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Viscous effects of the irrotational flow
outside boundary layers on rigid solids

High-Reynolds-number flows may be approximated by an outer irrotational flow and small layers on the bound-
ary and narrow wakes where vorticity is important. The irrotational flow gives rise to an extra viscous dissipation
over and above the dissipation in the boundary layer. At high Reynolds numbers the viscous dissipation in the
irrotational flow outside is a very small fraction of the total which vanishes asymptotically as Reynolds number
tends to infinity.

Prandtl’s boundary layer theory is asymptotic and does not account for the viscous effects of the outer
irrotational flow. Viscous effects on the normal stresses at the boundary of a solid cannot be obtained from
Prandtl’s theory. It is very well known and easily demonstrated that as a consequence of the continuity equation,
the viscous normal stress must vanish on a rigid solid. The only way that viscous effects can act on a boundary is
through the pressure but the pressure in Prandtl’s theory is not viscous. It is determined by Bernoulli’s equation
in the irrotational flow and is imposed unchanged on the wall through the thin boundary layer. Therefore the
important pressure drag cannot be calculated from Prandtl’s theory. In addition, the mismatch between the
irrotational shear stress and the shear stress at the outer edge of the boundary layer given by Prandtl’s theory
is not resolved.

Our work here is motivated by the desire to understand the dynamical effect of the fact that the viscous
dissipation of the outer irrotational flow is not zero and that the viscous effects on the normal stress on a solid
are due only to the pressure and at finite-Reynolds number, no matter how large, there will be a viscous effect
on the pressure, not given in Prandtl’s theory. We take into account the viscous effects of the outer irrotational
flow; it can be said that this work gives rise to a boundary layer theory at a finite-Reynolds number.

From the previous studies of gas-liquid flows, we have seen two closely related methods to account for the
viscous effects of irrotational flows, DM and VCVPF. The dissipation of the outer potential flow increases the
drag calculated from the boundary layer alone. Our calculation in this chapter shows that the drag increase
is proportional to 1/Re. The pressure correction is the kernel of VCVPF. At the outer edge of the boundary
layer, the shear stress evaluated on the boundary layer solution using Prandtl’s theory does not necessarily
equal the irrotational shear stress; this is analogous to the discrepancy between the zero-shear-stress condition
and non-zero irrotational shear stress at a gas-liquid interface. This discrepancy induces vorticity and a pressure
correction can be calculated.

The method of VCVPF can only determine the pressure correction at the outer edge of the boundary
layer, not the variation through the layer. We develop a new boundary analysis, in which the pressure inside
the boundary layer is solved and the continuity of the shear stress at the outer edge of the boundary layer
is imposed. This analysis is applied to the problem of the flow past a rapidly rotating cylinder. Inside the
boundary layer, the velocity field is decomposed into an irrotational purely rotary flow and a boundary layer
flow. Inserting this decomposition into the Navier-Stokes equations, we obtain a new set of equations for the
unknown boundary layer flow. This new set of equations can be solved by expanding the solution into a power
series. Our solution is in reasonable to excellent agreement with the numerical simulation of Padrino and
Joseph (2006). The decomposition for the velocity inside the boundary layer can be regarded as a Helmholtz
decomposition. However, the flow outside is approximated by a potential.
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Fig. 18.1. The flow past a circular cylinder (a) without separation of the boundary layer; (b) with separation of the
boundary layer.

18.1 Extra drag due to viscous dissipation of the irrotational flow outside the boundary layer

For a body moving with a constant velocity in an otherwise quiescent liquid, the non-zero viscous dissipation of
the outer potential flow gives rise to an additional drag, increasing the drag calculated from the boundary layer
alone. The drag is considered in three cases here, on a two-dimensional circular gas bubble in a streaming flow,
at the edge of the boundary layer around a rapidly rotating cylinder in a uniform flow, and on an airfoil in a
streaming flow. The drag may be computed using the dissipation method or the viscous pressure correction of
the irrotational pressure.

In Section 18.1.1 we compute the drag on a two-dimensional circular gas bubble using the dissipation method
and VCVPF. This problem sets the frame for considerations of the additional drag on the boundary layer
around a solid. Figure 18.1 shows the flow past a circular cylinder. Suppose that there is no separation of the
boundary layer (figure 18.1.a), the flow is like a uniform flow past a circular gas bubble. The additional drag
at the edge of the boundary layer can be computed just like the drag on a gas bubble. Practically, boundary
layer separation occurs (figure 18.1.b) and the potential flow solution for the outer flow is not known. One of
the methods to suppress separation is to rotate the cylinder rapidly. We compute the additional drag at the
edge of the boundary layer of a rapidly rotating cylinder in a uniform flow in Section 18.1.2. The flow past an
airfoil, which can be obtained by conformal transformation from the flow over a rotating cylinder, is the subject
in Section 18.1.3.

18.1.1 Pressure corrections for the drag on a circular gas bubble

†The drag D per unit length on a stationary circular gas bubble of radius a in a uniform stream −U0 may
be obtained using the dissipation method introduced by Levich (1949) to compute the drag on a spherical gas
bubble. The steady rise velocity U0 of the circular gas bubble in the irrotational flow of a viscous liquid can
be obtained from the stationary bubble in a uniform stream by a Galilean transformation. This problem is a
good frame to set the considerations which lead to viscous effects on boundary layers around solid bodies due
to extra pressure generated by the unphysical shear stress as the outer edge of the boundary layer. The solid
and its entrained boundary layer can be regarded as a boundary layer bubble.

The irrotational flow of a viscous liquid over a stationary gas bubble is given by viscous potential flow u = ∇φ,
∇2φ = 0. p = pi is the pressure according to Bernoulli’s equation; the stress in the liquid is T = −pi1+2µ∇⊗∇φ

where µ is the viscosity.

† We call the readers’ attention to the fact that in our problem, the uniform flow is from right to left (see figure 18.1). The drag
on the bubble is in the uniform flow direction and is negative.
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The velocity potential for the stationary gas bubble is

φ = −U0r

(
1 +

a2

r2

)
cosθ, (18.1.1)

and, at r = a we get

ur = 0 and uθ = 2U0sinθ (18.1.2)

and

[τrr, τrθ] = −4µU0

a
[cosθ, sinθ] (18.1.3)

are the normal and shear stresses, respectively and pi is determined by the Bernoulli’s equation

pi = p∞ +
ρ

2
U2

0 (1− 4sin2θ). (18.1.4)

The dissipation D per unit length of the potential flow may be evaluated using the identity

D ≡
∫

V

2µD : D dV =
∫

A

u · 2µD · n dA

=
∫

A

−(urτrr + uθτrθ) dA = 8πµU2
0 , (18.1.5)

where D is the rate of strain tensor, V is the volume occupied by the fluid and A is the boundary of V . The
drag due to the dissipation of the potential flow can then be calculated

D = D/(−U0) = −8πµU0. (18.1.6)

A direct calculation of the drag on the bubble, using viscous potential flow to calculate the stress traction at
r = a yields a different result

D =
∫

A

ex ·T · (−n) dA =
∫

A

[(−pi + τrr)ex · er + τrθex · eθ] dA = 0. (18.1.7)

This is because the integral of pi vanishes and
∫

A

τrrex · er dA = −
∫

A

τrθex · eθ dA. (18.1.8)

This result D = 0 with a nonzero dissipation 8πµU2
0 is a paradox which is even more paradoxical than

D’Alembert’s.

In an exact formulation of the flow past a circular bubble, without assuming potential flow, and with τrθ = 0
at r = a, we have

D =
∫

A

(−p + τrr)ex · er dA. (18.1.9)

The effects of viscosity can enter this integral through p or τrr.

We next assume that the nonphysical irrotational shear stress τrθ is removed in a boundary layer in which
the vorticity is not zero. The thickness δ of the vortical layer is very small at high Reynolds number. The rate of
strain in the vortical layer is of the order U0/a in order that the shear stress be zero; the volume of the vortical
layer is of the order aδ per unit length. Therefore the dissipation per unit length in the vortical layer is of the
order µU2

0 δ/a, which is negligible compared the dissipation in the bulk volume (18.1.5). It is further assumed
that the boundary layer contribution to τrr is also negligible. It follows then that the direct calculation of drag
can agree with the dissipation calculation only if

p = pi + pv, (18.1.10)

where pv is the additional contribution to pressure in the vorticity boundary layer. The mechanical energy
equation at steady state gives rise to

D ≡
∫

V

2µD : D dV =
∫

A

u ·T · ndA. (18.1.11)

258



Given the structure described above, we have

D = −
∫

A

ur(−pv + τrr) dA. (18.1.12)

Comparing (18.1.12) with (18.1.5), one can see that (12.6.1) holds with n = −er, t = −eθ, τs = τrθ in the case
of the circular gas bubble.

The extra pressure must be a 2π periodic solution on the circle and can be represented by a Fourier series

− pv =
∞∑

k=0

(Ckcoskθ + Dksinkθ), (18.1.13)

Inserting now (18.1.13) and (18.1.3) into (12.6.1), we find that

−
∫ 2π

0

U0cosθ


C1cosθ + D1sinθ +

∑

k 6=1

(Ckcoskθ + Dksinkθ)


 a dθ = 4πµU2

0 . (18.1.14)

The above integration is performed on the surface of the bubble and the vortical layer is not considered.
Evaluation of (18.1.14) using orthogonality gives

C1 = −4µU0/a. (18.1.15)

The other coefficients are undetermined. The only term in the Fourier series (18.1.13) entering into the direct
calculation of the drag is proportional to cosθ. Hence

D =
∫ 2π

0

(−pv + τrr)ex · er adθ =
∫ 2π

0

(−pv + τrr)acosθ dθ = −8πµU0 (18.1.16)

is the same D as calculated by dissipation method in (18.1.6).

It is of interest to consider the separate contribution to the drag of −pv and τrr in (18.1.16)

D = Dpv + Dτrr
= −4πµU0 − 4πµU0 = −8πµU0. (18.1.17)

If somehow the surface of the bubble were made rigid so that the no-slip condition could be realized, then the
continuity equation would imply that Dτrr = 0 and Dpv would be the pressure drag on the rigid solid. Moore
(1959) calculated the drag on a spherical gas bubble using the viscous normal stress alone and get D = −8πµU0a.
The Levich drag is −12πµU0a and the difference is the drag Dpv = −4πµU0a, which is, in the present mode of
imagination, the viscous drag on a rigid sphere due to the viscous irrotational flow.

The existence and asymptotic validity of a boundary layer of the type assumed here and elsewhere have not
been established. The details of the size of the layer, the boundary layer equations, the variation of velocity,
vorticity and pressure in the layer have not been given. Kang and Leal (1988a) did calculations from the vorticity
equation in the case of the drag on a spherical gas bubble. Results indicating a boundary layer structure of the
type described here were obtained but their results are partial and do not give the details listed above.

The nature of the boundary layer may be determined in the appropriate asymptotic limit more easily in
two dimensions than in three. In the two dimensional problem we may obtain an exact solution of the stream
function equation

1
r

∂ψ

∂θ

∂

∂r
∇2ψ − 1

r

∂ψ

∂r

∂

∂θ
∇2ψ = ν∇4ψ (18.1.18)

where

∇2ψ =
1
r

∂

∂r

(
r
∂ψ

∂r

)
+

1
r2

∂2ψ

∂θ2
,

in the region outside the circle subject to the conditions that

u = −exU0 at ∞, (18.1.19)

and

ur = 0, τrθ = 0 at r = a. (18.1.20)
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This problem is well posed; it is like the flow over a stationary solid cylinder except that the no-slip condition
on the tangential velocity on the stationary solid circle is replaced by a zero-shear-stress condition on a circular
bubble.

The solution of (18.1.18), (18.1.19) and (18.1.20) determines a stream function ψ(r, θ). Once this function is
determined, the pressure may be determined from the equations of motion and the pressure correction can be
obtained.

18.1.2 A rotating cylinder in a uniform stream

†The potential flow over a rotating cylinder in a uniform stream plays an important role in classical airfoil
theory in which the flow and airfoil shape is obtained by conformal transformation, and the Kutta condition
suppressing separation at the trailing edge is obtained by adjusting the ratio of the rotational speed to the
streaming speed.

We study the extra pressure contribution to the drag at the outer edge of Prandtl’s boundary layer on a solid
cylinder rotating so fast that the separation of the boundary layer is suppressed. We compare the analysis of
the extra pressure associated with the viscous dissipation of the irrotational flow outside the boundary layer
with a numerical solution of the unapproximated equations for values as close to the appropriate asymptotic
values as the numerical solution will allow.

The readers should remember that our work here is motivated by the desire to understand the dynamical
effect of the fact that the viscous dissipation of the irrotational flow outside Prandtl’s boundary layer is not zero
and that the viscous effects on the normal stress on a solid are due only to the pressure and at finite-Reynolds
number, no matter how large, there will be a viscous effect on the pressure, not given in Prandtl’s theory.

18.1.2.1 Dissipation calculation

We consider the uniform flow −U0 past a fixed circular cylinder with circulation Γ. Suppose no separation of
the boundary layer occurs, the flow outside the boundary layer is given by the potential

φ = −U0r

(
1 +

a2

r2

)
cosθ +

Γθ

2π
. (18.1.21)

The velocity and stress at the surface of the cylinder can be evaluated using (18.1.21):

ur = 0, and uθ = 2U0sinθ +
Γ

2πa
; (18.1.22)

τrr = −4µU0cosθ/a, and τrθ = −4µU0sinθ/a− µΓ/(πa2). (18.1.23)

The dissipation D of the potential flow can be evaluated:

D = −
∫

A

(urτrr + uθτrθ) dA = 8πµU2
0 +

µΓ2

πa2
. (18.1.24)

The dissipation is equal to the sum of the dissipation of an irrotational purely rotary flow and a streaming flow
past a fixed cylinder; the cross-terms in uθτrθ do not appear in the dissipation expression because they integrate
to zero. The dissipation of the potential flow should be equal to the power of the drag D and the torque T

D(−U0) + T
Γ

2πa2
= D. (18.1.25)

Ackeret (1952) computed the same dissipation for the problem under consideration. He did not consider the
torque and equated the dissipation to the power of the drag alone and obtained

D = D/(−U0) = −8πµU0 − µΓ2

πa2U0
. (18.1.26)

† We call the readers’ attention to the fact that in our problem, the uniform flow is from right to left (see figure 18.1) and the
cylinder rotates counter-clockwise. The lift on the cylinder points upward and is positive. The drag on the cylinder is negative
if it is in the uniform flow direction; the drag is positive if it is opposite to the uniform flow direction.
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Ackeret argued that it is worth to consider the potential flow solution if the viscous liquid is allowed to slip at
solid boundaries. He did not mention gas bubbles, liquid-gas flows, the additional drag or the relation of his
solution to unphysical irrotational shear stress at the edge of the boundary layer.

We argue that the additional drag cannot be computed from (18.1.25) with the torque T undetermined. We
will obtain the additional drag in a later section by computing the pressure correction pv, following the method
laid down in our calculation of pv in the case of a circular gas bubble.

18.1.2.2 Boundary layer analysis

Glauert (1957) carried out a boundary layer analysis of the flow past a rotating cylinder. He assumed that the
ratio

α = 2U0/Q (18.1.27)

where U0 is magnitude of the uniform stream velocity and Q is the circulatory velocity of the flow at the outer
edge of the boundary layer, is smaller than unity and separation is suppressed. He obtained a solution of the
boundary layer equations in the form of a power series in α, and deduced the ratio Q/q, where q is the cylinder’s
peripheral velocity. q is related to the angular velocity Ω of the cylinder by q = Ωa. Glauert’s solution suggests
that Q is approximately equal to q for large values of q; it follows that

α → 2U0/q =
2

q/U0
as q →∞. (18.1.28)

Glauert used Prandtl’s boundary layer theory in which the irrotational pressure of the outer flow is imposed
on the solid wall through the boundary layer. Assuming that the boundary layer thickness is negligible compared
to the cylinder radius, Glauert used the boundary layer equations for steady two-dimensional flows:

∂u

∂x
+

∂v

∂y
= 0, (18.1.29)

u
∂u

∂x
+ v

∂u

∂y
= U

dU

dx
+ ν

∂2u

∂y2
, (18.1.30)

where U is the irrotational velocity at the edge of the boundary layer; x is measured round the cylinder
circumference and y normal to it. Glauert chose x = 0 to be the point at which the surface moves in the same
direction as the uniform stream (the top of the cylinder). We will follow his choice here. Let ϕ represent the
polar angle measured from the point x = 0, then ϕ = x/a. Glauert obtained the following solutions

u = Q
(
1 + αf

′
1(y)eıϕ + α2

[
f
′
2(y)e2ıϕ + g

′
2(y)

]
+ . . .

)
; (18.1.31)

v = −Q

[
ı

a
αf1(y)eıϕ +

2ı

a
α2f2(y)e2ıϕ + . . .

]
; (18.1.32)

∂u

∂y
= Q

(
αf

′′
1 eıϕ + α2

[
f
′′
2 (y)e2ıϕ + g

′′
2 (y)

]
+ . . .

)
, (18.1.33)

where f1(y), f2(y) and g2(y) are functions of y and were determined by Glauert. Because f
′
1(0) = f

′
2(0) = 0 and

g
′
2(0) > 0 given by Glauert’s solution, the velocity at the surface of the cylinder can be obtained from (18.1.31):

q = Q
(
1 + α2g

′
2(0) + . . .

)
, (18.1.34)

which shows that Q < q. Since the shear stress at the cylinder surface is given by µ(∂u/∂y)y=0, it can be
inferred from (18.1.33) that the shear stress is zero at the cylinder surface when α is zero. In other words, when
there is no streaming flow but only viscous irrotational rotary flow, Glauert’s solution suggests that the shear
stress at the cylinder surface is zero. However, the real shear stress is −2µq/a.

The reason for this discrepancy is that the irrotational rotary flow component is not considered in Glauert’s
solution, which is an approximation consistent with the assumption that δ/a is negligible compared to 1. Thus
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the shear stress induced by the rotary flow is ignored. The irrotational rotary component of the velocity inside
the boundary layer can be written as

upϕ = Q
a + δ

r
, (18.1.35)

where δ is the thickness of the boundary layer. We propose a simple modification of Glauert’s solution

uϕ = upϕ + ub = Q

(
a + δ

r
+ αf

′
1(y)eıϕ + α2

[
f
′
2(y)e2ıϕ + g

′
2(y)

]
+ . . .

)
; (18.1.36)

ur = vb = −Q

[
ı

a
αf1(y)eıϕ +

2ı

a
α2f2(y)e2ıϕ + . . .

]
. (18.1.37)

f1(y), f2(y), g2(y) ... are solutions of boundary layer equations (18.1.29) and (18.1.30), which are based on
the assumption that δ/a is negligible compared to 1. Under the same assumption, (a + δ)/r ≈ 1 inside the
boundary layer and (18.1.36) reduces to Glauert’s solution (18.1.31). Thus it appears that the (a + δ)/r term
is not consistent with the solutions of f1(y), f2(y) and g2(y). However, (18.1.36) is a simple modification to
address the defect of ignoring the irrotational rotary component of the flow inside the boundary layer. We will
show that the modified Glauert’s solution is in better agreement with numerical simulation data than Glauert’s
solution. In Section 18.2, we will carry out a new boundary layer analysis for the flow past a rotating cylinder,
in which the inconsistency mentioned above is resolved.

A key problem in the boundary layer analysis is to determine the circulatory velocity Q when given the
cylinder rotational speed q. At y = 0 (r = a), (18.1.36) gives rise to

q = Q

[
a + δ

a
+ α2g

′
2(0) + α4h

′
4(0)

]

= Q

[
1 +

δ

a
+ 3

(
U0

Q

)2

− 5.76
(

U0

Q

)4
]

, (18.1.38)

where Glauert’s solutions for g2 and h4 have been used and the terms on the order of α5 or higher are ignored.
We invert (18.1.38) to obtain the expression for Q in terms of q

Q

q
=

1
1 + δ/a

− 3
(

U0

q

)2

− 3.23
(

1− 0.803
δ

a

)(
U0

q

)4

. (18.1.39)

If δ/a is ignored, (18.1.39) reduces to

Q

q
= 1− 3

(
U0

q

)2

− 3.23
(

U0

q

)4

, (18.1.40)

which is the same as Glauert’s result. When U0 = 0, there is only irrotational purely rotary flow and boundary
layer does not exist. Thus δ = 0 and (18.1.39) indicates Q = q.

We calculate the shear stress at the cylinder surface. The contribution from the irrotational purely rotary
flow is

µ

(
∂upϕ

∂r
− upϕ

r

)
= −2µQ

a + δ

a2
at r = a,

which is added to Glauert’s shear stress to obtain the total shear stress

τrϕ = µQ

[
−2

a + δ

a2
+ αf

′′
1 (0)eıϕ + α2

[
f
′′
2 (0)e2ıϕ + g

′′
2 (0)

]
+ . . .

]
. (18.1.41)

The torque T on the cylinder is given by

T = −a2

∫ 2π

0

τrϕdϕ. (18.1.42)
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Only terms independent of ϕ in (18.1.41) contribute to (18.1.42) and we obtain

T = 8πρU2
0

a(a + δ)
Re

Q

U0
+ 4πρU2

0

a2

√
Re

[(
U0

Q

) 1
2

− 2.022
(

U0

Q

) 5
2

+ . . .

]
, (18.1.43)

CT =
T

2ρU2
0 a2

= 4π

(
1 +

δ

a

)
1

Re

Q

U0
+

2π√
Re

[(
U0

Q

) 1
2

− 2.022
(

U0

Q

) 5
2

+ . . .

]
, (18.1.44)

where CT is the torque coefficient and

Re = 2U0a/ν (18.1.45)

is the Reynolds number based on U0. The first term on the right hand side of (18.1.43) is the torque induced by
the rotary flow component and is on the order of 1/Re; the second term is the torque given by Glauert and is on
the order of 1/

√
Re. When Re →∞, the term by Glauert is the dominant one. However, when Re is finite and

Q/U0 is large, the first term can be more significant than the second one. When U0 = 0, the torque is equal to
T = 4πµqa, which is the torque on the cylinder when there is only the viscous irrotational purely rotary flow.

Glauert cited Reid’s (1924) experimental result about the torque

T = 20πρU2
0

a2

√
Re

, (18.1.46)

which was measured for q = U0. Glauert noted that Reid’s torque was far above the value given by him and
remarked about this discrepancy “... but it is doubtful if it has much accuracy or relevance, in view of the
experimental imperfections and also the separation occurring at this low rotational speed.” We will compare
our torque expression to the results of numerical simulation in which the rotational speed is high and separation
is suppressed.

The lift and drag on the cylinder are given by the pressure and shear stress at the wall. The pressure in
Glauert’s solution is a constant across the boundary layer and is equal to the irrotational pressure at the outer
edge of the boundary layer; it does not give drag and the pressure lift can be computed using the classical lift
coefficient formula in aerodynamics:

CLp
=

ρU0Γ
ρU2

0 a
=

2πQ

U0
. (18.1.47)

In our simple modification of Glauert’s solution, we add the irrotational rotary flow component upϕ to the
velocity and the pressure induced by upϕ is

pp = ppc − ρ

2
u2

pϕ = ppc − ρ

2
(a + δ)2

r2
Q2, (18.1.48)

where ppc is a constant for the pressure. As an approximation, we assume that the total pressure is obtained by
a simple addition of pp and the pressure given by Glauert. On the cylinder surface r = a, pp is independent of
θ and does not contribute to the lift. Therefore the pressure lift expression (18.1.47) still holds. After inserting
(18.1.39) into (18.1.47), we obtain

CLp
= 2π

q

U0

[
1

1 + δ/a
− 3

(
U0

q

)2

− 3.23
(

1− 0.803
δ

a

)(
U0

q

)4
]

. (18.1.49)

Since our Q (18.1.39) is smaller than Glauert’s result (18.1.40), our pressure lift is smaller than Glauert’s.
Glauert did not consider the friction drag and lift, but they can be computed from his solution easily:

CDf
=

Df

ρU2
0 a

= − 2π√
Re

√
Q

U0
, CLf

=
Lf

ρU2
0 a

=
2π√
Re

√
Q

U0
. (18.1.50)

Our simple modification changes the shear stress at the wall only by a constant, thus the expressions for the
friction drag and lift do not change, but their values change due to Q.

We compare our simple modification of Glauert’s solution, the results of numerical simulation from Padrino
and Joseph (2004) and Glauert’s solution in table 18.1 (see Section 18.3). Six cases, (Re, q/U0)=(200, 4), (200,
5), (400, 4), (400, 5), (400, 6) and (1000, 3), are considered. Though the boundary layer thickness δ/a is not

263



solution Re q/U0 δL/a α CLp CT

Glauert’s solution 200 4 - 0.625 20.102 0.215
Modified Glauert’s solution 200 4 0.145 0.741 16.961 0.390

Numerical simulation 200 4 - - 16.961 0.453

Glauert’s solution 200 5 - 0.457 27.483 0.195
Modified Glauert’s solution 200 5 0.0434 0.480 26.183 0.465

Numerical simulation 200 5 - - 26.183 0.514

Glauert’s solution 400 4 - 0.625 20.102 0.152
Modified Glauert’s solution 400 4 0.112 0.714 17.609 0.237

Numerical simulation 400 4 - - 17.609 0.275

Glauert’s solution 400 5 - 0.457 27.483 0.138
Modified Glauert’s solution 400 5 0.0354 0.476 26.415 0.272

Numerical simulation 400 5 - - 26.415 0.297

Glauert’s solution 400 6 - 0.365 34.463 0.126
Modified Glauert’s solution 400 6 0.0380 0.380 33.087 0.299

Numerical simulation 400 6 - - 33.087 0.316

Glauert’s solution 1000 3 - 1.064 11.812 0.108
Modified Glauert’s solution 1000 3 0.0837 1.207 10.409 0.0632

Numerical simulation 1000 3 - - 10.409 0.118

Table 18.1. Comparison of the coefficients for the pressure lift and torque on the cylinder obtained from
Glauert’s solution, the simple modification of Glauert’s solution and numerical simulation. In the simple

modification of Glauert’s solution, we use an effective boundary layer thickness δL/a, which is determined by
matching CLp

computed from our simple modification (18.1.49) to the results of numerical simulation. For
(Re, q/U0)=(1000, 3), α > 1 for both our simple modification and Glauert’s solution. These solutions are not

expected to converge to the true results.

needed in Glauert’s solution, it must be prescribed in our simple modification. We choose an effective boundary
layer thickness δ/a = δL/a which is determined by matching CLp computed from our simple modification
(18.1.49) to the results of numerical simulation. Table 18.1 shows that δL/a ¿ 1, δL/a decreases with increasing
Re at a fixed q/U0, and δL/a generally decreases with increasing q/U0, because the rotary flow suppresses the
boundary layer. The torque coefficient is not sensitive to the choice of δ/a as long as δ/a ¿ 1, which can be seen
from (18.1.44) and (18.1.39). The pressure lift and torque in numerical simulation are obtained by integration
at the cylinder surface. The values of α = 2U0/Q are listed for Glauert’s solution and our simple modification
for each pair of Re and q/U0. For (Re, q/U0)=(1000, 3), α > 1 for both our simple modification and Glauert’s
solution. These solutions are not expected to converge to the true results. A comparison of the solutions with
α < 1 shows that the values of CLp

from our simple modification and numerical simulation are smaller than
those from Glauert’s solution; the values of the torque from our simple modification are much closer to the
numerical results than those from the Glauert’s solution.

If the results of numerical simulation are not available, our analysis cannot provide the value of δ/a. Then
Glauert’s pressure lift may be taken as a reasonable approximation, and the torque coefficient may be computed
from (18.1.44) with δ/a = 0. Since the torque coefficient is not sensitive to the choice of δ/a, it still improves
Glauert’s solution of the torque substantially.

18.1.2.3 Pressure correction and the additional drag

We consider the pressure correction at the outer edge of the boundary layer and the additional drag induced
by it. The shear stress at the outer edge of the boundary layer can be computed in two ways: from the outside
potential flow or from the boundary layer solution. If we consider a rotating cylinder with its entrained boundary
layer moving with U0 in a liquid, the potential flow outside r = a + δ has the following velocity

uθ = U0
(a + δ)2

r2
sinθ + Q

a + δ

r
, ur = U0

(a + δ)2

r2
cosθ. (18.1.51)
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The irrotational shear stress at r = a + δ is

τrθ = −µ

(
4U0sinθ

a + δ
+

2Q

a + δ

)
. (18.1.52)

The shear stress from the boundary layer analysis is

τrθ = µ

(
∂upϕ

∂r
− upϕ

r
+

∂ub

∂y
+

∂vb

∂x

)

= µ

[
−2Q

a + δ

r2
+ Qαf

′′
1 (y)sinθ + . . . + Q

α

a2
f1sinθ + . . .

