).
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16.2.4.3 Nonaxisymmetric disturbances

The authors of papers on spatial, temporal and C/A theory cited at the end of section 16.2.1 restrict their at-
tention to axisymmetric disturbances. Yang (1992) studied the stability of an inviscid liquid jet to axisymmetric
and non-axisymmetric temporal disturbances. He found wavenumber ranges for which the nonaxisymmetric dis-
turbances grow faster, but the greatest peak values of ωI(km) are for axisymmetric disturbances. A preliminary
study of axisymmetric disturbances proportional to exp(ınθ) with n = 0 and asymmetric disturbances with
n > 0, especially with n = 1 yielded results similar to those found by Yang (1992) for the inviscid jet. The peak
growth rates are always attained for n = 0 in flows with capillary numbers W larger than small value, say 1/10;
for KH instability W →∞, the peak values for n = 0 and n = 1 are nearly identical (see figure 16.15).

Li & Kelly (1992) did an analysis of an inviscid liquid jet in a compressible high speed airstream. They found
that n = 1 is the most dangerous mode when the Mach number is near to one. The case of nonaxisymmetric
disturbances needs further study.
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Fig. 16.15. (a) ωIm versus W−1 and (b) km versus W−1 for R = 100, and m = 0; ` = 0.012 and n = 0 (solid line),
` = 0.012 and n = 1 (broken line), ` = 0.5 and n = 0 (solid line), ` = 0.5 and n = 1 (broken line).
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16.2.5 Numerical results of temporal instability

Here we present neutral curves and growth rates for the stability of viscous liquids into air comparing viscous
potential flow (VPF) with inviscid potential flow (IPF).

Using the data of Funada & Joseph (2002), various liquid-gas cases are shown in Table 16.5. The parameters
of the growth rate curves for the 10 cases are defined in figure 16.11 and given in Table 16.6 for typical values of
U . The neutral curves W−1(k) for all 10 cases start at k = 2. For large k (> 10), they may be computed exactly
from (16.2.33) and compared with inviscid potential flow using (16.2.36). The differences between viscous and
inviscid potential flow vanish for k > 10 when mαba = `bαa and for all k when ρa ¿ ρ, µa ¿ µ when µ is very
large, as shown previously.

Table 16.5. Data of various liquid-gas cases.

No. liquid cylinder-gas ` = ρa/ρ m = µa/µ m/` = νa/ν
p

γ/(ρ2a) m/sec

1 mercury-air 8.889E-05 1.154E-02 1.298E+02 5.976E-02
2 water-air 1.200E-03 1.800E-02 1.500E+01 8.532E-02
3 benzene-air 1.395E-03 2.769E-02 1.985E+01 5.793E-02
4 SO100-air 1.238E-03 1.800E-04 1.454E-01 4.655E-02
5 glycerine-air 9.547E-04 2.302E-05 2.411E-02 7.102E-02
6 oil-air 1.478E-03 3.830E-05 2.592E-02 5.984E-02
7 SO10000-air 1.238E-03 1.800E-06 1.454E-03 4.655E-02
8 SO10-air 1.238E-03 1.800E-03 1.454E+00 4.655E-02
9 silicon oil-nitrogen 1.345E-03 8.750E-04 6.508E-01 4.697E-02

10 silicon oil-nitrogen 1.326E-03 1.750E-03 1.319E+00 4.620E-02
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Table 16.6. Parameters of the growth rate curves identified in figure 16.11 for the 10 cases of liquid-gas flow in
Table 16.5. Viscous (VPF) and (IPF) are compared.

No U m/sec W W−1 R ωV PF
Im kV PF

m kV PF
c ωIPF

Im kIPF
m kIPF

c

0.02 8.928 0.112 0.17308E+04 0.9709 1.394 2.000 0.9711 1.394 2.000
1 0.06 0.992 1.008 0.51923E+04 0.9709 1.394 2.000 0.9711 1.394 2.000

0.10 0.357 2.800 0.86538E+04 0.9709 1.394 2.000 0.9712 1.394 2.000

0.02 18.200 0.055 0.20000E+03 0.9698 1.393 2.000 0.9710 1.394 2.000
2 0.06 2.022 0.495 0.60000E+03 0.9699 1.393 2.000 0.9711 1.394 2.000

0.10 0.728 1.374 0.10000E+04 0.9701 1.394 2.000 0.9713 1.394 2.000

0.02 8.390 0.119 0.26462E+03 0.9696 1.393 2.000 0.9710 1.394 2.000
3 0.06 0.932 1.073 0.79385E+03 0.9699 1.394 2.000 0.9713 1.394 2.000

0.10 0.336 2.980 0.13231E+04 0.9704 1.394 2.001 0.9718 1.395 2.001

0.02 5.418 0.185 0.19380E+01 0.7890 1.244 2.000 0.9710 1.394 2.000
4 0.06 0.602 1.661 0.58140E+01 0.7893 1.244 2.000 0.9714 1.395 2.000

0.10 0.217 4.614 0.96900E+01 0.7898 1.245 2.001 0.9722 1.396 2.001

0.02 12.609 0.079 0.32148E+00 0.5138 0.988 2.000 0.9710 1.394 2.000
5 0.06 1.401 0.714 0.96445E+00 0.5139 0.988 2.000 0.9712 1.394 2.000

0.10 0.504 1.983 0.16074E+01 0.5140 0.988 2.000 0.9714 1.395 2.000

0.02 8.951 0.112 0.36431E+00 0.5028 0.977 2.000 0.9710 1.395 2.000
6 0.06 0.995 1.005 0.10929E+01 0.5029 0.977 2.000 0.9713 1.395 2.000

0.10 0.358 2.793 0.18215E+01 0.5031 0.977 2.001 0.9718 1.396 2.001

0.02 5.418 0.185 0.19380E-01 0.0430 0.278 2.000 0.9710 1.394 2.000
7 0.06 0.602 1.661 0.58140E-01 0.0430 0.279 2.000 0.9714 1.395 2.000

0.10 0.217 4.614 0.96900E-01 0.0430 0.278 2.002 0.9722 1.396 2.001

0.02 5.418 0.185 0.19380E+02 0.9488 1.376 2.000 0.9710 1.394 2.000
8 0.06 0.602 1.661 0.58140E+02 0.9492 1.377 2.000 0.9714 1.395 2.000

0.10 0.217 4.614 0.96900E+02 0.9499 1.378 2.002 0.9722 1.396 2.001

0.02 5.515 0.181 0.95200E+01 0.9273 1.359 2.000 0.9710 1.394 2.000
9 0.06 0.613 1.632 0.28560E+02 0.9277 1.359 2.000 0.9714 1.395 2.000

0.10 0.221 4.533 0.47600E+02 0.9284 1.361 2.002 0.9722 1.396 2.002

0.02 5.337 0.187 0.19300E+02 0.9485 1.376 2.000 0.9710 1.394 2.000
10 0.06 0.593 1.686 0.57900E+02 0.9489 1.377 2.000 0.9714 1.395 2.000

0.10 0.213 4.684 0.96500E+02 0.9497 1.378 2.002 0.9723 1.396 2.002
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16.2.6 Spatial, absolute and convective instability

The motivation for considering spatial instability of a liquid jet was very clearly expressed by Keller, Rubinow
& Tu (1973) who noted that the disturbance initiating from the nozzle tip actually grows in space as it is swept
downstream, where it is observed to break into drops, leaving a section of jet intact near the nozzle tip as
would occur for a disturbance that is convectively unstable. Such disturbances proportional to exp(ikz − iωt)
can be described by allowing k to be complex and ω real so that disturbances can grow in space but not in
time. They found that Rayleigh’s results are relevant only when the Weber number W = γ/(ρ2aU2) is small
and the spatial growth rate kI is related to the temporal growth rate ωI by the relation kI = ±ωI + O(W ),
while the disturbance travels at the jet velocity. For large values of W , they found a new mode of faster growing
disturbances whose wavelengths are perhaps too long to be observable.

Leib & Goldstein (1986b) showed that the new mode corresponds to an absolute instability which arises from
a pinch point singularity in the dispersion relation. An absolutely unstable wave packet propagates upstream
and downstream and hence such disturbances spread over the whole z domain of flow; the flow is unstable at
any z, as t increases. This is not the picture advanced by Keller, Rubinow & Tu (1973) in which the region close
to the discharge is never corrupted by growing disturbances.

One of the aims of the theory of absolute and convective instability is to provide a frame for the problem of
spatial development of disturbances. The spatial development of controlled disturbances such as are generated
by a vibrating ribbon at the start of a growing boundary layer or at the inlet of a plane Poiseuille flow calculated
from spatial theory yielded good results with experiments in which disturbances were suppressed. However the
spatial theory has no rigorous foundation; for example, a spatial mode, when it can be defined, is inadmissible
when it is unbounded at infinity, though it may describe the spatial evolution of disturbances of a given frequency
for a long time (see Drazin and Reid 1981, section 32 for experiments; section 47.1 for theoretical problems).

To deal with the problem of propagation of impulses, the concept of convective and absolutely unstable
solutions (C/A for short) has been introduced. The definitions of instability in the C/A context is formulated in
terms of the evolution of impulses at the origin in the (x, t) plane proportional initially to the product δ(x)δ(t).
A flow is called linearly stable if this disturbance decays to zero along all rays x/t = const. It is linearly unstable
if the impulse tends to infinity along at least one ray x/t = const. An unstable flow is linearly convectively
unstable if the impulse tends to zero along the ray x/t = 0 and is absolutely unstable if the impulse tends to
infinity along the ray x/t = 0. Obviously an absolutely unstable impulse is linearly unstable.

A cartoon for wave packets propagating from the origin in these four cases is shown in figure 16.16.

Fig. 16.16. Linear impulse response. (a) Linearly stable flow; (b) linearly convectively unstable flow; (c) marginally
convectively/absolutely unstable flow; (d) absolutely unstable flow (after Huerre 2000, figure 8). The pictures here are
for a response to a linear impulses; stability cannot be determined from the evolution of impulses alone. Convectively
unstable flows in (b) are also temporally unstable; at any x, real wavenumbers exist for which disturbances outside the
unstable wedge in (b) will grow.

The C/A concepts are not straightforward and need explanation. Huerre (2000) notes that

“A parallel shear flow of given velocity profile is said to be convectively unstable if the growing wavepacket produced
in response to an impulsive source localized in space and time is advected away. It is absolutely unstable if the growing
wavepacket expands around the source to contaminate the entire medium. In the case of parallel flows that are invariant
under Galilean transformations, this distinction appears at first sight to be preposterous: a simple change of reference
frame transforms a flow from convectively unstable to absolutely unstable and vice versa, and the ‘laboratory frame’

206



is not properly defined. However, when Galilean invariance is broken, e.g. in spatially developing flows, in flows with a
definite origin, or in flows forced at a specific streamwise station, the laboratory frame is singled out and it is precisely
in these instances that the distinction between convective and absolute instability becomes of interest. It should be
emphasized that, in order for these concepts to be relevant, one must enforce a scale-separation assumption: the flow
under consideration must be slowly evolving along the stream over a typical instability wavelength. This strong hypothesis
is made throughout the ensuing theoretical developments in order to recover the locally parallel flow instability properties
as a leading-order approximation at each streamwise station.”

Parallel flows which are temporally stable are also stable in the C/A theory. Temporally unstable flows can be
absolutely or convectively unstable. Disturbances from a source, like a vibrating ribbon, can propagate without
corrupting the source, only if the flow is convectively unstable and only if random disturbances at fixed points
which are temporally unstable are suppressed.

In this paper we follow others in considering the open basic flow which has no spatial variation in the axial
direction which is Galilean invariant. The point of novelty of our analyses is that the stability analysis is carried
out using the equations of viscous potential flow which allow a discontinuous velocity at the jet surface but
accommodates effects of viscosity, viscosity ratios, density ratios, etc. but still leads to an explicit dispersion
relation.

Huerre & Monkewitz (1985) point out that the spatial stability theory is applicable when the flow is con-
vectively unstable and not when the flow is absolutely unstable. They describe a methodology based on Bers
(1975) criterion, to determine when a free shear layer is convectively unstable. Their problem is difficult and
does not give rise to an explicit dispersion; numerical computations are required. The search for the border
between absolute and convective instability is a function of prescribed parameters and requires knowledge of
the dispersion relation for complex frequencies and wavenumbers. This search is greatly simplified in the case of
the stability of the liquid jet based on viscous potential flow because the search for singularities of the dispersion
relation is reduced to the study of algebraic equations of two complex variables.

We use the criterion of Bers (1975) which says that an unstable flow is convectively unstable if the modes
proportional to exp(ikz − iωt) of complex frequency ω and k, which have a zero group velocity

GV = ∂ωR/∂kR = 0, (16.2.47)

are all temporally damped, ωI < 0. Otherwise the system is absolutely unstable. If ωR does not change with kR

and ωI < 0, then a disturbance with excitation frequency ωR will decay in time but can grow in space. On the
other hand, we do not use the method of Briggs (1964) and Bers (1975). Instead, we implement an algebraic
study of the dispersion relation.

Following Schmid & Henningson (2001), we may characterize the singularities of D(k, ω) at k0, ω0 by the
equation

D(k0, ω0) = 0,
∂D

∂k
(k0, ω0) = 0,

∂2D

∂k2
(k0, ω0) 6= 0. (16.2.48)

In the neighborhood of k0, ω0 a Taylor series expansion of D(k, ω) leads to

0 =
∂D

∂ω

∣∣∣∣
0

(ω − ω0) +
1
2

∂2D

∂k2

∣∣∣∣
0

(k − k0)
2 + HO (16.2.49)

where HO are terms that go to zero faster than the terms retained. This results in a square root singularity for
the local map between the k and ω planes.

If we imagine D(k, ω) = 0 to be solved for ω = ω(k), then D(k, ω(k)) = 0 is an identity in k and

0 =
dD

dk
=

∂D

∂k
+

∂ω

∂k

∂D

∂ω
(16.2.50)

and

ĉ ≡ ∂ω

∂k
= −∂D

∂k

/
∂D

∂ω
= ĉR + iĉI (16.2.51)
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can be said to be a complex-valued “generalized” group velocity which must be zero at the singularity. This is
not the ordinary group velocity. If ∂D/∂ω 6= 0, and it is not equal to zero in this study, then

ĉ =
∂ω

∂k
= 0 when

∂D

∂k
= 0. (16.2.52)

Moreover,

∂ω

∂k
=

1
2

(
∂ωR

∂kR
+

∂ωI

∂kI

)
+

i
2

(
∂ωI

∂kR
− ∂ωR

∂kI

)
(16.2.53)

and ĉ = 0 does not imply that the group velocity GV = ∂ωR/∂kR = 0. However, since the Cauchy-Riemann
condition for a function ω(k) holds, then ∂ω/∂k̄ = 0 and

∂ωR

∂kR
=

∂ωI

∂kI
,

∂ωI

∂kR
= −∂ωR

∂kI
. (16.2.54)

Hence, if (16.2.52) holds, then (16.2.54) implies that

GV =
∂ωR

∂kR
=

∂ωI

∂kI
= 0 and

∂ωR

∂kI
= − ∂ωI

∂kR
= 0. (16.2.55)

16.2.7 Algebraic equations at a singular point

A singular point satisfies (16.2.48); alternatively, D = ĉ = 0. These are complex equations, four real equations
for kR, kI , ωR and ωI when the other parameters are prescribed. If ωI < 0 at a singular point the flow is
convectively unstable. A critical singular point is a singular point such that ωI = 0.

For given values of the parameters (`, W , R and m = 0), the solution k = kR + ikI (ω(k) = ωR + iωI) of
the dispersion relation (16.2.14) to (16.3.83) is obtained implicitly. Equation (16.2.14) is quadratic in ω and has
two roots, ω1 and ω2:

ω1 = −c1

c2
+

√(
c1

c2

)2

− c0

c2
, ω2 ≡ ω = −c1

c2
−

√(
c1

c2

)2

− c0

c2
, (16.2.56)

where c0, c1 and c2 are defined in (16.2.15). The second root can be singular, thus here and henceforth, we drop
the subscript 2 to simplify notation. A singular point (k, ω) = (k0, ω0) can now be defined relative to ω

ω0 = ω(k0), ω(k) = ω0 +
∂ω

∂k

∣∣∣∣
0

(k − k0) +
1
2

∂2ω

∂k2

∣∣∣∣
0

(k − k0)
2 + · · · . (16.2.57)

If
∂ω

∂k

∣∣∣∣
0

= 0 at k = k0 and
∂2ω

∂k2

∣∣∣∣
0

6= 0 at k = k0, (16.2.58)

a pinch in the k plane is a square root branch point in the ω plane. We identify k0 as the roots of

∂ω

∂k
(k0) = 0, (k − k0)

2 = (ω − ω0)/
[
1
2

∂2ω

∂k2

∣∣∣∣
0

]
. (16.2.59)

The critical singular point satisfies (16.2.58) and ωI = 0.

Our solution procedure is as follows: the root ω = ωR + iωI , where ωR ≡ ωR(kR, kI) and ωI ≡ ωI(kR, kI),
could be inverted implicitly for

kR = kR(ωR, ωI), kI = kI(ωR, ωI). (16.2.60)

The singular point is determined from the condition (16.2.58). The solutions must be implicit because of the
Bessel function. The two real equations in (16.2.59) may be solved for kR and kI .

To seek a singular point k0 at which ĉ = dω/dk = 0, the computation is made by means of Newton’s method

ĉ(k)− ĉ(ks) =
(

dĉ

dk

)

s

(k − ks) , (16.2.61)
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where ks is a starting value which may be close to the singular point k0. Since the solution k0 is to satisfy
ĉ(k0) = 0, we may rewrite (16.2.61) as the following iteration algorithm:

k = ks − ĉ(ks)/
(

dĉ

dk

)

s

. (16.2.62)

For given ks, the right-hand side of this is calculated to give a next approximate solution k. The iteration is
repeated until |k − ks| < ε (ε < 10−6) or until the iteration is made over 30 times. The solution k0 also gives
ω(k0), then we can find the critical singular point when ωI = 0.
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16.2.8 Subcritical, critical and supercritical singular points

The formation and properties of singular points is similar for all cases. Here we shall look at some typical cases
for the formation of pinch points in the (kR, kI) plane and cusp points in the (ωR, ωI) plane. We use the Weber
number parameter β = ρ2aU2

γ = W−1 where W is the Weber number defined in (16.2.2).

First we fix the parameters (`, R, m) = (0, 100, 0) and plot lines of constant ωI and ωR in the kR, kI plane in
the subcritical (β = 4.934 , figure 16.17), critical (β = 5.134, figure 16.18) and supercritical (β = 5.334, figure
16.19) case. The cusp singularity, with ωI < 0 at the cusp point is shown in figure 16.20. The pinch point in
the subcritical case is in the region ωI > 0; this is in the region of absolute instability. The pinch point in the
supercritical case is in the region ωI < 0; this is in the region of convective instability.

We draw the reader’s attention to the fact the curves kI(kR) on which ωR = constant typically pass through
regions in which ωI is positive and negative. The only curves for which

ω (kR, kI(kR)) = const (16.2.63)

that lie entirely in regions in which ωI is of one sign pass through the pinch point. In the supercritical case
shown in figure 16.19, ωR = 1.743 is the only frequency for ωI < 0 for all kR. Of course, we may interpret ωR

as an excitation frequency.

Huerre & Monkewitz (1985) have described the evolution of a wave packet from an impulsive source in the
convectively unstable case. They note that

. . . among all the wavenumbers contained in the impulsive source, the flow selects, along each ray x/t = const. one
particular complex wavenumber k∗ given by

dω

dk
(k∗) =

x

t
. (16.2.64)

The group velocity then is real and the temporal amplification rate of the wave reduces to

σ = ωI(k
∗)− k∗I (dω/dk)(k∗). (16.2.65)

The growth function then becomes

exp (−k∗Ix + ωIt) = exp (ωI − k∗I (dω/dk)) t. (16.2.66)

Using (16.2.53) and (16.2.54), we find that the real part of the group velocity is

∂ω

∂k
(k∗) =

∂ωR

∂kR
. (16.2.67)

Focusing now on the lines ωR(kR, kI(kR)) = const in the k plane (figures 16.17-16.19) we find that

dωR

dkR
(kR, kI(kR)) =

∂ωR

∂kR
+

∂ωR

∂kI

dkI

dkR
=

∂ωR

∂kR
= 0. (16.2.68)

The only curve ωR = const which has ωI ≤ 0 for all kR > 0 is the one which passes through the pinch point. The
harmonic content of the impulsive source produced by this frequency is not restricted. In general the harmonic
content of impulsive sources that are convectively unstable depend on the frequency ωR of the excitation.

In the sequel we will describe singular points as points at which the group velocity GV = ∂ωR/∂kR = 0.
This is a shorthand for the condition D = 0 and ĉ = 0 which is four equations for kR, kI , ωR and ωI . All of
the graphs shown in the figures to follow satisfy the dispersion relation D = 0. We have shown in section 16.2.6
that the condition ĉ = 0 implies that GV = 0. This leads to the condition of Bers (1975) a flow is convectively
unstable when ωI < 0 and when GV = 0.

The qualitative properties of singularities are the same in all cases. At a critical singular point ωI = 0. The
values of parameters at critical singular points are given for R = 100, R = 200 and R = 2000 (Table 16.7) for
3 or 4 different values of m and 0 ≤ ` ≤ 0.4. We found that when m = 0, so that the ambient viscosity is zero,
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Fig. 16.17. kI versus kR for ` = 0, R = 100, β = 4.934, and m = 0. Equation (16.2.14) gives rise to three complex roots
k for each prescribed set of parameters; for each of the three k’s there is one value of ωI whose sign is marked on the
figure. The value β = 4.934 < βc = 5.134 is subcritical. The singular point D = 0 and ĉ = 0 (or c = ∂ωR/∂kR = 0) has
ωI > 0 in the subcritical case and the flow is absolutely unstable; this point is not shown but the points • that will merge
into a pinch point • in figure 8.2 are identified. The solid curves are given by D = 0 and ωI = 0. The dashed curves are
for D = 0, ωR = 1.7178 and ωI ≥ 0.
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Fig. 16.18. kI versus kR for ` = 0, R = 100, m = 0, and β = βc = 5.134 is critical and identified by •. At this point
D = 0, ĉ = 0, (ωR, ωI) = (1.7304, 0) and (kR, kI) = (2.392,−0.496). The dashed curve D = 0 and ωR = 1.7304 passes
through the critical point and has ωI ≤ 0.

one and only one critical β is found for given values of R and `. When the ambient viscosity is finite (m = 0.5,
1) two critical values are found, but only one is spatially unstable kI < 0.

The inviscid case R →∞ is degenerate and will be treated in section 16.2.9.

Figures 16.17 through 16.19 look at the (kR, kI) plane in the subcritical, critical and supercritical cases for
(`, R, m) = (0, 100, 0). In these figures we plot curves in the kI versus kR which arise from the real and imaginary
part of the dispersion relation D(kR + ikI , ωR + iωI) = 0 when ωR or ωI is fixed. The singular points are points
on the curves which satisfy (16.2.52). The cusp point in (ωR, ωI) plane at criticality is shown in figure 16.20.
These graphs are representative for all the non degenerate cases R < ∞. The explanations of the figures are
given in the captions.

In figures 16.21 and 16.22 we have plotted βc versus ` for R = 2000, 200 and 100 when m = 0 and m = 0.5,
respectively.
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Fig. 16.19. kI versus kR for ` = 0, R = 100, m = 0, and β = 5.334 > βc is supercritical. The singular point is shown as
a dot • and ωI < 0 there. On dashed curves ωR = 1.743.
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Fig. 16.20. Cusp point (ωR, ωI) = (1.7304, 0). ωI versus ωR for ` = 0, β = 5.134, R = 100 and m = 0; the solid curves
are for D = 0 and ĉ = 0, which passes through the pinch point (kR, kI) = (2.392,−0.496) in the (kR, kI) plane (see figure
16.18).

Figure 16.23 gives a summary of the behavior of singular points for inviscid R → ∞ and viscous fluids
R = 100, 200. A detailed explanation of this summary is given in the figure caption.
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Fig. 16.21. βc versus ` when m = 0; R = 2000 (∗), 200 (×), 100 (+).
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Fig. 16.22. βc versus ` when m = 0.5; R = 2000 (∗), 200 (×), 100 (+).
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Table 16.7. Critical values of β = βc(`, R, m) at a generic singular point (D = 0, ĉ = 0). At such a point the
group velocity ∂ωR/∂kR = 0, (kR, kI) is a pinch point; (ωR, ωI) is a cusp point. A critical singular point also
has ωI = 0. When β < βc the flow is subcritical (absolutely unstable) and disturbances with zero group velocity

are amplified (ωI > 0, kI < 0). When β > βc (convectively unstable) these disturbances decay temporally
(ωI < 0, kI < 0).

R m ` βc kR kI ωR

0.00 5.134 2.392 -0.496 1.730
0.08 5.714 2.550 -0.565 1.823

0 0.16 6.495 2.762 -0.668 1.945
0.24 7.596 3.065 -0.834 2.116
0.32 9.192 3.510 -1.127 2.360
0.40 11.358 4.139 -1.643 2.689
0.00 13.690 5.899 -1.024 2.585
0.08 15.296 6.377 -1.340 2.832

100 1 0.16 17.452 7.004 -1.830 3.158
0.24 20.396 7.837 -2.590 3.589
0.32 24.320 8.889 -3.692 4.135
0.40 29.182 10.044 -5.129 4.760
0.00 7.206 3.225 -0.309 1.882
0.08 8.158 3.478 -0.424 2.026

0.5 0.16 9.484 3.840 -0.630 2.226
0.24 11.352 4.374 -1.010 2.508
0.32 13.814 5.129 -1.647 2.879
0.40 16.664 6.058 -2.505 3.308

0.00 5.493 2.454 -0.403 1.759
0.08 6.198 2.646 -0.467 1.868

0 0.16 7.193 2.920 -0.569 2.020
0.24 8.696 3.350 -0.753 2.249
0.32 11.042 4.074 -1.126 2.612
0.40 14.276 5.203 -1.804 3.131
0.00 13.638 6.046 -0.534 2.612
0.08 15.306 6.606 -0.716 2.885

200 1 0.16 17.720 7.411 -1.036 3.279
0.24 21.594 8.698 -1.679 3.906
0.32 28.344 10.943 -3.081 4.975
0.40 38.728 14.247 -5.688 6.539
0.00 7.244 3.238 -0.162 1.891
0.08 8.242 3.502 -0.230 2.044

0.5 0.16 9.694 3.894 -0.374 2.266
0.24 11.956 4.565 -0.706 2.616
0.32 15.388 5.740 -1.368 3.161
0.40 20.154 7.497 -2.412 3.943

0.00 6.065 2.539 -0.192 1.799
0.08 7.011 2.788 -0.229 1.937

0 0.16 8.488 3.191 -0.296 2.151
0.24 11.154 3.978 -0.447 2.542
0.32 16.744 5.865 -0.865 3.417
0.40 35.516 12.573 -2.650 6.620
0.00 13.622 6.097 -0.054 2.621
0.08 15.320 6.690 -0.073 2.905

2000 1 0.16 17.868 7.574 -0.109 3.333
0.24 22.550 9.181 -0.201 4.120
0.32 38.966 14.774 -0.847 6.873
0.40 196.642 72.962 -21.449 33.075
0.00 7.260 3.242 -0.016 1.894
0.08 8.274 3.506 -0.024 2.050

0.5 0.16 9.806 3.899 -0.042 2.285
0.24 12.584 4.610 -0.132 2.713
0.32 19.602 6.916 -0.665 3.830
0.40 63.200 22.614 -4.872 11.276
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Fig. 16.23. Locus of singular points D = 0, ĉ = 0 for m = 0, ` = 0, R = 100 (dashed line), R = 200 (dash dot
line), R → ∞ (solid line) for 10−3 ≤ β ≤ 10. Critical singular points are those for which ωI = 0. β = 10−3 ×,
βc = 6.246 ◦, βc = 5.134 2, βc = 5.493 + and β = 10 4. (a) kI versus kR, (b) ωI versus ωR, (c)

`
∂2ω/∂k2

´
I

versus
β. β < βc is subcritical, β > βc > 0 is supercritical. The supercritical inviscid branch R → ∞, β > 6.246 is degenerate`
∂2ω/∂k2

´
I

= ωI = kI = 0 there. Disturbances with zero group velocity are neutrally stable. The values of β on the

upper branches kI > 0 of the (kR, kI) plane are less than βc = 6.246 and ωI < 0. These branches are subcritical and
spatially and temporally damped. The lower branches kI < 0 go from subcritical values 10−3 < β < βc for ωI > 0 (for
which the disturbances are spatially and temporally amplified) to supercritical values β > βc: βc = 6.246 for R → ∞
and ωI = 0, kI = 0 for β > 6.246, βc = 5.134 for R = 200 and ωI < 0 there, βc = 5.493 for R = 100 and ωI < 0 there.
Disturbances with zero group velocity are temporally damped but spatially amplified (ωI < 0, kI < 0) for supercritical
values of β.

215



16.2.9 Inviscid jet in inviscid fluid (R →∞, m = 0)

This problem was studied for the case ` = 0 by Keller, Rubinow & Tu (1973); they did not look at the problem
of convective/absolute instability — treated later by Leib & Goldstein (1986a). Here we have looked at the
inviscid problem for all density ratios and find the border, the critical β = βc at the singular point (16.2.48). We
find that the singular point is degenerate, because the imaginary part of ∂2D/∂k2 at the pinch point vanishes
for 0 < ` < 0.3455. The degeneracy appears in the collapse of the region in which ωI < 0 for large kR into a
line; this region of convective instability collapses onto a neutral region for which ωI = 0.

Table 16.8 lists values of parameter at the pinch point; figure 16.24 gives the critical curve βc = β(`) in the β

versus ` plane. ` = 0.3455 is an asymptote; when ` > 0.3455, there is no pinch point and the flow is absolutely
unstable.

Table 16.8. Inviscid fluids (R →∞, m = 0). Values of (kR, kI) at pinch point singularity (see figure 16.24)
indexed by the density ratio `. The values of the frequency ωR and the Weber number parameter β (= W−1)
are at the pinch point are also listed. Pinch point singularities do not exist when ` > 0.3455; in this case all

flows are absolutely unstable.