]
. (18.1.53)

Glauert’s solution gives f
′′
1 (δ) ≈ 0 and f1(δ) ∼ O(δ), which is negligible. Thus the shear stress at r = a+ δ from

the boundary layer solution is approximately

τrθ ≈ −µ
2Q

a + δ
. (18.1.54)

Comparing (18.1.52) with (18.1.54), we can see that the shear stress is not continuous and the discrepancy is

τd
rθ = −µ

4U0sinθ

a + δ
. (18.1.55)

This shear stress discrepancy induces extra vorticity at the outer edge of the boundary layer and a pressure
correction. The power of the pressure correction is equal to the power of the shear stress discrepancy

−
∫ 2π

0

ur(−pv)(a + δ) dθ = −
∫ 2π

0

uθτ
d
rθ(a + δ) dθ = 4πµU2

0 . (18.1.56)

Again we expand the pressure correction as a Fourier series (18.1.13) and insert it into (18.1.56)

−
∫ 2π

0

U0cosθ


C1cosθ + D1sinθ +

∑

k 6=1

(Ckcoskθ + Dksinkθ)


 (a + δ) dθ = 4πµU2

0 (18.1.57)

which gives rise to

− C1 =
4µU0

a + δ
and

pv =
4µU0

a + δ
cosθ −D1sinθ −

∑

k 6=1

(Ckcoskθ + Dksinkθ). (18.1.58)

We evaluate the additional drag by direct integration of the traction vector at the outer edge of the boundary
layer

D =
∫ 2π

0

[(−pi − pv + τrr)ex · er + τrθex · eθ](a + δ) dθ, (18.1.59)

where τrr is the viscous normal stress evaluated on the potential flow velocity (18.1.51), τrθ is the shear stress
(18.1.54) evaluated using the boundary layer solution. The above choices are made because τrr is essentially
continuous at the outer edge of the boundary layer but τrθ is not; we choose τrθ from the boundary layer solution
and this is analogous to using zero shear stress at a gas-liquid interface. The irrotational pressure pi does not
contribute to the drag and we may write (18.1.59) as

D =
∫ 2π

0

(−pv)cosθ(a + δ) dθ +
∫ 2π

0

τrrcosθ(a + δ) dθ −
∫ 2π

0

τrθsinθ(a + δ) dθ

= −4πµU0 − 4πµU0 − 0 = −8πµU0, (18.1.60)

which is the same as the drag on a circular gas bubble (18.1.16). Our additional drag (18.1.60) is much smaller
than the one (18.1.26) computed by Ackeret (1952) when the rotational velocity is much larger than the
streaming velocity. Equation (18.1.60) indicates that the additional drag only depends on the forward speed U0

and not on the spinning speed q. The additional drag should be the drag evaluated at the outer edge of the
boundary layer, but the boundary layer thickness does not affect the additional drag since δ/a does not appear
in (18.1.60).
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Fig. 18.2. The pressure drag coefficient CDp at different radial position r/(2a) computed from numerical simulation
(18.1.62) for Re=400: dash-double-dotted line - q/U0= 4; dashed line - q/U0= 5; dash-dotted line - q/U0= 6. The solid
straight line gives CDp computed from (18.1.61) for Re=400. Each curve for CDp(r) has two intersections with the
straight line, at which CDp given by (18.1.61) is equal to CDp computed from numerical simulation at r = a + δ.

If we only consider the additional drag due to the pressure, we obtain

Dp = −4πµU0 and CDp
=

Dp

ρU2
0 a

= − 8π

Re
, (18.1.61)

which should be compared to CDp
computed from numerical simulation at the outer edge of the boundary layer.

However, in practice the vorticity extends to infinity and a clear-cut boundary layer edge does not exist. To
address this difficulty, we present CDp

computed from numerical simulation at different values of r

CDp(r) =
1

ρU2
0 a

∫ 2π

0

(−p)ex · er r dθ, (18.1.62)

and compare to CDp
from (18.1.61). As an example, we plot CDp

(r) from numerical simulation for Re = 400
and q/U0=4, 5 and 6 in figure 18.2; the straight line gives CDp computed from (18.1.61) for Re = 400. Note
that the results of numerical simulation depend on q/U0 but equation (18.1.61) does not. Each curve for CDp

(r)
has two intersections with the straight line, the one close to the wall denoted by δD1/a and the other one far
way from the wall denoted by δD2/a. In table 18.2 we list the values of δD1/a and δD2/a for (Re, q/U0)=(200,
4), (200, 5), (400, 4), (400, 5), (400, 6) and (1000, 3). The vorticity field in the whole domain was computed in
numerical simulation. The magnitude of the vorticity on the circle with the radius r = a + δD1 or r = a + δD2

was estimated from the numerical data and expressed as a certain percentage of the maximum magnitude of
the vorticity field. This percentage is between 12.6% to 20.4% at r = a + δD1 and is between 0.003% to 0.913%
at r = a+ δD2. This percentage is 20.6% at r = a+ δD1 for (Re, q/U0) = (400, 6), which indicates that roughly
speaking, the vorticity magnitude at a radial position r > a + δD1 is less than 20.6% of the maximum vorticity
magnitude. The reason is that the vorticity magnitude generally decreases as r increases. When r > a + δD2,
the vorticity is almost negligible.

A comparison of table 18.1 and 18.2 shows that δD1/a is close to the effective boundary layer thickness δL/a

determined by matching CLp
. When we insert δD1/a into the expressions for CLp

and CT on the cylinder,
(18.1.49) and (18.1.44) respectively, the results are in fair agreement with the numerical simulation and are
better than Glauert’s solutions (see table 18.3 and table 18.1). Thus δD1/a can be used not only as an effective
boundary layer thickness for CDp

, but also for CLp
and CT . This result shows that one effective boundary layer

thickness for both the VCVPF calculation and the simple modification of Glauert’s solution exists.

Figure 18.2 shows that CDp
changes significantly with r near the wall; CDp

reaches its minimum then
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Re q/U0 CDp δD1/a vorticity % δD2/a vorticity %

200 4 -0.126 0.161 13.1 0.594 0.913
200 5 -0.126 0.0838 14.6 2.03 0.00455
400 4 -0.0628 0.0835 18.1 0.811 0.418
400 5 -0.0628 0.0553 20.8 2.46 0.00340
400 6 -0.0628 0.0473 20.7 2.65 0.00365
1000 3 -0.0251 0.0552 20.4 1.56 0.0139

Table 18.2. The values of δD1/a and δD2/a at which CDp
given by (18.1.61) is equal to CDp

computed from
numerical simulation (18.1.62). The magnitude of the vorticity on the circle with the radius r = a + δD1 or
r = a + δD2 was estimated from the numerical data and expressed as a certain percentage of the maximum
magnitude of the vorticity field. This percentage is between 12.6% to 20.4% at r = a + δD1 and is between

0.003% to 0.913% at r = a + δD2.

Re q/U0 δD1/a α CLp CT

200 4 0.161 0.754 16.659 0.388
200 5 0.0838 0.501 25.065 0.466
400 4 0.0835 0.691 18.188 0.239
400 5 0.0553 0.486 25.845 0.273
400 6 0.0473 0.384 32.765 0.299
1000 3 0.0552 1.157 10.862 0.0718

Table 18.3. The calculation of CLp
(18.1.49) and CT (18.1.44) on the cylinder using δD1/a determined by

matching CDp as an effective boundary layer thickness. The results are in fair agreement with the numerical
data shown in table 18.1. This demonstrates that δD1/a can be used not only as an effective boundary layer

thickness for CDp , but also for CLp and CT .

increases; the magnitude of CDp
approaches zero as r increases to infinity. In the region near the second

intersection r = a + δD2, the CDp curve is rather flat and the straight line given by (18.1.61) is a reasonable
approximation to the numerical results. This region may be viewed as a transition region from the inner flow
where the vorticity is important to the outer flow where the vorticity is negligible. The VCVPF calculation
cannot predict variation of CDp

near the wall.

The term D1sinθ in the pressure correction should give rise to an extra lift force in addition to the contribution
from the irrotational pressure. However, D1 is not determined in the VCVPF calculation. In the new boundary
layer analysis in Section 18.3 the pressure is not assumed to be a constant across the boundary layer and it is
solved from the governing equations. We determined the terms proportional to sinθ, cosθ, sin2θ and cos2θ up
to O(α2).

18.1.3 The additional drag on an airfoil by dissipation method

We consider a symmetrical Joukowski airfoil moving in a liquid at an angle of attack β with a constant velocity
U0 (figure 18.3). The airfoil is obtained by the Joukowski transformation

z = ζ +
c2

ζ
, (18.1.63)

in conjunction with a circle in the ζ plane. The radius a of the circle is slightly larger than the transformation
coefficient c,

a = c + m = c(1 + ε), (18.1.64)

where ε = m/c is assumed to be small compared with unity. The center of the circle is displaced from the origin
to (−m, 0), so that the circle passes through one of the critical points of the Joukowski transformation, ζ = c,
which gives rise to the cusp of the airfoil in the z plane.
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Fig. 18.3. A symmetrical airfoil moving in a liquid at an angle of attack β with a constant velocity U0. The additional
drag on the airfoil computed using the dissipation method is opposite to the moving direction of the airfoil and is defined
as negative.

In the ζ plane, a generic point (r, θ) on the circle satisfies

(c + m)2 = r2 + m2 + 2rm cosθ, (18.1.65)

which leads to

r = −mcosθ +
√

c2 + 2cm + m2cos2θ. (18.1.66)

The airfoil surface is then given by

z = reıθ +
c2

r
e−ıθ, (18.1.67)

or

x =
(

r +
c2

r

)
cosθ and y =

(
r − c2

r

)
sinθ. (18.1.68)

The complex potential for a uniform flow past a circle with circulation is

f(ζ) = U0

[
(ζ + m)e−ıβ +

a2

ζ + m
eıβ

]
+

ıΓ
2π

log
(

ζ + m

a

)
. (18.1.69)

Equation (18.1.69) along with the inverse Joukowski transformation

ζ =
z

2
±

√
z2

4
− c2 (18.1.70)

gives the potential for the flow past an airfoil in the z plane. The Kutta condition requires the circulation to be

Γ = 4πU0a sinβ. (18.1.71)

The dissipation calculation will be carried out in dimensionless form. We choose U0 and c to be the scales
for velocity and length, respectively. The dimensionless form of the potential is

f(ζ)
U0c

= (ζ + ε)e−ıβ +
(1 + ε)2

ζ + ε
eıβ + 2ı sinβ(1 + ε)log

(
ζ + ε

1 + ε

)
. (18.1.72)

Note that we use the same symbols for the dimensional and dimensionless variables. The inverse Joukowski
transformation in the dimensionless form is

ζ =
z

2
±

√
z2

4
− 1. (18.1.73)

The velocities can be evaluated on the potential

u =
1
2

(
df

dz
+

df̄

dz̄

)
and v =

ı

2

(
df

dz
− df̄

dz̄

)
(18.1.74)
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β ε =0.3 ε =0.2 ε =0.1 ε =0.05 ε =0.01

0 4.34 3.48 2.53 2.05 1.67
π/20 6.24 6.30 9.39 22.7 410
π/10 11.8 14.5 29.3 82.8 1.59× 103

π/6 23.7 32.3 72.6 213 4.17× 103

π/4 43.2 61.1 142 424 8.34× 103

Table 18.4. The integral I as a function of the attack angle β and the nose sharpness parameter ε (the smaller
ε, the sharper the nose). The drag coefficient can be obtained by CD = −I/(2R

′
e), where the Reynolds number

R
′
e =

ρU0c

µ
. Here c ≈ l/4, where l is the length of the airfoil.

and the rate of strain tensor is

2D =




d2f
dz2 + d2f̄

dz̄2 ı
(

d2f
dz2 − d2f̄

dz̄2

)

ı
(

d2f
dz2 − d2f̄

dz̄2

)
−

(
d2f
dz2 + d2f̄

dz̄2

)

 . (18.1.75)

The surface of the airfoil is given by

x =
(

r +
1
r

)
cosθ and y =

(
r − 1

r

)
sinθ, (18.1.76)

where

r = −ε cosθ +
√

1 + 2ε + ε2cos2θ. (18.1.77)

Let ẋ = dx/dθ and ẏ = dy/dθ, then the norm on the surface can be written as

n = nxex + nyey =
−ẏex + ẋey√

ẋ2 + ẏ2
, (18.1.78)

and

ds =
√

ẋ2 + ẏ2dθ. (18.1.79)

Now we calculate the dissipation

D = µU2
0

∫

A

u · 2D · n dA = µU2
0 I, (18.1.80)

where

I =
∫ 2π

0

[nx(2D)xxu + nx(2D)xyv + ny(2D)yxu + ny(2D)yyv]
√

ẋ2 + ẏ2dθ. (18.1.81)

The integral I is computed numerically. The additional drag is then obtained D = D/(−U0) and the drag
coefficient

CD =
D

1
2ρU2

0 4c
= − µU0I

1
2ρU2

0 4c
= − 1

R′
e

I

2
, (18.1.82)

where the Reynolds number is

R
′
e =

ρU0c

µ
. (18.1.83)

The drag coefficient depends on the parameter ε and the angle of attack β. The parameter ε determines the
maximum thickness of the airfoil and the roundness of the leading nose. The smaller ε, the thinner the airfoil
and the sharper the leading nose. In table 18.4 we present the magnitude of the drag coefficient multiplied by
the Reynolds number as a function of the parameter ε and the angle of attack β. When ε is fixed, the magnitude
of the drag coefficient increases with β. The reason is that when β is not zero, the stream must turn around the
leading nose and a large amount of dissipation is generated near the leading nose. When β is fixed at zero, the
dissipation decreases as ε decreases. This is because a slimmer airfoil leads to less disturbance to the uniform
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flow and smaller dissipation. At the limit when ε is zero, the flow becomes a uniform flow past a flat plate at a
zero attack angle, in which the drag is zero. However, when β is fixed at non-zero values, the magnitude of the
drag coefficient increases as ε decreases. The reason is that the major contribution to the dissipation is from
the flow which turns around the leading nose. A smaller value of ε leads to a sharper leading nose and larger
dissipation. At the limit when ε is zero, the leading edge coincide with one of the critical points of the Joukowski
transformation, the velocity at the leading edge is singular and the dissipation calculation breaks down.

If the Reynolds number is in the order of hundreds or thousands, the additional drag is negligible when β = 0
or when β is small and the airfoil is not very sharp at the leading edge; the additional drag is evident when β

is non-zero and the airfoil has a very sharp leading edge.

18.1.4 Discussion and conclusion

This work concerns the drag on a body moving at a constant velocity U0eı in an otherwise quiescent viscous
liquid. The Reynolds number is high and the flow can be approximated by an outer potential flow and a
boundary layer adjacent to the surface of the body. The drag is defined as

D =
∫

A

eı ·T · (−n) dA. (18.1.84)

The dissipation calculation is one of the methods to compute the drag and it is based on the mechanical energy
equation:

d
dt

∫

V

ρ|u|2
2

dV =
∫

A

u ·T · ndA−
∫

V

2µD : DdV. (18.1.85)

At steady state, (18.1.85) becomes
∫

A

u ·T · ndA =
∫

A

[u · n(−p + τn) + u · tτs] dA = D. (18.1.86)

If the body is a gas of negligible density and viscosity, the shear stress τs is zero at the interface. The continuity
of the normal velocity at the gas-liquid interface gives u · n = U0eı · n. Thus (18.1.86) can be written as

∫

A

U0eı · n(−p + τn) dA = D ⇒ U0(−D) = D = DBL +DP , (18.1.87)

where DBL is the dissipation inside the boundary layer and DP is the dissipation of the outer potential flow.
In gas-liquid flows, the boundary layer is assumed to be very weak and DBL is negligible to the first order
approximation. Thus we have the drag on a gas body

D ≈ DP /(−U0), (18.1.88)

which is used in our calculation of the drag on a circular gas bubble in Section 18.1.1.

If the body is solid, the no-slip condition at the wall gives u = U0eı. Thus (18.1.86) can be written as
∫

A

U0eı ·T · ndA = DBL +DP ⇒ U0(−D) = DBL +DP . (18.1.89)

The boundary layer near a solid wall is usually strong and accounts for the major part of the total dissipation.
However, DP is not zero and does contribute to the drag. We call DP /U0 an additional drag and it is computed
for an airfoil in Section 18.1.3. The dissipation of the outer potential flow increases the drag calculated from
the boundary layer flow alone. Our calculation shows that the coefficient of the additional drag is proportional
to 1/Re. Thus the additional drag is small when the Reynolds number is high.

The situation is different for a rotating cylinder moving in a liquid. The no-slip condition at the wall gives
u = U0eı + Ωaeθ, where Ω is the angular speed of the cylinder. Equation (18.1.86) can be written as

∫

A

(U0eı + Ωaeθ) ·T · ndA = U0

∫

A

eı ·T · ndA + Ω
∫

A

aτθn dA,

⇒ U0(−D) + ΩT = D. (18.1.90)
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Equation (18.1.90) is not enough to determine two unknowns, the drag D and the torque T . Thus the dissipation
method alone cannot give the drag or the torque in this case.

Padrino and Joseph (2006) numerically simulated the flow past a rapidly rotating cylinder. When the Reynolds
number is Re=400 and the ratio between the cylinder rotating speed and the streaming flow speed q/U0=4,
they obtained DBL:DP =1.72:1. Although in this case the dissipation cannot be used to compute the drag or the
torque independently, the data show that the viscous dissipation of the outer potential flow can be significant.

We extend the idea of the viscous pressure correction from gas-liquid flows to Prandtl’s boundary layer
outside a solid. At the outer edge of the boundary layer, the shear stress evaluated on the boundary layer
solution using Prandtl’s theory does not necessarily equal the shear stress evaluated on the outside potential
flow; this is analogous to the discrepancy between the zero shear stress and non-zero irrotational shear stress
at a gas-liquid interface. The shear stress discrepancy at the outer edge of the boundary layer induces extra
vorticity and a viscous pressure correction. The power of the pressure correction is equal to the power of this
shear stress discrepancy.

We apply the method of VCVPF to the boundary layer around a rapidly rotating cylinder in a uniform flow
in Section 18.1.2. The pressure correction is expanded as a Fourier series and we determine the coefficient for
the cosθ term, which is the only term in the Fourier series contributing to the drag. We integrate the pressure
correction and viscous stresses to obtain the additional drag at the outer edge of the boundary layer, which is
not obtained by the dissipation calculation for this problem. Numerical simulations confirm that the pressure
in the region near the cylinder surface gives rise to a noticeable drag. After choosing an effective boundary
layer thickness, we are able to fit the pressure drag computed from VCVPF theory to the pressure drag from
numerical simulation. We note that this pressure drag at the outer edge of the boundary layer is different from
the pressure drag on the cylinder. Actually, the simulations show that the pressure drag changes sign across
the boundary layer. The method of VCVPF can only determine the pressure correction at the outer edge of
the boundary layer, not the variation inside the boundary layer. A boundary layer analysis for the flow past a
rapidly rotating cylinder will be presented in the next section, in which the pressure inside the boundary layer
is solved.

18.2 Glauert’s solution of the boundary layer on a rapidly rotating clylinder in a uniform
stream revisited

We perform a boundary layer analysis for the streaming flow past a rapidly rotating circular cylinder (figure 18.4)
†. The starting point is the full continuity and momentum equations without any approximations. We assume
that the solution is a boundary layer flow near the cylinder surface with the potential flow outside the boundary
layer. The order of magnitude of the terms in the continuity and momentum equations can be estimated inside
the boundary layer. When terms in the order of δ/a and higher are dropped, where δ is the boundary layer
thickness and a is the radius of the cylinder, the equations used by Glauert (1957) are recovered. Glauert’s
solution ignores the irrotational rotary component of the flow inside the boundary layer, which is consistent
with dropping δ/a terms in the governing equations.

We propose a new solution to this problem, in which the velocity field is decomposed into two parts. Outside
the boundary layer, the flow is irrotational and can be decomposed into a purely rotary flow and a potential
flow past a fixed cylinder. Inside the boundary layer, the velocity is decomposed into an irrotational purely
rotary flow and a boundary layer flow. Inserting this decomposition of the velocity field inside the boundary
layer into the governing equations, we obtain a new set of equations for the boundary layer flow, in which we
do not drop the terms in the order of δ/a or higher. The pressure can no longer be assumed to be a constant
across the boundary layer, and the continuity of shear stress at the outer edge of the boundary layer is enforced.
We solve this new set of equations using Glauert’s method, i.e. to expand the solutions as a power series of
α = 2U0/Q, where U0 is the uniform stream velocity and Q is the circulatory velocity at the outer edge of the

† We call the readers’ attention to the fact that in our problem, the uniform flow is from right to left and the cylinder rotates
counter-clockwise (see figure 18.4). The lift on the cylinder points upward and is defined as positive. The drag on the cylinder is
negative if it is in the uniform flow direction; the drag is positive if it is opposite to the uniform flow direction.
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Fig. 18.4. The uniform streaming flow past a rotating cylinder.

boundary layer. The pressure from this boundary layer solution has two parts, an inertial part and a viscous
part. The inertial part comes from the inertia terms in the momentum equations and is in agreement with the
irrotational pressure; the viscous part comes from the viscous stress terms in the momentum equations and may
be viewed as a viscous pressure correction, which contributes to both drag and lift. Our boundary layer solution
is in reasonable to excellent agreement with the numerical simulation which will be presented in Section 18.3.

18.2.1 Introduction

The flow pattern depends critically on the ratio between the uniform stream velocity U0 and the fluid circulatory
velocity Q. Potential flow theory shows that when 2U0/Q < 1, there is no stagnation point on the cylinder and
a region of closed streamlines exists near the cylinder. The fluid circulatory velocity Q is closely related to
the peripheral velocity of the cylinder q = Ωa, where Ω is the angular velocity of the cylinder; Q and q are
approximately equal for large values of q. Experiments (Prandtl and Tietjens 1931) and simulations (Padrino
and Joseph 2006) confirm that separation is largely suppressed and a closed boundary layer around the cylinder
may be expected when q is much larger than U0.

A number of theoretical studies have been dedicated to this problem based on the assumption that the ratio
q/U0 is high, separation is suppressed, and a steady state solution of the problem exists. Glauert (1957) solved
the steady-state, two-dimensional boundary layer equations and obtained the solution in the form of a power
series in α = 2U0/Q, which is related to the speed ratio q/U0 by

α → 2U0/q =
2

q/U0
as q →∞. (18.2.1)

He carried out the analysis up to and including boundary layer functions associated with α4 and obtained

Q

q
= 1− 3

(
U0

q

)2

− 3.24
(

U0

q

)4

+ . . . . (18.2.2)

In his boundary layer equations, the pressure was assumed to be a constant across the boundary layer; thus
the irrotational pressure is the only component in the normal stress acting on the cylinder. The pressure does
not contribute to the drag and its contribution to the lift is the same as in the classical aerodynamics equation
Lp = ρU0Γ, where Γ = 2πaQ is the circulation. The coefficient for the pressure lift is

CLp
=

Lp

ρU2
0 a

= 2π
Q

U0
= 2π

q

U0

[
1− 3

(
U0

q

)2

− 3.24
(

U0

q

)4

+ . . .

]
. (18.2.3)

The effect of the boundary layer analysis on the pressure lift is through the value of Q and it should be noted
that CLp

is independent of the Reynolds number. Glauert did not consider the friction drag and lift, but they
can be readily obtained from his solution:

CDf
=

Df

ρU2
0 a

= − 2π√
Re

√
Q

U0
, CLf

=
Lf

ρU2
0 a

=
2π√
Re

√
Q

U0
, (18.2.4)
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where

Re =
2aρU0

µ
(18.2.5)

is the Reynolds number based on the uniform streaming velocity. Glauert computed the torque needed to
maintain the rotation

T = 2
√

2πρU
3
2
0 a

3
2
√

ν

[(
U0

q

) 1
2

− 0.522
(

U0

q

) 5
2

+ . . .

]
(18.2.6)

and the torque coefficient is

CT =
T

2ρU2
0 a2

=
2π√
Re

[(
U0

q

) 1
2

− 0.522
(

U0

q

) 5
2

+ . . .

]
. (18.2.7)

Wood (1957) studied a class of two-dimensional, laminar boundary layer flows with closed streamlines. The
velocity at the solid boundary was supposed uniform, and the velocity in the boundary layer was supposed to
differ only slightly from that of the boundary. A formal solution of the boundary layer was then derived by
expanding the velocity in a power series in a small parameter representative of the small differences of the speed
through the boundary layer. He applied the theory to the uniform streaming flow past a rotating cylinder and
obtained a circulation which was equivalent to the first two terms of equation (18.2.2).

Moore (1957) also considered this problem assuming that the cylinder rotation velocity was much greater
than that of the uniform stream. He argued that the effect of the uniform streaming flow could be regarded as
a perturbation of the viscous irrotational rotary flow induced by a rotating cylinder and obtained a uniformly
valid first approximation to the flow field by solving the stream function equation. In the limit of large Reynolds
number, Moore also obtained a circulation which was equivalent to the first two terms of equation (18.2.2).
Moore showed that the drag was small, in the order of (U0/q)3 and the lift coefficient was

CL = 2π
q

U0

[
1 + O

(
U0

q

)2
]

, (18.2.8)

which is comparable to Glauert’s pressure lift (18.2.3), but Moore did not give the coefficient of (U0/q)2. In the
limit of large Reynolds number, Moore showed that the torque was

T = 4πµaq

(
1 +

√
2

2

(
U0

q

)2 √
Re

)
, (18.2.9)

where the first term on the right hand side 4πµaq is the torque when there is only viscous irrotational rotary
flow but no streaming flow. The torque coefficient is

CT =
4π

Re

q

U0
+

2
√

2π√
Re

U0

q
, (18.2.10)

where the second term on the right hand side is similar to Glauert’s torque coefficient (18.2.7), but the powers
of U0/q are different.

Numerical simulations have been widely used to study the flow past a rotating cylinder. A review of the
numerical studies can be found in Section 18.3. The numerical results in Section 18.3 show that separation
is largely suppressed and a steady state solution can be obtained. The numerical simulation will serve as the
benchmark for the analysis in this work.

We investigate the uniform streaming flow past a rotating cylinder adopting the same assumption as in
Glauert (1957), Moore (1957), and Wood (1957), i.e. the cylinder rotation velocity is much greater than that
of the uniform stream, separation is suppressed, and a steady state solution of the problem exists. Our work
here is intended to be an improvement of Glauert’s boundary layer solution. The boundary layer equations used
by Glauert can be recovered when terms in the order of δ/a and higher are dropped from the unapproximated
continuity and momentum equations. To be consistent, one should have

Q
a + δ

r
∼ Q, for a ≤ r ≤ a + δ,
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which means that the irrotational rotary component of the flow inside the boundary layer is ignored. The
tangential velocity given by Glauert is

u = Q
(
1 + αf

′
1e

ıθ + α2
[
f
′
2e

2ıθ + g
′
2

]
+ . . .

)
, (18.2.11)

which is a perturbation about a uniform flow, not a perturbation about the viscous irrotational rotary flow. It
can be inferred from (18.2.11) that the shear stress at the cylinder surface approaches zero when α approaches
zero. In other words, Glauert’s solution suggests that the shear stress at the cylinder surface approaches zero
when the streaming flow is extremely weak compared to the rotation of the cylinder. However, the real limiting
value for the shear stress is −2µq/a. This discrepancy carries on to the computation of the torque. Glauert’s
torque expression (18.2.6) indicates that the torque is zero when U0 = 0, however, the actual torque to maintain
the rotation of the cylinder in a viscous irrotational purely rotary flow is 4πµaq, which is also shown in Moore’s
torque expression (18.2.9).

We propose a new solution to this problem, in which the velocity is decomposed into two parts. Outside the
boundary layer, the flow is irrotational and can be decomposed into a viscous irrotational purely rotary flow and
a potential flow past a fixed cylinder. Inside the boundary layer, the velocity field is decomposed into a viscous
irrotational purely rotary flow and a boundary layer flow which is expanded as a power series of α = 2U0/Q.
This decomposition of the velocity field in the boundary layer is actually a perturbation of the purely rotary
flow with α being the perturbation parameter, which is similar to Moore’s approach. The difference is that
Moore tried to obtain a uniformly valid solution for the flow, whereas we are seeking the solution valid in the
boundary layer. Inserting this decomposition of the velocity field inside the boundary layer into the governing
equations, we obtain a new set of equations for the boundary layer flow, in which we do not drop the terms in
the order of δ/a or higher. There are significant differences between our new equations and Glauert’s boundary
layer equations. In Glauert’s study the pressure is assumed to be a constant across the boundary layer and the
momentum equation in the radial direction is not used. The direct result of this approximation by Glauert (and
Prandtl), is that the normal stress on a solid is imposed by the irrotational pressure, independent of the Reynolds
number. Viscous effects on the normal stress on a solid wall, which always exist at finite-Reynolds number, no
matter how large, are not available. In our new equations, the pressure is an unknown and the momentum
equation in the radial direction does appear. Because we have an extra unknown, an extra boundary condition
is needed and we choose to enforce the continuity of the shear stress at the outer edge of the boundary layer.
The technique to solve this new set of equations is almost the same as that used by Glauert. The power series
expansions are inserted into the new set of equations and the coefficients of different powers of α are compared,
then ordinary differential equations for the functions in the power series are obtained and solved. The inertia
terms in the momentum equations give rise to the irrotational pressure and the viscous terms lead to a viscous
pressure correction, which contributes to both drag and lift.

One of the key differences between our new boundary layer analysis and the classical boundary layer theory
of Prandtl is about the calculation of the pressure drag. In the classical boundary layer approximation, the
pressure is constant across the layer and the irrotational pressure of the outer flow is imposed on the surface
of the body. This approximation is not good enough for the purpose of the drag calculation and leads to zero
pressure drag. Lighthill (1963) remarked “Errors, due to neglecting either the pressure gradient across the layer,
or the displacement-thickness effect on U , produce a resultant pressure force (‘form drag’) comparable with
the whole viscous force on the body (’skin-friction drag’). Accordingly, such errors cannot be neglected, as
often no drag is present from other causes, the pressure forces in pure irrotational flow having zero resultant.”
Various techniques were developed to calculate the pressure drag as a patch for Prandtl’s theory. Lighthill
(1963) described these methods “To get round these difficulties, one does not in practice attempt to calculate
surface pressure more precisely, but uses a combination of arguments (Chapter X) in which drag is inferred,
from conservation of momentum for large masses of fluid, in terms of the state of the boundary layer at the
trailing edge.” Schlichting (1960) reviewed methods for the calculation of the profile drag (the sum of the friction
drag and the pressure drag) devised by Pretsch (1938) and Squire and Young (1938). These methods are tied in
with the boundary layer calculation and the drag is obtained based on the principle of momentum conservation.
Schlichting remarked about these methods “However, in order to be in a position to calculate pressure drag it
is necessary in each case to make use of certain additional empirical relations.” The method by which we treat
the drag is totally different. We solve for the pressure on the body from governing equations. The pressure drag
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is computed by direct integration of the pressure over the surface of the body, not by arguments of conservation
of the momentum.