No. ` βc kR kI ωR ωI

1 0.00 6.246 2.576 0 1.810 0
2 0.04 6.710 2.696 0 1.877 0
3 0.08 7.280 2.840 0 1.958 0
4 0.12 8.004 3.025 0 2.060 0
5 0.16 8.962 3.290 0 2.196 0
6 0.20 10.298 3.681 0 2.387 0
7 0.24 12.282 4.274 0 2.677 0
8 0.28 15.496 5.317 0 3.162 0
9 0.32 22.038 7.514 0 4.199 0

10 0.3455 52.350 17.647 0 9.189 0
11 0.36 — — — — —
12 0.40 — — — — —
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Fig. 16.24. Border between absolute and convective instability in the inviscid case R → ∞, m = 0. The value of
` = 0.3455 is asymptotic. The inviscid case is degenerate because the imaginary part of ∂2ω/∂k2 = 0 at the singular
point. The consequence of this degeneracy is that at criticality (ωI , kI) = (0, 0) for all ` < 0.3455. The condition ωI < 0
at the pinch point cannot be realized; ωI at ∂ωR/∂kR = 0.
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16.2.10 Exact solution; comparison with previous results

Using equations (2.17)-(2.21) in Funada & Joseph (2002) for capillary instability of both viscous fluids, we can
modify the dispersion relation (2.17) so as to make the ambient fluid inviscid and the viscous column moving
with uniform velocity. The resultant dispersion relation D for a viscous jet in an inviscid fluid is given by

D =

∣∣∣∣∣∣

I1(k/2) I1(k`/2) K1(k/2)
2k2I1(k/2)

(
k2 + k2

`

)
I1(k`/2) 0

F1 F2 F3

∣∣∣∣∣∣
= 0, (16.2.69)

where

F1 = (ω − k)2 I0(k/2) + 2i (ω − k)
k2

R

(
dI1(k/2)
d(k/2)

)
+ W

(
4− k2

)
kI1(k/2), (16.2.70)

F2 = 2i (ω − k)
kk`

R

(
dI1(k`/2)
d(k`/2)

)
+ W

(
4− k2

)
kI1(k`/2), (16.2.71)

F3 = −`ω2K0(k/2), (16.2.72)

with k` defined as

k` =
√

k2 − iR (ω − k). (16.2.73)

The parameters `, W and R are the ones defined in (16.2.2). The top row of (16.2.69) arises from the continuity
of normal velocity, of the tangential stress and of the normal stress. Solving (16.2.69) implicitly using Newton’s
method for given values of (ωR, ωI) and the parameters, we have (kR, kI) and ĉ numerically.

In figure 16.25 we have plotted the critical value βc (= W−1
c ) versus R giving the border between absolute

and convective instability for viscous jets in an inviscid fluid computed by Leib & Goldstein (1986b) for ` = 0
and by Lin & Lian (1989) for ` = 0.0013 and ` = 0.03. The value βc = 6.3 for an inviscid jet in an inviscid fluid
was calculated by Leib & Goldstein (1986a). In figure 16.26 we compare the results from the theory of viscous
potential flow given in section 16.2.3 with the results for viscous flow according to (16.2.69). The stability limits
from the two theories are close.

The analysis for “fully viscous flow” neglects the dynamical effects of the viscous gas; these effects require
the imposition of continuity of the tangential component of velocity and stress. The discontinuous velocity
which induces Kelvin-Helmholtz instability is then inconsistent with the aforementioned continuity requirements.
S.P.Lin (2003) attempted to address the effects of shear by a study of core-annular flow in a vertical pipe. This
is a very different problem. He found a transition from convective to absolute instability but comparisons with
experiments are not available.

Fig. 16.25. Critical Weber number βc (= W−1
c ) versus Reynolds number R from the literature: Leib & Goldstein (1986a)

for inviscid jet in an inviscid fluid, βc = 6.3 for ` = 0, denoted by dashed line; solid lines are for viscous jets in an inviscid
fluid (m = 0) for ` = 0 (Leib & Goldstein 1986b) and ` = 0.0013 and ` = 0.03 (Lin & Lian 1989).
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Fig. 16.26. βc versus R comparing viscous flow (lower two curves) computed from the theory in section 16.2.10 for m = 0,
` = 0.0013 ∗ and ` = 0.03 2 with viscous potential flow (upper two curves) for the same values (` = 0.0013 +, ` = 0.03
×, m = 0).

218



16.2.11 Conclusions

(1) The computation of temporal and C/A instability of the liquid jet using viscous potential flow
(2) Extensive computation of the effects of the ambient density and viscosity and the viscosity of the
liquid
(3) A demonstration that KH instability cannot occur in vacuum (but capillary instability and Rayleigh-
Taylor instability can occur in vacuum)
(4) The derivation of a dispersion relation in the form of a polynomial in the complex frequency which
can be used to study temporal, spatial and C/A instability
(5) A comprehensive analysis of temporal instability; for all values of the parameters there are wavenum-
bers for which the liquid jet is unstable
(6) An analysis of the relative importance of KH and capillary instability on the maximum growth, on
the wave length of maximum growth and the cut-off wavenumber for inviscid and viscous liquids. KH
instability is the dominant mechanism for small Weber numbers and capillary instability is dominant for
large Weber numbers; the variation of the growth rates and wavenumbers in the two regimes is sharply
different
(7) When viscosity and surface tension are zero, the liquid jet is Hadamard unstable to KH instability
with growth rates proportional to k. Surface tension stabilizes the short waves. The maximum growth
rate and the associated wavenumber are proportional to 1/W for small W when the fluid is inviscid. For
viscous fluids the maximum growth rate is finite as W → 0 (pure KH instability) but the wave length
λm = 2π/km tends to zero with W , as in the inviscid case. It can be said that the wave lengths for
breakup due to KH instability are exceedingly short and that breakup due to KH instability leads to
surpassingly small drops, essentially mist.
(8) The critical wavenumber kc for marginal instability (stability for k > kc) is independent of the
Reynolds number of the liquid jet but the maximum growth rate and the wavenumber of maximum
growth depend on the Reynolds number
(9) Under the realizable condition that mαba = `bαa the neutral curves for viscous potential flow are
the same as for inviscid potential flow; this is a remarkable result. When k > 10 this criterion reduces to
a statement that the neutral curves are the same when the kinematic viscosity of the liquid equals the
kinematic viscosity of the gas; this result was proved for KH instability of a plane layer by Funada &
Joseph (2001).
(10) A comprehensive study of the transition between convective and absolute stability of the combined
KH stability and capillary instability of the liquid jet under a wide range of ambient condition for different
liquid was carried out. Precise results were obtained for full ranges of the Weber and Reynolds number,
density and viscosity ratios.
(11) The study of pinch point and cusp point singularities was greatly simplified by the fact that an explicit
dispersion relation in the complex frequency and wavenumber planes could be studied by algebraic rather
than geometric method of Bers (1975) and Briggs (1964)
(12) We show that the singular point for inviscid fluids when the density ratio ` is in 0 ≤ ` < 0.3455,
is degenerate; when ` > 0.3455 the inviscid jet is absolutely unstable. The singular points for inviscid
solutions in the supercritical case β > βc are degenerate since

(
∂2ω/∂k2

)
I

= 0. In this case kI = 0 and
ωI = 0, so that the transition from absolute instability is to a neutral rather than to a convectively
unstable state. All other cases are not degenerate and associate cusp points in the ω plane with pinch
points in the k plane.
(13) The transition between convective and absolute stability computed by viscous potential flow is
reasonably good agreement with the transition computed by fully viscous flow in which the flow is not
assumed to be irrotational. It must be understood that KH instability cannot be studied exactly in the
frame of the Navier-Stokes equations because the basic flow has a discontinuous velocity.

The liquid jet with no spatial development studied here is always unstable to temporal disturbances, convec-
tively and absolutely unstable jets are temporally unstable; flows like Hagen-Poiseuille flow which are temporally
stable would not admit C/A instability. Instability for jets with very slow spatial development should not be
very different for jets with no spatial development. The predictions of temporal and C/A instability achieved
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here have a somewhat tentative relation to actual experiments which emanate from nozzles in which the spatial
development of the basic flow could have an important effect.

16.3 Viscous potential flow of the Kelvin-Helmholtz instability of a cylindrical jet of one fluid
into the same fluid

Batchelor and Gill 1962 constructed a simple analysis of a cylindrical jet of one fluid into the same fluid. Their
analysis is based on potential flow of an inviscid fluid. The interface in their problem is defined by a discontinuity
of velocity. The fluid on either side of the discontinuity is the same. Here we show how to generalize the analysis
to irrotational flow of a viscous fluid. Our analysis is a paradigm for generalizing problems of potential flow
with discontinuous velocity profiles to include the effects of viscosity.

16.3.1 Mathematical formulation

Laplace equations are given by

∇2φ0 = 0, ∇2φ1 = 0, (16.3.74)

and Bernoulli equations are

∂φ0

∂t
+ U

∂φ0

∂x
+

p0

ρ
= f0(t),

∂φ1

∂t
+

p1

ρ
= f1(t). (16.3.75)

The boundary conditions at the cylindrical surface r = a + η ≈ a are the kinematic conditions

∂η

∂t
+ U

∂η

∂x
=

∂φ0

∂r
,

∂η

∂t
=

∂φ1

∂r
, (16.3.76)

and the normal stress balance

p0 − 2µ
∂2φ0

∂r2
= p1 − 2µ

∂2φ1

∂r2
. (16.3.77)

16.3.2 Normal modes; dispersion relation

The normal mode solution of the problem by (16.3.74)-(16.3.77) is in the form

η = Aeikx+inθ−ikct, φ0 = CIn(kr)eikx+inθ−ikct, φ1 = DKn(kr)eikx+inθ−ikct. (16.3.78)

The kinematic conditions give

ik (U0 − c) A = kCI ′n(ka), −ikcA = kDK ′
n(ka) (16.3.79)

The normal stress balance gives

∂φ0

∂t
+ U

∂φ0

∂x
+ 2ν

∂2φ0

∂r2
=

∂φ1

∂t
+ 2ν

∂2φ1

∂r2
, (16.3.80)

which is then written as

ik (U0 − c) CIn(ka) + 2νCk2I ′′n(ka) = −ikcDKn(ka) + 2νDk2K ′′
n(ka) (16.3.81)

where ν = µ/ρ.

For n = 0, α, αa, b and ba are defined as

α =
I0(k/2)
I1(k/2)

=
I0(k/2)
I ′0(k/2)

, αa =
K0(k/2)
K1(k/2)

= −K0(k/2)
K ′

0(k/2)
, (16.3.82)

b = α− 2
k

=
I ′′0 (k/2)
I ′0(k/2)

, ba = αa +
2
k

= −K ′′
0 (k/2)

K ′
0(k/2)

. (16.3.83)
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It is noted for real k that kα → 4 and αa → 0 as k → 0, while α → 1 and αa → 1 as k →∞, as shown in figure
16.10.

In the limit ka →∞,

In(ka)
I ′n(ka)

→ 1,
I ′′n(ka)
I ′n(ka)

→ 1, −Kn(ka)
K ′

n(ka)
→ 1, −K ′′

n(ka)
K ′

n(ka)
→ 1, (16.3.84)

For n ≥ 1, the ratios of Bessel functions will be checked later.

If ν = 0, then

(c− U0)
2 In(ka)

I ′n(ka)
= c2 Kn(ka)

K ′
n(ka)

(16.3.85)

ka →∞

(c− U0)
2 In(ka)

I ′n(ka)
= c2 Kn(ka)

K ′
n(ka)

→ (c− U0)
2 + c2 = 0 → c2 − U0c +

U2
0

2
= 0 (16.3.86)
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1
2

[1± i] (16.3.87)

When ν 6= 0 and ka →∞, we have

(c− U0)
2 + 2iνk (c− U0) + c2 + 2iνkc = 0 (16.3.88)
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2
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0
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+ ν2k2 (16.3.89)

cR =
U0

2
, cI = −νk ±

√
U2

0

4
+ ν2k2 = −νk +

√
U2

0

4
+ ν2k2 (16.3.90)

When cI = 0, the neutral state is given by

0 = −νk +

√
U2

0

4
+ ν2k2 → U2

0

4
= 0 (16.3.91)

The flow is unstable for all values of n, ka and all viscosities ν.

16.3.3 Growth rates and frequencies

The evolution of disturbances of the cylindrical jet is governed by the function

e−ikct, c = cR + icI . (16.3.92)

Batchelor and Gill 1962 plotted cR vs k and cI vs k for an inviscid fluid. It is more revealing to compute the
real and imaginary parts of the complex frequency ω = c/k, with

e−ikct = eωI(k,ν)te−iωR(k,ν)t (16.3.93)

because the analytical character of the evolution is not disquised by the extraneous multiplicative factor k.

In figure 16.27 we present graphs of ωI vs k and ωR vs k for ν = 0 and ν = 0.1.
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16.3.4 Hadamard instabilities for piecewise discontinuous profiles

The study of problems of irrotational flow of an inviscid fluid with a discontinuous velocity profile is widespread.
There are two prototypical problems. In one problem, the velocity itself is discontinuous as in the jet problem
considered here or in the problem of instability of the Rankine vortex with axial flow studied by Loiseleux,
Chomaz and Huerre 1998 and related problems used to study absolute and convective instability. In another
problem, the velocity is continuous but the slope of the profile is discontinuous. Such discontinuities are com-
patible with irrotational flows in which the effects of shear stresses are ignored but the effects of viscous normal
stresses are not ignored. In fact, the effects of shear in any real fluid would quickly smooth discontinuities
through the effects of a thin shear layer might persist for a time.

One of the troublesome difficulties which arises in the study of instability of vortex sheets defined by dis-
continuities of velocity of the type mentioned above, is Hadamard instability. In all these problems the growth
rate increases without bound at any finite time as the wavelength λ = 2π/k tends to zero. This kind of disaster
cannot occur; as they say in medicine “the blooding always stops.” The way in which short waves are regularized
ought to describe the physical mechanisms at work.

The instability of the viscous jet described by ??eq16.3.17) is given

ωI = −νk2 + k

√
U2

0

4
+ ν2k2. (16.3.94)

When ν = 0, ωI = kU0/2 tends to infinity with k. If ν > 0, then

ωI → U2
0

8ν
(16.3.95)

and the small waves are unstable but Hadamard unstable. The growth rate for short waves increases as ν

decreases and it is large when ν is small.

Hadamard instabilities may also be regularized by weakening the discontinuity as in the second problem
in which the vorticity is discontinuous but the velocity is continuous. Shear layers may be modeled by such
vorticity discontinuities as in figure 16.28.

The flow in figure 16.28 is not Hadamard unstable even when ν = 0 (Joseph and Saut 1990, §7).

222



0

1

2

3

4

5

6

0 5 10 15 20

’Vp-001.dat’ using 1:2
’Vp-001.dat’ using 1:3
’Vp-001.dat’ using 1:5
’Vp-004.dat’ using 1:2
’Vp-004.dat’ using 1:3
’Vp-004.dat’ using 1:5

’data.dat’

0

1

2

3

4

5

6

0 5 10 15 20

’Vp-001.dat’ using 1:2
’Vp-001.dat’ using 1:3
’Vp-001.dat’ using 1:5
’Vp-004.dat’ using 1:2
’Vp-004.dat’ using 1:3
’Vp-004.dat’ using 1:5

’data.dat’

Fig. 16.27. ωI vs k and ωR vs k for ν = 0 and ν = 0.1. The problem considered by Batchelor and Gill 1962 is Hadamard
unstable eωI t →∞ as k →∞, no matter how small is t. n = 0 above

U1

U2

Shear layer

Fig. 16.28. Piecewise continuous velocity modeling a shear layer.
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17

Stress induced cavitation

The usual criterion for cavitation is that cavities will form in a liquid when and where the pressure falls below a
critical value. In the ideal case, the cavitation threshold is the vapor pressure. The pressure in an incompressible
viscous liquid is not a thermodynamic or material property; it is the average stress (actually the negative of the
average stress which is positive in tension). The viscous part of the stress is proportional to the rate of strain
which has a zero average with positive and negative values on the leading diagonal in principal coordinates. It
follows that in motion the the liquid will develop stresses which are both larger and smaller than the average
value. The theory of stress induced cavitation seeks to relate the fracture or cavitation of a liquid to its state
of stress rather than its average stress. This kind of theory requires that the state of stress be monitored in
the evolving field of motion to determine when and where the liquid will fracture. The theory can thought to
be an application area for Navier-Stokes fluid dynamics which can be studied by viscous potential flow when
the flows are irrotational or nearly irrotational. The link between the theory of stress induced cavitation and
viscous potential flow is the fact that viscous stresses can be computed on irrotational motions. In section
17.1 we give a comprehensive presentation of the physical foundations and mathematical formulation of the
theory of stress induced cavitation. This presentation is taken from the 2006 paper of Padrino et al. ; it is new,
comprehensive and otherwise unavailable. In section 17.2 we consider cavitation of a liquid in aperture flow
by computing stresses on the well known potential flow solution for this problem in complex variables. This
is a simple example of how the extension of potential flow solutions to viscous fluids leads to new results at
small cost. Padrino et al. 2006 studied stress induced cavitation in streaming flow past a sphere. This solution
is discussed in section 17.3; there are potential flow solutions there and they are compared with numerical
solutions of the Navier-Stokes equation. In section 17.4 we construct a nonlinear model of capillary collapse and
rupture of a liquid thread under the assumption that the collapse is symmetric with respect to a stagnation
point at the throat. Stagnation point flow is irrotational. The cartoon for the model in figure 17.13 is defined by
a periodic array of stagnation points between points of liquid depletion and liquid accumulation. The passage of
liquid from points of depletion caused by capillary collapse to points of accumulation around which a liquid ball
expands cannot be done without the generation of vorticity in an axisymmetric analogue to hyperbolic vortices
xy=constant nested in the four quadrants at each stagnation point in vortex array described by 4.6.34. The
analysis can be said to generate a Helmholz decomposition for rotational flows near points of stagnation. This
model give rise a rupture criterion based on the generation of large viscous extensional stresses at the throat in
the final stage of collapse.

17.1 Theory of stress induced cavitation

Winer & Bair (1987) and, independently, Joseph (1995, 1998) proposed the maximum tension criterion for
cavitation which states that the flowing liquid will cavitate if the maximum tensile stress exceeds a critical
value. Since this maximum stress is associated with a principal direction, this criterion is not isotropic. Winer
& Bair (1987) introduced the idea that stress-induced cavitation may enter into the apparent shear thinning of
liquid lubricants. They remarked that shear thinning may be the result of a yielding or cavitation event that
takes place at a critical value of the liquid’s tensile stress. They further note that ‘for some high shear rate
viscosity data at atmospheric pressure the principal normal stress may approach quite low values relative to
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one atmosphere suggesting the possibility of cavitation or fracture of the material resulting in a reduced shear
stress’. In a private communication, Prof. Bair noted that ‘...There was little interest from tribologists, so we
dropped it until recently. In the original work we were able to see to the voids by eye using a clear plastic outer
cylinder...’.

The maximum tension criterion is embedded as one possibility for liquid failure presented by analysis of the
state of stress in Joseph’s theory. A comparison of these two theories can be found in the study of cavitation
in creeping shear flows by Kottke, Bair and Winer (2005). Numerous examples of cavitation in shear flow by
other researchers are discussed by Kottke et al. (2005). Examples of stress-induced cavitation in extensional flow
and shear flow were discussed by Joseph (1998). Pereira et al. (2001) did a theoretical study of cavitation in a
journal bearing with axial throughput. They found that the inception of cavitation in a moving fluid is always
stress induced. Funada et al. (2006) carried out an analysis of stress induced cavitation in a two-dimensional
aperture flow modeling atomizers in which cavitation is well documented. The aperture flow was expressed using
a complex potential and the stress calculated using viscous potential flow. They found that the viscous stress
was huge near the tips of the aperture, thus cavitation could be induced. The region at risk to cavitation is
larger, for a fixed cavitation number, when the Reynolds number is smaller.

17.1.1 Mathematical formulation

The stress in an incompressible Newtonian fluid is given by

T = −p1 + 2µD [u] , (17.1.1)

where D [u] is the symmetric part of the velocity gradient and trD [u] = 0, such that

trT = T11 + T22 + T33 = −3p. (17.1.2)

We define the stress at the cavitation threshold as pc. It is positive when compressive and negative when tensile.
Classically, the vapor pressure is taken as the threshold stress; however, in the next section, we discuss examples
where different values, including tensile values, should be used for the cavitation threshold.

In the pressure criterion, the viscous part of the stress tensor is not considered and the liquid will cavitate
when

− p + pc > 0. (17.1.3)

The pressure criterion assumes that cavitation inception is determined by the average stress, called the pressure.
The fluid cannot average its stresses; it sees only principal stresses and when the actual state of stress is
considered there is at least one stress which is more compressive and another which is more tensile than the
average stress. The most conservative criterion is the one which requires that the most compressive stress is
larger than the cavitation threshold; suppose T22 is the most compressive and T11 is the most tensile (or least
compressive) stress, then if

T22 + pc > 0 (17.1.4)

for cavitation, it will surely be true that

− p + pc > 0 and T11 + pc > 0. (17.1.5)

The maximum tension theory, which perhaps embodies the statement that liquids which are not specially
prepared will cavitate when they are subject to tension, can be expressed by the condition that supposing T11

to be the maximum of the three principal stresses,

T11 + pc > 0. (17.1.6)

The cavitation number K compares the cavitation threshold pc with a typical pressure; here in our sphere
problem, with the pressure p∞ at infinity. We define

K =
p∞ − pc

NR
(17.1.7)
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where NR = µU/L for Stokes flow and NR = ρU2/2 when inertia acts; L is a characteristic length scale. Later,
the analysis will show that the stress difference between the free-stream pressure and the cavitation threshold
p∞ − pc is the critical value rather than the cavitation threshold by itself.

The maximum tension criterion (17.1.6) has recently been studied in a numerical simulation of bubble growth
in Newtonian and viscoelastic filaments undergoing stretching by Foteinopoulou et al. (2004). They base their
analysis on the Navier-Stokes equations for Newtonian fluids and the Phan-Thien/Tanner model for viscoelastic
fluids. They compute the principal stresses and evaluate the cavitation threshold for the maximum tension
criterion (17.1.6), the pressure theory (17.1.3) and the minimum principal theory (17.1.4). They find that the
capillary number at inception is smallest for (17.1.6). As remarked by Kottke et al. (2005), the cavitation
threshold pc could be negative or positive. In the case of pc < 0, the liquid shows tensile strength; for pc = 0,
a cavity will open if the maximum principal stress becomes positive (i.e., tensile), and, if pc > 0, the cavitation
threshold is given by a positive pressure (i.e., compressive stress). The latter case is typified by the pressure
theory of cavitation determined by the local pressure dropping below the vapor pressure.

To each principal stress there corresponds a principal direction, which plays a role in the physics of cavity
inception. Joseph (1998) asserts that ‘if a cavitation bubble opens up, it will open in the direction of maximum
tension. Since this tension is found in the particular coordinate system in which the stress is diagonal, the
opening direction is in the direction of maximum extension, even if the motion is a pure shear. It may open
initially as an ellipsoid before flow vorticity rotates the major axis of ellipsoid away from the principal tension
axis of stress, or it may open abruptly into a ‘slit’ vacuum cavity perpendicular to the tension axis before vapour
fills the cavity as in the experiments of Kuhl et al. (1994)’. These ideas are illustrated in cartoons showing the
orientation of the principal directions on the surface of the sphere for each approach considered in this study.

Consider the expression for the stress tensor for a Newtonian fluid given in (17.1.1). Adding the diagonal
tensor pc1 to both sides and decomposing p = p∞ + p∗ yields

T + pc1 = − (p∞ − pc)1− p∗1 + 2µD. (17.1.8)

Dividing through by the normalizing factor NR, (17.1.8) becomes

T + pc1
NR

= −
(

K +
p∗

NR

)
1 +

2µ

NR
D. (17.1.9)

The strain–rate tensor can be readily diagonalized. Thus the principal stresses and directions can be deter-
mined. Suppose now that K = Kc at the marginal state separating cavitation from no cavitation. For shortness,
let us call Kc the incipient cavitation number. This marginal state is defined by an equality in one of the three
criteria (17.1.3), (17.1.4) or (17.1.6). For the maximum tension theory K = Kc when T11 +pc = 0. In particular,
for the maximum principal stress T11, (17.1.9) yields

(T11 + pc) /NR = −(K + p∗/NR) + 2µD11/NR, (17.1.10)

where D11 denotes the maximum principal rate of strain. Then, Kc = (−p∗ + 2µD11) /NR is, in general, a scalar
function of the position in the fluid domain. For a positive cavitation number, consider K = Kc +K∗ such that
(T11 + pc) /NR = −K∗. It is thus clear from (17.1.10) that

T11 + pc < 0 when K > Kc, (17.1.11)

and

T11 + pc > 0 when K < Kc. (17.1.12)

The latter condition implies that the liquid is at the most risk to cavitation in regions where K < Kc. For
instance, for a fixed cavitation number K, no cavity will open if K > Kc,max, the maximum value that Kc takes
in the entire fluid domain. On the other hand, the cavitation number K based on the actual hydrodynamics,
may vary in the fluid domain, since the cavitation threshold pc may also change with position. For example,
Singhal et al. (2002) included in their cavitation model the effect of the local turbulence pressure fluctuations
in the phase-change threshold pressure.
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17.1.2 Cavitation threshold

Cavitation can be defined as the formation, growth and collapse of a cavity in a liquid. In general, the ‘formation’
of a cavity implies both the appearance of a new void or the extension of a preexisting nucleus beyond a critical
size large enough to be observed with the unaided eye (Young, 1989). The idea of the opening of a cavity in the
liquid continuum brings into consideration the concept of liquid tensile strength, which is a material property.
The pressure criterion for cavitation states that the liquid cavitates when the local pressure reaches the vapor
pressure somewhere in the domain. Knapp, Daily & Hammit (1970) discusses that, although the inception of a
cavity has been observed in experiments when local pressure is near the vapor pressure, deviations of various
degrees have been reported for different liquids such that the results do not agree with the vapor pressure
criterion. Knapp et al. define the vapor pressure as ‘the equilibrium pressure, at a specified temperature, of the
liquid’s vapor which is in contact with an existing free surface.’ They argue that the stress required to rupture
the continuum in a homogeneous liquid is determined by the tensile strength, not by the vapour pressure. The
literature on the tensile strength of liquids is vast and a good account of experimental results is given in the
book by Knapp et al. (1970) for various liquids. In particular for water, values ranging from 13 to 200 atm are
listed. Briggs (1950) reports inception of cavities in water induced by centrifugal force for pressures between
vapor presssure and -300 atm (tension). Recently, Kottke, Bair & Winer (2003) measured the tensile strength
of nine liquids, including water, lubricant and polymeric liquids. Theoretical estimates of the tensile strength
of water render large negative values in the interval -500 atm to -10,000 atm, which, however, have never been
reported from experiments (Strassberg, 1959). Both observed phenomena, the wide scatter of the experimental
results and the inception of cavitation at pressures much higher than the theoretical tensile strength reported
in the literature indicate the existence of weak spots in the fluid that allows breaking of the continuum. Plesset
(1969) comments that bubbles can grow to macroscopic dimensions starting from voids of size already beyond
the molecular level under tensile stresses much lower than the theoretical values predicted for pure liquids.

Fisher (1948) reasons that, in a similar manner as very greatly subcooled liquids (such as glass) may fail by
the nucleation and growth of a crack, a fluid may fail under tension by the growth of a cavity starting from very
small holes. By applying methods of nucleation theory, Fisher predicts fracture tensions for several liquids with
values, however, one order of magnitude higher than the experimental evidence. Some mechanism is required to
stabilize preexisting nuclei in the liquid. For a very small bubble suspended in the liquid, the pressure inside the
bubble is much higher than the pressure in the surrounded liquid because of surface–tension forces. This pressure
difference diffuses the gas out of the gas void until it vanishes. On the other hand, bubbles not so small will rise
and escape through the surface. Harvey and collaborators (1944a) introduced the idea of stabilized gas pockets
attached to submicroscopic and hydrophobic crevices in the surface of the liquid container or in solid impurities.
The size of these nuclei can be of the order of microns. Harvey et al. (1944b) supported their theory with results
from a series of experiments in which previously pressurized and unpressurized samples of water were boiled
at atmospheric pressure such that the saturation pressure corresponding to the boiling temperature was taken
as a rough measure of the effective tensile strength. Although quite broad scatter was observed in the results
for the pressurized samples, they all boiled at temperatures much higher than the saturation temperature for
atmospheric pressure, which was the boiling temperature showed by the unpressurized samples. Tensile strength
of 16 atm were reported in some samples previously pressurized.

Harvey et al. (1947) performed a different type of experiments to investigate tensile strength of water by
high-speed removal of a squared-ended glass rod from a narrow glass tube containing the liquid. Meticoulous
cleaning of the glass surfaces and pressurization of the sample with the rod in position were done to remove
hydrophobic spots and gas nuclei. In terms of the rod-withdrawal speed, they found that ‘if the rod surface
contained glass nuclei, or was hydrophobic and free of gas nuclei, cavitation ocurred at the rear end when
the velocity was less than 3 m/s, but if completely hydrophilic and free of gas nuclei, the velocity could be
37 m/s (...) without cavitation.’ Knapp (1958) confirmed Harvey’s results performing experiments at a rather
larger scale. Strasberg (1959) explored the onset of acoustically-induced cavitation in tap water finding that
microscopic undissolved air cavities, which show a slow motion toward the surface, play an important role as
nuclei. Apfel (1970) extended Harvey’s theory to consider the condition required in a liquid for the inception
of a vapor cavity from a solid impurity in the liquid. Crum (1970) examined the crevice model of Harvey et al.
comparing its predictions with experimental evidence.
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From the standpoint of hydrodynamic cavitation, stream nuclei carried by the moving liquid as particulates
or microbubbles have a greater contribution as sites for onset of cavitation than the surface nuclei originated
in crevices or cracks on the solid boundaries (Billet 1985 and references therein). Turbulence has been shown
to influence cavitation inception and its effect has been accounted for in models through the phase-change
threshold (Singhal et al. 2002).