In our new set of equations for the boundary layer flow and its boundary conditions, we assume that the
boundary layer thickness δ/a is known, then we can compute the solution. This is different from the problems
such as the Blasius’s solution, in which the boundary condition at the outer edge of the boundary layer can be
stretched to infinity and the solution is obtained without knowledge of the boundary layer thickness. We prescribe
δ/a at different values, compute the solution, then compare them to the results of numerical simulation; the
value of δ/a which leads to the best agreement with the simulation results may be viewed as a proper boundary
layer thickness. The boundary layer thickness determined in this way satisfies approximately (δ/a) ∝ (1/

√
Re)

and decreases with increasing q/U0. Comparison of our solution using the proper δ/a with the simulation results
and Glauert’s and Moore’s solutions shows that our lift and torque are in reasonable to excellent agreement with
the simulation results and the agreement for the drag is less good if the speed ratio q/U0 is not high enough. It
is also demonstrated our solution is indeed an improvement of Glauert’s solution.

18.2.2 Unapproximated governing equations

Using the polar coordinate system (r, θ), the continuity equation is

∂vr

∂r
+

vr

r
+

1
r

∂vθ

∂θ
= 0, (18.2.12)

and the momentum equations for steady flows are
(

vr
∂

∂r
+

vθ

r

∂

∂θ

)
vθ +

vrvθ

r
= − 1

rρ

∂P
∂θ

+ ν

(
∇2vθ − vθ

r2
+

2
r2

∂vr

∂θ

)
; (18.2.13)

(
vr

∂

∂r
+

vθ

r

∂

∂θ

)
vr − v2

θ

r
= −1

ρ

∂P
∂r

+ ν

(
∇2vr − vr

r2
− 2

r2

∂vθ

∂θ

)
, (18.2.14)

where

∇2 =
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2
.

18.2.3 Boundary layer approximation and Glauert’s equations

The flow may be approximated by a boundary layer near the cylinder surface and a potential flow outside.
Inside the boundary layer, we have the following estimations

vθ ∼ Q, r ∼ a,
∂

∂r
∼ 1

δ
,

∂

∂θ
∼ 1. (18.2.15)

With these estimates, the magnitude of the terms in (18.2.12) can be written as

vr

δ
+

vr

a
+

Q

a
= 0.

If we consider vr/a to be negligible compared to vr/δ, we have

vr

δ
+

Q

a
= 0 ⇒ vr ∼ Q

δ

a
, (18.2.16)

and the continuity equation may be written as

∂vr

∂r
+

1
r

∂vθ

∂θ
= 0. (18.2.17)

We estimate the magnitude of terms in equation (18.2.13):

Q2

a

(
1 + 1 +

δ

a

)
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+ ν
Q

δ2

(
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δ

a
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)
. (18.2.18)
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If we drop the terms of the order of δ/a and higher, equation (18.2.13) becomes

vr
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+
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r

∂vθ

∂θ
= − 1

rρ

∂P
∂θ

+ ν
∂2vθ

∂r2
. (18.2.19)

Now we estimate the magnitude of terms in (18.2.14):
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+

δ
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− 1

)
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ρ
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Q
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(
δ

a
+

δ2

a2
+

δ3

a3
− δ3

a3
+

δ2

a2

)
. (18.2.20)

Thus (18.2.14) becomes

v2
θ

r
=

1
ρ

∂P
∂r

, (18.2.21)

which indicates that the change of the pressure across the boundary layer is on the order of δ and the pressure
can still be assumed to be constant if δ/a is negligible (Schlichting 1960).

Now if we use x for rθ, y for r, u for vθ and v for vr, equations (18.2.17) and (18.2.19) may be written as

∂u

∂x
+

∂v

∂y
= 0, (18.2.22)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂P
∂x

+ ν
∂2u

∂y2
, (18.2.23)

which are the two-dimensional boundary layer equations used by Glauert (1957). If δ/a terms are dropped, the
irrotational rotary component of the velocity inside the boundary layer will be ignored. In reality, the boundary
layer thickness is never zero and is found to be rather large in numerical simulations. Therefore, dropping δ/a

terms can cause substantial error.

18.2.4 Decomposition of the velocity and pressure field

We propose a new solution, in which the total velocity and pressure are decomposed into two parts

vθ = upθ + uθ, vr = ur, P = pp + p (18.2.24)

where

upθ = Q
a + δ

r
, and pp = p∞ − ρ

2
(a + δ)2

r2
Q2 (18.2.25)

are the irrotational purely rotary velocity and the pressure induced by rotation. It is noted that vθ = upθ, vr = 0
and P = pp is a potential solution and is an exact solution for the unapproximated governing equations and
no-slip boundary condition.

Outside the boundary layer, the flow is irrotational and can be decomposed into two potential flows: the
irrotational purely rotary flow and the uniform flow past a circle with the radius a + δ. The velocity from the
second potential flow is

uθ = U0

[
1 +

(a + δ)2

r2

]
sinθ, ur = −U0

[
1− (a + δ)2

r2

]
cosθ. (18.2.26)

At the outer edge of the boundary layer (r = a + δ), the tangential velocity is

vθ = 2U0sinθ + Q. (18.2.27)

The total pressure at r = a + δ can be obtained from Bernoulli’s equation

P = p
′
∞ +

ρ

2
U2

0

(
1− 4sin2θ

)− 2ρU0Qsinθ − ρ

2
Q2. (18.2.28)

After subtracting pp from (18.2.28), we obtain the pressure p at r = a + δ

p = c +
ρ

2
U2

0

(
1− 4sin2θ

)− 2ρU0Qsinθ = c− ρ

2
U2

0 + ρU2
0 cos2θ − 2ρU0Qsinθ, (18.2.29)
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where c is a certain constant.

Inside the boundary layer, uθ, ur and p need to be obtained from the governing equations. We insert (18.2.24)
into the governing equations (18.2.12), (18.2.13) and (18.2.14), subtract the equations satisfied by upθ and pp,
and obtain
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+
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r
+

1
r
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∂θ
= 0, (18.2.30)
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, (18.2.31)
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. (18.2.32)

18.2.5 Solution of the boundary layer flow

We solve equations (18.2.30), (18.2.31) and (18.2.32) for uθ, ur and p. Three boundary conditions are imposed
on the velocities, uθ, ur at r = a and uθ at r = a + δ; these are the same as in Glauert’s analysis. The fourth
boundary condition is that the shear stress τBL

rθ evaluated using the boundary layer solution is equal to the
shear stress τ I

rθ evaluated using the outer irrotational flow at r = a+ δ. The four boundary conditions are listed
as follows

Q
a + δ

a
+ uθ = q at r = a; (18.2.33)

ur = 0 at r = a; (18.2.34)

Q + uθ = Q + 2U0sinθ at r = a + δ; (18.2.35)

τBL
rθ = τ I

rθ at r = a + δ. (18.2.36)

Because we are considering one single fluid, the viscosity is the same inside and outside the boundary layer.
The continuity of the shear stress (18.2.36) is equivalent to continuity of velocity gradients. Glauert’s boundary
layer equations can only give solutions with continuous velocity, but our new equations can give solutions with
continuous velocity and velocity gradients. We will use complex variables to solve the equations and (18.2.35)
is written as

uθ = Qα(−ı)eıθ at r = a + δ. (18.2.37)

Note that only the real part of the equation has physical significance.

We follow Glauert and expand the solution as a power series of α. A stream function can be written as

ψ = Q
[
αf1(r)eıθ + α2

(
f2(r)e2ıθ + g2(r)

)
. . .

]
(18.2.38)

and the velocities are
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]
, (18.2.39)

ur = −1
r

∂ψ

∂θ
= −Q

r

[
αıf1(r)eıθ + α22ıf2(r)e2ıθ + . . .

]
. (18.2.40)

The continuity equation (18.2.30) is automatically satisfied. The pressure is assumed to be

p = pc + ρQ2
[
αs1(r)eıθ + α2

(
s2(r)e2ıθ + t2(r)

)
. . .

]
, (18.2.41)

where pc is a constant.
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We evaluate τ I
rθ using the potential flow (18.2.26) and the irrotational rotary flow

τ I
rθ = − 2µQ

a + δ
+ µQα

2ı

a + δ
eıθ. (18.2.42)

From the boundary layer solutions, we obtain
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Comparing the terms in (18.2.42) and (18.2.43) linear in α, we obtain

2ı

a + δ
= f

′′
1 −

f
′
1

a + δ
+

f1

(a + δ)2
at r = a + δ. (18.2.44)

Consideration of the terms quadratic in α gives

f
′′
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1
a + δ

f
′
2 +

4
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f2 = 0 and g
′′
2 −

1
a + δ

g
′
2 = 0 at r = a + δ. (18.2.45)

In this study, one of the major objects is to determine the relation between the cylinder velocity q and the
fluid circulatory velocity Q. In the expansion of the boundary layer velocities (18.2.39) and (18.2.40), Q is used
as the fundamental parameter rather than q. As noted by Glauert, this approach is convenient for the study
of the boundary layer equations because the velocity at the outer edge of the boundary layer is completely
specified. Though Q is an unknown quantity and q is prescribed, the relationship between q and Q can be
established via (18.2.33), giving Q in terms of q. We also note that the boundary layer thickness δ appears in
the boundary conditions and it must be prescribed to obtain the solution. It can be expected that the boundary
layer thickness is a function of θ, but we are not able to determine the shape of the boundary layer. We will
assume that δ is a constant for given Re and q/U0; it may be viewed as the average boundary layer thickness.
The choice of δ has significant effects on the solution and will be discussed later.

We insert (18.2.39), (18.2.40) and (18.2.41) into (18.2.31) and (18.2.32) and compare the coefficients of
different powers of α, to obtain ordinary differential equations for f1(r), f2(r), g2(r) ... The terms linear in α

in (18.2.31) and (18.2.32) satisfy respectively
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After eliminating s1 from (18.2.46) and (18.2.47), we obtain a fourth order ordinary differential equation for f1
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where Q(a + δ)/ν is a Reynolds number and we write

k =
ν

Q(a + δ)
. (18.2.49)

The solution of (18.2.48) is

f1(r) =
c1

r
+ c2r

2−β + c3r
2+β + c4r, (18.2.50)

where c1, c2, c3 and c4 are constants to be determined by boundary conditions and

β =
√

1 +
ı

k
. (18.2.51)
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Three boundary conditions for f1 are obtained from (18.2.33), (18.2.34) and (18.2.37)

f1(a) = 0, f
′
1(a) = 0, f

′
1(a + δ) = −ı. (18.2.52)

The fourth condition is the continuity of the shear stress (18.2.44), which can be written as

ı

a + δ
= f

′′
1 +

f1

(a + δ)2
at r = a + δ. (18.2.53)

With these four boundary conditions, we can determine c1, c2, c3 and c4 and the function f1. The expression
for f1 is long and will not be shown here.

After we obtain f1(r), we can compute s1(r) using equation (18.2.46)
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r
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ζ, (18.2.54)

where
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The two parts of s1,
(
−a + δ

r
f
′
1

)
and

ν

Q
ζ come from the inertia term and viscous stress term in the momentum

equation, respectively.

Next we carry out the calculation for terms quadratic in α. As pointed out by Glauert, care should be taken
when computing product of two complex numbers A and B,

Real(A)Real(B) = Real(A(B + B)/2), (18.2.56)

where the overbar denotes a complex conjugate. We collect terms quadratic in α from (18.2.31) and they can
be divided into two groups, terms proportional to e2ıθ and terms independent of θ. The two groups of terms
satisfy the following equations, respectively
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Consideration of terms in (18.2.32) quadratic in α also yields two equations
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We can first solve g2(r) from (18.2.58), then eliminate s2(r) from (18.2.57) and (18.2.59) and solve for f2(r),
finally obtain t2(r) from (18.2.60).

Equation (18.2.58) is a third order ordinary differential equation for g2. We prescribe the stream function at
r = a to be zero, which gives the condition

g2(a) = 0. (18.2.61)

The boundary condition (18.2.37) leads to

g
′
2(a + δ) = 0. (18.2.62)

The continuity of the shear stress (18.2.45) leads to

g
′′
2 (a + δ) = 0. (18.2.63)

No condition can be applied to g
′
2(r=a), because it is only known that the surface velocity is independent

of θ. Thus we have three boundary conditions (18.2.61), (18.2.62) and (18.2.63) for the third order ordinary
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differential equation (18.2.58). Closed-form solution for g2(r) can be obtained, but it is long and tedious and
will not be shown here.

We eliminate s2 from (18.2.57) and (18.2.59) and obtain a fourth order ordinary differential equation for f2

Qı

ν

(
−1

2
f1f

′′′
1 +

1
2
f
′
1f

′′
1 −

1
2r

f1f
′′
1 +

1
2r

f
′
1f

′
1 +

1
2r2

f1f
′
1 −

1
r3

f2
1

)
=

rf
′′′′
2 + 2f

′′′
2 − 9

r
f
′′
2 +

9
r2

f
′
2 −

Q(a + δ)ı
ν

(
2
r
f
′′
2 +

2
r2

f
′
2 −

8
r3

f2

)
. (18.2.64)

Three boundary conditions for f2(r) are obtained from (18.2.33), (18.2.34) and (18.2.37)

f2(a) = 0, f
′
2(a) = 0, f

′
2(a + δ) = 0, (18.2.65)

and the fourth condition comes from the continuity of the shear stress (18.2.45)

f
′′
2 +

4
(a + δ)2

f2 = 0 at r = a + δ. (18.2.66)

Equation (18.2.64) and the boundary conditions are solved by numerical integration.

After f2(r) is obtained, we compute s2(r) using (18.2.57)
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The function s2 can be divided into two parts, the term
ν

2Q
ξ comes from the viscous stress and other terms in

s2 come from the inertia terms in the momentum equation.

The last step in the calculation of terms quadratic in α is to integrate (18.2.60) to obtain t2(r). There will be
an undetermined constant in the process of integration, which can be absorbed into the pressure constant pc.

With the functions s1 and s2, we can write the pressure as
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The pressure at the outer edge of the boundary layer is of interest, because it can be compared to the irrotational
pressure (18.2.29) at r = a + δ and the difference between them gives the pressure correction. From (18.2.52)
f
′
1(a + δ) = −ı and (18.2.65) f

′
2(a + δ) = 0, the pressure at r = a + δ is
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The real part of the above equation is

p =Real(pc) + 4ρU2
0 Real(t2)− 2ρU0Qsinθ + ρU2

0 cos2θ + ρU2
0 Real

[(
f1f

′′
1 −

ı

a + δ
f1

)
e2ıθ

]

+ 2µU0 [Real(ζ)cosθ − Imag(ζ)sinθ] + 2µ
U2

0

Q
[Real(ξ)cos2θ − Imag(ξ)sin2θ] + O(α3). (18.2.71)

Because the radial component ur of the velocity is small in the boundary layer, we may neglect f1, then
compare (18.2.71) to the irrotational pressure (18.2.29). The terms −2ρU0Qsinθ and ρU2

0 cos2θ are the same in
the two pressure expressions, and the terms proportional to µ in (18.2.71) are the extra pressure arising in the
boundary layer. This comparison demonstrates that the inertia terms in the momentum equations give rise to
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the irrotational pressure and the viscous stress terms give rise to a viscous pressure correction. In general, the
pressure correction can be expanded as a Fourier series

pv =
∞∑

m=0

[hm(r)cosmθ + jm(r)sinmθ] .

Here we determine the coefficients of sinθ, cosθ, sin2θ and cos2θ up to O(α2) terms. These coefficients may be
modified and more coefficients in the Fourier series can be obtained if calculations for O(α3) terms are carried
out. The cosθ and sinθ terms in the pressure correction contribute to the drag and lift, respectively.

Up to this point, our solutions are in terms of the fluid circulatory velocity Q. We shall solve for Q in terms of
the prescribed quantities using an iterative method. There are two prescribed dimensionless parameters in this
problem, the Reynolds number Re and the speed ratio q/U0. Our first guess of Q comes from the irrotational
purely rotary flow

Q(1) = q
a

a + δ
⇒ Q(1)

q
=

1
1 + δ/a

,

where the superscript “(1)” indicates the value for Q in the first iteration. Using Q(1)/q, the value of k is
computed in equation (18.2.49) and f1(r) is subsequently obtained. Then we solve for g2(r) from equation
(18.2.58) and obtain g

′
2. The velocity uθ at r = a is then

uθ = Q(1)α2Real[g
′
2(r = a, Q(1)/q)] + O(α3). (18.2.72)

Inserting (18.2.72) into (18.2.33), we obtain
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Real[g

′
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from which we can solve for Q(2), which is the value for Q in the second iteration. We repeat the calculation
using Q(2) to obtain the value for Q in the next iteration, until the value of Q converges.

The functions s1, f2, s2 and t2 are computed following the procedure described above and the solution of the
boundary layer equations are determined up to O(α2). We can compute the pressure and shear stress at the
cylinder surface and integrate to obtain the drag, lift and torque. The drag and lift by the pressure are

Dp =
∫

A

ex · (−P1) · er dA =
∫ 2π

0

(−P )cosθ adθ = −ρQ2αReal(s1)πa, (18.2.74)

Lp =
∫

A

ey · (−P1) · er dA =
∫ 2π

0

(−P )sinθ adθ = ρQ2αImag(s1)πa. (18.2.75)

The friction drag and lift by the shear stress are
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1 )πa. (18.2.77)

We call the readers’ attention to the fact that in our problem, the drag on the cylinder is negative if it is in the
uniform flow direction; the drag is positive if it is opposite to the uniform flow direction (see figure 18.4). The
drag and lift coefficients are defined as
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The torque is

T = −a2
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with the dimensionless torque defined as

CT =
T

2ρU2
0 a2

. (18.2.81)

In tables 18.5 – 18.10, we list the drag, lift and torque computed from our boundary layer solutions and
compare them to the results of numerical simulation for six cases, (Re, q/U0)= (200, 4), (200, 5), (400, 4), (400,
5), (400, 6) and (1000, 3). The boundary layer thickness δ/a is prescribed at different values; when the value
of δ/a falls into a certain range (highlighted in tables 18.5 – 18.10), our analysis gives rise to lift and torque in
good agreement with the simulation results. The agreement for the drag is less good, which is partly due to the
fact that the absolute value of the drag is small and the relative error is apparent. Nevertheless, good agreement
for the drag is obtained in the cases (Re, q/U0)=(400, 5) and (400, 6), which are the ones with relatively large
values of Re and q/U0 in the six cases. This indicates that the agreement for the drag becomes better as the
prescribed parameters move toward the range in which the theory is supposed to work better. Our solution for
(Re, q/U0) = (400, 6) using δ/a = 0.14 (see table 18.9) is in excellent agreement with the results of numerical
simulation .

We highlight the range of δ/a in which the lift and torque are in good agreement with the simulation results
in tables 18.5 – 18.10. We choose one value from this range (typically the median) as a proper boundary layer
thickness: δ/a = 0.25, 0.21, 0.17, 0.15, 0.14 and 0.12 for (Re, q/U0)= (200, 4), (200, 5), (400, 4), (400, 5), (400,
6) and (1000, 3), respectively. As expected, the boundary layer thickness decreases with increasing Reynolds
number and the relation (δ/a) ∝ (1/

√
Re) seems to hold when q/U0 is fixed. The boundary layer thickness also

decreases with increasing q/U0, because the rotary flow suppresses the boundary layer induced by the streaming
flow.

The choice of δ/a is vital in our calculation. If δ/a is much smaller than the proper boundary layer thickness,
the flow there cannot match the potential flow outside, which breaks the assumptions of our calculation. If δ/a

is much larger than the proper boundary layer thickness, the value of Q is small and α = 2U0/Q could be
close to 1 or even larger than 1, which makes the power series expansion of the solutions in terms of α slow to
converge or even divergent. On the other hand, there is a range of δ/a values which can lead to lift and torque
in good agreement with simulation results, because there is no clear-cut boundary layer edge physically. The
calculation is reasonably accurate when δ/a falls in this range.

We compare the drag, lift and torque given by our solution using the proper δ/a, by Glauert’s solution,
by Moore’s solution and by the numerical simulation in table 18.11. Equations (18.2.3), (18.2.4) and (18.2.7)
are used to compute the lift, drag and torque coefficients given by Glauert’s solution. Equation (18.2.10) is
used to compute the torque given by Moore’s solution; the drag and lift are not computed since Moore did
not give the necessary coefficients. The comparison demonstrates that Moore’s torque is relatively close to the
simulation results, and Glauert’s solution gives reasonable approximations for the friction drag and lift but poor
approximation for the torque. It also confirms that our solution is indeed an improvement of Glauert’s solution,
especially in the category of torque.

A key feature of this boundary layer analysis is that the variation of the pressure across the boundary layer
is obtained. We integrate the drag and lift components of the pressure over circles concentric with the cylinder
but with different radii, then CDp

and CLp
become functions of r. We compare these functions computed from

our boundary layer analysis and from numerical simulation in figures 18.5 and 18.6.

The functions CDp
(r) for three cases, Re=400 and q/U0=4, 5, and 6 are shown in figures 18.5.(a), 18.5.(b)

and 18.5.(c), respectively. Two curves computed from our boundary layer analysis using different values of δ/a

are compared to the numerical simulation for (Re, q/U0)=(400, 4) in figure 18.5.(a). The dashed line gives the
results using δ/a=0.17, which is the boundary layer thickness leading to the best fit for the lift and torque
(see table 18.7). The dashed line correctly predicts that CDp

decreases with increasing r, but the values of CDp

are not close to the results of numerical simulation. The solid line gives the results using δ/a=0.2, which are
much closer to the simulation results and correctly predict that CDp

changes sign across the boundary layer.
Figure 18.5.(b) shows the comparison for the case (Re, q/U0)=(400, 5). Again, the dashed line gives the results
from our boundary layer analysis using the value of δ/a leading to the best fit for the lift and torque (see table
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δ/a q/Q CDp CDf CD CLp CLf CL CT

0.1 1.114 -13.551 -1.388 -14.939 21.563 0.414 21.978 0.277
0.15 1.221 -5.090 -1.010 -6.100 21.303 0.587 21.891 0.328
0.2 1.409 -1.669 -0.848 -2.517 20.153 0.697 20.850 0.400
0.23 1.580 -0.620 -0.788 -1.408 18.938 0.725 19.663 0.446
0.24 1.649 -0.381 -0.770 -1.152 18.444 0.729 19.173 0.461
0.25 1.726 -0.188 -0.754 -0.942 17.907 0.729 18.636 0.476
0.26 1.812 -0.0351 -0.737 -0.772 17.329 0.727 18.056 0.490
0.27 1.907 0.0815 -0.721 -0.639 16.710 0.722 17.432 0.504
0.28 2.012 0.166 -0.704 -0.538 16.055 0.714 16.769 0.517

simulation results 0.728 -0.604 0.124 16.961 0.621 17.582 0.453

Table 18.5. The comparison of the coefficients for the drag, lift and torque with the simulation results for
Re = 200 and q/U0=4. The lift and torque computed using δ/a =0.24, 0.25 or 0.26 are in reasonable

agreement with the results of numerical simulation. The drag, especially the drag due to the pressure, does not
agree well with the simulation results. When δ/a=0.28, the value of q/Q is such that α = 2U0/Q > 1, which
makes the power series expansions of the solutions in terms of α divergent. The calculation can be performed

but cannot be expected to converge to the true result.

δ/a q/Q CDp CDf CD CLp CLf CL CT

0.1 1.114 -13.061 -1.400 -14.461 27.039 0.517 27.556 0.346
0.15 1.218 -4.157 -1.044 -5.201 27.007 0.730 27.736 0.407
0.19 1.350 -0.988 -0.928 -1.916 26.414 0.845 27.259 0.473
0.2 1.392 -0.468 -0.909 -1.377 26.164 0.866 27.029 0.490
0.21 1.437 -0.0296 -0.893 -0.922 25.870 0.883 26.752 0.507
0.22 1.486 0.337 -0.878 -0.541 25.531 0.896 26.428 0.524
0.25 1.659 1.089 -0.841 0.248 24.243 0.920 25.163 0.574
0.3 2.072 1.531 -0.779 0.752 21.111 0.903 22.014 0.650
0.35 2.804 1.318 -0.690 0.628 16.512 0.813 17.324 0.714

simulation results 0.824 -0.835 -0.0107 26.183 0.846 27.029 0.514

Table 18.6. The comparison of the coefficients for the drag, lift and torque with the simulation results for
Re = 200 and q/U0=5. The lift and torque computed using δ/a =0.2, 0.21 or 0.22 are in excellent agreement
with the results of numerical simulation. The agreement of drag, especially the drag due to the pressure, is not

good. When δ/a=0.35, α = 2U0/Q > 1, and the power series expansions of the solutions in terms of α are
divergent.

18.8). The solid line gives the results using a larger δ/a, which are in excellent agreement with the simulation
results. Figure 18.5.(c) shows the comparison for the case (Re, q/U0)=(400, 6). We plot only one curve from
the boundary layer analysis using δ/a=0.14. This value leads to not only the best fit for the lift and torque (see
table 18.9), but also excellent agreement for CDp

in 18.5.(c). This comparison demonstrates that our boundary
layer analysis can be used to compute the variation of the pressure drag across the boundary layer and the
agreement with the numerical simulation becomes better as q/U0 increases.

The functions CLp
(r) for three cases, Re=400 and q/U0=4, 5, and 6 are shown in figure 18.6. In all the

three cases, CLp computed from our boundary layer analysis are in excellent agreement with the numerical
simulation. The theory correctly predicts the variation of CLp

with r inside the boundary layer, which is a
significant improvement on the irrotational theory and the classical boundary layer theory of Prandtl. The lift
force L = ρU0Γ from the irrotational theory is a constant at any r ≥ a because the circulation is a constant.
In the classical boundary layer theory, the pressure is a constant across the boundary layer and the variation of
CLp

(r) shown in figure 18.6 cannot be obtained.
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δ/a q/Q CDp CDf CD CLp CLf CL CT

0.1 1.155 -5.629 -0.724 -6.352 21.104 0.396 21.499 0.173
0.13 1.277 -2.249 -0.610 -2.859 20.292 0.470 20.762 0.215
0.15 1.398 -1.008 -0.565 -1.572 19.357 0.498 19.855 0.246
0.16 1.472 -0.582 -0.547 -1.129 18.766 0.506 19.272 0.261
0.17 1.558 -0.258 -0.530 -0.788 18.094 0.509 18.603 0.276
0.18 1.657 -0.0178 -0.514 -0.532 17.343 0.509 17.852 0.291
0.2 1.906 0.260 -0.483 -0.223 15.613 0.497 16.110 0.318
0.23 2.466 0.316 -0.432 -0.116 12.551 0.453 13.004 0.352

simulation results 0.534 -0.451 -0.0836 17.609 0.447 18.057 0.275

Table 18.7. The comparison of the coefficients for the drag, lift and torque with the simulation results for
Re = 400 and q/U0=4. The lift and torque computed using δ/a =0.17 or 0.18 are in excellent agreement with
the results of numerical simulation. The agreement of drag, especially the drag due to the pressure, is not good.
When δ/a=0.23, α = 2U0/Q > 1, and the power series expansions of the solutions in terms of α are divergent.

δ/a q/Q CDp CDf CD CLp CLf CL CT

0.1 1.153 -4.803 -0.746 -5.550 26.670 0.491 27.187 0.215
0.13 1.266 -1.190 -0.650 -1.840 26.140 0.582 26.722 0.263
0.14 1.315 -0.457 -0.631 -1.089 25.816 0.602 26.419 0.280
0.15 1.370 0.112 -0.617 -0.504 25.420 0.618 26.038 0.297
0.16 1.431 0.548 -0.604 -0.056 24.952 0.630 25.582 0.314
0.2 1.750 1.386 -0.565 0.821 22.366 0.641 23.007 0.374
0.25 2.502 1.313 -0.493 0.820 16.923 0.577 17.500 0.440

simulation results 0.591 -0.601 -0.010 26.415 0.597 27.011 0.297

Table 18.8. The comparison of the coefficients for the drag, lift and torque with the simulation results for
Re = 400 and q/U0=5. The lift and torque computed using δ/a =0.14 or 0.15, and the drag computed using
δ/a =0.16 are in good agreement with the results of numerical simulation. When δ/a=0.25, α = 2U0/Q > 1,

and the power series expansions of the solutions in terms of α divergent.

18.2.6 Higher-order boundary layer theory

Glauert’s analysis is a first order boundary layer approximation for the flow past a rotating cylinder. Our analysis
here is intended to be an improvement of his boundary layer solution. Another possible way to improve Glauert’s
solution is the higher-order boundary layer theory based on the method of matched asymptotic expansions
(Lagerstrom and Cole 1955, Van Dyke 1962a, 1969, Maslen 1963). We discuss the differences between our
approach and the higher-order boundary layer theory.

The basic idea of the higher-order boundary layer theory is to construct outer and inner asymptotic expan-
sions, by iterating the Navier-Stokes equations about the outer solution and about the boundary layer solution,
respectively, and to match the two expansions in their overlap region of validity. Tani (1977) remarked “Higher
approximations have thus been found only for flows without separation. In such cases the first term of the outer
expansion is the inviscid irrotational flow, from which the first term of the inner expansion is determined by
Prandtl’s approximation. The second term of the outer expansion is the irrotational flow due to an apparent
source distribution representing the displacement effect of Prandtl’s boundary layer. This then determines a
correction to the boundary-layer solution, yielding the second term of the inner expansion.” The second order
corrections are terms proportional to 1/

√
Re and the third order terms are proportional to 1/Re. Since the

viscous term in the Navier-Stokes equations for the outer flow is on the order of 1/Re, the higher-order theory
needs to compute the third order corrections to account for the viscous effects of the outer flow. Van Dyke
(1969) remarked “Definite results in the literature are restricted mostly to laminar boundary layer, to steady
motion, to plane or axisymmetric flows, and to the second approximation.” We are not aware of any third
order corrections in the literature. For incompressible fluids, the first and second order terms for the outer
expansion are irrotational (Panton 1984, Tani 1977); it is not clear whether the third order term is irrotational
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δ/a q/Q CDp CDf CD CLp CLf CL CT

0.1 1.151 -3.860 -0.773 -4.633 32.48 0.585 33.06 0.256
0.12 1.216 -1.031 -0.714 -1.744 32.48 0.660 33.14 0.290
0.13 1.254 -0.0650 -0.697 -0.762 32.42 0.690 33.11 0.308

0.135 1.274 0.331 -0.691 -0.361 32.37 0.703 33.07 0.316
0.14 1.296 0.676 -0.686 -0.0105 32.31 0.714 33.03 0.325
0.145 1.317 0.975 -0.682 0.293 32.24 0.725 32.97 0.333
0.15 1.340 1.233 -0.679 0.554 32.16 0.734 32.90 0.342
0.2 1.577 2.318 -0.678 1.641 31.31 0.788 32.10 0.408

simulation results 0.668 -0.681 -0.0136 33.09 0.682 33.77 0.316

Table 18.9. The comparison of the coefficients for the drag, lift and torque with the simulation results for
Re = 400 and q/U0=6. The drag, lift and torque computed using δ/a = 0.14 are in excellent agreement with
the results of numerical simulation. The calculation is reasonable accurate in the range 0.135 ≤ δ/a ≤ 0.145.