The inception of a cavity can be an abrupt event, where the liquid must rupture, instead of a continuous
one. Chen & Israelachvili (1991) and Kuhl et al. (1994) monitored the elastohydrodynamic deformations of two
curve surfaces that move relative to each other separated by a thin–liquid film of nanoscopic dimensions. A
low molecular weight polymer liquid of polybutadiene and bare mica smooth surfaces having strong adhesion
to the liquid were utilized in the tests. When the surfaces move normally with a slow separation speed they
bulge outward becoming pointed at the location of the shortest surface separation. This shape indicates the
existence of a tensile stress acting on the surface. If the separation speed is increased beyond a critical value, a
vapor cavity opens in the liquid at the position of the shortest separation, reducing the tensile stress, while the
pointed surfaces suddenly recover their original shape. Chen & Israelachvili (1991) also used surfactant–coated
mica surfaces, which have weak adhesion to the liquid, resulting in cavity formation at the liquid–solid interface.
Kuhl et al. (1994) considered lateral sliding of a curved surface over a mostly plane surface with a thin liquid
film in between. Describing the shape of the sliding element, they observed that ‘the leading edge becomes more
rounded and lifts off while the trailing edge becomes more pointed.’ For a sliding speed larger than some critical
value, the pointed trailing edge snaps back, while a small cavity opens in the wake.

Cavitation inception has been observed in liquids undergoing shearing, suddenly changing the rhelogical
response of the samples. Bair and Winer (1990) inferred cavitation inception by detecting yielding of a synthetic
oil during rheological tests using a rotating concentric cylinder rheometer for a shear stress near the hydrostatic
pressure (1.73 MPa). A similar phenomenon was noticed by Bair and Winer (1992) for polybutene in simple
shear at low pressures (0.1 to 1 MPa) for a shear stress of 0.075 MPa in excess of the internal absolute pressure.
This magnitude may represent the amount of tension that this liquid can resist without the opening of a cavity.
Archer, Ternet & Larson (1997) visualized the opening of bubbles within a sample of low–molecular–weight
polysterene subjected to start-up of steady shearing flow. They noticed that bubbles seemed to appear near
dust particles. As a consequence of cavitation, the shear stress abruptly drops after it reaches a maximum of
0.1 MPa. Kottke et al. (2005) observed the inception of cavities in polybutene undergoing shearing tests using
a Couette viscometer. Cavities become visible when the measured shear stress matches the ambient pressure.
According to their principal normal stress cavitation criterion (PNSCC), this result implies that the sample
liquid is not able to withstand tension. They suggest that cavitation grows from preexisting nuclei stabilized in
some cracks or crevices on the solid boundaries.

The previous survey has shown that the idea of minute gas and vapor pockets in the liquid acting as nucleation
sites is plausible and generally accepted. Nevertheless, a precise definition of the cavitation threshold and a clear
description of the wide gamut of factors that influence this critical value is yet to be accomplished. We use the
words ‘cavitation threshold’ and ‘breaking strength’ as synonymous with the threshold at which the liquid
continuum will fracture. This threshold can vary from place to place in a sample. The threshold need not be
a material parameter. In the case of heterogeneous nucleation, the cavitation threshold depends on the sample
preparation, the density and nature of nucleation sites. In the case of homogeneous nucleation, the threshold
may be taken as the vapor pressure. The vapor pressure is a thermodynamic quantity which is defined for
uniform isotropic samples for which the stress tensor is isotropic; for static samples, bubble nucleation is a
function of pressure and nothing else. In this paper, the cavitation threshold, pc, is not necessarily the vapor
pressure; this value is regarded as given and is not a subject for study here. For liquid which cannot withstand
tension, pc = 0.

17.2 Viscous potential flow analysis of stress induced cavitation in an aperture flow

It is well known that cavitation may be induced at sharp edges of the inlet of nozzles such as those used in
atomizers. It is at just such edges that the pressure of an inviscid fluid into a nozzle is minimum. At higher
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Fig. 17.1. Flow through an aperture in a flat plate.

pressure drops (larger cavitation number) the liquid in the nozzle may break away from the nozzle wall; the
flow then attaches to the sharp edge of the nozzle and is surrounded by atmospheric gas. The term incipient
cavitation is used to define the situation where cavitation first appears. The term supercavitation describes the
situation where there is a strong cavitation flow near the nozzle exit, which is very beneficial to atomization.
Total hydraulic flip describes the situation where the liquid jet completely separates from the nozzle wall.
Hydraulic flip occurs in a variety of nozzles of different cross sections provided that the edge at inlet is sharp
and not round. The aperture flow in a flat plate considered here (figure 17.1) is a nearly perfect two dimensional
model of total hydraulic flip. Experiments documenting the transition to hydraulic flip from cavitating have
been presented by Bergwerk (1959), Soteriou et al. (1995), Chaves et al. (1995), Laoonual et al. (2001) and a
few others.

The outstanding property of the hydraulic flip is the disappearance of any sign of the cavitation that was
there before the flow detached. To our knowledge, reports of the observations of the disappearance of cavitation
are for very low viscosity liquids, such as water and diesel oil. In the analysis of aperture flow which follows,
we find cavitation at the sharp edge for all fluids with viscosity larger than zero, but for low viscosity liquids it
would be very hard to observe.

Our analysis is based on the theory of stress induced cavitation; the flow will cavitate at places where the
principal tensile stress T11 > −pv where pv is the vapor pressure. The theory of viscous potential flow allows us
to compute these stresses directly and easily from the classical potential flow solution for aperture flow. Liquid
samples which are not specially prepared ordinarily do not cavitate at the vapor pressure; various impurities
can reduce the cavitation threshold and degassing followed by massive pressurization can increase the cavitation
threshold. It is more realistic to think of pv as the breaking strength of the liquid which depends on the history
of the liquid sample. Readers may find it convenient to consider the case pv = 0; in this case the sample will
fail under tension.

17.2.1 Analysis of stress induced cavitation

The aperture flow in a flat plate is shown in figure 17.1. The magnitude in the resulting jet will reach some
uniform value U downstream of the edges. The half-width of the jet is Cc`, where Cc is the contraction coefficient
and ` is the half-width of the aperture. The complex potential for this flow is given implicitly by (Currie 1974,
p.129)

f(z) = φ + ıψ = −2Cc`U

π
ln

{
cosh

[
ln

(
U

dz

df

)]}
− ıCc`U. (17.2.1)
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The stress is calculated by

T = −p1 + 2µ∇⊗∇φ. (17.2.2)

The pressure can be calculated using Bernoulli’s equation

p +
ρ

2
(u2 + v2) = pd +

ρ

2
U2 = pu, (17.2.3)

where pu is the upstream pressure and pd is the downstream pressure at a position where the velocity reaches
the uniform velocity U . The velocities are evaluated using from the potential

u =
1
2

(
df

dz
+

df̄

dz̄

)
, v =

ı

2

(
df

dz
− df̄

dz̄

)
. (17.2.4)

It follows that the rate of strain tensor is

2D =




(
d2f

dz2
+

d2f̄

dz̄2

)
ı

(
d2f

dz2
− d2f̄

dz̄2

)

ı

(
d2f

dz2
− d2f̄

dz̄2

)
−

(
d2f

dz2
+

d2f̄

dz̄2

)


 . (17.2.5)

To use the maximum tension criterion for cavitation, the principal axes coordinates in which 2D is diago-
nalized need to be found. In the two-dimensional case under consideration here, the diagonalized rate of strain
tensor is

2D =
(

λ 0
0 −λ

)
, where λ = 2

∣∣∣∣
d2f

dz2

∣∣∣∣ . (17.2.6)

Thus the maximum tension T11 is given by

T11 = −p + µλ = −pu +
ρ

2
(u2 + v2) + µλ, (17.2.7)

and the cavitation threshold is given by

T11 = −pv. (17.2.8)

Combining (17.2.7) and (17.2.8), we obtain

T11 + pv = −pu + pv +
ρ

2
(u2 + v2) + µλ = 0. (17.2.9)

We use ρ
2U2 to render (17.2.9) dimensionless

T11 + pv
ρ
2U2

=
−pu + pv

pu − pd
+

u2 + v2

U2
+

µλ
ρ
2U2

= −1 + K

K
+

∣∣∣∣α(
φ

`U
,

ψ

`U
)
∣∣∣∣
2

+
1

Re

2π

Cc

∣∣∣∣β(
φ

`U
,

ψ

`U
)
∣∣∣∣ = 0, (17.2.10)

where the dimensionless parameters are defined as

Cavitation number K =
pu − pd

pd − pv
, (17.2.11)

Reynolds number Re =
ρ`U

µ
, (17.2.12)

and the complex functions α and β are given by

α =
[
eγ ±

√
e2γ − 1

]−1

, β =
[
eγ ± e2γ

√
e2γ − 1

]
α3, (17.2.13)

with

γ = −f + ıCc`U

2Cc`U
π = − π

2Cc

φ

`U
− ıπ

2Cc

ψ

`U
− ıπ

2
. (17.2.14)

The definition (17.2.11) for the cavitation number follows Bergwerk (1959) and Soteriou et al. (1995) and is
somewhat different from the definition by Brennen in which the denominator is the dynamic stagnation pressure.
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For a flow with given cavitation number K and Reynolds number, equation (17.2.10) gives the positions where
cavitation inception occurs in terms of φ/`U and ψ/`U . The dimensionless description (17.2.10) is independent
of the vapor pressure or any dimensional parameters entering into the definition of K and Re.

17.2.2 Stream function, potential function and velocity

The complex potential of the flow (17.2.1) is implicit and not convenient to use. Therefore we invert the potential
to obtain a function in the form z = z(f). First we transform the variables as

z′ =
πz

2Cc`

which gives

U
dz

df
= U

dz

dz′
dz′

dγ

dγ

df
= −dz′

dγ
. (17.2.15)

By virtue of (17.2.14) and (17.2.15), we have

γ = ln
{

cosh
[
ln

(
−dz′

dγ

)]}

which can be written as

eγ = −1
2

[
dz′

dγ
+

(
dz′

dγ

)−1
]

.

Thus we obtain
dz′

dγ
= −eγ −

√
e2γ − 1. (17.2.16)

Integration of (17.2.16) gives

z′ = −eγ −
√

e2γ − 1 +
1
2ı

ln

(
1 + ı

√
e2γ − 1

1− ı
√

e2γ − 1

)
− π/2. (17.2.17)

We prescribe the value of the complex potential and compute the corresponding position z by (17.2.17). The
computational results are shown in figure 17.2(a) where the stream and potential functions are plotted in the z

plane. The velocity is then obtained using (17.2.4) and shown as a vector plot in figure 17.2(b).

Nearly all the flow through the aperture emanates from regions of irrotationality; vorticity generated by no-
slip at the wall of the aperture is confined to a boundary layer and its effects are neglected here. Stress-induced
cavitation can arise where the irrotational stresses are very large, but the maximum stress, hence the point
of inception, is probably at the edge of the aperture where the vorticity is greatest. We will show in the next
section that viscous potential flow predicts cavitation at the tip whenever the viscosity is larger than zero.
Therefore the effects of vorticity could be important only if they were such as to suppress cavitation at the tip.
Even in this case, the fluid could cavitate in the irrotational region outside the boundary layer. We note that
the boundary layer is shrinking near the tip of the aperture due to favorable pressure gradient; the aperture
flow is analogous to the flow with suctions on the wall which suppress the boundary layer thickness. Therefore
the boundary layer could be very thin near the tip of the aperture and our theory can be applied to the region
near the tip but outside the boundary layer. Our results indicate that cavitation may occur in such regions. The
main unsolved question is the extend to which vorticity generated at the boundary of the aperture corrupts the
main flow when the Reynolds number is not large.

17.2.3 Cavitation threshold

We use water as an example to illustrate the stress induced cavitation. The vapor pressure of water at 20◦C is
2339 Pa and we assume that the downstream pressure is the atmospheric pressure: pd = pa = 105Pa. First we
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Fig. 17.2. (a). The stream and potential functions in the z plane. The x and y coordinates are normalized as (x/`, y/`).
The stream and potential functions are in the range −Cc < ψ/(`U) < 0 and −0.375 < φ/(`U) < 1.75, respectively. The
contraction coefficient Cc = π/(2 + π) = 0.611 and the edge of the nozzle is at (x/`, y/`) = (−1, 0). (b) The velocity in
the z plane. Only half of the flow field is shown due to the symmetry.

calculate the pressure using the Bernoulli’s equation (17.2.3). The pressure does not depend on the Reynolds
number and we show the pressure distribution for different cavitation numbers in Fig. 17.3.

The pressure criterion for cavitation is that cavitation occurs when the pressure is lower than the vapor
pressure. The minimum pressure in the aperture flow is the downstream pressure and pd = 105Pa > pv = 2339Pa.
Thus the pressure criterion predicts no cavitation for the case under consideration. However, we will show that
cavitation occurs in the aperture flow according to the tensile stress criterion (Joseph 1995, 1998).

Next we include the viscous part of the stress and consider the maximum tension T11. The cavitation criterion
is that cavitation occurs when T11 +pv ≥ 0. T11 depends on both the Reynolds number and the cavitation num-
ber. We show the contour plot for (T11+pv)/(ρU2/2) with different Re and K in Fig. 17.4. More graphs, with dif-
ferent values of Re and K can be found in Funada et al. 2006 (see http://www.aem.umn.edu/people/faculty/joseph/ViscousPotentialFlow/).

Although the velocity is continuous everywhere in the aperture flow, its derivative, and therefore the viscous
stress, are singular at the sharp edge. Thus at the sharp edge for all fluids with viscosity larger than zero,
T11 +pv is always larger than zero and cavitation occurs. In our analysis here, we shall avoid the singular points
and calculate the stresses at points very close to the edges. This is partially justified by the fact that in reality
the edges are not perfectly sharp. As Chaves et al. (1995) noted “... Microscopic pictures of the nozzle inlet
still show however small indentations of the corner, i.e. less than 5 micrometers.” (The diameter of the nozzle
in their experiments was 0.2 mm or 0.4 mm).

In figure 17.4, the curves on which T11 +pv = 0 are the thresholds for cavitation. On the side of a T11 +pv = 0
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Fig. 17.3. Contour plot for (p − pv)/(ρU2/2) in the (x/`, y/`) plane, (a) K = 10; (b) K = 1000. In the flow field,
p− pv > 0 everywhere. Thus there is no cavitation according to the pressure criterion.

curve which is closer to the sharp edge, T11+pv > 0 and cavitation appears; on the other side of the T11+pv = 0
curve, T11 + pv < 0 and there is no cavitation.

In figure 17.5, we single out the threshold curves on which T11 + pv = 0 and plot these curves corresponding
to different Re at K = 1 and K = 100. The cavitation region is larger when Re is smaller; when Re is larger,
cavitation is confined to a very small region near the edge of the aperture. The cavitation region is larger and
is stretched to far downstream when K is larger. This shows that supercavitation, i.e. cavitation extending to
the nozzle exit, can be achieved when K is large. This predicted supercavitation occurs under hydraulic flip
condition, and is not the same as the supercavitation observed in experiments.

Now we focus on the point (x/` = −1.01, y/` = 0), which is upstream to the left sharp edge and very close
to it. We can identify values of Re and K which give rise to T11 + pv = 0 at this point. These values can be
plotted on the Re and K plane as shown in figure 17.6. On one side of the plotted curve, T11 + pv > 0 and
cavitation occurs at this point; on the other side, there is no cavitation at this point. Figure 17.6 shows that
small Re and large K favor cavitation. This can be understood readily because small Re leads to large viscous
stress and large K leads to small pressure. Both of these effects contribute to a large value of T11 = −p + µλ.

17.2.4 Conclusions

We use the potential flow through an aperture as a 2D model to study the hydraulic flip observed in injection
flows at a nozzle. The pressure in the flow field is computed using Bernoulli’s equation and the viscous stress is
evaluated on the potential. The stress tensor is transformed to the principal axes coordinates and the principal
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(a)

(b)

Fig. 17.4. Contour plot for (T11 + pv)/(ρU2/2) in the (x/`, y/`) plane, (a) K = 10 and Re = 1; (b) K = 10 and Re = 5.
Cavitation occurs inside the curve on which T11 + pv = 0. Figure 17.3(a) and 17.4(a) can be compared to show the effect
of the viscous stress cavitation.

stress T11 is obtained. If T11 is larger than the negative value of the vapor pressure pv, the flow will cavitate.
We find that cavitation occurs for all fluids with viscosity larger than zero at the sharp edges of the aperture.
The region in which cavitation occurs depends on the Reynolds number Re and the cavitation number K. The
cavitation region is larger if Re is smaller and K is larger. The cavitation is confined to very small regions near
the edges of the aperture when Re is larger and K is smaller.

Researchers do not observe cavitation in hydraulic flip. The reason may be that the Reynolds numbers in
nozzle flows are usually very high (in the order of thousands and tens of thousand). Thus even if cavitation
occurred at the edge of the nozzle, the cavities would collapse quickly outside the small cavitation region (the
time for cavities to collapse is in the order of microseconds according to Chaves et al. 1995) and would be very
difficult to observe. The effects of liquid viscosity on cavitation are apparently not known; we could not find
an evaluation of these effects in the literature. The results obtained here and in Joseph (1998) suggest that an
increase in viscosity lowers the threshold to stress induced cavitation.

17.2.5 Navier-Stokes simulation

A full Navier-Stokes simulation of stress-induced cavitation in aperture flow was carried out by Dabiri, Sirignano
and Joseph 2006 to evaluate the conclusions stated in 17.2.4. The computations were done using the finite
volume package SIMPLER. The free surface was generated using level sets. The effects of surface tension were
not computed. To secure convergence using this numerical package it is necessary to have an active ambient. In
these calculations the gas-liquid density ratio is 10−4 and the viscosity ratio is 1.5 × 10−4. The computations
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Fig. 17.5. The cavitation threshold curves on which T11 + pv = 0 in different flows with Re = 1, 2, 5, 10, 20, 50 and
100. The cavitation number is fixed at K = 1 in (a) and K = 100 in (b). Cavitation occurs inside the curve on which
T11 + pv = 0.

0

20

40

60

80

100

0 20 40 60 80 100 120 140

R
e

K

No-Cavitation

Cavitation

Fig. 17.6. The curve on which T11 + pv = 0 at the point (x/` = −1.01, y/` = 0) in the Re vs K plane. Below the curve,
T11 + pv > 0 and cavitation occurs at the point; above the curve, T11 + pv < 0 and there is no cavitation at the point.

are not sensitive to changes of these ratios for small ratios. The Reynolds number in these calculations is based
on the Bernoulli’s velocity of the jet, which is larger than the average velocity of jet for low Reynolds number.
For example, for flow with Re = 1 the jet velocity is about 20% of Bernoulli velocity and this causes the strain
rates and therefore the stresses to be scaled down with the same ratio. This could be the reason that the regions
with large stresses are smaller in the NS solution.

The results of the computations are exhibited in figures 17.7 and 17.8. Isolines for tensile stresses are marked
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Fig. 17.7. Viscous stress contours for Navier-Stokes solution (solid lines) compared to viscous potential flow solution
(dashed lines) for ρ-ratio=1e−4 and µ-ratio=1.5e−4 (Top): Re =500, (Bottom): Re =100.

on the figures; high numbers identify high stresses. The liquid is most at risk to stress induced cavitation
when the stress level is positive and high. The regions of high stress are near the corner in the NS and VPF
calculations. We could say that the computations of regions vulnerable to stress induced cavitation are given
with reasonable accuracy by VPF, even for low Reynolds numbers.

It is of interest that the free surface in the hybrid VPF calculation done here is a free surface streamline
associated with potential flow of an inviscid fluid. The pressure is constant on the free streamline, so that the
speed there is constant as shown by the Bernoulli equation. For a true VPF, the normal stress balance contains
a viscous term and the pressure is not constant in the liquid on the free surface. The free streamline theory does
not apply to VPF. Probably, the free surface computed with VPF would be closer to the free surface given by
the NS solution. It is of interest to create VPF theory to update the free streamline theory of IPF.
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Fig. 17.8. Viscous stress contours for Navier-Stokes solution (solid lines) compared to viscous potential flow solution
(dashed lines) for ρ-ratio=1e−4 and µ-ratio=1.5e−4 (Top): Re =10, (Bottom): Re =1.
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17.3 Streaming motion past a sphere

Padrino et al. 2006 solved the problem of stress induced cavitation in the axisymmetric streaming flow past a
sphere. This is a canonical problem for cavitation behind blunt bodies; the application of the maximum tension
theory to this problem is new. Padrino et al. derived explicit analytic formulas for this theory in the Stokes flow
limit and for the irrotational flow of a viscous fluid. The cavitation thresholds for these analytic approaches were
compared with exact results from a direct numerical simulation. The direct simulation allows us to compare
cavitation thresholds between the stress induced maximum tension theory with pressure alone theory. ( This
is different than the the calculation in aperture flow where the flow is irrotational and the fluid viscous. In
the irrotational flow of a viscoius fluid the pressure is given by Bernoulli’s equation and does not depend on
viscosity.) Both theories computed with the same Navier Stokes package depend on the Reynolds number. The
liquid is always at greater risk to cavitation to viscous stresses than to the pressure alone theory. The difference
between the approaches of the two theories increases as the Reynolds number decreases and is greatest at the
boundary of the sphere where the motion is pure shear and if the shear stress is large enough the liquid will
fracture even when the pressure is much higher than the critical pressure. Readers with an interest in the theory
of stress induced cavitaion will profit from reading the paper of Padrino et al. . For our purpose here we can
show how the the cavitation threshold formula is formed from the irrotational theory.

17.3.1 Irrotational flow of a viscous fluid

Kuhn de Chizelle, Ceccio & Brennen (1995) studied the interactions between a travelling cavity and the potential
flow exterior to the thin boundary layer around an axisymmetric headform. Liu & Brennen (1998) presented a
mechanistic model for hydrodynamic cavitation event rate for flow over a headform that utilizes the pressure
distribution given by potential flow modified to accomodate boundary layer effects. There is no literature
other than the paper of Funada et al. (2006) on analysis of stress-induced cavitation using potential flow. The
analysis of this problem, given below, is completely transparent; the effects of vorticity on cavitation on a solid
sphere are mainly associated with the formation of wakes and the displacement of the region of irrotational flow.
Considering the irrotational flow of a viscous fluid, the principal strain-rates and stresses and their corresponding
principal directions can be determined. Then, the maximum tension criterion is applied to evaluate the cavitation
threshold. The theory of viscous potential flow considered here includes the viscous components in the definition
of the state of stress in the flowing liquid.

Irrotational flows of incompressible viscous fluids satisfy the Navier-Stokes equations and give rise to the
usual Bernoulli equation because

µ∇2u = µ∇∇2φ = 0, (17.3.1)

no matter what the value of µ. The stresses are given by

T = −p1 + 2µ∇⊗∇φ =
1
3
Tr (T)1 + 2µ∇⊗∇φ, (17.3.2)

where p is the average stress given by (17.1.2).

The flow is axisymmetric and steady and the potential φ(r, θ) satisfies ∇2φ = 0. In this analysis, spherical-
polar coordinates are utilized.

The potential for this flow is

φ = U

(
r +

1
2

a3

r2

)
cos θ. (17.3.3)

The velocity u = erur + eθuθ is given by

ur =
∂φ

∂r
= U

(
1− a3

r3

)
cos θ, (17.3.4)

uθ =
1
r

∂φ

∂θ
= −U

(
1 +

1
2

a3

r3

)
sin θ. (17.3.5)
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Note that the no-slip condition must be relaxed for viscous potential flow. So, the boundary layer is not resolved.
The pressure is given by

p = p∞ + ρ
U2

2
− ρ

2
(
u2

r + u2
θ

)

= p∞ + ρ
U2

2

[
1−

(
1− a3

r3

)2

cos2 θ −
(

1 +
1
2

a3

r3

)2

sin2 θ

]
, (17.3.6)

where p∞ is the constant value of the pressure at infinity. The non-zero components of the viscous stress

2µD [∇φ] (17.3.7)

are

2µDrr = 2µ
∂ur

∂r
= 6µU

a3

r4
cos θ, (17.3.8)

2µDθθ = 2µ

(
1
r

∂uθ

∂θ
+

ur

r

)
= −3µU

a3

r4
cos θ, (17.3.9)

2µDϕϕ = 2µ
(ur

r
+

uθ

r
cot θ

)
= −3µU

a3

r4
cos θ, (17.3.10)

2µDrθ = µ

[
r

∂

∂r

(uθ

r

)
+

1
r

∂ur

∂θ

]
= 3µU

a3

r4
sin θ. (17.3.11)

The matrix of components

2µ




Drr Drθ 0
Drθ Dθθ 0
0 0 Dϕϕ


 = 3µU

a3

r4




2 cos θ sin θ 0
sin θ − cos θ 0

0 0 − cos θ


 (17.3.12)

can be rotated into diagonal form through an angle α satisfying

tan 2α =
2
3

tan θ. (17.3.13)

From (17.3.13) we look for the angle α that puts by rotation with axis eϕ the direction given by the unit vector
er into the principal direction corresponding to the most tensile (or the least compressive) principal stress in the
plane of the motion. Without lack of generality, we consider this angle α to be in the interval −0.5 ≤ α/π ≤ 0.5.

The diagonal form of 2µ∇⊗∇φ is given by

3µU
a3

r4




1
2 cos θ + sin θ

sin 2α 0 0
0 1

2 cos θ − sin θ
sin 2α 0

0 0 − cos θ


 . (17.3.14)

At θ = π/2, where the pressure is smallest, α = π/4 and the diagonal form is

3µU
a3

r4




1 0 0
0 −1 0
0 0 0


 , (17.3.15)

giving rise to tension and compression.

We next consider the whole stress using (17.3.2), which may be written as

T + pc1 = (−p + pc)1 + 2µ∇⊗∇φ (17.3.16)

with the addition of the cavitation threshold pc. After arranging, expression (17.3.16) becomes

T + pc1
1
2ρU2

= −
[
K + 1−

(
1− a3

r3

)2

cos2 θ −
(

1 +
a3

2r3

)2

sin2 θ

] 


1 0 0
0 1 0
0 0 1


 +

+
3

Re

(a

r

)4




cos θ + 2 sin θ
sin 2α 0 0

0 cos θ − 2 sin θ
sin 2α 0

0 0 −2 cos θ


 (17.3.17)
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Fig. 17.9. Schematic view of the orientation of the principal directions in the plane of motion for irrotational flow of a
viscous fluid according to (17.3.13) on the surface of the sphere. The major axis in the ellipse represents the maximum
tensile stress. The angle α puts the direction defined by the unit outward normal vector er into the principal direction
of the maximum tensile stress.

where

K =
p∞ − pc

1
2ρU2

(17.3.18)

is the cavitation number and

Re =
ρUa

µ
(17.3.19)

is the Reynolds number.

For the viscous potential flow solution (17.3.17), one can show that at any point the most tensile (least
compressive) and most compressive (least tensile) principal stresses lie in the plane of motion (i.e., the plane
where the velocity vector is contained). Suppose now that T11 is the largest of the three principal values of
stress. Then, according to the maximum tension theory, the locus of the cavitation threshold is given by

T11 + pc = 0, (17.3.20)

giving rise to isolines (a/r, θ) = f(Kc, Re) for the cavitation threshold. The largest values of the viscous irro-
tational stress are at the boundary r = a where the neglected vorticity is largest. In §17.3.2, it is shown that
θ = 0 for very low Re and θ = π/2 for very high Re are the points most vulnerable for cavitation under the
respective conditions.

Equation (17.3.17) gives the form of the diagonalized stress tensor at each point (r, θ) in the axially symmetric
flow. T11, T22 and T33 = Tϕϕ are principal stresses in the principal axes coordinates with bases e1,e2, eϕ. In the
present case, the angle α changes with θ, tan 2α = 2

3 tan θ. A representation of the orientation of the principal
axes in the plane of motion at the surface of the sphere r = a as predicted by (17.3.13) is presented in Figure
17.9.

It is apparent from (17.3.17) that the largest stresses are at the boundary of the sphere where r = a. Certainly
the liquid will cavitate when K = (p∞ − pc) /

(
ρ
2U2

)
< 0; only K > 0 is of interest. Using now the maximum

tension criterion, we see that cavitation occurs for 0 < K < Kc and the fluid is most at risk to cavitation for θ

at which Kc(θ) is greatest. For viscous potential flow, this most dangerous θ is at θ = 0 when Re is small and
at θ = π/2 when Re is large. It follows that the place most at risk to cavitation runs from the rear stagnation
point at θ = 0 when Re is small to θ = π/2 when Re is large.

Next contour plots with lines of constant K representing the cavitation threshold from (17.3.17) for various
Re are presented and compared with the results from the numerical simulation and the Stokes solution for the
lowest Re (see Figures 17.10, 17.11 and 17.12).
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Fig. 17.10. Contours of critical cavitation number Kc given by the condition T11 + pc = 0 according to the maximum
tension criterion for a Reynolds number Re = 0.01 from (a) Stokes flow; (b) the irrotational flow of a viscous fluid
(17.3.17), and (c) numerical solution; the pressure criterion given by Kc = −cp is shown in (d) using the numerical
pressure field. The cavitation number K is defined in terms of the dynamic pressure ρU2/2. For a given cavitation
number K, cavitation occurs in the region where K < Kc. A different normalization of the cavitation number and of the
critical cavitation number is used for Stokes flow rather than the normalization used for the other cases (17.3.18). The
contour lines for the normalization of p∞− pc with the viscous-stress scale µU/a are presented in parenthesis in (a). The
ratio of the normalization factors is Re/2.
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Fig. 17.11. Contours of critical cavitation number Kc given by the condition T11 + pc = 0 according to the maximum
tension criterion for a Reynolds number Re = 10 from (a) the irrotational flow of a viscous fluid (17.3.17), and (b)
numerical solution; the pressure criterion given by Kc = −cp is shown in (c) using the numerical pressure field. The
cavitation number K is defined in terms of the dynamic pressure ρU2/2. For a given cavitation number K, cavitation
occurs in the region where K < Kc.

17.3.2 An analysis for maximum K

Here we look for the angular position on the surface of the sphere at which the maximum value of the cavitation
number K occurs. This position is the most vulnerable to cavitation.