δ/a q/Q CDp CDf CD CLp CLf CL CT

0.08 1.217 -3.185 -0.362 -3.547 14.72 0.220 14.94 0.0801
0.1 1.418 -1.509 -0.310 -1.819 13.20 0.237 13.44 0.106

0.12 1.755 -0.755 -0.273 -1.028 11.08 0.232 11.31 0.130

simulation results 0.213 -0.197 0.0155 10.41 0.192 10.60 0.118

Table 18.10. The comparison of the coefficients for the drag, lift and torque with the simulation results for
Re = 1000 and q/U0=3. The lift and torque computed using δ/a = 0.1 or 0.12 are close to the results of

numerical simulation. However, it should be noted that α = 1.17 > 1 when δ/a = 0.12 and the power series
expansions of the solutions in terms of α divergent. This is caused by the relatively low value of the speed ratio

q/U0 = 3. If Glauert’s solution is used for this case, α = 1.064 and Glauert’s solution also diverges.

or not. Suppose the outer flow is irrotational at all orders and the fluid is incompressible, the viscous term
µ∇2u disappears identically, which indicates that the viscous effects of the outer potential flow do not enter the
higher-order boundary layer theory if only velocity is matched but stress is not considered. Suppose the third
order term for the outer flow is rotational, the viscous term is then proportional to 1/Re, which should give
viscous effects to the inner solution at the third order.

Our new approach to boundary layer flow is different from the higher-order boundary layer theory and is
not based on method of matched asymptotic expansions. The matching conditions at the outer edge of the
boundary layer are for the velocity in higher-order boundary layer theory; shear stress has not been considered.
We enforce the continuity of the shear stress at the outer edge of the boundary layer. Because we are considering
one single fluid, the viscosity is the same inside and outside the boundary layer. The continuity of the shear
stress is equivalent to continuity of velocity gradients. Since the velocity gradients for the outer flow are of order
1, our approach is not the same as the third order corrections of the higher-order boundary theory.

Glauert’s analysis is a first order boundary layer approximation. He ignored the irrotational rotary flow
component of the flow in the boundary layer, which is justifiable because the irrotational rotary flow is a
second order effect in the boundary layer. The torque coefficient by Glauert is on the order of 1/

√
Re, and the

torque coefficient in a purely irrotational rotary flow (without forward flow) is on the order of 1/Re. However,
numerical simulation shows that the higher order correction is not negligible in this case. When Re = 400 and
q/U0 = 6, the torque coefficient by Glauert is only 40% of the result of numerical simulation. It is conceivable
that higher-order boundary layer theory using the method of matched asymptotic expansions can be applied to
this problem and yield corrections for Glauert’s solution; but this has not been done. Our analysis is compared
to the numerical simulation and good to excellent agreement is observed. Admittedly, the outer flow in our
analysis is a first order approximation and can be improved by higher order corrections.

The pressure across the boundary layer can no longer be taken as a constant in higher-order theory. On a
curved wall centrifugal force produces a pressure gradient across the boundary layer, which is a second-order
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solution Re q/U0 α CDp CDf CD CLp CLf CL CT

Numerical simulation 200 4 - 0.728 -0.604 0.124 16.961 0.621 17.582 0.453
This work 200 4 0.863 -0.188 -0.754 -0.942 17.907 0.729 18.636 0.476

Glauert’s solution 200 4 0.625 0 -0.795 -0.795 20.102 0.795 20.897 0.215
Moore’s solution 200 4 - - - - - - - 0.408

Numerical simulation 200 5 - 0.824 -0.835 -0.0107 26.183 0.846 27.029 0.514
This work 200 5 0.575 -0.0296 -0.893 -0.922 25.870 0.883 26.752 0.507

Glauert’s solution 200 5 0.457 0 -0.929 -0.929 27.483 0.929 28.412 0.195
Moore’s solution 200 5 - - - - - - - 0.440

Numerical simulation 400 4 - 0.534 -0.451 -0.0836 17.609 0.447 18.057 0.275
This work 400 4 0.779 -0.258 -0.530 -0.788 18.094 0.509 18.603 0.277

Glauert’s solution 400 4 0.625 0 -0.562 -0.562 20.102 0.562 20.664 0.152
Moore’s solution 400 4 - - - - - - - 0.237

Numerical simulation 400 5 - 0.591 -0.601 -0.010 26.415 0.597 27.011 0.297
This work 400 5 0.548 0.112 -0.617 -0.504 25.420 0.618 26.038 0.297

Glauert’s solution 400 5 0.457 0 -0.657 -0.657 27.483 0.657 28.140 0.138
Moore’s solution 400 5 - - - - - - - 0.246

Numerical simulation 400 6 - 0.668 -0.681 -0.0136 33.09 0.682 33.77 0.316
This work 400 6 0.432 0.676 -0.686 -0.0105 32.31 0.714 33.03 0.325

Glauert’s solution 400 6 0.365 0 -0.736 -0.736 34.46 0.736 35.20 0.126
Moore’s solution 400 6 - - - - - - - 0.263

Numerical simulation 1000 3 - 0.213 -0.197 0.0155 10.41 0.192 10.60 0.118
This work 1000 3 1.17 -0.755 -0.273 -1.028 11.08 0.232 11.31 0.130

Glauert’s solution 1000 3 1.06 0 -0.273 -0.273 11.81 0.273 12.08 0.108
Moore’s solution 1000 3 - - - - - - - 0.131

Table 18.11. The comparison of the solution in this work, using δ/a=0.25, 0.21, 0.17, 0.15, 0.14 and 0.12 for
(Re, q/U0)= (200, 4), (200, 5), (400, 4), (400, 5), (400, 6) and (1000, 3) respectively, with the simulation

results and Glauert’s and Moore’s solutions. Note that in our problem, the drag on the cylinder is negative if it
is in the uniform flow direction; the drag is positive if it is opposite to the uniform flow direction (see figure

18.4). We call the readers’ attention to the fact that α > 1 in our solution and in Glauert’s solution when (Re,
q/U0) = (1000, 3); the solutions are not expected to converge to the true results.

effect. Van Dyke (1969) inserted the irrotational surface speed with a correction due to the surface curvature
into Bernoulli’s equation for the external flow to compute the pressure at the outer edge of the boundary layer
and it has no viscous terms. The pressure inside the boundary layer can be computed using this condition and
the equation

∂p2

∂n
= κu2

1, (18.2.82)

where p2 is the second order correction for the pressure, n is normal to the surface, κ is the surface curvature and
u1 is the first order velocity from Prandtl’s boundary layer theory. Because u1 has viscous terms, the pressure at
the wall computed from (18.2.82) should have viscous terms. But in the applications of the higher-order theory
to problems of leading edges and parabola in uniform stream by Van Dyke (1962b, 1964), the second order
correction for the pressure was not computed; the drag is computed only using skin friction and the pressure is
not considered.

In summary, the higher-order boundary layer theory has not yet been applied to determine (1) the effect of
the viscous dissipation of the outer irrotational flow; (2) the effect generated by a mismatch between the shear
stress at the effective edge of the boundary layer and the irrotational shear stress there; (3) the drag and lift on
the body due to normal stress associated with the viscous contribution to the pressure.

The numerical simulations show that the region in which the vortical effects are important is thick around
the rotating cylinder. For example, the thickness of the vortical region determined using a 1% of the maximum
vorticity magnitude criterion is 26% of the cylinder radius for Re = 400 and q/U0 = 5. The higher-order
boundary layer theory might encounter difficulty when treating such problems. Weinbaum, Kolansky, Gluckman
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Fig. 18.5. Comparison of the coefficient for the pressure drag CDp as a function of the radial position. (a) Re=400,
q/U0=4. Our boundary layer analysis: dashed line – using δ/a = 0.17; solid line – using δ/a = 0.2. The results of
numerical simulation: 2. (b) Re=400, q/U0=5. Our boundary layer analysis: dashed line – using δ/a = 0.15; solid
line – using δ/a = 0.16. The results of numerical simulation: 2. (c) Re=400, q/U0=6. Our boundary layer analysis
usingδ/a = 0.14: solid line. The results of numerical simulation: 2. CDp from our boundary layer analysis can only be
computed inside the boundary layer: a ≤ r ≤ a + δ; CDp from numerical simulation is plotted up to r = 2a.

and Pfeffer (1976) proposed an approximate method, which is not based on asymptotic analysis, to improve
Prandtl’s boundary layer theory. They focused on flows with the Reynolds number range O(1) < Re < O(102),
where the boundary layer is thick and a steady laminar wake is present. They remarked “It is not surprising
in view of the large changes in effective body shape which the external inviscid flow must experience at these
Reynolds numbers that a theory of successive approximation which is based on the potential flow past the
original body shape will converge very slowly. This would appear to be the basic difficulty encountered in
extending the results of second-order boundary-layer theory (Van Dyke 1962) to flows with Reynolds numbers
less than about 103.” The method of Weinbaum et al. is based on a pressure hypothesis which enables one to
take account of the displacement interaction and centrifugal effects in thick boundary layers using conventional
first-order boundary layer equations. Weinbaum et al. neglected the viscous term in the pressure which we have
mentioned in the discussion of equation (18.2.82). They solved the momentum integral of the boundary layer
equations using the fourth-order Pohlhausen profile to obtain the displacement thickness. They treated the
flows past parabolic and circular cylinders and obtained results in excellent agreement with numerical Navier-
Stokes solutions. The method of Weinbaum et al. shares the common feature with ours that the boundary layer
thickness has to be taken into account in the solution. However, like the higher-order boundary layer theory, the
method of Weinbaum et al. does not consider the shear stress discrepancy at the effective edge of the boundary
layer, or the viscous contribution to the pressure.

18.2.7 Discussion and conclusion

The dependence of the lift on Re and q/U0 is a key problem in the study of the flow past a rotating cylinder.
Our work here and numerical simulations (Mittal and Kumar 2003, Padrino and Joseph 2006) show clearly
that the lift force increases with increasing q/U0; the major contribution to the lift is from the pressure and the
friction lift is much smaller than the pressure lift. The numerical simulation results show that the influence of
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the Reynolds number on the pressure lift is small; the friction lift seems to decrease with increasing Reynolds
number (table 18.11). Glauert’s prediction that the pressure lift is independent of Re, is a good approximation
to the results of numerical simulation; our solution which considers the viscous effects on the pressure is in even
better agreement with the results of numerical simulation. Kang, Choi and Lee (1999) simulated the flows with
Re=40, 60, 100 and 160 and q/U0 between 0 and 2.5. The temporal-averaged values of pressure lift, pressure
drag, friction lift and friction drag, computed after the flow becomes fully developed, were presented in their
paper. They showed that the friction lift decreases with increasing Re and the pressure lift is nearly independent
of Re. These results are consistent with Padrino and Joseph (2004) and our work, despite the fact that most of
the flows studied by Kang, Choi and Lee (1999) do not satisfy the assumptions that the separation is suppressed
and steady state solution exists.

The dependence of the drag on Re and q/U0 is more complicated than the lift. Mittal and Kumar (2003)
simulated the flows with Re=200 and q/U0 between 0 and 5; they presented the total drag coefficients CD

for the fully developed flows. The results show that when q/U0 < 1.91, the flow is unsteady and the drag is
oscillating; but the drag on the cylinder is always in the direction of the uniform flow. When 2 < q/U0 < 4.34
or 4.75 < q/U0 < 5, separation is suppressed and steady state drag coefficients are obtained. The magnitude of
CD decreases with q/U0 first, from about 0.3 at q/U0 = 2 to about 0 at q/U0 = 3.25. If q/U0 is higher than
3.25, the magnitude of CD is very close to zero; CD could be slightly positive or negative. Kang, Choi and
Lee (1999) presented the temporal-averaged values for the total drag, pressure drag and friction drag. They
showed that the magnitude of the total drag decreases with increasing q/U0 but the total drag is in the same
direction as the uniform flow for all the flows they studied. The magnitude of the pressure drag also decreases
with increasing q/U0; when 0 < q/U0 < 2, the pressure drag is in the same direction as the uniform flow but
when q/U0 = 2.5, the pressure drag becomes opposite to the uniform flow. Similar results were obtained by
Padrino and Joseph (2004), who showed that the pressure drag is opposite to the uniform flow for q/U0=3, 4,
5, 6 and it is in competition with the friction drag, resulting in a total drag which is close to zero (see tables
18.5 – 18.10). The reason for the pressure drag to become opposite to the uniform flow is not understood.

The pressure drag is a viscous effect. It cannot be studied using the classical boundary layer theory, in which
the irrotational pressure is imposed on the solid. Our boundary layer solution is able to give a pressure drag.
The agreement between this pressure drag and the result of numerical simulation depends on the choice of the
boundary layer thickness in our calculation. When q/U0 is not high enough (q/U0=4 or 5), it seems that the
value of δ/a which gives rise to a good agreement for the pressure drag is larger than the value of δ/a which
leads to good agreements for the lift and torque (see tables 18.5 – 18.8 and figure 18.5). In the case (Re, q/U0) =
(400, 6), we can find a single value of δ/a which leads to good agreement for all the three quantities lift, torque
and drag (see table 18.9), demonstrating that the agreement between our solution and numerical simulation
becomes better as q/U0 increases.

We presented a comprehensive comparison for the drag, lift and torque on the cylinder given by our solution,
by Glauert’s (1957) solution, by Moore’s solution (1957) and by the numerical simulation. The comparison
demonstrates that Moore’s torque is relatively close to the simulation results, and Glauert’s solution gives
reasonable approximations for the friction drag and lift but poor approximation for the torque. Our solution
gives the best approximation to the numerical simulation when the value of δ/a is chosen to fit the numerical
data. We also compared the profiles of the pressure drag and lift inside the boundary layer given by our solution
and given by numerical simulation. The agreement of the lift profile is good (figure 18.6); the agreement of the
drag profile is less good for small values of q/U0 but improves as q/U0 increases (figure 18.5). Such profiles
are not available in Prandtl’s boundary layer theory, in which the pressure is equal to the irrotational pressure
throughout the boundary layer.

The accuracy of our solution is mainly affected by the values of α = 2U0/q and δ/a. Since we only carried
out the calculation up to terms quadratic in α, the solution can be accurate only when α is very small. From
table 18.11, one can see that the smallest value of α corresponds to (Re, q/U0)=(400, 6); other values of α in
our work are all larger than 0.5. This is one of the reasons why the agreement between our solution and the
numerical simulation is best for the case (Re, q/U0)=(400, 6). The boundary layer thickness depends on the
azimuthal angle θ, but we are not able to determine this dependence. We assume that δ is a constant for given
Re and q/U0 and the value of δ/a used in our calculation may be viewed as an average boundary layer thickness.
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Numerical simulation will be used to determine δ/a at different azimuthal angle using the criterion that the
vorticity magnitude at r = a+δ is approximately 1% of the maximum magnitude of the vorticity field. Plots for
δ/a as a function of θ will be shown in figure 18.14 in Section 18.3. The figure shows that the deviation of δ/a

from its average is large when Re or q/U0 is small, and the deviation is small when Re and q/U0 is large. This
result may explain why the agreement between our solution and numerical simulation becomes better when Re

and q/U0 increases.

The problem confronted in this work is that there is no precise end to the boundary layer although most of
the vorticity is confined to a region near to the spinning cylinder when the ratio of cylinder rotating speed to
uniform stream speed q/U0 is large. We have addressed this problem using the idea of an effective boundary layer
thickness, which is determined by matching with the results of numerical simulation. The thickness depends on
the choice of the quantities for the matching. We are able to match lift, drag, and torque from our boundary
layer analysis for large values of q/U0 and Re. In Section 18.1, an effective boundary layer thickness was found
which gave rise to reasonable matching for the pressure lift and torque on the cylinder computed from a simple
modification of Glauert’s solution (1957), and for the pressure drag computed from the method of viscous
correction of viscous potential flow (VCVPF). The values of the effective thickness in Section 18.1 are about
1/2 or 1/3 of the values in this section. A method to determine the boundary layer thickness without the aid
of numerical simulation needs to be developed.

18.3 Numerical study of the steady state uniform flow past a rotating cylinder

Results from the numerical simulation of the two-dimensional incompressible unsteady Navier-Stokes equations
for streaming flow past a rotating circular cylinder are presented in this section. The numerical solution of the
equations of motion is conducted with a commercial computational fluid dynamics package which discretizes
the equations applying the control volume method. The numerical setup is validated by comparing results for
a Reynolds number based on the free stream of Re = 200 and dimensionless peripheral speed of q̃ = 3, 4 and
5 with results from the literature. After the validation stage, various pairs of Re and q̃ are specified in order to
carry out the numerical experiments. These values are Re = 200 with q̃ = 4 and 5; Re = 400 with q̃ = 4, 5 and
6, and Re = 1000 with q̃ = 3. In all these cases, gentle convergence to fully developed steady state is reached.
From the numerical vorticity distribution, the position of the outer edge of the vortical region is determined as
a function of the angular coordinate. This position is found by means of a reasonable criterion set to define the
outmost curve around the cylinder where the vorticity magnitude reaches a certain cut off value. By considering
the average value of this profile, a uniform vortical region thickness is specified for every pair of Re and q̃.

18.3.1 Introduction

Two aspects have drawn attention from researchers with respect to streaming flow past a rotating circular
cylinder. The first aspect is the observation that the spinning action is able to suppress the separation of the
boundary layer around the cylinder as well as to avoid vortex shedding from the surface of the cylinder while
reaching steady state when a critical dimensionless velocity is achieved. This threshold has been reported to be a
function of the Reynolds number of the free stream. The second aspect is the lift generated on the cylinder by the
surrounding fluid, also named as the Magnus effect. Prandtl’s famous limiting value of the lift force generated
by a rotating circular cylinder has encountered contradictory evidence from theoretical studies, experiments
and computations (e.g., Glauert 1957; Tokumaru & Dimotakis 1993; Mittal & Kumar 2001), thus making this
problem even more attractive as the subject for improved numerical methods and experimental techniques.

The literature reveals that two relevant parameters are usually specified to describe the problem, namely,
the Reynolds number Re = 2U0a/ν, based on the free stream velocity U0, the diameter of the cylinder 2a
and fluid kinematic viscosity ν, and the dimensionless peripheral velocity q̃, defined as the ratio of the velocity
magnitude at the surface of the cylinder to the free stream velocity. From the point of view of the numerical
simulations, setting the appropriate range for these parameters is a delicate task on which part of the success
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of the numerical work relies. Another feature is the choice of the form of the governing equations to solve.
For a two-dimensional problem, the vorticity and stream function form of the Navier-Stokes equations is the
preferred option. However, some researchers have carried out their numerical work with the equations of motion
written in terms of the primitive variables, velocity and pressure. Ingham (1983) obtained numerical solutions
of the two-dimensional steady incompressible Navier-Stokes equations in terms of vorticity and stream function
using finite differences for flow past a rotating circular cylinder for Reynolds numbers Re = 5 and 20 and
dimensionless peripheral velocity q̃ between 0 and 0.5. Solving the same form of the governing equations but
expanding the range for q̃, Ingham & Tang (1990) showed numerical results for Re = 5 and 20 and 0 6 q̃ 6 3.
With a substantial increase in Re, Badr et al. (1990) studied the unsteady two-dimensional flow past a circular
cylinder which translates and rotates starting impulsively from rest both numerically and experimentally for
103 6 Re 6 104 and 0.5 6 q̃ 6 3. They solved the unsteady equations of motion in terms of vorticity and
stream function. The agreement between numerical and experimental results was good except for the highest
rotational velocity where they observed three-dimensional and turbulence effects. Choosing a moderate interval
for Re, Tang & Ingham (1991) followed with numerical solutions of the steady two-dimensional incompressible
equations of motion for Re = 60 and 100 and 0 6 q̃ 6 1. They employed a scheme that avoids the difficulties
regarding the boundary conditions far from the cylinder.

Considering a moderate constant Re = 100, Chew, Cheng & Luo (1995) further expanded the interval for the
dimensionless peripheral velocity q̃, such that 0 6 q̃ 6 6. They used a vorticity stream function formulation of
the incompressible Navier-Stokes equations. The numerical method consisted of a hybrid vortex scheme, where
the time integration is split into two fractional steps, namely, pure diffusion and convection. They separated
the domain into two regions: the region close to the cylinder where viscous effects are important and the
outer region where viscous effects are neglected and potential flow is assumed. Using the expression for the
boundary layer thickness for flow past a flat plate, they estimated the thickness of the inner region. Their
results indicated a critical value for q̃ about 2 where vortex shedding ceases and the lift and the drag coefficients
tend to asymptotic values. Nair, Sengupta & Chauhan (1998) expanded their choices for the Reynolds number
by selecting a moderate Re = 200 with q̃ = 0.5 and 1 and two relatively high values of Re = 1000 and Re =
3800, with q̃ = 3 and q̃ = 2, respectively. They performed the numerical study of flow past a translating and
rotating circular cylinder solving the two-dimensional unsteady Navier-Stokes equations in terms of vorticity
and stream function using a third-order upwind scheme. Kang, Choi & Lee (1999) followed with the numerical
solution of the unsteady governing equations in the primitive variables velocity and pressure for flows with Re =
60, 100 and 160 with 0 6 q̃ 6 2.5. Their results showed that vortex shedding vanishes when q̃ increases beyond
a critical value which follows a logarithmic dependence on the Reynolds number (e.g., the critical dimensionless
peripheral velocity q̃ = 1.9 for Re = 160).

Chou (2000) worked on the ground of high Reynolds numbers by presenting a numerical study that in-
cluded computations falling into two categories: q̃ 6 3 with Re = 103 and q̃ 6 2 with Re = 104. Chou solved
the unsteady two-dimensional incompressible Navier-Stokes equations written in terms of vorticity and stream
function. In contrast, the recent work of Mittal & Kumar (2003) performed a comprehensive numerical investi-
gation by fixing a moderate value of Re = 200 while considering a wide interval for the dimensionless peripheral
velocity of 0 6 q̃ 6 5. They used the finite element method to solve the unsteady incompressible Navier-Stokes
equations in two-dimensions for the primitive variables velocity and pressure. They observed vortex shedding
for q̃ < 1.91. Steady state fully developed flow was achieved for higher rotation rates except for the narrow
region 4.34 < q̃ < 4.8 where vortex shedding was again reported, perhaps, for the first time. This literature
survey indicates that researchers have favored moderate Reynolds numbers Re 6 200 in order to keep the
turbulence effects away and to prevent the appearance of non-physical features in their numerical results. For
similar reasons, the peripheral speed have been chosen such that q̃ 6 3 in the most of the cases, whereas few
researchers have simulated beyond this value, with q̃ = 6 as an upper bound.

Many studies have been devoted to the numerical simulation of this type of fluid motion to address the
problem of presence or suppression of separation and vortex shedding. However, rather less attention has been
paid to the application of numerical results to delimit and describe the region around the cylinder where vorticity
effects are far from negligible. This fluid zone is named as the vortical region. Once this region is delimited, the
evaluation of theoretical boundary layer-type solutions is feasible. When Re and q̃ are not so high, say Re <
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1000 and q̃ < 5, the vortical region can be relatively thick, so the classical thin boundary layer analysis may not
work with acceptable accuracy; nevertheless, there is still an identifiable region where the effects of vorticity are
significant. Outside this region, the potential flow theory for flow past a circular cylinder with circulation may
be applied.

This section concerns two main objectives: The first objective is to simulate numerically the steady state
limit of the flow past a rotating circular cylinder. The second objective is to bound the region around the
rotating cylinder where the vorticity effects are mostly confined. The numerical results presented in this section
are intended to test the validity of the theoretical approaches of sections 18.1 and 18.2. A value for an effective,
uniform thickness of the vortical region needs to be prescribed in these models. The flow field obtained from
numerical analysis represents reliable data that can be utilized to estimate the limits of the vortical region. The
numerical simulations are performed by solving the two-dimensional incompressible unsteady Navier-Stokes
equations utilizing the commercial package Fluentr 6.1. Tests of mesh refinement were used to select the size of
the computational domain and mesh structure. Validation of the numerical setup is performed comparing our
results with those from the literature for three cases.

Next, the velocity and pressure fields are computed for Reynolds numbers based on the free stream velocity
Re = 200 and 400, with dimensionless peripheral velocity q̃ = 4, 5 and 6. Results for Re = 1000 with q̃ = 3
are also considered. The drag and lift coefficients on the rotating cylinder are presented. From the numerical
vorticity distribution in the fluid domain, the position of the outer edge of the vortical region is determined as
a function of the angular coordinate. This position is found by means of a reasonable criterion set to define the
outmost curve around the cylinder where the vorticity magnitude reaches a certain cut off value. By considering
the average value of this profile, a uniform vortical region thickness is specified for every pair of Re and q̃.
The selection of this cut off value is somewhat arbitrary and moderate changes in this parameter may yield
significant changes in the extension of the vortical region. This feature motivates the introduction of an effective
vortical region thickness, which represents an alternative approach to define the position of the outer edge of
the vortical region. The theoretical approach in section 18.1 and the numerical results are utilized to determine
two different values of the effective vortical region thickness. Exhaustive comparisons have been presented and
discussed in section 18.1 and 18.2.

18.3.2 Numerical features

The two-dimensional unsteady incompressible Navier-Stokes equations are the governing expressions for the
problem at hand. In dimensionless form, these equations can be written as:

∂ũ
∂t̃

+ ũ · ∇ũ = −∇p̃ +
1

Re
∇2ũ, (18.3.1)

and

∇ · ũ = 0, (18.3.2)

on a domain Φ with boundaries Λ and subject to appropriate boundary conditions. The symbol “∼” designates
dimensionless variables. Unless otherwise noted, the following scales are considered to make the equations
dimensionless:

[ length, velocity, time, pressure ] ≡
[

2a, U0,
2a

U0
, ρU2

0

]
. (18.3.3)

Three relevant parameters computed from the velocity and pressure fields are the drag, lift and torque
coefficients, which represent dimensionless expressions of the forces and torque that the fluid produces on the
circular cylinder. These are defined, respectively, as follows:

CD =
D

ρU2
0 a

, CL =
L

ρU2
0 a

, CT =
T

2ρU2
0 a2

, (18.3.4)

where D is the drag force, L is the lift force and T is the torque with respect to the center of the cylinder.
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The numerical solution of the governing system of partial differential equations is carried out through the
computational fluid dynamics package Fluentr 6.1. This computer program applies a control-volume method to
integrate the equations of motion, constructing a set of discrete algebraic equations with conservative properties.
The segregated numerical scheme, which solves the discretized governing equations sequentially, is selected. An
implicit scheme is applied to obtain the discretized system of equations. The sequence updates the velocity
field through the solution of the momentum equations using known values for pressure and velocity. Then, it
solves a “Poisson-type ” pressure correction equation obtained by combining the continuity and momentum
equations. A Quadratic Upwind Interpolation for Convective Kinematics (QUICK) scheme is used to discretize
the convective term in the momentum equations. Pressure-Implicit with Splitting of Operators (PISO) is selected
as the pressure-velocity coupling scheme. Finally, the time integration of the unsteady momentum equations is
performed using a second order approximation.

Although from a mathematical point of view the problem set-up imposes boundary conditions at infinity,
the numerical approach necessarily considers a finite computational domain. Hence, there is an outer boundary
where inflow and outflow boundary conditions should be applied. Figure 18.7 shows the computational domain
and the reference frames selected for this study. We use a modified O-type mesh similar to the one adopted
by Kang et al. (1999). Other mesh types reported in the literature are the C-type mesh referred by Kang et
al. (1999) and the square-type mesh used by Mittal & Kumar (2003) in their finite elements computations. An
O-type mesh is expected to save computational effort as compared with a C-type mesh or a square mesh with
sides of length H/a. In this study, the domain is partially delimited by two arcs of a circle, one upstream of
the cylinder and the other one downstream, and both have the same radius H. The dimensionless radius of the
upstream and downstream arcs is determined as H̃ ≡ H/2a.

The boundary conditions applied in this investigation can be described as follows: The left arc Λ1 (Figure
18.7) is the inflow section or upstream section, where a Dirichlet-type boundary condition for the cartesian
velocity components, ũ = 1 and ṽ = 0 is prescribed, i.e., the free stream velocity is imposed. The right arc
Λ2 represents the outflow boundary, where it is considered that the diffusion flux in the direction normal to
the exit surface is zero for all variables. Therefore, extrapolation from inside the computational domain is used
to compute the flow variables at the outflow plane, which do not influence the upstream conditions.‡ On the
straight horizontal segments Λ+

3 and Λ−3 a zero normal velocity and a zero normal gradient of all variables are
prescribed. As a consequence, a zero shear stress condition is imposed at these two boundaries. These relatively
short segments are two chords in a circle of radius H, parallel to the horizontal x axis and are symmetric with
respect to the vertical y axis. The sectors of the circle that contain these segments have a span of 10◦ each. The
inclusion of these segments defines a transition region between the inlet and outlet sections, and can be thought
to be the adaptation to an O-type mesh of the zero-shear-stress upper and lower boundaries, parallel to the free
stream, that Mittal & Kumar (2003) used in their domain. Finally, the dimensionless peripheral or tangential
velocity q̃ is prescribed on the surface of the rotating cylinder along with a no-slip boundary condition. The
cylinder rotates in the counter-clockwise direction.

As initial condition in this numerical investigation the values given to the velocity components at the inflow
section are extended over the interior of the computational domain. Since we are focused on the fully developed
flow, as Kang et al. (1999) pointed out, the simulations may be started with arbitrary initial conditions. They
performed a numerical study with different initial conditions, including the impulsive start-up, for Re = 100
and q̃ = 1.0 and the same fully developed response of the flow motion was eventually reached in all the
cases. In contrast, solving the steady version of the Navier-Stokes equations may yield multiple numerical
solutions, depending on the given Re and q̃ and the initial guess used to start the computations, as was
demonstrated from simulations carried out by Mittal & Kumar (2003). Keeping the unsteady term in the
equations of motion prevents the occurrence of unrealistic predictions and permits to acknowledge and describe
the unsteady behavior, which is a major feature of the process of vortex shedding, when it occurs. For instance,
Tang & Ingham (1991) dropped the unsteady term of the Navier-Stokes equations and found steady state
solutions for Re = 60 and 100 and 0 6 q̃ 6 1 where experimental and numerical evidence indicates that
unsteady periodic flow takes place (e.g., Kang et al. 1999). The study of fully developed flows, where a periodic

‡ The reader is referred to the Fluentr 6.1’s User’s Guide for details about the numerical schemes and boundary conditions used
by the package.
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Mesh Nodes Cells Na H̃ h̃a ∆t̃
×10−3

M50 22,080 21,920 160 50 2.50 0.02
M75 24,160 24,000 160 75 2.50 0.02
M100 25,760 25,600 160 100 2.50 0.02
M125 26,880 26,720 160 125 2.50 0.01/0.02
M150 28,000 27,840 160 150 2.50 0.02
M175 29,120 28,960 160 175 2.50 0.02
M125b 50,820 50,600 220 125 1.25 0.01

Table 18.12. Properties of the meshes considered in the numerical simulations.

unsteady state prevails, lies beyond the scope of this work. Here, the numerical experiments are focused on the
steady state (i.e., fully developed non-periodic) flow motion.

In order to find a suitable position for the outer boundary, such that it appropriately approximates the
real condition far from the surface of the rotating cylinder, different values of the H̃ parameter are considered
ranging from 50 to 175 with increments of 25 units. For these grid sizes, a numerical study is performed for
Re =400 and q̃ =5 and Re =1000 and q̃ =3 to determine the variation of the lift, drag and torque coefficients
with the parameter H̃ (Figure 18.8). From this figure it is clear that beyond H̃ =75 the coefficients show an
asymptotic behavior; then, it is selected H̃ =125 as the fixed radial position of the upstream and downstream
arcs of circle of the outer boundary. This analysis is carried out with a dimensionless time step of ∆t̃=0.02. This
time step was chosen in agreement with Kang et al. (1999), while Mittal & Kumar (2003) used a dimensionless
time step of 0.0125. Since the segregated method selected from the solver is implicit, no dependency on the
time step occurs in terms of numerical stability. With respect to the spatial step size, we assign the same value
recommended by Mittal & Kumar (2003) for the thickness or radial step size of the first layer of cells (i.e.,
cells attached to the wall), h̃a=0.0025. A very fine mesh is used around the cylinder, with the size of the cells
gradually increasing as the distance from the wall becomes larger. Following the approach of Chew et al. (1995),
a rough calculation using the Blasius solution for the boundary layer thickness δ̃ for flow past a flat plate but
with the Reynolds number based on the peripheral velocity of the cylinder (i.e., δ̃ ∼ (π/q̃Re)1/2) indicates that
this choice of the radial-spatial step size provides a good resolution of the boundary layer thickness. Table 18.12
gives the parameters defining the various meshes considered in this analysis; Na is the number of nodes in the
circumferential direction. Tests of the sensitivity of simulation results to mesh refinement were carried out using
the meshes designated as M125 (lower ∆t̃) and M125b in Table 18.12 for Re = 400 and q̃= 5 and Re = 1000 and
q̃ = 3. The lift and torque coefficients do not change much under mesh refinement but the drag coefficient does
change. The changes in the drag coefficient seem relatively large because the coefficients are small, one or more
orders of magnitude lower than the lift and torque coefficients (see Table 18.15). This issue is also addressed
in the next section. As a result of this systematic study, the mesh M125 from Table 18.12 with ∆t̃ = 0.02 was
selected for our numerical experiments. All the results presented in the forthcoming sections are computed using
this mesh and time step. Figure 18.9 shows the structure of a typical mesh (for H̃ = 125, mesh M125) which is
more refined near the wall.

18.3.3 Results and dicussion

In this section we present the numerical results for streaming flow past a rotating circular cylinder for various
Re and q̃. First, we validate our numerical setup by comparing results for selected cases with those from a
previous publication. Then, the streamlines and vorticity contours are plotted and discussed. Next, the shape
and extension of the vortical region around the rotating cylinder is addressed based on the vorticity field obtained
from the numerical experiments. The prediction of the outer edge of the vortical region is accomplished imposing
a cut off value such that the magnitude of the vorticity at this position approximates this critical value. The
outmost curve that satisfy this criterion is found. We also present the drag and lift coefficients on the rotating
cylinder as computed from the numerical simulations.
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Re q̃ Present study Mittal & Kumar
CL CD CL CD

200 3 -10.3400 0.0123 -10.3660 0.0350
200 4 -17.5820 -0.1240 -17.5980 -0.0550
200 5 -27.0287 0.0107 -27.0550 0.1680

Table 18.13. Comparison between the lift and drag coefficients acting on the surface of the rotating cylinder,
CL and CD, computed in the present study with the results of Mittal & Kumar (2003).

18.3.3.1 Validation of the numerical approach

The first step is to validate the problem setup, the choice of numerical methods and mesh attributes by comparing
results from our numerical simulations with results obtained from the literature, provided the same conditions
are imposed. This comparison is performed with the numerical results of Mittal & Kumar (2003) for Re =
200 with q̃ = 4 and 5 under the steady state condition. The outcomes included in the comparison are the lift
and drag coefficients as defined in (18.3.4) as well as the dimensionless vorticity and pressure coefficient on
the surface of the rotating circular cylinder. The dimensionless form of the vorticity is ω̃ = 2aω/U0, while the
pressure coefficient is defined as:

cp =
p− p∞
1
2ρU2

0

, (18.3.5)

where p∞ represents the pressure as the radial coordinate r goes to infinity and p represents the pressure on
the surface of the circular cylinder. In the numerical simulations, the reference pressure p∞ is taken to be zero
at the point where the axis y = 0 intercepts the upstream boundary. In our simulations, it is verified that the
pressure tends closely to zero everywhere along the outer boundary of the domain. This result prevails since the
free stream conditions are approached on the outer boundary.

Table 18.13 compares the lift and drag coefficients computed here with values given by Mittal & Kumar
(2003). We have already noted that the agreement for the lift coefficient is good but discrepancies in the values
of the drag coefficient are larger; the drag coefficients are so small that the relative errors are magnified. Figures
18.10 and 18.11 show that the dimensionless vorticity and pressure coefficient for Re = 200 with q̃ = 4 and 5
are in good agreement with slightly less good agreement for Re = 200 and q̃ = 5 where the pressure coefficient
on the upper surface of the cylinder (0◦ 6 θ 6 180◦) is slightly disturbed. This behavior may be related to the
differences between our results and those of Mittal & Kumar for the drag coefficient. The pressure distribution
around the surface of the cylinder contributes to the drag and the larger discrepancies are evident at large values
of q̃. For the largest value of q̃ (= 5) the differences in the computational strategies used here and by Mittal &
Kumar (2003) in terms of mesh shape and numerical schemes are most evident in the values of the drag. We
do not know which computational approach is more accurate.

18.3.3.2 Vortical region thickness from the numerical flow field

After the evaluation of the numerical setup with results from the literature have been accomplished, we compute
the flow field for flow past a rotating circular cylinder for Re = 400 with q̃ = 4, q̃ = 5 and q̃ = 6 and for Re =
1000 and q̃ =3. In addition, the computations for Re = 200 with q̃ =4 and q̃ = 5, already used for comparison
with results presented in a previous publication, are also included in this data set. The choice of this set of
Reynolds number Re and peripheral speed q̃ for the numerical simulations renders a gentle convergence to
steady state fully developed flow when the unsteady incompressible Navier-Stokes equations are solved. For
flow past a rotating circular cylinder, the boundary layer remains attached to the surface of the cylinder if
the dimensionless peripheral velocity q̃ lies beyond a certain threshold so that separation is avoided and vortex
shedding is suppressed. As mentioned above, this critical value of q̃ is a function of Re. Furthermore, the selected
range of parameters Re and q̃ is likely to avoid large inertia effects that yield transition to turbulence and three
dimensional effects. A reasonable assumption, based on literature review and previous computations (Chew et
al. 1995), indicates taking q̃ 6 6 as a limiting value. However, this upper limit may be expected to be also a
function of Re.
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Figure 18.12 shows the streamline patterns for the various pairs of Re and q̃ considered in this investigation.
Notice that the stagnation point lies above the cylinder, in the region where the direction of the free stream
opposes the motion induced by the rotating cylinder. As the dimensionless peripheral speed at the surface of
the cylinder increases, for a fixed Re, the region of close streamlines around the cylinder extends far from the
wall and, as a consequence, the stagnation point moves upwards. For the lowest q̃ = 3, the region of close
streamlines become narrow and the stagnation point lies near the upper surface of the cylinder. The contours
of positive and negative vorticity are presented in Figure 18.13. The positive vorticity is generated mostly in
the lower half of the surface of the cylinder while the negative vorticity is generated mostly in the upper half.
For the dimensionless peripheral speeds of q̃ = 3 and 4 a zone of relative high vorticity stretch out beyond
the region neighboring the rotating cylinder for 0◦ 6 θ 6 90◦, resembling “tongues” of vorticity. Increasing q̃,
the rotating cylinder drags the vorticity so the “tongues” disappears and the contours of positive and negative
vorticity appear wrapped around each other within a narrow region close to the surface. Based on the velocity
and pressure fields obtained from the simulations for the various Re and q̃ considered, the next step in this
numerical study is to identify the region where the vorticity effects are mostly confined. In a classical sense,
the term boundary layer has been reserved for a narrow or thin region, attached to a solid surface, where the
vorticity is non negligible. The concept of a boundary layer attached to a wall is linked to the idea of potential
flow. Once the boundary layer has been delimited, the analysis follows by applying the relatively simple but still
powerful theory of potential flow to approximate the external fluid motion. Nevertheless, this approximation
may become inadequate when separation occurs. For flow past a stationary cylinder, separation is present near
the downstream end of the cylinder even at Re as low as 5 (Panton 1984). In contrast, for flow past a rapidly
rotating cylinder the separation of the boundary layer can be suppressed for a critical q̃ given Re. The Reynolds
number based on the free stream velocity plays also an important role in the boundary layer analysis. In this
investigation, a more general term, vortical region, is used to designate the region where the effects of viscosity
are mostly restricted. The vortical region may extend relatively far from the surface where it is attached in
opposition to the thinness implied in the classical boundary layer concept. A boundary layer is certainly a
vortical region; however, a relatively thick vortical region may or may not be regarded as a boundary layer.

For the type of fluid motion considered in this investigation, the vortical region lies in the fluid zone enclosed
between the surface of the rotating circular cylinder and a contour surrounding this solid cylinder, named the
outer edge of the vortical region. Beyond this surface, the effect of vorticity is regarded as negligible. As a
first approximation, we propose that the radial position of the outer edge of the vortical region is determined
such that, for a given angular position, the vorticity magnitude is approximately 1% of the maximum value of
the vorticity magnitude field. This ad hoc 1% criterion is then applied to a set of discrete angular positions
around the rotating cylinder (0◦ 6 θ 6 360◦), with a constant incremental angular step, using the flow field
obtained from the numerical simulations. Therefore, the radial position of the outer edge of the vortical region
as a discrete function of the azimuthal coordinate θ can be determined for every pair of Re and q̃. Since the
1% of the maximum vorticity magnitude criterion may be satisfied at multiple radial positions, for any given
azimuthal position, the point with the largest r̃ among them is chosen to determine the outer edge of the vortical
region. The radial position of the outer edge of the vortical region as a function of θ determines a non-constant
thickness of the vortical region. Hence, a profile of this thickness as a function of the angular position can be
generated.

For practical reasons, it is convenient to deal with a constant value of the radial position of the outer edge
of the vortical region and then with a constant vortical region thickness. To find this uniform value, r̃δ, a
straightforward choice is the average of the discrete set of radial positions that defined the edge of the vortical
region as a function of θ from the previous methodology. Then, a uniform vortical region thickness, δ1%/a,
expressed in dimensionless fashion, is easily computed from the simple geometric formula:

δ1%/a = 2r̃δ − 1. (18.3.6)

Figure 18.14 shows the thickness of the vortical region as a function of the azimuthal coordinate as well as
its average value for different pairs of Re and q̃. In all the cases considered, the vortical region is thick in the
upper half of the cylinder (0◦ 6 θ 6 180◦), where the fluid is retarded and the viscous effects are emphasized,
while decreases its thickness in the lower half (180◦ 6 θ 6 360◦), where the fluid is accelerated. For Re = 200
and 400 and q̃ = 4 and Re = 1000 and q̃ = 3 the graphs show a prominent peak in the region 45◦ 6 θ 6 90◦.
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Re q̃ r̃δ δ1%/a

200 4 0.771 0.541
200 5 0.685 0.369
400 4 0.695 0.390
400 5 0.630 0.260
400 6 0.605 0.210
1000 3 0.638 0.277

Table 18.14. Radial position of the outer edge of the vortical region r̃δ and thickness of the vortical region
δ1%/a based on the 1% of the maximum vorticity magnitude criterion for various pairs of Re and q̃.

This trend indicates that a region of vorticity magnitude higher than 1% of the maximum vorticity magnitude
in the whole domain lies relatively far from the wall. For Re = 200 and q̃ = 5 and Re = 400 and q̃ = 5 and 6 the
peak is replaced by a hump that reaches its maximum by θ = 90◦. This result indicates that the region of high
vorticity has been wrapped around the cylinder as a consequence of the higher rotational speed. This is verified
in Figure 18.13. In addition, the constant radial position of the vortical region edge r̃δ and its corresponding
vortical region thickness δ1%/a for various Re and q̃ are listed in Table 18.14. These results reveal that the
vortical region thickness is far from negligible for all the cases. Moreover, it is shown in Table 18.14 that, as
q̃ increases for a fixed Re, the average vortical region thickness δ1%/a decreases. By increasing the rotational
speed of the cylinder, the local Reynolds number near its wall also increases and the inertia effects then become
even more dominant than the viscosity effects, which turn out to be confined to a smaller region. A similar
reasoning applies to the trend observed for a fixed q̃, where δ1%/a decreases as Re increases.

The outer edge of the vortical region from the 1% criterion as a function of the angular position θ for various
pairs of Re and q̃ is presented in Figure 18.15 along with the vorticity contours. The corresponding outer edge
of the vortical region for a uniform thickness δ1%/a is also included. Only levels of vorticity whose magnitude is
greater than or equal 1% of the maximum vorticity magnitude in the fluid domain are shown. Since the position
of the outer edge of the vortical region is obtained from a discrete set of angular positions, short sections of
some iso-vorticity lines may lie outside the non-constant thickness vortical region. The large spikes presented
in Figure 18.14 are also represented here, corresponding to the regions of vorticity magnitude greater than 1%
that extend far from the cylinder in the interval 0◦ 6 θ 6 90◦.

It is recognized that the criterion set to define the outer edge of the vortical region is somewhat arbitrary. A
new reasonable cut off value can be prescribed and substantial differences may be found in terms of the position
of the outer edge of the vortical region, its thickness and its shape. Here, this preliminary criterion has been
introduced to show that a region can be delimited where the effects of vorticity are circumscribed. This region
is found to be attached to the rotating cylinder and its outer edge varies with the polar angle, for a sufficiently
large rotational speed.

18.3.3.3 Drag and lift coefficients and pressure distribution from the numerical solution

The analysis of the forces that the fluid motion produces on the rotating cylinder has been a topic of major
importance in aerodynamics. For streaming flow past a rotating cylinder, these forces have usually been presented
in terms of two components mutually perpendicular, a component aligned with the free stream velocity vector,
the drag force, and a component perpendicular to this direction, the lift force.

The numerical results for the total lift and drag coefficients corresponding to the forces that the fluid motion
produces on the rotating circular cylinder are presented in Table 18.15. The contributions to these values from
the pressure and the viscous shear stress are shown as well. The results for Re = 200 and q̃ = 4 and 5 from Table
18.13 are included for completeness. The results in Table 18.15 indicate that the pressure lift coefficient CLp

represents by far the largest contribution to the total lift CL, in comparison with the shear stress lift coefficient
CLf

. The pressure and shear stress components of the lift force have the same direction of the total lift force,
pointing toward the negative direction of the y axis in the current reference frame. By contrast, the pressure
drag coefficient CDp

and the shear stress drag coefficient CDf
show a similar order of magnitude; however, these

components of the total drag force point to opposite directions, with the pressure drag force pointing toward
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Re q̃ CL CLp CLf CD CDp CDf

200 4 -17.5820 -16.9612 -0.6208 -0.1240 -0.7278 0.6038
200 5 -27.0287 -26.1826 -0.8460 0.0107 -0.8245 0.8352
400 4 -18.0567 -17.6095 -0.4472 -0.0836 -0.5341 0.4505
400 5 -27.0112 -26.4147 -0.5965 0.0100 -0.5912 0.6012
400 6 -33.7691 -33.0868 -0.6823 0.0136 -0.6677 0.6813

1000 3 -10.6005 -10.4085 -0.1920 -0.0155 -0.2129 0.1974

Table 18.15. Numerical results for the lift and drag coefficients, CL and CD, corresponding to the forces acting
on the cylinder. The decomposition of these values in their corresponding components from pressure (CLp

and
CDp) and viscous shear stress (CLf

and CDf
) are included.

the upstream boundary (i.e., opposite to the direction of the free stream velocity). The net effect of the pressure
and shear stress drag is a relatively small total drag coefficient whose magnitude is, in all the cases considered,
within 1% of the magnitude of the total lift coefficient. For a constant value of Re, by increasing the peripheral
velocity q̃ the magnitude of the total lift coefficient, as well as the pressure and shear stress lift coefficients
increase. The same trend is observed with the magnitude of the pressure and shear stress drag coefficients. By
keeping q̃ constant, the increase of Re yields an increase of the magnitude of the pressure lift coefficient but a
decrease in the magnitude of the shear stress components of the lift and drag and the pressure drag coefficients.
It is also of interest to observe and analyze the trend followed by the pressure distribution in the fluid domain,
especially in the neighborhood of the rotating cylinder. Figure 18.16 shows the profiles of the pressure coefficient
cp as defined in (18.3.5) as a function of the radial coordinate for various Re and q̃. For every pair of Re and q̃,
the cp profiles for different angular positions are presented. The pressure coefficient has been computed from the
pressure field obtained from the numerical simulations. The pressure coefficient as a result of the exact solution
of the equations of motion for purely rotary flow due to the spinning cylinder embedded in an infinite fluid
domain is presented as a reference level. The corresponding expression is

cp = − q̃2

4r̃2
, (18.3.7)

independent of the angular position θ. In all the cases considered, this solution for cp always lies inside the
extreme profiles corresponding to θ = 90◦ and θ = 270◦. The graphs demonstrate that the pressure coefficient
changes strongly near the wall, inside the vortical region, resembling the tendency described by the purely rotary
flow solution, while becoming flat and tending slowly to zero as the radial coordinate r̃ approaches the outer
boundaries. For a fixed peripheral speed q̃, it is observed that increasing Re has little effect on the pressure
coefficient profiles. In contrast, for a fixed Re increasing q̃ expands the range of values that the pressure coefficient
takes for a given radial position. For instance, this trend can be monitored on the surface of the rotating cylinder,
r̃ = 0.5, and at the outer edge of the vortical region, r̃ = r̃δ, in Figure 18.16. This tendency may be addressed
in the frame of the irrotational flow theory. The expression for the pressure coefficient distribution for potential
flow past a circular cylinder with circulation (dimensionless) Γ̃ (= Γ/2aU0) is recalled here:

cp =
cos2θ

2r̃2
− 1

16r̃4
− Γ̃2

4π2r̃2
+

Γ̃
π

sinθ

(
1
r̃

+
1

4r̃3

)
. (18.3.8)

It is clear from this expression that, for a fixed radial position, the amplitude of the (sin θ) term increases when
the circulation increases. Also, this theory predicts the decrease of the mean value of cp when the circulation
rises. The tendencies described by the classical irrotational theory for the pressure coefficient distribution are
followed by the numerical solution obtained in this investigation.

The results from the numerical experiments carried out in this investigation as well as from previous pub-
lications represent reliable information that can be used to evaluate the prediction capabilities of theoretical
approaches. In addition, theoretical models can be used to achieve a better understanding of the numerical
results and to extract relevant information from the computations, which is not evident at first sight. For these
purposes, the results from the numerical simulations have been compared to theoretical studies in sections 18.1
and 18.2.
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Re q̃ D̃ from D̃ from D̃ from D̃ by WJa
numerical numerical numerical

simulations simulations simulations
Inside VR Outside VR Total

200 4 1.1867 0.5594 1.7461 0.7213
200 5 1.2701 1.3000 2.5701 1.3001
400 4 0.6659 0.3881 1.0541 0.3718
400 5 0.7608 0.7191 1.4798 0.6547
400 6 0.8289 1.0533 1.8822 0.9997

1000 3 0.2322 0.1128 0.3451 0.0669

Table 18.16. Comparison between the numerical results for the dissipation D̃ determined through numerical
integration of (18.3.10) and the predictions from (18.3.11) assuming irrotational flow of a viscous fluid in the
entire domain for various Re and q̃. Computed contributions from inside and outside the vortical region (VR)

are included. The radial position of the outer edge of the vortical region r̃δ is determined by matching CDp

given by the VCVPF analysis in §18.1 and the corresponding numerical results.

18.3.3.4 Viscous dissipation

The dissipation represents the work done by the internal viscous stress. The dissipation may be defined by the
following expression

D ≡
∫

V

2µD : D dV. (18.3.9)

In dimensionless form, this expression becomes,

D̃ ≡
∫

Ṽ

2
Re

D̃ : D̃ dṼ , (18.3.10)

where D̃ is the dimensionless rate of strain tensor. The evaluation of (18.3.10) is performed numerically using
the velocity field determined from the numerical experiments. The domain is split into two zones: inside the
vortical region and outside the vortical region. The dissipation values computed in each region add up to the
total dissipation. In section 18.1, it is shown that the dissipation for the irrotational flow of a viscous fluid past
a circular cylinder with circulation can be computed as

D̃ =
8π

Re

(
1 + 2r̃2

δQ̃2
δ

)
, (18.3.11)

in dimensionless form.

Table 18.16 shows the computed results for the viscous dissipation obtained with (18.3.10) for the whole
computational domain along with the predictions of (18.3.11). In this case, the radial position of the outer edge
of the vortical region r̃δ is determined by matching CDp

computed in 18.1 with the corresponding numerical
results. The results are presented for various Re and q̃. The contributions from inside and outside the vortical
region to the dissipation as computed through (18.3.10) are included as well. The theoretical results included in
Table 18.16 are closer to the viscous dissipation computed numerically in the region outside the vortical region
than to the total numerical dissipation computed in the whole fluid domain. Moreover, the numerical viscous
dissipation computed in the whole fluid domain is significantly greater than the theoretical prediction in all the
cases. This trend may be explained by the fact that (18.3.11) is obtained by considering irrotational flow of
a viscous fluid in the whole domain, thus neglecting the thickness of the vortical region. Then, the predicted
values are anticipated to be lower than the computed values for the total viscous dissipation, which incorporates
the contribution from the vortical region. Furthermore, for a fixed Re, the dissipation values computed from
the numerical simulations and the predicted ones increase when q̃ increases. The trend is reversed for a fixed q̃

while increasing Re, yielding attenuation of the viscous effects.
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18.3.4 Concluding remarks

We presented results from the numerical simulations of the two-dimensional incompressible Navier-Stokes equa-
tios for streaming flow past a rotating circular cylinder. The numerical solution of the governing equation is
accomplished by means of a commercial computational fluid dynamics package. The numerical experiments
are performed for various pairs of Reynolds number based on the free stream velocity Re and dimensionless
peripheral speed q̃, namely, Re = 200 with q̃ = 4 and 5; Re = 400 with q̃ = 4, 5 and 6, and Re = 1000 with
q̃ = 3. Based on the literature review and previous computations, these values are selected to avoid separation
of the vortical region attached to the rotating cylinder, three dimensional effects and transition to turbulence.
From the numerical solution, the vorticity field is computed and used to estimate, through an ad hoc criterion,
the annular region with thickness δ1%/a around the cylinder where vorticity is significant.

We have shown that, with the choice of an effective thickness of the vortical layer, the simple modification of
Glauert’s boundary layer analysis and VCVPF lead to expressions that exhibit better general agreement with
the numerical results than Glauert’s original solution. This work provides a novel approach for future studies
that attempt to focus on the analysis of boundary layers through computational fluid dynamics.

299



0.5 0.6 0.7 0.8 0.9 1
10

15

20

25

30

Lp

r/(2a)

C

Fig. 18.6. Comparison of the coefficient for the pressure lift CLp as a function of the radial position for Re=400. Our
boundary layer analysis: dash-dotted line – q/U0=4; dashed line – q/U0=5; solid line – q/U0=6. Numerical simulation: 2

– q/U0=4; ∇ – q/U0=5; ♦ – q/U0=6. CLp from our boundary layer analysis can only be computed inside the boundary
layer: a ≤ r ≤ a + δ; CLp from numerical simulation is plotted up to r = 2a.
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Fig. 18.7. Scheme of the computational domain showing the Cartesian and polar reference coordinate systems. The
boundary conditions correspond to: Λ1, inflow; Λ2, outflow; Λ3, zero-shear stress boundaries, and Λ4, wall with prescribed
velocity and no-slip condition.
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Fig. 18.8. Influence of the dimensionless position of the outer boundaries (inlet and outlet) H̃ on the lift, drag and torque
coefficients for Re = 400 and q̃ = 5.0 (solid line with M) and Re = 1000 and q̃ = 3.0 (dashed line with •).

(a) Extended mesh. (b) Close-up of the mesh around the cylinder.

Fig. 18.9. O-type mesh used in the numerical simulations (M125).
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Fig. 18.10. Dimensionless vorticity profiles on the surface of the rotating cylinder for Re = 200. Present computations:
solid line - q̃ = 3; dashed line - q̃ = 4; dash-dotted line - q̃ = 5. Results of Mittal & Kumar (2003): M - q̃ = 3; ¦ - q̃ = 4;
2 - q̃ = 5.
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Fig. 18.11. Pressure coefficient profiles on the surface of the rotating cylinder for Re = 200. Present computations: solid
line - q̃ = 3; dashed line - q̃ = 4; dash-dotted line - q̃ = 5. Results of Mittal & Kumar (2003): M - q̃ = 3; ¦ - q̃ = 4; 2 -
q̃ = 5.
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(a) Re = 200 q = 4∼ (b) Re = 200 q = 5∼

(c) Re = 400 q = 4∼ (d) Re = 400 q = 5∼

(e) Re = 400 q = 6∼ (f) Re = 1000 q = 3∼

Fig. 18.12. Streamlines for various pairs of Re and q̃. The rotation of the cylinder is counter-clockwise while the streaming
flow is from left to right. The stagnation point lies above the cylinder. The stagnation point moves upwards as the
peripheral speed q̃ increases for a fixed Re.
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(a) Re = 200 q = 4∼ (b) Re = 200 q = 5∼

(c) Re = 400 q = 4∼ (d) Re = 400 q = 5∼

(e) Re = 400 q = 6∼ (f) Re = 1000 q = 3∼

Fig. 18.13. Vorticity contours for various pairs of Re and q̃. The negative vorticity is shown as dashed lines. The rotation
of the cylinder is counter-clockwise while the streaming flow is from left to right.
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Fig. 18.14. Caption in the next page.
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Fig. 18.14. Variable vortical region thickness as a function of the angular position θ (solid line) for various pairs of Re and
q̃ obtained applying the 1% criterion. In addition, the uniform vortical region thickness δ1%/a (dashed line) computed
as the average of the profile is included.

306



Fig. 18.15. Position of the outer edge of the vortical region based on the 1% criterion. The thick-solid line represents the
edge of the vortical region with variable thickness. The thick dash-dotted line represents the edge of the vortical region
with uniform thickness δ1%/a. The thin-solid lines represent contours of positive vorticity while the thin-dashed lines
represent contours of negative vorticity. The contours only show levels of vorticity with magnitude greater than or equal
to 1% of the maximum vorticity magnitude in the fluid domain. The rotation of the cylinder is counter-clockwise while
the streaming flow is from left to right.

307



X
X

X
X X X X X X X X X X X X X X X X X X

0.5 0.75 1 1.25 1.5 1.75 2

-50

-40

-30

-20

-10

0

cp

(a) Re = 200 q = 4∼

X
X

X
X

X
X

X
X

X X X X X X X X X X X X X X X

0.5 0.75 1 1.25 1.5 1.75 2

-50

-40

-30

-20

-10

0

cp

(b) Re = 200 q = 5∼

X
X

X
X

X X X X X X X X X X X X X X X X X

0.5 0.75 1 1.25 1.5 1.75 2

-50

-40

-30

-20

-10

0

cp

(c) Re = 400 q = 4∼
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(d) Re = 400 q = 5∼

Fig. 18.16. Caption on the next page.
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(e) Re = 400 q = 6∼
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(f) Re = 1000 q = 3∼

Fig. 18.16. Pressure coefficient cp as a function of the radial position r̃ from the surface of the rotating cylinder for
various pairs of Re and q̃ for a fixed angle θ: 0◦ - thin solid line; 45◦ - solid line with 4; 90◦ - dashed line; 135◦ - dashed
line with 2; 180◦ - dashed line with ◦; 225◦ - solid line with /; 270◦ - dashed-dotted line; 315◦ - dashed line with ×.
The pressure coefficient profile given in (18.3.7) from the exact solution of the equations of motion for a purely rotary
flow due to the spinning of the cylinder under the absence of the free stream is also presented (thick solid line). This
pressure profile is independent of θ. The average position of the outer edge of the vortical region r̃δ corresponding to the
1% criterion is included (vertical dashed line).
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19

Irrotational flows which satisfy the
compressible Navier-Sokes equations.