For the potential flow solution, the stress tensor is given in (17.3.17). Suppose that T11 is the maximum
tensile stress such that T11 ≥ T33 ≥ T22. If we consider the surface of the sphere r = a and use the cavitation
criterion T11 + pc = 0, we obtain from (17.3.17)

K =
9
4
sin2θ − 1 +

3
Re

(
cosθ +

2sinθ

sin2α

)
, (17.3.21)

Considering the expression for α given in (17.3.13)

tan2α =
2
3
tanθ, (17.3.22)
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Fig. 17.12. Contours of critical cavitation number Kc given by the condition T11 + pc = 0 according to the maximum
tension criterion for a Reynolds number Re = 100 from (a) the irrotational flow of a viscous fluid (17.3.17), and (b)
numerical solution; the pressure criterion given by Kc = −cp is shown in (c) using the numerical pressure field. The
cavitation number K is defined in terms of the dynamic pressure ρU2/2. For a given cavitation number K, cavitation
occurs in the region where K < Kc.

we can write (17.3.21) as

K =
9
4
sin2θ − 1 +

3
Re

[
cosθ + 3cosθ

√
1 +

4
9
tan2θ

]
, (17.3.23)

for 0 ≤ θ ≤ π/2, whereas

K =
9
4
sin2θ − 1 +

3
Re

[
cosθ − 3cosθ

√
1 +

4
9
tan2θ

]
, (17.3.24)

for π/2 < θ ≤ π. Taking the derivative of K in (17.3.23), we find

∂K

∂θ
=

9
2
sinθcosθ − 3

Re
sinθ

[
1 +

5√
9 + 4tan2θ

]
. (17.3.25)

It is obvious that θ = 0 is a solution of ∂K/∂θ = 0 at any Reynolds number. We compute ∂2K/∂θ2 to
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determine whether K at θ = 0 is a local maximum or minimum. From (17.3.25), the second derivative of K is

∂2K

∂θ2
=

9
2
cos2θ +

60 sec θtan2θ

Re
(
9 + 4tan2θ

)3/2
− cosθ

Re

(
3 +

15√
9 + 4tan2θ

)
. (17.3.26)

When θ = 0, we have

∂2K

∂θ2
(θ = 0) =

9
2
− 8

Re
. (17.3.27)

Thus ∂2K/∂θ2 at θ = 0 is negative when Re < 16/9 and positive when Re > 16/9. This result indicates that K

at θ = 0 is a local maximum when Re < 16/9 and is a local minimum when Re > 16/9. Substitution of θ = 0
in (17.3.23) yields

K(θ = 0) =
12
Re

− 1, (17.3.28)

which is a local maximum of K for Re < 16/9 in the interval 0 ≤ θ ≤ π/2.

Besides θ = 0, there is a second solution for ∂K/∂θ = 0 which depends on Re and has a very complicated
expression. If the value of Re is very high, then ∂K/∂θ ≈ 9sin(2θ)/4. The second solution is close to θ = π/2.
We also notice that ∂2K/∂θ2 < 0 at θ = π/2 when Re is high. Therefore, the maximum value of K occurs near
θ = π/2 when Re is high in the interval 0 ≤ θ ≤ π/2.

Similarly, from (17.3.24), K has a local maximum at θ = π when Re < 4/9 and has a local minimum at
this position when Re > 4/9 in the interval π/2 < θ ≤ π. Substitution of θ = π into (17.3.24) gives this local
maximum for Re < 4/9 in the interval π/2 < θ ≤ π,

K(θ = π) =
6

Re
− 1. (17.3.29)

A second solution, as a complicated function of Re, can be written for ∂K/∂θ = 0. For high Re, this solution
gives that K goes to a maximum when θ approaches π/2.

A comparison of (17.3.28) and (17.3.29) allows us to discard the position θ = π. Summarizing our findings
for viscous potential flow, K reaches a maximum at θ = 0 when Re < 16/9 in the interval of interest 0 ≤ θ ≤ π.
In addition, in the limit of high Re, K is maximum at θ = π/2 in this interval. These results are verified in
Figures 17.10 (b) for low Re and Figures 17.12 (a) for high Re.

17.4 Symmetric model of capillary collapse and rupture

† The breakup of a liquid capillary filament is analyzed as a viscous potential flow near a stagnation point on
the centerline of the filament towards which the surface collapses under the action of surface tension forces. The
analysis given here is restricted to cases in which the neckdown is symmetric around the stagnation point. The
cartoon for the model in figure 17.13 is defined by a periodic array of stagnation points between points of liquid
depletion and liquid accumulation. The passage of liquid from points of depletion caused by capillary collapse to
points of accumulation around which a liquid ball expands cannot be done without the generation of vorticity
in an axisymmetric analogue to to the hyperbolic vortices xy =constant nested in the four quadrants at each
stagnation point in the vortex array described by (4.6.31). The analysis can be said to generate a Helmholtz
decomposition for rotational flow near a point of stagnation. We find that the neck is of parabolic shape and its
radius collapses to zero in a finite time; the curvature at the throat tends to zero much faster than the radius,
leading ultimately to a microthread of nearly uniform radius. During the collapse the tensile stress due to
viscosity increases in value until at a certain finite radius, (which may be estimated as 2γ/pa where γ is surface
tension and pa is atmospheric pressure, about 1.5 microns for water in air) the stress in the throat passes into
tension, presumably inducing cavitation there. The Reynolds number at which the stress passes into tension
decreases as 1/ν2 where ν is the kinematic viscosity. Viscous threads rupture at very low Reynolds numbers.
Numrical studies and experiments show that low viscosity liquids generate satellite drops, but highly viscous
liquids appear to follow the dynamics of the breakup model presented here.
† T.S. Lundgren & D.D. Joseph 2006, unpublished.
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17.4.1 Introduction

The breakup of liquid jets is generally framed in terms of the capillary pressure γ/R(z, t) due to surface tension
γ acting at the neck of radius R (z, t). The capillary pressure is greatest at the position z where R is smallest,
an unstable situation in which liquid is squeezed out of the neck further reducing R and increasing the capillary
pressure there. This picture leads to an inevitable collapse of the radius to zero. The conventional view is that
the capillary instability just described leads to “pinchoff” but the physics required to actually rupture the
thread is not revealed. Here we are promoting the idea that the filament ruptures by cavitation due to tensile
stresses induced by the motion out of the neck. The idea that liquids can cavitate by tensile stresses associated
with motions, rather than by lowering the pressure was introduced by Joseph 1995. One of the interesting
implications of this idea (Joseph 1998) is that cavitation in a pure shear flow may be induced by a tensile stress
at 45◦ from the direction of shearing in a pure shear flow.

Capillary collapse is the final stage of dynamics which may be framed as starting from the capillary instability
of a liquid cylinder. The initial instability of the liquid cylinder was studied by Funada and Joseph 2002 and
Wang, Joseph and Funada 2005a. Funada and Joseph 2002 assumed that the motion of the viscous cylinder is
irrotational; the velocity is given by u = ∇φ, ∇2φ = 0 and the viscous terms in the normal stress balances are
evaluated from the potential. They derived a dispersion relation, σ vs. k, where σ is the growth rate and k the
wave number. They compared growth rate curves for potential flows of inviscid and viscous fluids in which the
conditions on the tangential components of the velocity and stress are neglected with the growth rates from the
normal mode reduction of the Navier-Stokes equations (called exact) in which the vorticity and continuity of
the tangential velocity and stress are not neglected. Many liquids with viscosities differing by many orders of
magnitude were studied. In all cases there is a strict separation of the growth rate curves computed by three
theories. The growth rates for inviscid potential flow are largest and those for the Navier-Stokes theory are
smallest with viscous potential flow between. The curves are crowded when the viscosity is small and are widely
separated when the viscosity is large. The potential flow solution for viscous fluids is in a modest agreement
with the exact results, but the result for inviscid fluids are well off the mark.

Wang, Joseph and Funada 2005a implemented method proposed by Joseph and Wang 2004 for computing
a viscous correction of the irrotational pressure induced by the discrepancy between the non-zero irrotational
shear stress and the zero shear stress boundary condition at a free surface. The theory with an additional
viscous pressure correction added to the irrotational pressure is called the viscous correction viscous potential
flow (VCVPF). The corrected theory leads to a connection formula between the irrotational shear stress and
the added viscous pressure which arises in a very thin boundary layer which is not analyzed and not needed.
The linearized equations in this layer are used to show that the added pressure is harmonic and the additional
contributions of the viscosity to the normal stress are small compared to the viscous irrotational contribution.

The analysis of capillary instability using the added pressure is in remarkable agreement with the results
of exact analysis for in all cases. The growth rate curves for VCVPF are nearly identical to those computed
from the exact theory, uniformly in k. The two theories differ at most by a few percent whereas, for the case
of highly viscous liquids, the analysis for inviscid liquids give large unrealistic growth rates. The popular idea
that viscous potential flow should be a small perturbation of inviscid potential flow is wrong.

The reader may think that the calculation of an added viscous pressure correction takes the theory away from
purely irrotational flow, even though the velocities are obtained from the potential. However, exactly the same
results that arise from VCVPF also arise from the dissipation method in which the pressure never enters; all
the quantities needed are obtained from solutions of Laplace equation for the potential. The dissipation method
used for the calculation of capillary instability is the strict analog of the dissipation method used by Lamb 1932
to determine the effects of viscosity on the decay of irrotational water and by Levich 1949 to determine the drag
on a spherical gas bubble.

The problem of capillary collapse considered here is rather different than the problem of capillary instability
of a liquid cylinder. One obvious difference is that the instability problem is linear but the collapse problem is
very nonlinear. Less obvious is the role of the pressure correction which arises in the linear problem from the
need to compensate the unbalanced irrotational shear stress. In the problem considered here the shear stress is
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continuous at the throat and the normal stresses are balanced there. A harmonic correction pv of the irrotational
pressure pi is required to balance the normal stress away from the throat. This additional contribution to the
pressure generates a vortical contribution to the velocity away from the throat.

17.4.2 Analysis

In this paper we study the collapse of a capillary filament under surface tension forces which squeeze liquid
symmetrically from the throat at z = 0 in figure 17.13. The analysis is local; terms of order z4 are neglected
but the local stagnation flow can be thought to be embedded in a global periodic structure of stagnation points
with depletion at throats and accumulation at crests, as is shown in figure 17.13.

Fig. 17.13. Periodic structure of stagnation points as a cartoon of the dynamics of capillary collapse. The collapse will
give rise to a periodic string of liquid drops. The analysis here is local focusing on dynamics of collapse at z = 0.

We assume that the flow in the neighborhood of the throat is an axially symmetric straining flow, or stagnation
point flow, with velocity components

uz = a (t) z, (17.4.1)

ur = −1
2
a (t) r, (17.4.2)

and determine the strain rate a(t) and the capillary shape, r = R(z, t), by satisfying the appropriate boundary
conditions at the capillary surface. The velocity field described by equations (17.4.1) and (17.4.2) is incom-
pressible and irrotational, therefore despite being a viscous flow, it may be described by a velocity potential(

uz =
∂φ

∂z
, ur =

∂φ

∂r

)
of form

φ =
1
2
az2 − 1

4
ar2. (17.4.3)

The pressure pi in the flow is determined from the unsteady version of the Bernoulli equation

∂φ

∂t
+

1
2

(
u2

r + u2
z

)
+

pi

ρ
=

p0

ρ
(17.4.4)

in the form

p− p0

ρ
= −

(
1
2
ȧ +

1
2
a2

)
z2 +

(
1
4
ȧ− 1

8
a2

)
r2. (17.4.5)

The stagnation pressure p0 may be related to a distant state of rest at the center of the inflating balloon into
which liquid is driven from the collapsing throat see figure 17.13); p0 is a global reference in an otherwise local
solution. The overdot denotes a time derivative.
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In this flow the state of stress is given by two principal stresses;

Tzz = −p + 2µ
∂uz

∂z
= −p + 2µa, (17.4.6)

Trr = −p + 2µ
∂ur

∂r
= −pi − µa. (17.4.7)

The normal traction at a point on the free surface, the force per unit area which the surface exerts on the fluid,
is

Tnn = n2
rTrr + n2

zTzz, (17.4.8)

where nr and nz are components of the unit outward normal. A force balance at the free surface gives the
boundary condition

− Tnn − pa = γκ, (17.4.9)

where pa is atmospheric pressure, p0 is the surface tension force per unit length and p0 is the mean curvature,
given by

κ = −
∂2R

∂z2

(
1 +

(
∂R

∂z

)2
)3/2

+
1

R

(
1 +

(
∂R

∂z

)2
)1/2

. (17.4.10)

Equation (17.4.9) is the condition which drives the capillary collapse. It should be pointed out that the condition
of zero shear stress at the boundary is satisfied exactly at the throat because uz is independent of r.

Since the free surface must move with the fluid, we also have the kinematic condition

ur =
∂R

∂t
+ uz

∂R

∂z
(17.4.11)

at r = R(z, t). This may be written

− 1
2
aR =

∂R

∂t
+ az

∂R

∂z
. (17.4.12)

The mathematical problem is to find a function R (z, t) which satisfies the conditions expressed by equations
(17.4.9) and (17.4.12). We will show that a function of form

R (z, t) = R0 (t) + R2 (t) z2 + O
(
z4

)
(17.4.13)

is suitable and determine R0 (t), R2 (t) and the strain rate a (t) by expanding these conditions for small z. To
the lowest order in z2

Tnn

ρ
=

Trr

ρ
= −pi

ρ
− va

= −p0

ρ
− va +

1
2

(
ȧ + a2

)
z2 −

(
1
4
ȧ− 1

8
a2

)
R2

= −p0

ρ
− va +

1
2

(
ȧ + a2

)
z2 − 1

4

(
ȧ− a2

2

) (
R2

0 + 2R2z
2
)

(17.4.14)

and to the same order

κ =
1

R0
− 2R2. (17.4.15)

Equation (17.4.12) gives the two equations

− 1
2
aR0 = Ṙ0, (17.4.16)

− 5
2
aR2 = Ṙ2. (17.4.17)

From these, we see that R2 = CR5
0, where C is a constant depending on starting conditions. This result implies

247



that R2 tends to zero faster than R0 which means that the parabola flatters out during collapse. It follows then
that the R2 term in (17.4.14) is of lower order and the term proportional to z2 can not be balanced.

To balance the terms proportional to z2 in (17.4.14), we introduce a pressure correction pv where p = pi +pv.
We find this correction among harmonic functions ∇2pv = 0 so that

∇2p = ∇2pi = −ρdiv (u · ∇u) ,

where u = ∇φ and pi is given by (17.4.5). The required harmonic function is found in the form

pv = C

(
−r2

2
+ z2

)
, (17.4.18)

and, after adding pv to (17.4.5) we get

p− p0

ρ
= −

(
1
2
ȧ +

1
2
a2 − C

ρ

)
z2 +

(
1
4
ȧ− 1

8
a2 − C

2ρ

)
r2.

To balance the terms proportional to z2 in (17.4.14), we choose

C =
ρ

2
(
ȧ + a2

)
.

Then
p− p0

ρ
= −3

8
a2r2. (17.4.19)

This pressure difference is negative and is most negative at the boundary r = R.

The pressure correction induces a vortical velocity v which vanishes at the throat. The velocity u = ui + v,
where the components of ui = ∇φ are given by (17.4.1), and

∂v
∂t

+ v · ∇v + ui · ∇v + v · ∇ui = −∇pv

ρ
+ ν∇2v.(20) (17.4.20)

We shall show that the left side of (20) is of lower order and may be neglected near the stagnation point. Writing
(vr, vz) = (u, w), and using (17.4.18), we have

2Cz = µ

[
∂2w

∂z2
+

1
r

∂

∂r

(
r
∂w

∂r

)]
,

− Cr = µ

[
∂2u

∂r2
+

1
r

∂

∂r

(
r
∂u

∂r

)
− u

r2

]
, (17.4.21)

∂w

∂z
+

1
r

∂

∂r
(ru) = 0.

The solution of (17.4.21) which vanishes at the origin is

w =
C

3µ
z3,

u = − C

2µ
rz2.

(17.4.22)

The vorticity for this axisymmetric solution is given by

∂u

∂z
− ∂w

∂r
= −C

µ
rz. (17.4.23)

The largest terms on the right side of (20) for values of r and z are O
(
z3

)
and O

(
rz2

)
. The vortical velocity

v does not enter into any leading balance discussed below.