If one assumes that the flow is isentropic, the body force has a potential χ, the dynamic and kinematic viscosity
ν are constant, then the compressible Navier Stokes equations become

∂u

∂t
+ u · ∇u = ∇

∫
dp/ρ (p) + ν∇u +

1
3
ν∇divu−∇χ (19.0.1)

and

dρ

dt
+ ρdivu.

The vorticity equation for ω = curlu is satisfied by ω = 0. Putting u = ∇φ, we find that

∂φ

∂t
+

1
2
|∇φ|2 + χ +

∫
dp

ρ
− 4

3
ν∇2φ = 0 (19.0.2)

and

dρ

dt
+ ρ∇2φ = 0 (19.0.3)

Following conventional procedures of gas dynamics, we may eliminate explicit dependence on ρ from this system

C2∇2φ = u · (u · ∇u) +
∂

∂t

[
∂φ

∂t
+ |u|2

]
− 4

3
ν

d
dt
∇2φ (19.0.4)

where d/dt is the substantial derivative and C is the speed of sound. The viscous term is large when Ul/ν = Re

is small, where U and l are the free stream velocity and a body diameter.

The molecular and kinematic viscosity are not constant in general flows; isentropic flow cannot be achieved
because viscous dissipation generates entropy* and entropy generation generates vorticity. For gases, Re is
typically large, but if we add one more assumption, even more severe than others, that ν is the eddy viscosity
of a turbulent gas flow, then we could expect to see large effects of the turbulent viscosity on the gas flow.

Equation (19.0.4) is exact when ν = 0, it is exact for the acoustic wave problem described below and it is
exact for the analysis of the effects of viscosity on shock structure in the one dimensional approximation. For
potential flow solutions of the Navier Stokes equations it is necessary that curlu = 0 is a solution (see Joseph
and Liao 1994a) of the vorticity equation. The gradients of density and viscosity which are spoilers for the
general vorticity equation do not enter into the equations which perturb the state of rest with uniform pressure
p0 and density ρ0.

19.1 Acoustics

The stress for a compressible viscous fluid is given by

Tij = −
(

p +
2
3
µdiv u

)
δij + µ

(
∂ui

∂xj
+

∂uj

∂xi

)
. (19.1.1)
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Here, the second coefficient of viscosity is selected so that Tii = −3p. (The results to follow will apply also to
the case when other choices are made for the second coefficient of viscosity.)

The equations of motion are given by

ρ

(
∂u

∂t
+ u · ∇u

)
= div T (19.1.2)

together with

∂ρ

∂t
+ u · ∇ρ + ρdiv u = 0. (19.1.3)

To study acoustic propagation, these equations are linearized; putting

[u, p, ρ] = [u′, p0 + p′, ρ0 + ρ′] (19.1.4)

where u′, p′ and ρ′ are small quantities, we get

Tij = −
(

p0 + p′ +
2
3
µ0div u′

)
δij + µ0

(
∂u′i
∂xj

+
∂u′j
∂xi

)
(19.1.5)

ρ0
∂u′

∂t
= −∇p′ + µ0

(
∇2u′ +

1
3
∇div u′

)
(19.1.6)

∂ρ′

∂t
+ ρ0div u′ = 0 (19.1.7)

where p0, ρ0 and µ0 are constants. For acoustic problems, we assume that a small change in ρ induces small
changes in p by fast adiabatic processes; hence

p′ = C2
0ρ′ (19.1.8)

where C0 is the speed of sound.

Forming now the curl of (19.1.6), we find that

ρ0
∂ζ

∂t
= µ0∇2ζ, ζ = curlu′. (19.1.9)

Hence ζ = 0, is a solution of the vorticity equation and we may introduce a potential

u′ = ∇φ. (19.1.10)

Combining next (19.1.10) and (19.1.6), we get

∇
[
ρ0

∂φ

∂t
+ p′ − 4

3
µ0∇2φ

]
= 0. (19.1.11)

The quantity in the bracket is equal to an arbitrary function of the time which may be absorbed in φ.

A viscosity dependent Bernoulli equation

ρ0
∂φ

∂t
+ p′ − 4

3
µ0∇2φ = 0 (19.1.12)

is implied by (19.1.11). The stress (19.1.5) is given in terms of the potential φ by

Tij = −
(

p0 − ρ0
∂φ

∂t
+ 2µ0∇2φ

)
δij + 2µ0

∂2φ

∂xi∂xj
. (19.1.13)

To obtain the equation satisfied by the potential φ, we eliminate ρ′ in (19.1.7) with p′ using (19.1.8), then
eliminate u′ = ∇φ and p′ in terms of φ using (19.1.12) to find

∂2φ

∂t2
=

(
C2

0 +
4
3

v0
∂

∂t

)
∇2φ (19.1.14)

where the potential φ depends on the speed of sound and the kinematic viscosity v0 = µ0/ρ0.
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A dimensionless form for the potential equation (19.1.14)

∂2φ

∂T 2
=

(
1 +

∂

∂T

)
∇2φ, ∇2φ =

∂2φ

∂X2
+

∂2φ

∂Y 2
+

∂2φ

∂Z2
(19.1.15)

arises from a change of variables

t =
4v0

3C2
0

T, x =
4
3

v0

C0
X. (19.1.16)

The classical theory of sound (see Landau and Lifshitz 1987, chap. VIII) is governed by a wave equation, which
may be written in dimensionless form as

∂2φ

∂T 2
= ∇2φ. (19.1.17)

The time derivative on the right of (19.1.15) leads to a decay of the waves not present in the classical theory.
Many if not all of the results obtained with (19.1.17) may be redone, using (19.1.15).

The simplest problem in the theory of sound waves (see Landau and Lifshitz 1987, p 253) is the case of Plane
monochromatic travelling waves. The one-dimensional version of (19.1.15)

∂2φ

∂T 2
=

(
1 +

∂

∂T

)
∂2φ

∂X2
(19.1.18)

can be solved by separation of variables, φ = F (T )G(X). We obtain

F ′′

F + F ′
=

G′′

G
= −k2. (19.1.19)

If k2 > 4, the solution is

φ =
(
Ae−ω1T + Be−ω2T

)
cos (−kX + α) (19.1.20)

where A, B and α are undetermined constants and
[

ω1

ω2

]
=

k2

2

[
1
1

]
+

1
2

[ √
k4 − 4k2

−√k4 − 4k2

]
. (19.1.21)

The solution is a standing periodic wave with a decaying amplitude.

If k2 < 4, the solution is

φ = e−
k2
2 T


 A cos

(
−kX − 1

2

(
4k2 − k4

)1/2
T + α

)

+B cos
(
−kX + 1

2

(
4k2 − k4

)1/2
T + α

)

 (19.1.22)

represents decaying waves propagating to the left and right. Travelling plane wave solutions which are periodic
in T and grow or decay in X are also easily derived by separating variables.

19.2 Liquid jet in a high Mach number air stream

For spherically symmetric waves,

∂2φ

∂T 2
=

(
1 +

∂

∂T

)
1

R2

∂

∂R

(
R2 ∂φ

∂R

)
(19.2.1)

and, following Landau and Lifshitz (1987, pg. 269) we note that

ψ(R, T ) = Rφ (19.2.2)

satisfies equation (19.1.18) for plane waves with R replacing X. It follows then that the solutions (19.1.20),
(19.1.22) and (19.2.1) hold for spherically symmetric waves when X is replaced with R and φ(X, T ) with
Rφ(R, T ).

The properties of these and many other solutions to equation (19.1.15) are for future research. For the present,
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we indicate in Table 19.1 representative values of physical parameters of sound waves which are suppressed in
the dimensionless version of our problem. The properties of liquids may be useful in studies of cavitation of
liquids due to ultrasound.

Table 19.1. Representative dimensional parameters of sound waves. 4v0
3C2

0
and 4

3
v0
C0

are time and length scales

respectively (equation (19.1.16)). k 3C0
4v0

is the cut-off wave number and w1
3C2

0
4v0

= w2
3C2

0
4v0

is the frequency when k

is the cut-off wave number (equation (19.2.1)). k1
3C0
4v0

and k2
3C0
4v0

are the wave numbers when the frequency of

the sound wave w
3C2

0
4v0

= 109 s−1 (equation (19.2.2)). The values are calculated using the properties of the
liquids at 15◦C : ρw = 1 g/cm3, µw = 0.0114 g/cm sec, Cw = 1.48× 105 cm/sec for water; ρw = 1.26 g/cm3,

µw = 23.3 g/cm sec, Cw = 1.9× 105 cm/sec for glycerin.

4v0
3C2

0
(sec) 4

3
v0
C0

(cm) k 3C0
4v0

(cm−1) w1
3C2

0
4v0

= w2
3C2

0
4v0

(sec−1) k1
3C0
4v0

(cm−1) k2
3C0
4v0

(cm−1)

Water 6.94× 10−13 1.03× 10−7 1.95× 107 2.88× 1012 2.34 6.76× 103

Glycerin 6.83× 10−10 1.30× 10−4 1.54× 104 2.93× 109 1.41× 103 4.57× 103

19.3 Liquid jet in a high Mach number air stream

The instability of circular liquid jet immersed in a coflowing high velocity airstream is studied assuming that
the flow of the viscous gas and liquid is irrotational. The basic velocity profiles are uniform and different. The
instabilities are driven by Kelvin-Helmholtz instability due to a velocity difference and neckdown due to capillary
instability. Capillary instabilities dominate for large Weber numbers. Kelvin-Helmholtz instability dominates for
small Weber numbers. The wave length for the most unstable wave decreases strongly with the Mach number
and attains a very small minimum when the Mach number is somewhat larger than one. The peak growth rates
are attained for axisymmetric disturbances (n = 0) when the viscosity of the liquid is not too large. The peak
growth rates for the first asymmetric mode (n = 1) and the associated wave length are very close to the n = 0
mode; the peak growth rate for n = 1 modes exceeds n = 0 when the viscosity of the liquid jet is large. The
effects of viscosity on the irrotational instabilities are very strong. The analysis predicts that breakup fragments
of liquids in high speed air streams may be exceedingly small, especially in the transonic range of Mach numbers.

19.3.1 Introduction

The problem of an inviscid liquid jet in an inviscid compressible airstream was studied by Chang & Russel
(1965), Nayfeh & Saric (1973), Zhou & Lin (1992) and Li & Kelly (1992). Chawla (1975) studied the stability
of a sonic gas jet submerged in a liquid. Chang & Russel (1965) and Nayfeh & Saric (1973) consider temporal
instability and found that a singularity in the growth rate occurs as the Mach number tends to unity. Chawla
(1975) did not find a singular growth rate but he restricted his attention to Mach number one (M = 1). Li &
Kelly (1992) found that the growth rates reach a sharp maximum when the gas velocity is slightly larger than
the one giving M = 1 for both axisymmetric and the first non-axisymmetric mode of instability. Lin (2003)
cites Li & Kelly (1992) for the growth rate near M = 1 in the case of temporal stability.

Funada, Joseph, Saitoh and Yamashita (FJSY, 2006) extended the theory of viscous potential flow of a viscous
compressible gas given by Joseph (2003) to the case of perturbations in a compressible gas moving with uniform
velocity. We derive a dispersion relation for the perturbations which depend on all the material properties of the
incompressible liquid and compressible gas. The effects of shear are neglected, consistent with the assumption
that the basic flow can support a discontinuous velocity. We find a sharply peaking growth rate at slightly
supersonic value of the gas Mach number under the conditions that Li & Kelly (1992) find steep changes for
both axisymmetric and first asymmetric modes. The analysis of Li & Kelly (1992) differs from the one given
here in the way that the isentropic flow is represented. They assume that dp/dρ = c2, as in isentropic flow, but
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they do not account for the usual isentropic relations which tie the density, pressure and velocity together as in
our equation (19.3.13).

The first application of viscous potential flow to the problem of capillary instability was done by Funada &
Joseph (2002). The problem of combined Kelvin-Helmholtz and capillary instability for an incompressible liquid
and gas was done by Funada et al. (2004) who treated also the problem of convective and absolute instability
in a comprehensive manner.

The effects of compressibility are very important for transonic and supersonic flow as has already been noted
by Lin (2003). These effects include very great increases in growth rates and very sharp decreases in the wave
length for maximum growth. This feature may possibly play a role in the breakup of liquid droplets into fine
drops must observed in shock tube and wind tunnel experiments (Engel (1958), Joseph et al. (1999), Joseph et
al. (2002), Theofanous et al. (2003), Varga, Lasheras & Hopfinger 2003).

Chen & Li (1999) did a linear stability analysis for a viscous liquid jet issued into an inviscid moving
compressible gas medium. Their analysis differs from ours; they do not assume that motion of the liquid is
irrotational; they give results only for the case in which the gas is at rest so that the effects of the basic flow
gas velocity is not connected to the basic flow density and pressure as in the case of isotropic flow considered
here. They do not compute growth rates for temporal instabilities for supersonic values M > 1. Their growth
rate curves do not exhibit the same great increases in transonic and supersonic flow found by other authors and
here.

The assumption that the gas is inviscid is not justified for jets of liquids into air especially when the air
velocity is large. What matters here is the ratios of kinematic viscosities (see equation (4.2) in Funada et al.
(2004) and figure 4 in Funada & Joseph (2001)) and the kinematic viscosity of high speed air in isentropic flow
can be much greater than the kinematic viscosity of water.

Experimental results on liquid jets in high speed gas suitable for comparison with this and other analytical
studies are not available. The coaxial jet experiments of Varga, Lasheras & Hopfinger 2003 discussed in section
19.3.12 is suitable, but they do not present data for transonic and supersonic conditions. Dunne & Cassen (Dunne
& Cassen (1954), Dunne & Cassen (1956)) did some experiments on supersonic liquid jets. They injected high
speed jets into air with a spring-loaded injector (1954) and by subjecting the liquid reservoir to a shock wave
pressure (1956). These jets are transients and they appear to give rise to Rayleigh-Taylor instabilities on the
front face of the jet as in the problem of drop breakup in high speed air and to Kelvin-Helmholtz wave at sides
of the jets where the velocity is discontinuous. The data presented by them is not suitable for comparison on
the analysis given here.

19.3.2 Basic partial differential equations

For isentropic compressible fluids, the equation of continuity, the viscous stress tensor T and the equation of
motion are expressed, in usual notation with the velocity potential φ for which v = ∇φ and ∇× v = 0, as

∂ρ

∂t
+∇ · (ρv) = 0, hence

∂ρ

∂t
+ (∇φ · ∇) ρ + ρ∇2φ = 0, (19.3.1)

Tij = µ

(
∂vi

∂xj
+

∂vj

∂xi

)
− 2µ

3
(∇ · v) δij = 2µ

∂2φ

∂xi∂xj
− 2µ

3
(∇2φ

)
δij , (19.3.2)

∂v

∂t
+ (v · ∇) v = −1

ρ
∇p +

1
ρ
∇ ·T → ∂φ

∂t
+

1
2
|∇φ|2 +

γ

γ − 1
p

ρ
− 4

3
µ

ρ
∇2φ = B(t). (19.3.3)

The isentropic relation is given by

pρ−γ = constant ≡ A, hence p = Aργ (19.3.4)
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with the adiabatic exponent γ and the sound velocity c

c2 =
dp

dρ
= γ

p

ρ
. (19.3.5)

These are used for viscous potential flow (VPF), which reduces to the inviscid potential flow (IPF) when the
viscosity vanishes.

19.3.3 Cylindrical liquid jet in a compressible gas

A cylindrical liquid jet is surrounded by a compressible gas and is addressed in 0 ≤ r < a (where a is the radius
of the cylindrical jet in an undisturbed state) and −∞ < z < ∞ in the cylindrical frame (r, θ, z). The equation
of continuity, the viscous stress tensor and Bernoulli function are given for the compressible gas

∂ρa

∂t
+ (∇φa · ∇) ρa + ρa∇2φa = 0,

T
(a)
ij = 2µa

∂2φa

∂xi∂xj
− 2µa

3
(∇2φa

)
δij ,

∂φa

∂t
+

1
2
|∇φa|2 +

γ

γ − 1
pa

ρa
− 4

3
µa

ρa
∇2φa = Ba(t),

pa = Aργ
a → dpa

dρa
= γAργ−1

a = γ
pa

ρa
= c2

a,





(19.3.6)

and for the liquid

ρ` = constant, ∇2φ` = 0, T
(`)
ij = 2µ`

∂2φ`

∂xi∂xj
,

∂φ`

∂t
+

1
2
|∇φ`|2 +

p`

ρ`
= B`(t).





(19.3.7)

Boundary conditions at the interface r = a + η (where η = η(θ, z, t) is the interface displacement) are the
kinematic conditions:

∂η

∂t
+ (∇φa · ∇) η = n · ∇φa,

∂η

∂t
+ (∇φ` · ∇) η = n · ∇φ` (19.3.8)

with the outer normal vector n

n =
(

1,
−1

a + η

∂η

∂θ
, −∂η

∂z

)
/

√
1 +

(
1

a + η

∂η

∂θ

)2

+
(

∂η

∂z

)2

, (19.3.9)

and the normal stress balance:

p` − pa +
(
niT

(a)
ij nj

)
−

(
niT

(`)
ij nj

)
= σ∇ · n, (19.3.10)

where σ is the interfacial tension coefficient.

19.3.4 Basic isentropic relations

A basic state of the gas is with a uniform flow v̄a = ∇φ̄a = (0, 0, Ua) in the frame (r, θ, z) and with the constant
density ρa1 and pressure pa1, and a basic state of the liquid is with a uniform flow v̄` = ∇φ̄` = (0, 0, U`) and
with the constant density ρ`1 and pressure p`1. The isentropic relation and the Bernoulli function lead for the
gas to

pa1 = Aργ
a1 = pa0

(
ρa1

ρa0

)γ

,
dpa1

dρa1
= γAργ−1

a1 = γ
pa1

ρa1
= c2

a,

1
2
U2

a +
γ

γ − 1
pa1

ρa1
=

1
2
U2

a +
c2
a

γ − 1
=

c2
a0

γ − 1
= Ba, hence

[
γ − 1

2
M2

a + 1
]

γpa1

ρa1
=

γpa0

ρa0
,





(19.3.11)
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where the Mach number Ma is defined as

Ma =
Ua

ca
, (19.3.12)

and ρa0, pa0 and ca0 (c2
a0 = γpa0/ρa0) are defined when Ma = 0.

Using (19.3.11), we have

ρ̄a =
ρa1

ρa0
=

[
γ − 1

2
M2

a + 1
]−1/(γ−1)

, p̄a =
pa1

pa0
=

(
ρa1

ρa0

)γ

,

c2
a

c2
a0

=
[
γ − 1

2
M2

a + 1
]−1

or c2
a = c2

a0 −
γ − 1

2
U2

a ,





(19.3.13)

in which the sound velocity ca is given as a function of Ua. The thermodynamic properties of the ambient
gas depend on the Mach number and the reference state when Ma = 0. For air of ρa0 = 1.2 kg/m3, pa0 =
1 atm= 1.013 × 105 Pa, ca0 = 340 m/sec, and γ = 1.4. When Ma = 1, (19.3.13) gives c2

a = 2c2
a0/(γ + 1) for

which ca = 310.38 m/sec. The third equation in (19.3.13) shows that ca = 0 m/sec when Ma → ∞. Then
U2

a = U2
am = 2c2

a0/ (γ − 1) where Uam = 760.26 m/sec is the maximum air velocity.

The Bernoulli function for the liquid leads to

1
2
U2

` +
p`1

ρ`1
= B`. (19.3.14)

The kinematic conditions are satisfied for the unidirectional flows and the interface given by r = a. The normal
stress balance is given by

p`1 − pa1 =
σ

a
, (19.3.15)

where σ/a denotes the capillary pressure.

19.3.5 Linear stability of the cylindrical liquid jet in a compressible gas; dispersion equation

On the basic flows, small disturbances are superimposed as

φ` = U`z + φ̃`, ρ` = ρ`1 (no perturbation), p` = p`1 + p̃`,

φa = Uaz + φ̃a, ρa = ρa1 + ρ̃a, pa = pa1 + p̃a.

}
(19.3.16)

The isentropic relation gives

pa = Aργ
a, hence pa1 = Aργ

a1, p̃a ≈ Aργ
a1γ

ρ̃a

ρa1
= c2

aρ̃a, (19.3.17)

γ

γ − 1
pa

ρa
=

c2
a

γ − 1
+ c2

a

ρ̃a

ρa1
=

c2
a

γ − 1
+

p̃a

ρa1
. (19.3.18)

For the gas, we have the equations for the disturbance:
(

∂

∂t
+ Ua

∂

∂z

)
ρ̃a + ρa1∇2φ̃a = 0,

(
∂

∂t
+ Ua

∂

∂z

)
φ̃a + c2

a

ρ̃a

ρa1
− 4

3
µa

ρa1
∇2φ̃a = 0, (19.3.19)

hence
(

∂

∂t
+ Ua

∂

∂z

)2

φ̃a =
[
c2
a +

4
3

µa

ρa1

(
∂

∂t
+ Ua

∂

∂z

)]
∇2φ̃a. (19.3.20)

For the liquid, we have the equations for the disturbance:

∇2φ̃` = 0,

(
∂

∂t
+ U`

∂

∂z

)
φ̃` +

p̃`

ρ`1
= 0. (19.3.21)
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At the interface r = a + η̃ ≈ a where η̃ ≡ η̃(θ, z, t) is the interface displacement, the kinematic conditions are
given by

∂η̃

∂t
+ U`

∂η̃

∂z
=

∂φ̃`

∂r
,

∂η̃

∂t
+ Ua

∂η̃

∂z
=

∂φ̃a

∂r
, (19.3.22)

and the normal stress balance is given, on eliminating the pressures by using the Bernoulli functions, by

− ρa1

(
∂

∂t
+ Ua

∂

∂z

)
φ̃a + 2µa

[
∇2φ̃a − ∂2φ̃a

∂r2

]
+ ρ`1

(
∂

∂t
+ U`

∂

∂z

)
φ̃` + 2µ`

∂2φ̃`

∂r2

= σ

(
∂2η̃

∂z2
+

1
a2

∂2η̃

∂θ2
+

η̃

a2

)
. (19.3.23)

The solution to the stability problem above formulated is expressed by normal modes

φ̃` = −ı
ω − kU`

kI ′n(ka)
HIn(kr)E + c.c., φ̃a = −ı

ω − kUa

κK ′
n(κa)

HKn(κr)E + c.c.,

η̃ = HE + c.c.,



 (19.3.24)

where E ≡ exp(ıkz + ınθ− ıωt) with the complex angular frequency ω = ωR + ıωI and the real wavenumber k,
n denotes the azimuthal mode. In(kr) and Kn(κr) are the modified Bessel functions, where the prime denotes
the derivative I ′n(ka) = dIn(ka)/d(ka). The Bessel functions satisfy the equations

∇2φ̃` =
∂2φ̃`

∂r2
+

1
r

∂φ̃`

∂r
+

1
r2

∂2φ̃`

∂θ2
+

∂2φ̃`

∂z2
=

∂2φ̃`

∂r2
+

1
r

∂φ̃`

∂r
− n2

r2
φ̃` − k2φ̃` = 0,

∇2φ̃a −
(
κ2 − k2

)
φ̃a =

∂2φ̃a

∂r2
+

1
r

∂φ̃a

∂r
− n2

r2
φ̃a − κ2φ̃a = 0,





(19.3.25)

with

κ =

√√√√√k2 − (ω − kUa)2

c2
a −

4ıµa

3ρa1
(ω − kUa)

, (19.3.26)

which arise from (19.3.20) and (19.3.21). Substituting (19.3.24) into (19.3.22) and (19.3.23), we find the disper-
sion relation

[
ρa1 (ω − kUa)2 − 2ıµa

(
κ2 − k2

)
(ω − kUa)

] kKn(κa)
κK ′

n(κa)
− ρ`1 (ω − kU`)

2 In(ka)
I ′n(ka)

+2ıµakκ (ω − kUa)
K ′′

n(κa)
K ′

n(κa)
− 2ıµ`k

2 (ω − kU`)
I ′′n(ka)
I ′n(ka)

+ σ

(
k2 − 1− n2

a2

)
k = 0. (19.3.27)

The wave number km and maximum growth rate ωIm given by ωIm = maxωI(k) = ωI(km) define the
disturbance which is expected to appear in experiments. A typical dispersion relation is shown in figure 19.1.
The cut-off wave number is the border of instability ωI(kc) = 0.

19.3.6 Stability problem in dimensionless form

The scaling is made as

[length, velocity, time] = [d, ca, d/ca] , (19.3.28)

with d = 2a. The dimensionless variables are

(r̂, θ, ẑ) =
( r

d
, θ,

z

d

)
, t̂ =

ca

d
t. (19.3.29)

The hat on the independent variables are omitted for brevity. Then we may scale as

φ`

cad
=

U`

ca
ẑ +

φ̃`

cad
= M`ẑ + φ̂`,

ρ`

ρ`1
= 1,

p`

ρ`1c2
a

= p̄`1 +
p̃`

ρ`1c2
a

= p̄`1 + p̂`,

φa

cad
=

Ua

ca
ẑ +

φ̃a

cad
= Maẑ + φ̂a,

ρa

ρa1
=

ρa1

ρa1
+

ρ̃a

ρa1
= 1 + ρ̂a, p̂a =

p̃a

ρ`1c2
a

=
ρ̃a

ρ`1
= `ρ̂a,





(19.3.30)
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Fig. 19.1. The form of a typical graph of the growth rate ωI versus k. ωIm is the maximum growth, λm = 2π/km is the
wavelength of the fastest growing wave. kc is the cut-off wavenumber. ωIm and km are called peak values.

where ¯ denotes the normalized basic flow and ˆ denotes the normalized disturbances, and the parameters are
defined as

` =
ρa1

ρ`1
, m =

µa

µ`
, ν =

µa

µ`

ρ`1

ρa1
=

m

`
, M` =

U`

ca
, Ma =

Ua

ca
, R =

ρ`1cad

µ`
, W =

σ

ρ`1dc2
a

, (19.3.31)

where the basic state of the gas is the function of the Mach number, with

ρa1

ρa0
= Q(Ma)−1/(γ−1) where Q(Ma) ≡ γ − 1

2
M2

a + 1,

` = `0Q(Ma)−1/(γ−1), `0 = ρa0/ρ`1,
pa1

pa0
=

(
ρa1

ρa0

)γ

,
c2
a

c2
a0

=
1

Q(Ma)
,

R = R0/Q(Ma), R0 =
ρ`1ca0d

µ`
, W = W0Q(Ma), W0 =

σ

ρ`1dc2
a0

,

1
2
M2

` + p̄`1 = constant.





(19.3.32)

For the gas,
(

∂

∂t
+ Ma

∂

∂z

)
ρ̂a +∇2φ̂a = 0, `

(
∂

∂t
+ Ma

∂

∂z

)
φ̂a + p̂a − 4m

3R
∇2φ̂a = 0. (19.3.33)

The combination leads to
(

∂

∂t
+ Ma

∂

∂z

)2

φ̂a =
[
1 +

4m

3`R

(
∂

∂t
+ Ma

∂

∂z

)]
∇2φ̂a. (19.3.34)

For the liquid,

∇2φ̂` = 0,

(
∂

∂t
+ M`

∂

∂z

)
φ̂` + p̂` = 0. (19.3.35)

At the interface r = 1/2 + η̂ ≈ 1/2 where η̂ ≡ η̂(θ, z, t) is the interface displacement, the kinematic conditions
are given by

∂η̂

∂t
+ M`

∂η̂

∂z
=

∂φ̂`

∂r
,

∂η̂

∂t
+ Ma

∂η̂

∂z
=

∂φ̂a

∂r
, (19.3.36)

and the normal stress balance is given by

− `

(
∂

∂t
+ Ma

∂

∂z

)
φ̂a +

2m

R

(
∇2φ̂a − ∂2φ̂a

∂r2

)
+

(
∂

∂t
+ M`

∂

∂z

)
φ̂` +

2
R

∂2φ̂`

∂r2
= W

(
∂2η̂

∂z2
+

∂2η̂

∂θ2
+ η̂

)
.(19.3.37)

The solution to the stability problem above formulated is expressed as

φ̂` = −ı
ω − kM`

kI ′n(k/2)
ĤIn(kr)E + c.c., φ̂a = −ı

ω − kMa

κK ′
n(κ/2)

ĤKn(κr)E + c.c.,

η̂ = ĤE + c.c.,



 (19.3.38)
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Table 19.2. Properties of air-water.

Diameter of liquid jet, d 0.001 m
Air viscosity µa 1.8× 10−5 N.s/m2

Air density ρa0 1.2 kg/m3

Water density ρ`1 1000 kg/m3

Surface tension coefficient σ 0.075 N/m
Ratio of the specific heats γ (air) 1.4

where E ≡ exp(ıkz + ınθ − ıωt) with the complex angular frequency ω = ωR + ıωI and the real wavenum-
ber k, In(kr) and Kn(κr) are the modified Bessel functions, the prime denotes the derivative: I ′n(k/2) =
dIn(k/2)/d(k/2), κ is defined as

κ =

√√√√k2 − θ2

1− 4ım

`R
θ
, (19.3.39)

where

θ = ω − kMa, θ` = ω − kM`. (19.3.40)

Therefore the dispersion relation is expressed as

[
`θ2 − 2ım

R

(
κ2 − k2

)
θ

]
k

κ
αan + θ2

` αn +
2ımkκ

R
θβan +

2ık2

R
θ`βn = W

(
k2 + 4n2 − 4

)
k, (19.3.41)

with

α`n =
In(k/2)
I ′n(k/2)

, αan = −Kn(κ/2)
K ′

n(κ/2)
, βn` =

I ′′n(k/2)
I ′n(k/2)

, βan = −K ′′
n(κ/2)

K ′
n(κ/2)

, (19.3.42)

and ` = `0Q(Ma)−1/(γ−1), R = R0/Q(Ma), W = W0Q(Ma) defined under (19.3.32).