To leading order, Tnn = Trr = −p + µa and −Trr − pa =
γ

R0
, which is in the form

− 3ρ

8
R2

0 − µa + p0 − pa =
γ

R0
. (17.4.24)
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Since we are most interested in small R0, we can pick out the dominant terms in (17.4.24) as R0 tends to zero.
These are

− 2µ
Ṙ0

R0
=

γ

R0
(17.4.25)

which is a balance between the viscous part of the normal force (which resists the collapse) and the surface
tension force (which drives it). The large R−1

0 term cancels from each side giving

Ṙ0 = −1
2

γ

µ
(17.4.26)

with solution

R0 =
γ

2µ
(t∗ − t) (17.4.27)

where t∗ is a constant of integration. Therefore we have a solution in which R0 tends to zero in a finite time. It
is easy to see that the neglected terms in equation (17.4.24) give a correction to R0 of order (t∗ − t)2. With the
additional term the solution becomes

R0 =
γ

2µ
(t∗ − t)− γ

2µ

p0 − pa

4µ
(t∗ − t)2 + ... . (17.4.28)

The strain rate is,

a = −2
Ṙ0

R0
=

2
t∗ − t

− p0 − pa

2µ
+ ..., (17.4.29)

The axial stress at leading order is given by

Tzz = −p + 2µa = −p0 +
3
8
ρa2r2 + 2µa

= −p0 +
3
2
Ṙ2

0

(
r

R0

)2

+ 2µa

=
3
8

ργ2

µ2

(
r

R0

)2

+
4µ

t− t∗
− (2p0 − pa) (17.4.30)

where Ṙ2 = γ2/4µ2, from (17.4.26). The stress induced cavitation will occur when and where the axial stress
passes into tension. This will always occur first at the boundary of the capillary where r/R0 = 1.

Consider next the axial stress at the stagnation point

Tzz = − (2p0 − p0) +
2γ

R0(t)
. (17.4.31)

The thread will pass into tension over the whole cross section at z = 0 when Tzz given by (17.4.31) becomes
positive and passes into tension.

We see that when R0 is sufficiently small Tzz can become positive. This means that the axial stress becomes
tension instead of compression. Liquids can not support much tension without rupturing. This would occur here
when R0 is somewhat less than the critical value

R0cr =
2γ

(2p0 − pa)
(17.4.32)

which, it should be noted, is independent of the viscosity. This value is fairly large; for water with γ =
75 dynes/cm and estimating p0 − pa in the static balloon to be approximately 2γ/B which is nearly zero
for a large radius B, we get p0 = pa = 106 dynes/cm2 and R0cr = 1.5 µm.

A Reynolds number for the collapsing capillary may be defined by

Re =
R0Ṙ0

ν
(17.4.33)

based on the throat radius and the velocity of collapse, using equation (17.4.26) for the latter quantity gives

Re =
R0γ

2ρν2
(17.4.34)
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which is the ratio of R0 to a viscous length (Peregrine et al. 1990) 2ρν2/γ which is very small for water, about
.027 µm. Therefore using R0cr (=1.5 micron) for R0, the Reynolds number at collapse is about 55 for water
(the collapse velocity is about 37 m/s). For more viscous liquids the Reynolds number at collapse could be very
small. For the solution presented here there is no restriction on the magnitude of the Reynolds number.

17.4.3 Conclusions and discussion

Neckdown of a liquid capillary thread was studied in a local analysis based on viscous potential flow. One
objective of this study was to show that during collapse the thread will enter into tension due to viscosity and
can be expected to fracture, or cavitate, at a finite radius.

The flow in the throat of the collapsing capillary is locally a uniaxial extensional flow, linear in z and r, with
a time dependent strain rate a(t). This viscous potential flow satisfies the Navier-Stokes equation and all the
relevant interfacial conditions, including continuity of the shear stress.

The principal dynamic balance is between the surface tension forces, which are trying to collapse the capillary,
and the radial viscous stress which is resisting the collapse. Since mass must be conserved a large axial flow
results from squeezing liquid out of the neck and this results in a large viscous extensional stress. The extensional
stress passes into tension at R0 = 1.5 µm (for water and air) long before R0 actually collapses to zero.

The solution is symmetric about z = 0, the position of the smallest radius; the axial velocity is odd and the
radial velocity, pressure and interface shape

R(z, t) = R0(t) + R2(t)z2 + O
(
z4

)

are even in z. At lowest order the interface is a parabola in which R2(t) is proportional to R5
0, hence in the limit

of collapsing radius R2 → 0 much more rapidly then R0 and the shape approaches that of a straight cylinder.
The radius tends to zero linearly, like (t∗ − t), collapsing to zero in a finite time. At the same time the strain
rate a(t) tends to infinity like (t∗ − t)−1.

An authorative review of the capillary breakup literature prior to 1997 was given by Eggers 1997. A part of
this literature review describes theoretical studies of inviscid potential flow. These studies can be easily extended
to accommodate the irrotational effects of viscosity which are in fact hugely important in the extensional flows
under consideration here. Eggers notes that the most extensive numerical study of breakup prior to 1997 is due
to Ashgriz and Mashayek 1995. They used periodic boundary conditions in the axial direction and considered
initial sinusoidal disturbances of different wave lengths of wave number k. Their computations lead to the
symmetric configurations shown in figure 17.14. They note that “The linear theory predicts that the breakup
point is always at the neck (trough) of the initial disturbance. However, figure 17.14 clearly shows that the
breakup point is closer to the swell points.” When Re > 0.1, the breakup point moves to the swell and the
center stagnation point is a points of fluid accumulation leading to satellite drops. When Re = 0.1 (and perhaps
when Re < 0.1) the breakup is at the neck which is a stagnation point of fluid depletion which is modeled by
the theory given here. A symmetric form of breakup of a liquid bridge at a low Reynolds number (3.7×10−3)
is shown in figure 17.15, taken from the paper of Spiegelberg, Gaudet, and McKinley 1994. The outer fluid
eliminates buoyancy and has a viscosity 1000 times smaller than the inner fluid. Brenner et al. 1997 discuss
the breakdown of the similarity solution of Eggers at high Reynolds number. In their figure 1(c) they show the
shape of a pure glycerol interface just before rupture which appears to be symmetric.

In the literature on capillary collapse and rupture the focus is on collapse which is universally framed as a
pinch-off and the fundamental physics governing the rupture of the thread is not considered. A pinch-off is a
squeezing flow; the radius of the jet at the pinch point collapses, squeezing fluid out as the filament collapses.
Here one finds a stagnation point; stagnation point flow is a potential flow and the effects of viscosity in such a
flow may be huge. Certainly, potential flow of an inviscid fluid is not the right tool here. We can get results in
which viscosity acts strongly using viscous potential flow. The question is not whether viscosity is important,
which it is, but whether vorticity is important.
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Pinch-off at swell points (figure 17.16) is greatly different than the pinch-off at a neck (figure 17.15). It is
generally believed the break-up at swell points in long, skinny threads is very well described by Eggers’ 1993 one
dimensional universal solution. The final stage of breakup at the neck in the Lundgren-Joseph model developed
here leads also to a long skinny thread but the dynamics of the breakup of the long skinny threads at the final
stage are greatly different (the details are given in the appendix to this section). It is of interest that the low
Reynolds number similarity solution of Papageriou which falls into the Eggers class of similarity solutions is
symmetric. Rothbert et al. 2001 discuss the transition from a symmetric to asymmetric scaling function before
pinch-off; symmetric forms are shown in their figure 2.

Chen et al. 2002 have studied pinch-off and scaling during drop formation using high-accuracy computation
and ultra-fast high-resolution imaging. They discuss dynamic transition from potential flow with a 2/3 scaling
due to Keller and Miksis 1983 to an inertial-viscous regime described by Eggers’ 1993 universal solution. They
find overturn before breakup in experiments in water (1 cp) well before the dynamic transition from the potential
flow to the inertial-viscous regime. On the other hand, an 85 cp glycerol-water solution is said to exhibit this
transition. The potential flow solutions discussed by Chen et al. 2002 are for inviscid solutions. Of course, water
and glycerol are not inviscid. The scaling of Keller and Miksis 1983 which gives rise to the 2/3 power collapse
law does not work for viscous potential flow. The spoiler is their equation (3.3) expressing the normal stress
balance. To this equation we must add the viscous component 2µ∂Un/∂n. The term (∇φ)2 in (3.3) scales like
φ2/L2 whereas the viscous component scales like φ/L2, so that the similarity transformation does not factor
through. Analogies have been put forward between capillary pinch-off of a viscous fluid thread and van der Waals
driven ruptures of a free thin viscous sheet Vaynblat et al. 2001. The observation that a filament under capillary
collapse ruptures in a “pinch-off” does not come to grips with the physics which leads to a loss of the continuum.
One idea is that thread breaks under the action of disjoining pressures. Unfortunately, a mathematical theory
for disjoining pressures for thin threads is not available.

The recent literature on capillary collapse is presently dominated by the discovery of self-similar, finite time
singularity formation. These solutions are discussed in the recent papers Chang et al. 1999, McKinley and
Tripathi 2000, and in the paper of Chen et al. 2002. This literature does not treat the physics of rupture or
breakup by cavitation and does not compute stresses. All of the above mentioned authors find that capillary
radius decreases to zero linearly in time, but the rate of collapse differs from author to author. McKinley and
Tripathi 2000 write the formula

R
(t)

mid = R1 − 2X − 1
6

γ

µ
t

for the neck radius of the collapsing capillary in the stage of final decay as t increases to t∗ when R
(t∗)
mid = 0.

They give the X obtained by different authors in their Table 1, but without the value X = 2 obtained here for
viscous potential flow, giving the fastest decay. Eggers (1997, 1993) obtained X = 0.5912 and Papageoriou 1995
obtained X = 0.7127. The solutions of the two authors last named have vorticity; Papageriou’s solution has no
inertia. McKinley and Tripathi 2000 note that very close to breakup the solution of Papageriou crosses over to
Egger’s similarity solution. The transitions between different similarity solutions are less well understood than
the similarity solutions themselves. These transitions can be regarded as a form of instability. It is possible that
the solution in this paper can be described as a transition to rupture.

The solution of Eggers 1993 gives rise to a universal scaling law which has been observed for viscous liquids
but not in water (see Chen et al. 2002). The long wave approximation used to derive universal scalings may
prevent it from resolving the dynamics of rupture. The similarity solution of Eggers does not lead to a cavitation
threshold; in his solution the tension due to extension increases but not fast enough to overcome the compression
due to the capillary pressure of the thinning filament.

The criterion for the termination of the continuum is probably not a finite time singularity; the thread radius
does not go to zero. It comes apart before then.
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Fig. 17.14. (Ashgritz and Mashayek, 1995) Time evolution of the instability of a capillary liquid jet, ε0 = 0.05: (a)
k = 0.2, Re = 200, (b) k = 0.45, Re = 200, (c) k = 0.7, Re = 200, (d) k = 0.9, Re = 200, (e) k = 0.2, Re = 10, (f)
k = 0.45, Re = 10, (g) k = 0.7, Re = 10, (h) k = 0.9, Re = 10, (i) k = 0.2, Re = 0.1, (j) k = 0.45, Re = 0.1, (k) k = 0.7,
Re = 0.1, (l) k = 0.9, Re = 0.1. The numbers on the figures indicate the corresponding times.

17.4.4 Appendix

Comparison of the symmetric solution of Lundgren and Joseph 2006 (called LJ) with the similarity solution of
Eggers 1993 (called E)

We refer to equations (1) through (6) in the 1993 paper of Eggers. The variables used by E are here designated
with cavot overbar

v̂ = (v̂z, v̂r) ,

∂v̂r

∂r
+

∂v̂z

∂z
+

v̂r

r
= 0,

v̂z = v̂0(z, t) + v̂z(z, t)r2,

v̂r(z, r, t) = −v̂′0(z, t)
r

2
− v̂′z(z, t)

r3

4
,

p̂(z, r, t) = p̂0(z, t) + p̂z(z, t)r2.

Using these expressions, E reduces the normal stress balance (17.4.4) to a pressure equation

p = p̂0(z, t) = γ

(
1

R1
+

1
R2

)
− µv̂′0(z, t)

at leading order.

In Eggers analysis, the lowest order balance is for the r independent part of the foregoing representations.

v̂r = 0,

v̂z = v̂0(z, t),

p = p̂0(z, t) = γ

(
1

R1
+

1
R2

)
− µv̂′0.

The expressions for v̂r = −v̂′0(z, t)
r

2
are needed to compute v̂r. The radial component of momentum at lowest
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Fig. 17.15. Liquid-bridge evolution starting from an unstable configuration. The disk diameter is 3.8 cm, the Reynolds
number is 3.7×10−3. The outer fluid, which eliminates buoyancy forces, has a viscosity approximately 1000 times smaller
than the inner fluid. (Spiegelberg, Gaudet, and McKinley, 1994).

order has no r independent terms and, therefore is dropped as lower order and does not enter into the analysis
leading to his similarity solution. According to (E), the radial momentum is not relevant at leading order.

E neglects the radial momentum equation [(1) in E’s paper]. LJ solve this problem at O(r); it is not neglected.

Recalling now the analysis of LJ just given, we have the velocity decomposed in Helmholtz form, where

φ =
1
2
az2 − 1

4
ar2, v = ∇φ + u, where ∇φ is the irrotational velocity and u is rotational velocity.

u = (uz, ur) = (w, u) ,

v = (vz, vr) =
(

∂φ

∂z
+ w,

∂φ

∂r
+ u

)
,

w =
c

3µ
z3,

u = − c

2µ
rz2,

c =
ρ

2
(
ȧ + a2

)
.

The value of c is what it takes to balance the normal stress at order z2. We get

vz = az +
c

3µ
z3,

vr = −a

2
r − c

2µ
z2r,

p− p0

ρ
= −3

8
a2r2.

Now we verify that the equation (1) of radial momentum E is satisfied at leading order. The left side of (1) in
E, is evaluated using the expansion of LJ just given.

∂v̂r

∂t
+ v̂r

∂v̂r

∂r
+ v̂z

∂v̂z

∂z
→ − ȧ

2
+

a2

4
.
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Fig. 17.16. A drop of a glycerol and water mixture, 100 times as viscous as water, falling from a nozzle 1.5 mm in
diameter. As opposed to the case of water, a long neck is produced (Shi, Brenner, and Nagel, 1994).

The right side reduces as follow

− 1
ρ

∂p̂

∂r
+ ν

[
∂2v̂r

∂r2
+

∂2v̂r

∂z2
+

1
r

∂v̂r

∂r
− v̂r

r2

]
,

→ −3
4
a2 − νc

µ
=

3
4
a2 − 1

2
(
ȧ + a2

)
.

The two sides are in balance.

A summary of the comparison just derived follow

p0

LJ





vz = az,

vr = −a

2
r,

p− p0

ρ
= −3

8
a2r,

p0 is a reference pressure equal to pressure at the stagnation point in the expanding ball (figure 17.13).

E





vz = v̂0(z, t),

v̂r = 0,

p̂ = γ

(
1

R1
+

1
R2

)
+ µv̂′0
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The normal stress balance for E is the expansion for p̂. The normal stress balance for LJ is their (24)

− 3
8
ρR2

0 − µa + p0 − pa = R̄0.

The pressure in the two solutions is radically different. The pressure does not enter into the leading balance of
LJ; their analysis balances the capillarity against the viscous part of the normal stress.
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