It is sometimes convenient to change the frame of the analysis to one moving with the liquid velocity U`. In
this frame the undisturbed liquid jet is at rest and the gas moves with velocity UA = Ua−U`. This is a Gallilean
change of frame in which the new coordinates are

z′ = z + U`t (19.3.43)

and

E = exp(ıkz + ınθ − ıωRt + ωIt) = exp(ıkz′ + ınθ − ıΩRt + ωIt) (19.3.44)

where

ΩR = ωR + U`k (19.3.45)

in a new frequency. However, the density, pressure and sound speed of the gas are determined by the ambient
conditions and gas velocity, as in (19.3.13), and these quantities do not change in a Galilean change of frame.
For this reason, problems of stability of liquid jets in which Ua and U` are given, as in the experiments of Varga,
Lasheras & Hopfinger 2003 discussed in section 19.3.12, are not simplified by a Galilean change of frame. In the
analysis given in sections 19.3.7-19.3.11 we put M` = 0 and Ma = M . This is the case of a static liquid cylinder
in a moving gas.

In nearly all the computations to follow, `0, R0 and W0 are evaluated under standard conditions for air-water
given in table 19.2. In section 19.3.11 we allow W0 to vary; this can be thought to be the effect of changing
surface tension.
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Fig. 19.2. The growth rate ωI versus k in the axisymmetric n = 0 mode for IPF, using the material parameters (table
19.2) for stationary water and air with Ua = 0, 30, 100 and 310.38 m/sec. The values can be converted into dimensionless
form (M, W ) using table 19.3.

19.3.7 Inviscid potential flow (IPF)

The problem of an inviscid liquid jet moving in an inviscid compressible gas was considered by Li & Kelly
(1992). The dispersion relation for this problem is (19.3.41) with R →∞ and m/R = 0,

κ =
√

k2 − (ω − kM)2, ` (ω − kM)2
k

κ
αan + ω2α`n = W

(
k2 + 4n2 − 4

)
k, (19.3.46)

The parameters of this problem are `, n, M and W .

Pure capillary instability arises in the axisymmetric n = 0 mode for large W and in the inviscid case is
independent of the gas. The case W = 0 is associated with pure Kelvin-Helmholtz instability for every n mode
and it cannot occur in a vacuum (` 6= 0). The variation of ωI versus k for an inviscid water in air is given in
figure 19.2 with the n = 0 mode.

The variation of growth rates with M for particular values of k, σ, Ua was given by Li & Kelly (1992); they
did not present graphs of peak growth rates ωIm(km) and km as a function of M . At very high values of the
Mach number

` = `0/Q2.5 → `0/M
5 (19.3.47)

and the first term of (19.3.46) may be neglective. Growth rate curves for IPF under standard condition and
different Mach numbers are shown in figure 19.2.

19.3.8 Growth rate parameters as a function of M for different viscosities

In this section the data for stability computations is assembled in the table 19.3. In the table, we list the
parameters for air under standard conditions and the liquid density, surface tension coefficient and the jet
radius used in all the computations. Using the parameters of table 19.2, the viscosity ratio is evaluated as
m = 1.8× 10−2 and the other basic nondimensional parameters which depends on Ua are shown in table 19.3.
Negative values ωI < 0 in Tab. 19.4 arise for non-axisymmetric n = 1 disturbances when Ua is small. The
entries in the columns n = 1 in tables are left blanks.

Table 19.4 gives the values ωIm, km and kc of the growth rate curves like figure 19.1 for µ` = 0, 1 cP, 300 cP
and 8000 cP. In figure 19.4 we blow up the sharply peaking growth rate curves ωI versus k for stationary liquid
jets of small viscosity in high speed transonic air. The Mach numbers for the seven curves are [1, 2, 3, 4, 5, 6,
7]=[0.92, 0.96, 0.98, 1.01, 1.05, 1.08, 1.25] when µ` = 0.15 cP and µ` = 0.175 cP and for the nine curves [1, 2,
3, 4, 5, 6, 7, 8, 9]=[0.92, 0.96, 1.00, 1.05, 1.06, 1.12, 1.15, 1.20, 1.25] when µ` = 0.5 cP.
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Table 19.3. Typical values and nondimensional parameters for various Ua (U` = 0).

Ua m/s ca pa1 ρa1 ` M R W

0.00 3.400e+02 1.013e+05 1.200e+0 1.200e-03 0.000e+0 3.400e+05 6.488e-07
0.10 3.400e+02 1.013e+05 1.200e+0 1.200e-03 2.941e-04 3.400e+05 6.488e-07
0.20 3.400e+02 1.013e+05 1.200e+0 1.200e-03 5.882e-04 3.400e+05 6.488e-07
0.50 3.400e+02 1.013e+05 1.200e+0 1.200e-03 1.471e-03 3.400e+05 6.488e-07
1.00 3.400e+02 1.013e+05 1.200e+0 1.200e-03 2.941e-03 3.400e+05 6.488e-07
5.00 3.400e+02 1.013e+05 1.200e+0 1.200e-03 1.471e-02 3.400e+05 6.488e-07
10.00 3.400e+02 1.012e+05 1.199e+0 1.199e-03 2.941e-02 3.400e+05 6.489e-07
20.00 3.399e+02 1.011e+05 1.198e+0 1.198e-03 5.884e-02 3.399e+05 6.492e-07
50.00 3.393e+02 9.977e+04 1.187e+0 1.187e-03 1.474e-01 3.393e+05 6.516e-07
70.00 3.386e+02 9.833e+04 1.175e+0 1.175e-03 2.068e-01 3.386e+05 6.543e-07
100.00 3.370e+02 9.530e+04 1.149e+0 1.149e-03 2.967e-01 3.370e+05 6.602e-07
150.00 3.333e+02 8.816e+04 1.087e+0 1.087e-03 4.500e-01 3.333e+05 6.751e-07
200.00 3.280e+02 7.881e+04 1.003e+0 1.003e-03 6.097e-01 3.280e+05 6.970e-07
250.00 3.211e+02 6.787e+04 9.014e-01 9.014e-04 7.786e-01 3.211e+05 7.274e-07
300.00 3.124e+02 5.602e+04 7.860e-01 7.860e-04 9.603e-01 3.124e+05 7.684e-07
310.38 3.104e+02 5.351e+04 7.607e-01 7.607e-04 1.000e+0 3.104e+05 7.786e-07
350.00 3.018e+02 4.401e+04 6.616e-01 6.616e-04 1.160e+0 3.018e+05 8.233e-07
400.00 2.891e+02 3.258e+04 5.337e-01 5.337e-04 1.383e+0 2.891e+05 8.971e-07
450.00 2.740e+02 2.239e+04 4.082e-01 4.082e-04 1.642e+0 2.740e+05 9.987e-07
500.00 2.561e+02 1.395e+04 2.911e-01 2.911e-04 1.952e+0 2.561e+05 1.143e-06
550.00 2.347e+02 7.573e+03 1.882e-01 1.882e-04 2.343e+0 2.347e+05 1.361e-06
600.00 2.088e+02 3.338e+03 1.048e-01 1.048e-04 2.873e+0 2.088e+05 1.720e-06
650.00 1.764e+02 1.023e+03 4.505e-02 4.505e-05 3.686e+0 1.764e+05 2.412e-06
700.00 1.327e+02 1.395e+02 1.085e-02 1.085e-05 5.276e+0 1.327e+05 4.261e-06
750.00 5.568e+01 3.199e-01 1.413e-04 1.413e-07 1.347e+01 5.568e+04 2.419e-05
760.00 8.944e+0 8.832e-07 1.512e-08 1.512e-11 8.497e+01 8.944e+03 9.375e-04
760.20 4.381e+0 5.973e-09 4.262e-10 4.262e-13 1.735e+02 4.381e+03 3.908e-03
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Table 19.4. Maximum growth rate parameters (figure 19.2) for different values of M : (a) IPF; (b) µ` = 1 cP,
m = 1.8× 10−2; (c) µ` = 300 cP, m = 6× 10−5; (d) µ` = 8000 cP, m = 2.25× 10−6.

a n = 0 n = 1

M ωIm km kc ωIm km kc

0.00 7.821e-04 1.396e+00 2.008e+00 - - -
0.50 3.000e+00 2.989e+02 4.483e+02 3.000e+00 2.989e+02 4.483e+02
0.75 1.149e+01 7.192e+02 1.081e+03 1.149e+01 7.147e+02 1.081e+03
1.00 7.853e+01 3.169e+03 4.933e+03 7.853e+01 3.169e+03 4.933e+03
1.10 2.302e+02 1.540e+04 2.107e+04 2.302e+02 1.540e+04 2.107e+04
1.50 1.120e+03 2.656e+05 2.755e+05 1.120e+03 2.656e+05 2.755e+05
2.00 1.576e+03 8.560e+05 8.632e+05 1.576e+03 8.560e+05 8.632e+05

b n = 0 n = 1

M ωIm km kc ωIm km kc

0.00 7.790e-04 1.387e+00 2.008e+00 - - -
0.50 2.759e+00 2.845e+02 5.869e+02 2.759e+00 2.845e+02 5.869e+02
0.75 1.007e+01 6.670e+02 1.666e+03 1.007e+01 6.670e+02 1.666e+03
1.00 3.033e+01 1.432e+03 3.799e+03 3.033e+01 1.432e+03 3.799e+03
1.10 2.673e+01 1.621e+03 3.871e+03 2.673e+01 1.621e+03 3.871e+03
1.50 1.161e+01 1.297e+03 2.998e+03 1.161e+01 1.297e+03 2.998e+03
2.00 6.363e+00 9.703e+02 2.314e+03 6.363e+00 9.703e+02 2.314e+03

c n = 0 n = 1

M ωIm km kc ωIm km kc

0.00 3.711e-04 9.325e-01 2.008e+00 - - -
0.50 1.457e-01 4.123e+01 4.492e+02 1.453e-01 4.186e+01 4.492e+02
0.75 3.735e-01 7.651e+01 1.072e+03 3.731e-01 7.723e+01 1.072e+03
1.00 1.515e+00 1.657e+02 1.531e+03 1.515e+00 1.657e+02 1.531e+03
1.10 3.803e-01 2.458e+01 1.603e+02 3.897e-01 2.413e+01 1.603e+02
1.50 1.497e-01 1.495e+01 6.733e+01 1.501e-01 1.477e+01 6.733e+01
2.00 8.965e-02 1.117e+01 4.492e+01 8.934e-02 1.090e+01 4.483e+01

d n = 0 n = 1

M ωIm km kc ωIm km kc

0.00 2.656e-05 2.431e-01 2.008e+00 - - -
0.50 6.081e-03 1.153e+01 4.492e+02 5.959e-03 1.666e+01 4.492e+02
0.75 1.507e-02 2.260e+01 1.072e+03 1.494e-02 2.989e+01 1.072e+03
1.00 1.096e-01 5.113e+01 1.522e+03 1.095e-01 5.338e+01 1.522e+03
1.10 1.485e-02 3.511e+00 9.685e+01 2.818e-02 3.268e+00 9.712e+01
1.50 4.978e-03 2.251e+00 3.223e+01 2.056e-02 1.270e+00 2.989e+01
2.00 2.301e-03 1.801e+00 2.080e+01 1.604e-02 8.641e-01 1.927e+01
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Fig. 19.3. Maximum growth rate ωIm and the associated wavenumber km as a function of M for µ` = 0, 1 cP, 300 cP,
8000 cP. The solid line denotes the axisymmetric case (n = 0), and the dashed line in figures for µ` =8000 cP denotes
n = 1.
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(a) ωI versus k for µ` = 0.15 cP.
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(b) ωI versus k for µ` = 0.175 cP.
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(c) ωI versus k for µ` = 0.5 cP.

Fig. 19.4. Growth rate versus wavenumber for stationary liquid jet (U` = 0) in transonic air. Ua =[1, 2, 3, 4, 5, 6, 7]
= [290.08, 302.08, 314.08, 326.08, 340.08, 356.08, 370.08] m/s. (a) µ` = 0.15 cP: as Ua increases, the maximum growth
rate marked by + increases monotonically without limit. (b) µ` = 0.175 cP: as Ua increases, the maximum growth rate
marked by + increases, changes to another peak, attains the maximun near Ua = 310.38 m/sec (M = 1), and then
decreases. (c) µ` = 0.5 cP: as Ua increases, the maximum growth rate marked by + increases, attains the maximun near
Ua = 310.38 m/sec (M = 1), and then decreases.
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(b) km versus R. The growth rate curve ωI vs. k which is shown in figure 19.5 (c) has two relative maxima ; the
absolute maxima changes for R0 between 25 and 26; this is seen as a jump in k in 19.5 (b).
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Fig. 19.5. (a) The maximum growth rate ωIm versus R and (b) km versus R, for M = 0.5; n = 0 in compressible gas
(solid line) and n = 1 in compressible gas (dashed line).

19.3.9 Azimuthal periodicity of the most dangerous disturbance

Batchelor & Gill (1962) argued that the conditions at the origin of a cylinder are such as to make the axisym-
metric (n = 0) mode and the n = 1 mode of azimuthal periodicity most dangerous; all the modes except n = 1
require that the radial and azimuthal components of the disturbance velocity vanish. The axial component of
the disturbance velocity is single-valued only when n = 0 (see Joseph (1976), pages 73, 74). Typical graphs
showing the variation of these quantities with the Reynolds number for M = 0.5 and M = 2 are shown as
figures (19.5 and 19.6). Only the axisymmetric (n = 0) mode gives rise to insatability when M = 0. Inspection
of figures 19.5 and 19.6 show that the most dangerous mode is n = 1 only for Reynolds numbers smaller than a
number near 100; for larger Reynolds numbers the maximum growth rate and the most dangerous wave number
are nearly the same for n = 0 and n = 1.
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Fig. 19.6. (a)The maximum growth rate ωIm versus R and (b) km versus R, for M = 2; n = 0 in compressible gas (solid
line) and n = 1 in compressible gas (dashed line).
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Fig. 19.7. (a) The maximum growth rate ωIm versus W−1,(b) km versus W−1. VPF, M = 0.5 for µ` = 300 cP; n = 0
in compressible gas (solid line) and n = 1 in compressible gas (dashed line).

19.3.10 Variation of the growth rate parameters with the Weber number

Graphs of ωIm and km versus W−1 are displayed for typical cases in figure 19.7. When W is large, the insta-
bility is dominated by capillarity; when W is small Kelvin-Helmholtz instability dominates. This behavior is
characteristic also for the liquid jet in an incompressible gas which was studied by Funada et al. (2004); they
used W−1 rather than W following earlier literature.

We have shown in section 19.3.9 that the most dangerous mode is typically axisymmetric when the Reynolds
number is larger than about 100 as is true for the cases considered here. The graphs are all similar; for small
values of W−1 in which capillarity dominates the values of log ωIm decrease linearly with log W−1 giving rise
to a power law ωIm = a

(
W−1

)p where a and p may be determined from the graphs. The most dangerous
wave number km = 1.396 is a universal value which maximizes ωI when surface tension dominates. All the
growth rate curves have a minimum value which marks the place where Kelvin-Helmholtz instability starts to
be important, after this minimum ωIm and km increase with W−1. In all case km →∞ as W−1 →∞, but ωIm

is lowered as W−1 →∞ when the liquid viscosity is not zero.

19.3.11 Convective/absolute (C/A) instability

C/A instability is used to determine when the spatial theory of instability makes sense. Practically, this comes
down to a determination of the conditions under which a disturbance from a localized source will propagate
downstream without corrupting the source. The disturbance may grow as it propagates but after it passes over
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a fixed point it leaves the flow undisturbed. This is the case for convectively unstable flows, but absolutely
unstable flows propagate both upstream and downstream. Propagation of disturbances from a vibrating ribbon
in a boundary layer or Poiseuille flow are examples. For such propagation these flows must be convectively and
not absolutely unstable.

The study of stability of disturbances issuing from a fixed source, leading to C/A theory, is not a complete
stability theory; the traditional temporal theory of instability needs also to be considered. The temporal theory
determines the conditions under which disturbances at a fixed point will grow or decay. If these conditions are
such that all disturbances decay is stable, then disturbances from a fixed point will decay. Disturbances which
are convectively or absolutely unstable are also temporally unstable. The propagation of impulses from a source
in a convectively unstable flow can be realized provided the growth rates and amplitudes of temporally unstable
flows do not corrupt the flow first. This is why experiments with vibrating ribbons are always done with care
to suppress background noise which may amplify in time a fixed point.

Li & Kelly (1992) considered the convective and absolute instability of an inviscid liquid jet in an air stream
of an inviscid compressible gas. They motivated their study by experiments on the instability and breakup of
liquid fuel jets in crossflow. They note that

“... the breakup of the jet, however, does not seem to proceed in the gradual manner typical of the capillary instability
of a liquid jet issuing into air at rest. Here the jet gradually bends over toward the direction of the free stream so that
both tangential and cross-flow components of the gas flow are seen by the jet. When the jet is at an angle of about 30◦

form the normal to the free stream, the jet breaks into large columns in a manner so sudden that Schetz and co-workers
(Sherman & Schetz (1971), Schetz et al. (1980)) have used the phrase “fracture” to describe the phenomenon. At this
angle, the component of the gas velocity parallel to the jet’s direction is approximately sonic ...”

Li & Kelly (1992) did not study a jet in crossflow; they studied a liquid in a coflowing air stream. They also
considered the convective and absolute instability of a plane jet and found transition to absolute instability in
the transonic region. They speculate that fracture coincides with the transition to absolute instability.

The problem considered by Li & Kelly (1992), C/A instability of a plane jet, is rather far from experiments on
cross flow of Sherman & Schetz (1971) and it could be considered in the frame of temporal combined Rayleigh-
Taylor, Kelvin-Helmholtz instability which should show rather exceptional behavior in transonic flow. This kind
of explanation of rapid breakup of a coflowing jet was given by Varga, Lasheras & Hopfinger 2003 and it is based
on a secondary RT istability not associated with absolute instability. An analysis using VPF of KH instability
in the coaxial jet studied by Varga et al. has been given by FJSY 2006.

19.3.12 Conclusions

We studied the temporal instability of a liquid jet in a high speed compressible air stream using viscous potential
flow. Since the shear stress is ignored in viscous potential flow, the analysis is compatible with the discontinuous
profile used in all studies of Kelvin-Helmholtz instability. This discontinuity is not allowable for real viscous
fluids where shear layers develop. Disturbances with high wavenumbers might see the details of the shear layer
and alter the stability results in ways which are presently unknown.

In our analysis, which neglect shear layers, this instability is dominated by capillarity when the Weber
number is large and by Kelvin-Helmholtz instability when the Weber number is small. The peak growth rates
and the associated wave lengths depend strongly on the Mach number and on the viscosity of the liquid.
The growth rates are dramatically larger in the transonic region and the wave lengths of the peak values
are much smaller. Viscosity reduces the magnitude of the growth. The growth rate for inviscid potential flow
monotonically increases as Mach number increases. For 0 < µ` < 0.168 cP, the growth rate for viscous potential
flow monotonically increases as Mach number increases. For 0.168 cP< µ`, the growth rate for viscous potential
flow has a peak value when Mach number is nearly one. For more viscous liquids, the growth rate for viscous
potential flow has a peak value when Mach number is nearly one. The peak value decreases as the viscosity
µ` increases. The growth rates are very sharply peaked near Ma = 1 when the viscosity is larger than some
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value near 0.2 cP. The dramatic change in stability of liquid jets in transonic flow predicted by analysis is
possibly related to the dramatic increases in the drag coefficient of spheres and disks in transonic flow observed
in experiments (Howarth (1953), p.724). It is not known if jet breakup in transonic and supersonic flow is caused
directly by KH instability or through a secondary RT instability. In either case, this analysis suggests that the
drop fragments would be very small.
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20

Irrotational flows of viscoelastic fluids

The coupling of rotational and irrotational flows is more complicated than in Newtonian fluids because in most
models of a viscoelastic fluid the stress is not linear. The equation of motion of an incompressible fluid with
velocity u = v +∇φ, where curlu = curlv can be expressed

∇
{

ρ
∂φ

∂t
+

ρ

2
|∇φ|2 + p

}
+ ρdiv {v ⊗∇φ +∇φ⊗ v + v ⊗ v} = divτ [v +∇φ] (20.0.1)

where τ [u] = τ [v +∇φ] is modeled by a constitutive equation. The “pressure” p is an unknown; together with
three components of u, it is the fourth unknown for three components of the momentum equation and divu = 0.
In the decomposed equations, φ is an additional unknown and ∇2φ = 0 an additional equation. The “pressure”
p has no thermodynamic significance. If traceτ = 0, then p is the average stress.

Many models of non-Newtonian fluids have been proposed. No model works for every kind of flow. Intelligent
choices for models tune the model to the application.

20.1 Oldroyd B model

The Oldroyd B model is very often used to describe the response of viscoelastic fluids. Like other models, it has
features which restrict its applicability (see Tanner 1985, p 222) but it appears to combine effects of relaxation
and nonlinearity with relative ease of execution better than many other models. The stress τ in the Oldroyd B
model is governed by a rate equation

λ
∇
τ +τ = µ

(
A + λ̃

∇
A

)
(20.1.1)

where
∇
τ =

dτ

dt
− Lτ − τLT (20.1.2)

is an upper convected derivative and

dτ

dt
=

∂τ

∂t
+ u · ∇τ ,

L [u] = ∇u, Lij =
∂ui

∂xj
, A = L + LT , Aij = Lij + LT

ij , (20.1.3)

λ is a relaxation time, λ̃ is a retardation time. The Oldroyd B model reduces to a Newtonian fluid when λ = λ̃

and Upper-Convected Maxwell (UCM) model when λ̃ = 0. Usually 0 < λ̃ < λ.

The term divτ [v +∇φ] is much more complicated than for a Newtonian fluid; the term divA [u] = divA [v +∇φ] =
∇2v, but the other terms in (20.1.1) and (20.1.2) retain a strong dependence on the potential φ.

It can be said that the flow of viscoelastic fluids modeled as Oldroyd B have a strong irrotational component
but that effective procedures to extract the irrotational component are not yet known.
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20.2 Asymptotic form of the constitutive equations

The retarded motion expansion can be applied if the flow is slow and slowly varying. The antisymmetric part
of the velocity gradient tensor L is defined as

W =
1
2

(
L− LT

)
. (20.2.1)

The substantial, upper-convected, and corotational derivatives are defined as

Ȧ =
∂A
∂t

+ u · ∇A, (20.2.2)

O
A= Ȧ− L ·A−A · LT , (20.2.3)
◦
A= Ȧ−W ·A + A ·W. (20.2.4)

It can be shown that the relation between
O
A and

◦
A is

◦
A=

O
A +A2. (20.2.5)

20.2.1 Retarded motion expansion for the UCM model

The upper-convected Maxwell (UCM) model is

λ
O
τ +τ = µA. (20.2.6)

Following Larson, we ignore λ
O
τ and obtain at first order

τ (1) = µA. (20.2.7)

It follows that

O
τ

(1)

= µ
O
A . (20.2.8)

Then the stress tensor can be obtained to second order in λ by substituting (20.2.8) into (20.2.6)

τ (2) = µA− λµ
O
A= µA− λµ

◦
A +λµA2, (20.2.9)

= µA− λµ(Ȧ−W ·A + A ·W) + λµA2. (20.2.10)

This can be compared to the second order fluid model

τ = µA + α1(Ȧ + L ·A + A · LT ) + α2A2. (20.2.11)

The same tensors appear with different coefficients.

20.2.2 The expanded UCM model in potential flow

In potential flows, ∇u =
∂2φ

∂xi∂xj
. Therefore,

L = LT =
1
2
A, W = 0. (20.2.12)

The expanded UCM model reduces to

τ = µA− λµȦ + λµA2. (20.2.13)

The momentum equation is

ρ [∂u/∂t + (u · ∇)u] = −∇p +∇ · τ . (20.2.14)
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When u = ∇φ (see Joseph 1992),

div(u · ∇A) = gradχ, divA2 = 2gradχ ⇒ ∇ · τ = λµgradχ (20.2.15)

where

χ =
∂2φ

∂xi∂xj

∂2φ

∂xj∂xi
=

1
4
trA2, Aij = 2

∂2φ

∂xi∂xj
.

Combining (20.2.14) and (20.2.15) we find a Bernoulli equation

ρ
∂φ

∂t
+

ρ

2
|∇φ|2 + p− λµχ = C(t). (20.2.16)

Now the total stress can be written as,

T = −
[
C + λµχ− ρ

∂φ

∂t
− ρ

2
|∇φ|2

]
1 + µA− λµ

(
∂

∂t
+ u · ∇

)
A + λµA2. (20.2.17)

20.2.3 Potential flow past a sphere calculated using the expanded UCM model

The potential of a uniform flow past a sphere is given by

φ = −Ur cos θ

(
1 +

a3

2r3

)
(20.2.18)

where U is the velocity of the uniform stream and a is the radius of the sphere. The velocities are

ur = −U

(
1− a3

r3

)
cos θ, uθ = U

(
1 +

a3

2r3

)
cos θ. (20.2.19)

The tensor A can be evaluated

A =
3a3U

r4



−2 cos θ − sin θ 0
− sin θ cos θ 0

0 0 cos θ


 . (20.2.20)

Then the Bernoulli’s equation (20.2.16) is used to obtain the pressure at the surface of the sphere

p = p∞ + λµ
9U2

2a2

(
1 + 2 cos2 θ

)
+

ρ

2
U2

(
1− 9

4
sin2 θ

)
, (20.2.21)

where p∞ is the pressure at infinity. The normal stress Trr at the surface of the sphere is calculated from
(20.2.17) and expressed in a dimensionless form

T ∗rr =
Trr + p∞
ρU2/2

=
(

9
4

sin2 θ − 1
)
− 12

Re
cos θ +

λµ

ρa2

(
45− 72 sin2 θ

)
, (20.2.22)

where Re = ρUa/µ is the Reynolds number. At the stagnation points of a sphere [r = a, θ = 0 or π], the normal
stresses are, respectively

Trr + p∞
ρU2/2

=
[
−1 +

45λµ

ρa2

]
∓ 12

Re
. (20.2.23)

The viscous contribution gives rise to compression – 12/Re at the front stagnation point and to tension 12/Re

at the rear. The stress due to inertia and viscoelasticity is the same at θ = 0 and θ = π and is a tension when
45λµ > ρa2. This condition represents a competition between the inertia and the viscoelasticity. If ρa2 is not
too large the stress at the stagnation points is a tension, reversing the compression due to inertia.

Coleman and Noll 1960 developed a theory for a general stress functional for incompressible fluids which
depend only on the history of the first spatial gradient of the deformation. Fluids of this type are called simple;
they are rather too general to be applied. Useful forms of a simple fluid can be obtained in certain special
asymptotic limits in which the range of fluid response is severely limited.
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One such limit is defined for small amplitude, but possibly high frequency (Joseph 1990, p 539) motions. In
this limit, the present value of stress at a point x

τ (x, t) =
∫ ∞

0

G(s)A [u(x, t− s)] ds (20.2.24)

is determined by the history of strain rate A. The relaxation function is assumed to be rapidly decaying, say
proportional to exp(−λs), this weights the present value of the stain more strongly in the recent history than
in the past history.

Fluids satisfying (20.2.24) are called linear viscoelastic with fading memory. For these fluids, the force density

divτ =
∫ ∞

0

G(s)∇2v(x, t− s) ds (20.2.25)

does not depend on the irrotational flow.

20.3 Second order fluids

Another general class of models, namely the second-order fluid model, introduced by Coleman and Noll 1960
arises from an expansion of the general stress functional for slow and slowly varying motions (Rivlin & Ericksen
1955; Bird, Armstrong & Hassager 1987; Joseph 1990). It has been used in many studies of viscoelastic behaviour
with varying degrees of success; the predictions of fluid mechanic response to rapidly varying motions in which
fluid memory is important have not been satisfactory, but the predictions for slow steady motions are excellent.
We regard the results of analysis using the second-order fluid model as tentative and subject to ultimate
validation by experiment and by comparison with direct numerical simulation using other constitutive equations.

If slow motions are defined as those for which u = εû for finite û as ε tends to zero, then slowly vary flows
are such that

∂

∂t
= ε

∂

∂t̂

are nearly steady in the sense

d
dt

(·) = ε2

[
∂

∂t̂
(·) + û · ∇(·)

]

Nearly steady flows are not useful for the description of relaxation effects.

The asymptotic form of the constitutive equation for a viscoelastic fluid in slow, slowly varying motion, is a
Newtonian fluid at order ε and a second order fluid at order ε2. Higher order approximations can be derived;
they have unknown coefficients and are rarely used.

At first order

τ = µA[u]. (20.3.1)

At second order

τ = µA[u] + α1B[u] + α2A2[u] (20.3.2)

where

B =
∂A
∂t

+ (u · ∇)A + AL + LT A, (20.3.3)

α1 = −n1/2 and α2 = n1 + n2 where [n1, n2] =
[
N1

(
o

γ2

)
, N2

(
o

γ2

)]
/

o

γ2 as
o
γ → 0 are constants obtained

from the first and second normal stress differences. The first normal stress difference is generally positive; the
second normal stress difference N2 can be negative but much smaller than N1. For a typical liquid M1 (Hu et
al. 1990), ρ = 0.895 g/cm3,

[α1, α2] = [−3, 5.34] g/cm.
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The equations of motion for a second order incompressible fluid are

ρ

[
∂u

∂t
+ u · ∇u

]
= −∇p + µ∇2u + div

[
α1B + α2A2

]
(20.3.4)

or

divτ [u] = divτ [v +∇φ] = µ∇2v + div
[
α1B + α2A2

]
(20.3.5)

The nonlinear tensors B and A2 depend both on v and φ.

The second order fluid form of viscoelastic models can also be obtained by the method of successive approx-

imations. Consider the Oldroyd B model. The first approximation is
∇
τ = µ

∇
A may be inserted into (20.1.1)

which becomes
(
λ− λ̃

)
µ
∇
A [u] + τ = µA (20.3.6)

Equation (20.3.6) may be expressed corotational model

τ = µA−
(
λ− λ̃

)
µ

[
dA
dt

−WA + AW −A2

]
(20.3.7)

τij = µAij −
(
λ− λ̃

)
µ

[
dAij

dt
−WilAlj + AilWlj −AilAlj

]
, (20.3.8)

where W vanishes for potential flow.

20.4 Purely irrotational flows

A sufficient condition for a purely irrotational flow is that every flow given by a potential u = ∇φ, v = 0, is
compatible with solutions of the equations of motion (20.0.1); that is

curl (∇ · τ [∇φ]) = 0, (20.4.1)

εlmn
∂2τlm

∂xl∂xm
[∇φ] = 0. (20.4.2)

Though this condition is not satisfied for u = ∇φ by most constitutive equation (Joseph and Liao 1994 a,b), it
is satisfied for invicid fluid, for viscous fluids with constant properties, for linear viscoelastic and second-order
fluids.

20.5 Purely irrotational flows of a second order fluid

When u = ∇φ (see Joseph 1992a),

div (u · ∇A) = gradχ, div (AL) = gradχ, divA2 = 2gradχ (20.5.1)

⇒ div
[
α1B + α2A2

]
= grad (3α1 + 2α2)χ, (20.5.2)

where

χ =
∂2φ

∂xi∂xj

∂2

∂xj∂xi
=

1
4
trA2, Aij = 2

∂2φ

∂xi∂xj
. (20.5.3)

Combining (20.2.14) and (20.5.2) we find a Bernoulli equation

ρ
∂φ

∂t
+

1
2
ρ |∇φ|2 + p− β̂χ = C(t), (20.5.4)

where β̂ = 3α1 + 2α2 ≥ 0 is the climbing constant. Returning now to the stress with the pressure (20.5.4), we
obtain

T = −
[
C + β̂χ− ρ

∂φ

∂t
− 1

2
ρ |∇φ|2

]
1 +

[
µ + α1

(
∂

∂t
+ u · ∇

)]
A + (α1 + α2)A2. (20.5.5)
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20.6 Reversal of the sign of the normal stress at a point of stagnation

The Cartesian components of the stress (20.5.5) are given by

Tij = −
[
C + β̂φ,ilφ,il − ρφ,t − ρ |u|2 /2

]
δij + 2 [µ + α1 (∂t + u · ∇)]φij

+4 (α1 + α2) φ,ilφ,lj , (20.6.1)

In the diagonal coordinates x1, x2, x3 of the frame in which φ,ij is diagonal

[φ,ij ] =




λ1 0 0
0 λ2 0
0 0 λ3


 , (20.6.2)

we have



σ11 0 0
0 σ22 0
0 0 σ33


 = −

[
C − ρφt − ρ |u|2 /2 + β̂

(
λ2

1 + λ2
2 + λ2

3

)]



1 0 0
0 1 0
0 0 1




+2 [µ + α1 (∂t +∇φ · ∇)]




λ1 0 0
0 λ2 0
0 0 λ3


 + 4 (α1 + α2)




λ2
1 0 0
0 λ2

2 0
0 0 λ2

3


 (20.6.3)

The case of flow at the stagnation points of a body in steady flow, in an arbitrary direction is of special interest.
The steady streaming past a stationary body is equivalent, under a Galilean transformation, to the steady
motion of a body in an otherwise quiet fluid. The potential flow of a fluid near a point (x1, x2, x3) = (0, 0, 0) of
stagnation is a purely extensional motion with

[λ1, λ2, λ3] =
U

L
Ṡ [2,−1,−1] , (20.6.4)

where Ṡ is the dimensionless rate of stretching in the direction x1, L is the scale of length and

[u1, u2, u3] =
U

L
Ṡ [2x1,−x2,−x3] . (20.6.5)

In this case



T11 0 0
0 T22 0
0 0 T33


 =

ρ

2

[
U2

L2
Ṡ2

(
4x2

1 + x2
2 + x2

3

)− U2

]


1 0 0
0 1 0
0 0 1




+µ
U

L
Ṡ




2 0 0
0 −1 0
0 0 −1


 + 2

U2

L2
Ṡ2



−α1 + 2α2 0 0

0 −7α1 − 4α2 0
0 0 −7α1 − 4α2


 (20.6.6)

At the stagnation point itself

σ11 = −ρ

2
U2 + 2µṠ + 2(2α2 − α1)

U2

L2
Ṡ2. (20.6.7)

Since α1 < 0, 2α2 − α1 =
5
2
n1 + 2n2 > 0, the normal stress term in (20.6.7) is positive, independent of the sign

of Ṡ, but 2µṠ is negative at the front side of a falling body and is positive at the rear.

The motion of bodies in viscoelastic fluids can be said to be maximally different than the motion of the same
bodies in a Newtonian fluid. As a rule of thumb, contrary thinking is appropriate. This difference is perfectly
correlated with a change in the sign of the normal stress, from compression to tension, in the particulate flows
described below.
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20.7 Fluid forces near stagnation points on solid bodies

20.7.1 Turning couples on long bodies

It is surprising that turning couples on long bodies determine the stable configurations of suspensions of spherical
bodies. A long body is an ellipsoid or a cylinder; a broad body is a flat plate. When such bodies are dropped
in Newtonian fluids, they put their broadside perpendicular to the stream. This is an effect of inertia which is
usually explained by turning couples at points of stagnation. The mechanism is the same one that causes an
aircraft at a high angle of attack to stall.

The settling orientation of long particles is indeterminate in Stokes flow; however, no matter how small the
Reynolds number may be, the body will turn its broadside to the stream; inertia will eventually have its way.
When the same long bodies fall slowly in a viscoelastic liquid, they do not put their broadside perpendicular to
the stream; they do the opposite, aligning the long side parallel to the stream.

(a) (b)

Fig. 20.1. Cylinders falling in (a) Newtonian fluid (glycerin), and (b) viscoelastic fluid (2% aqueous PEO solution). In
(a), the cylinder is turned horizontal by inertia; in (b), it is turned vertical by viscoelastic pressures

20.7.2 Particle-particle interactions

The flow-induced anisotropy of a sedimenting or fluidized suspension of spheres is determined by the pair
interactions between neighboring spheres. These pair interactions are largely determined by normal stresses at
points of stagnation on the spheres which are compressive in Newtonian fluids and tensile in viscoelastic fluid;
the stagnation points are on side between spheres falling side by side and are pushed apart by compression
and pulled together by tension. The principal interactions can be described as drafting, kissing and tumbling in
Newtonian liquids and as drafting, kissing and chaining in viscoelastic liquids. The drafting and kissing scenarios
are surely different, despite appearances. Kissing spheres align with the stream; they are then momentarily long
bodies.

The long bodies momentarily formed by kissing spheres are unstable in Newtonian liquids to the same
turning couples that turn long bodies broadside-on. Therefore, they tumble. This is a local mechanism which
implies that globally, the only stable configuration is the one in which the most probable orientation between
any pair of neighboring spheres is across the stream. The consequence of this microstructural property is a
flow-induced anisotropy, which leads ubiquitously to lines of spheres across the stream; these are always in
evidence in two-dimensional fluidized beds of finite size spheres. Though they are less stable, planes of spheres
in three-dimensional beds can also be found by anyone who cares to look.

If two touching spheres are launched side-by-side in a Newtonian fluid, they will be pushed apart until
a stable separation distance between centers across the stream is established; then the spheres fall together
without further lateral migration (see Figure 20.3.a1).

On the other hand, if the same two spheres are launched in a viscoelastic fluid from an initial side-by-
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(a) (b)

Fig. 20.2. (a) Spheres in Newtonian Fluids. Spheres settling in glycerin draft (i-ii), kiss (iii), and tumble (iv-vi). They
tumble because a pair of kissing spheres acts like a long body, which is unstable when its long axis is parallel to the
stream. The forces in a Newtonian fluid are dispersive; the tumbling spheres are pushed apart by pressures at stagnation
points between the spheres (v-vi). (b) Spheres in non-Newtonian Fluids. Spheres falling in a 2% aqueous PEO solution
draft, kiss, and chain. They chain because the forces in a viscoelastic fluid are aggregative. A chain of spheres turn just
like the solid cylinder in Figure 20.1.b (i-vi). Reversing time, we see that chaining, kissing, and drafting in b(vi-i) are
like drafting, kissing, and tumbling in a(i-vi).

Fig. 20.3. (a1, a2) Side-by-side sphere-sphere interactions; (b1, b2) Sphere-wall interactions; (c) A sphere in a viscoelastic
liquid is sucked to a tilted wall; (d) Spheres dropped between widely-spaced walls. The dotted line is the critical distance
dcr for wall-sphere interaction. When d < dcr, the sphere goes to the wall. When d > dcr, the sphere seeks the center.

side configuration in which the two spheres are separated by a smaller than critical gap, as in Figure 20.3.a2,
the spheres will attract, turn and chain. One might say that we get dispersion in the Newtonian liquid and
aggregation in the viscoelastic liquid.

20.7.3 Sphere-wall interactions

If a sphere is launched near a vertical wall in a Newtonian liquid, it will be forced away from the wall to an
equilibrium distance at which lateral migration stops (see Figure 20.3.b1); in the course of its migration it will
acquire a counter-clockwise rotation which appears to stop when the sphere stops migrating. The rotation is
anomalous in that clockwise rotation would be induced from shear at the wall. The anomalous rotation seems
to be generated by blockage in which high stagnation pressures force the fluid to flow around the outside of the
spheres. If the same sphere is launched near a vertical wall in a viscoelastic liquid, it will be sucked all the way
to the wall (see Figure 20.3.b2). It rotates anomalously as it falls. This is very strange since the sphere appears
to touch the wall where friction would make it rotate in the other sense. Closer consideration shows that there
is a gap between the sphere and the wall. The anomalous rotation is again due to blocking which forces liquid
to flow around the outside of the sphere. The pulling action of the wall can be so strong that even if the wall is
slightly tilted from the vertical so that the sphere would fall away, it will still be sucked to the wall (see Figure
20.3.c).

If the launching distance between a sphere and a vertical wall is large enough, the wall will not attract a
sphere falling in a viscoelastic fluid. This means that there is a critical distance dcr for attraction. Of course,
this distance is smaller when the wall is tilted as in Figure 20.3.c. In this case, if the sphere is launched at a
distance greater than the critical one, it will fall away from the wall.
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Fig. 20.4. A 2% suspension of glass spheres (60-70 µm in size) in a highly viscoelastic polymer solution of 0.5% poly-
acrylamide in deionized water. (a) After loading - the particles are randomly distributed. (b) After a sideways movement
on the top plate of about 3 cm. (c) After the top plate had been moved back and forth several times. (d) After further
and faster movement of the top plate. (From Michele et al. 1977)

20.7.4 Flow induced microstructure.

The tendency to aggregate into tight chains of particles all in a row is omnipresent. It is definitely a property of
viscoelastic fluids; the same particles disperse rather than chain in Newtonian fluids. This tendency is encoun-
tered for particles of all sizes (from nanometers to centimeters) and in different kinds of motion (listed below).
We regard chaining of particles as a form of self-assembly generated by flow stresses in a fluid in motion.

(1) Shear flow (Michele et al. 1977, Petit and Noetinger 1988)

(2) Shear flows of 28 nanometer SiO2 particles in solutions of hydroxypropycellulose and polyethylene oxide
in water (Scirocco et al. 2005)

(3) Extensional flow (Michele et al. 1977)

(4) Sedimentation (Liu and Joseph 1993)

(5) Fluidization

The experiments by Michele et al. demonstrated that chains of small spheres may be created and aligned in
the direction of the motion in shear flows. A droplet of a suspension of glass spheres was placed between two
glass plates which were then pushed together as close as possible. The aggregation of the particles was then
accomplished by moving the top plate sideways parallel to the bottom plate to generate an approximate planar
shear flow.

The chains of particles shown in Figures 20.4 and 20.5 occurred when the distance between the glass was 1
mm. Shear-induced structures in macroscopic dispersions were also reported by in Petit and Noetinger 1988.
A suspension of glass spheres of diameter 40 µm in silicon oil or in highly viscoelastic polyisobuty-lene was
sandwiched between two parallel glass plates with gaps ranging between 200 µm and 800 µm and oscillated by
shear from the in-plane oscillation of the top plate. The spheres lined up across the velocity direction in the
Newtonian silicon solution and with the velocity direction in the viscoelastic solution.

The robust tendency of small particles from nanometers to centimeters to chain in all kinds of motions must
be associated with a powerful and local feature of particle-fluid interactions. We argue that the chaining of
spherical particles is a consequence of the same dynamics that controls the orientation of long bodies moving
relative to the stream, across the stream in Newtonian fluids and along the stream in viscoelasatic fluids. This
dynamics is mainly controlled by a reversal of the normal stress at a point of stagnation.
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Fig. 20.5. 10% suspension of glass spheres (60-70 µm) in a polyisobutylene solution. (a) After movement on the top
plate back and forth. (b) After further movement. The lines of spheres in (a) are more or less equally spaced. Further
association is observed in (b) where two lines come together. (Michele et al. 1977)

Fig. 20.6. Flow induced microstructure. Spheres line up in the direction of flow (a) Extensional flow, (60-70 µm spheres)
(b) fluidization (3 cm spheres) and (c) sedimentation (3 cm spheres) in a 1% aqueous PEO solution.

20.8 Potential flow over a sphere for a second order fluid

We consider the potential of a uniform flow of a second order fluid past a sphere. The calculation is similar to
that in Section 20.2.3. Bernoulli’s Equation (20.5.4) is used to obtain the pressure at the surface of the sphere

p = p∞ +
(

27
2

α1 + 9α2

)
U2

a2

(
1 + 2 cos2 θ

)
+

ρ

2
U2

(
1− 9

4
sin2 θ

)
, (20.8.1)

where p∞ is the pressure at infinity. The normal stress Trr at the surface of the sphere is calculated from (20.5.5)
and expressed in a dimensionless form

T ∗rr =
Trr + p∞
ρU2/2

=
(

9
4

sin2 θ − 1
)
− 12

Re
cos θ +

α1

ρa2

(
36 sin2 θ − 9

)
+ 18

α2

ρa2
cos2 θ, (20.8.2)

where Re = ρUa/µ is the Reynolds number. The viscous normal stress should be zero at a solid boundary in
a Newtonian fluid or an Oldroyd-B fluid; the viscous effect on the normal stress is hidden in the pressure. The
viscous contribution to the pressure at the surface of a sphere in a Stokes flow of Newtonian fluid is (Panton
1984, p. 646)

p− p∞
ρU2/2

=
3

Re
cos θ. (20.8.3)

In (20.8.2) we have a viscous contribution to the normal stress (12/Re) cos θ which is four times the Stokes value
(3/Re) cos θ.

We compute the normal stress (20.8.2) for the liquid M1 with a density ρ = 0.895 g/cm3, α1 = −3 and
α2 = 5.34 g/cm (Hu et al. 1990) as an example. We plot the dimensionless normal stress T ∗rr as a function of
the angle θ in Fig. 20.7.

At the stagnation points of a sphere [r = a, θ = 0 or π], the normal stresses are, respectively

Trr + p∞
ρU2/2

=
[
−1 +

9 (2α2 − α1)
ρa2

]
∓ 12

Re
. (20.8.4)

The viscous contribution gives rise to compression −12/Re at front stagnation point and to tension 12/Re at
the rear. The stress due to inertia and viscoelasticity is the same at θ = 0 and θ = π and is a tension when
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Fig. 20.7. The dimensionless normal stress T ∗rr as a function of the angle θ. Parameters of the liquid M1 are used in
the calculation: ρ = 0.895 g/cm3, α1 = −3 and α2 = 5.34 g/cm. The three curves in the figure correspond to Re = 1,
a = 1 cm; Re = 0.05, a = 1 cm; and Re = 1, a = 0.5 cm, respectively.

9 (2α2 − α1) > ρa2. The quantity 2α2 − α1 is strongly positive; for example, 2α2 − α1 = 13.68 (g/cm) for the
liquid M1. Hence, if a2 is not too large the stress at the stagnation points is a tension, reversing the compression
due to inertia.

Figure 20.7 shows that when viscous effects are dominant (Re = 0.05, a = 1 cm), the stress is compression at
the leading edge and tension at the trailing edge. When the viscoelastic effects are important (Re = 1, a = 1 cm
and Re = 1, a = 0.5 cm), the stress is tension at both stagnation points. The normal stress on the sphere
with a = 0.5 cm is much stronger than that on the sphere with a = 1 cm, because the viscoelastic effects are
proportional to 1/a2. The distribution of normal stresses, especially the tension at the trailing edge, shown in
Fig. 20.7 is compatible with the cusp shape of gas bubbles rising in viscoelastic fluids (see Section 20.11).

A point of stagnation on a stationary body in potential flow is a unique point at the end of a dividing
streamline at which the velocity vanishes. In a viscous fluid all the points on the boundary of a stationary body
have a zero velocity but the dividing streamline can be found and it marks the place of zero shear stress near
which the velocity is small. The stagnation pressure makes sense even in a viscous fluid where the high pressure
of the potential flow outside the boundary layer is transmitted right through the boundary layer to the body.
It is a good idea to look for the dividing streamlines where the shear stress vanishes in any analysis of the flow
pattern around the body.

20.9 Potential flow over an ellipse

Potential flow over an ellipse is a classical problem in airfoil theory. The solutions are most easily expressed in
terms of complex functions of a complex variable (Lamb 1932, Milne-Thomson 1968). Hence, we shall use this
potential flow solution and obtain the pressure and the normal stress for a second order fluid as a composition
of derivatives of that solution. Two-dimensional potential flows around bodies admit the addition of circulation
which we have here put to zero.

The complex potential for the flow over an ellipse given by

x2

a2
+

y2

b2
= 1 (20.9.1)

is (Milne-Thomson 1968, §6.31)

ω = −1
2
U(a + b)

[
e−iα

(
z +

√
z2 − c2

)

a + b
+

eiα
(
z −√z2 − c2

)

a− b

]
(20.9.2)

where z is the complex variable, α is the angle of attack, a and b are the semi-axes of the ellipse and c2 = a2−b2.
We plot the streamlines of the flow with the angle of attack α = 0◦ and 60◦ in Fig. 20.8.
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(a) (b)

Fig. 20.8. The streamlines of the flow over an ellipse. (a) The angle of attack α = 0◦; (b) α = 60◦.

The velocities are

u =
1
2

(
dω

dz
+

dω̄

dz̄

)
, v =

i

2

(
dω

dz
− dω̄

dz̄

)
. (20.9.3)

L = ∇u =
[

∂u/∂x ∂v/∂x

∂u/∂y ∂v/∂y

]
(20.9.4)

and

A = L + LT =
[

n s

s −n

]
(20.9.5)

where n = d2ω
dz2 + d2ω̄

dz̄2 and s = i
(

d2ω
dz2 − d2ω̄

dz̄2

)
. It follows that

A2 =
(
n2 + s2

)
1 and trA2 = 2

(
n2 + s2

)
. (20.9.6)

Letting U and p∞ be the velocity and pressure at infinity, respectively, we find the pressure by (20.5.4)

p = p∞ +
ρ

2
U2 − ρ

2
dω

dz

dω̄

dz̄
+ (3α1 + 2α2)

1
2

(
n2 + s2

)
. (20.9.7)

The stress can then be calculated using (20.5.5); after some arrangement, we find

T =
[
−p∞ − ρ

2
U2 +

ρ

2
dω

dz

dω̄

dz̄
− 1

2
α1

(
n2 + s2

)]
1 + µ

[
n s

s −n

]

+α1u

[
k q

q −k

]
+ α1v

[
q −k

−k −q

]
(20.9.8)

where k = d3ω
dz3 + d3ω̄

dz̄3 and q = i
(

d3ω
dz3 − d3ω̄

dz̄3

)
. Equation (20.9.8) applies to any two-dimensional flow that can

be represented by a complex potential ω. We draw the readers’ attention to the fact that α2 does not appear
in the expression for the stress in two-dimensional cases, which has been reported in Joseph 1992.

We are interested in the normal stress on the surface of the ellipse. The unit normal vector on the surface is

n =
x
a2 ex + y

b2 ey

(x2/a4 + y2/b4)1/2
. (20.9.9)

The normal stress is calculated from Tnn = n ·T · n.

20.9.1 Normal stress at the surface of the ellipse

We present the results for the normal stress on the ellipse in this section. Besides the angle of attack, there
are six relevant parameters: ρ, U , µ, a, b, and α1 in this problem. Three dimensionless parameters can be
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constructed:

Re =
ρUa

µ
,

−α1

ρa2
, and

a

b
. (20.9.10)

Note that the Deborah number can be defined as De = −α1
µ

U
a and −α1

ρa2 = De/Re. We shall see later that the
parameter −α1/

(
ρa2

)
appears in the expressions for the normal stresses at the stagnation points. Therefore we

use the parameter −α1/
(
ρa2

)
rather than the Deborah number. The dimensionless normal stress is

T ∗nn =
Tnn + p∞

ρU2/2
. (20.9.11)

The effects of the three dimensionless parameters on the normal stress at the surface of the ellipse are studied in
flows of a zero attack angle. We can obtain explicit expressions for the normal stresses at the stagnation points,
from which the effects of the three parameters can be understood readily. Such expressions are not obtained for
an arbitrary point on the ellipse surface, instead, we calculate the numerical values of stress and present the
plots for the distribution of the normal stress.

At the front stagnation point where z = a,we have

u = v = 0, n = −2U(a + b)/b2 and s = 0. (20.9.12)

Inserting (20.9.12) into (20.9.8) and noting that Tnn = Txx , we obtain the dimensionless normal stress at the
front stagnation point

T ∗nn(θ = 0) = −1 +
−α1

ρa2
4

(
1 +

b

a

)2
a4

b4
− 4

Re

(
1 +

b

a

)
a2

b2
. (20.9.13)

Similarly, we can find the dimensionless normal stress at the rear stagnation point

T ∗nn(θ = π) = −1 +
−α1

ρa2
4

(
1 +

b

a

)2
a4

b4
+

4
Re

(
1 +

b

a

)
a2

b2
. (20.9.14)

The difference between the two stresses is

T ∗nn(θ = π)− T ∗nn(θ = 0) =
8

Re

(
1 +

b

a

)
a2

b2
. (20.9.15)

The normal stresses (20.9.12) and (20.9.13) are analogous to the normal stress (20.8.4) at the stagnation points
in the sphere case, in the sense that they are all composed of the inertia, viscous and viscoelastic terms. Here
the viscoelastic term −α1

ρa2 4
(
1 + b

a

)2 a4

b4 gives rise to extension at both of the stagnation points; the viscous term
4

Re

(
1 + b

a

)
a2

b2 leads to compression at the front stagnation point and extension at the rear stagnation point.

20.9.2 The effects of the Reynolds number

We calculate the normal stress at the surface of the ellipse in flows where −α1/
(
ρa2

)
and a/b are fixed at

3 and 1.67 respectively and the Reynolds number changes from 0.01 – 100. In Fig. 20.9, we plot T ∗nn at the
front and rear stagnation points as functions of the Reynolds number. The stress at the front stagnation point
changes from compression to extension as the Reynolds number increases. The critical Reynolds number, at
which T ∗nn = 0 at the front stagnation point, is 0.075, as shown in Fig. 20.9. Equation (20.9.15) indicates that
the difference between the two normal stresses vanishes as the Reynolds number tends to infinity; the asymptotic
value of the two stresses is

T ∗nn(Re →∞, −α1/
(
ρa2

)
= 3, a/b = 1.67) = 236.07.

The distribution of the normal stress at the surface is plotted in Fig. 20.10 for flows with Reynolds numbers
0.05 and 1. We notice that the stress is compression at the front stagnation point and extension at the rear
stagnation point when Re = 0.05; however, the stress is tension at both of the two stagnation points when
Re = 1.
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Fig. 20.10. The distribution of the dimensionless normal stress T ∗nn at the surface of the ellipse in flows with −α1/
`
ρa2
´

=
3 and a/b = 1.67. The Reynolds number is 1.0 in figures (a) and (b), and is 0.05 in figures (c) and (d). The normal stress
is represented by vectors at the surface of the ellipse in (a) and (c), and is plotted against the polar angle θ in (b) and
(d).

20.9.3 The effects of −α1/
(
ρa2

)

The two normal stresses at stagnation points are plotted against the parameter −α1/
(
ρa2

)
in Fig. 20.11;

the other two parameters are fixed: Re = 0.1 and a/b = 1.67. The difference between the two stresses is
independent of the parameter −α1/

(
ρa2

)
, as can be seen from (20.9.15). This difference is 355.6 when Re = 0.1

and a/b = 1.67. The critical value of −α1/
(
ρa2

)
, at which T ∗nn = 0 at the front stagnation point, is 2.26.
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20.9.4 The effects of the aspect ratio

We change the aspect ratio from 1.1 to 10 and compute the normal stress on the surface of the ellipse; the
other two parameters are fixed: Re = 0.1 and −α1/

(
ρa2

)
= 3. The two stresses at the stagnation points are

plotted against the aspect ratio in Fig. 20.12; The values of the stresses change dramatically with the aspect
ratio because of the a4/b4 term in (20.9.13) and (20.9.14). The stress at the front stagnation point changes
from compression to extension as a/b increases; when a/b = 1.40, T ∗nn = 0 at the front stagnation point. (The
negative values are not shown on the semi-log plot in Fig. 20.12).

The normal stress distribution at the surface is plotted in Fig. 20.13 for flows with a/b = 5.0 and 1.1. It can
be seen that in the flow with the higher aspect ratio, the ellipse is under very high extensional stresses at both
of the stagnation points. The stress at the front stagnation point is compression when a/b = 1.1, which implies
that the front nose of a gas bubble will be flattened.
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Fig. 20.12. The dimensionless normal stresses T ∗nn at the front and rear stagnation points as functions of the aspect ratio
a/b. The other two parameters are fixed: Re = 0.1 and −α1/

`
ρa2
´

= 3.
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Fig. 20.13. The distribution of the dimensionless normal stress T ∗nn at the surface of the ellipse in flows with Re = 0.1
and −α1/

`
ρa2
´

= 3. The aspect ratio is 5.0 in figures (a) and (b), and is 1.1 in figures (c) and (d). The normal stress is
represented by vectors at the surface of the ellipse in (a) and (c), and is plotted against the polar angle θ in (b) and (d).
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Fig. 20.14. The moment on the ellipse in potential flow. (a) In an inviscid fluid, the high pressures at the stagnation
points turn the ellipse broadside-on (across the stream); (b) In a second order fluid, the normal stresses at the two
edges where the streamlines are most crowded are compressive and tend to turn the ellipse into the stream. At the two
stagnation points, the stresses may change from compression to tension. Here we illustrate the situation in which the
stress is compression at the front stagnation point and tension at the rear stagnation point; this pair of stresses gives
rise to the moment which tends to turn the ellipse into the stream. Our calculation shows that the resultant moment of
the normal stress tends to turn the broad side of the ellipse into the stream when inertia is not dominant.

20.10 The moment on the ellipse

Long bodies falling in a viscoelastic fluid often turn into the streamwise direction (Liu and Joseph 1993). We
calculate the dimensionless moment by the normal stress on the ellipse

M∗ =
M

ρU2a2/2
=

∮
x ∧ (Tnnn) dl

ρU2a2/2
. (20.10.1)
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In a Newtonian fluid, the moment can be calculated using the theorem of Blasius and the dimensionless moment
is

M∗ = −2π
(
1− a2/b2

)
sinα cos α, (20.10.2)

which does not depend on the Reynolds number. Our calculation shows that the conclusion is also true in
a second order fluid: the dimensionless moment does not depend on the Reynolds number; the parameter
−α1/

(
ρa2

)
and the aspect ratio a/b are relevant parameters when the moment is concerned.

We plot the dimensionless moment on the ellipse by the normal stress as a function of the attack angle α

in the range [0, π/2] in Fig. 20.15. Six values of the parameter −α1/
(
ρa2

)
, from 0 to 5, are investigated. The

curve corresponding to −α1/
(
ρa2

)
= 0 in Fig. 20.15 is in agreement with (20.10.2), which is the moment in a

Newtonian fluid. The moment on the ellipse is negative in a Newtonian fluid and turns the ellipse broadside-on
to the stream. When the parameter – α1/

(
ρa2

)
is larger, the moment on the ellipse becomes positive and tends

to align the broad side of the ellipse with the streamwise direction. Figure 20.15 also shows that the magnitude
of the moment reaches its largest value when α = π/4, which also occurs in a Newtonian fluid.

We show the effects of the aspect ratio on the moment in Fig. 20.16. The five curves correspond to five values
of the aspect ratio a/b: 1.1, 4, 6, 8 and 10; the parameter −α1/

(
ρa2

)
is fixed at 3. It can be seen that as the

aspect ratio increases, the magnitude of the moment increases to huge values. Hence, long slim bodies turn into
the streamwise direction quickly in viscoelastic fluids.
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20.11 The reversal of the sign of the normal stress at stagnation points

In Sections 20.8 and 20.9, we have showed that the normal stresses at the stagnation points on a sphere or
an ellipse in a second order fluid can be tension, opposite to the high compressive pressures at the stagnation
points in Newtonian fluid. This reversal of the sign of the normal stress has significant effects on the behavior
of particles and bubbles in Newtonian and viscoelastic fluids.

In Newtonian fluids, long bodies in a uniform flow are turned to the orientation in which their long or broad
sides are perpendicular to the stream by the high pressures at stagnation points (see Fig. 20.14.a).

In viscoelastic fluids, long bodies in a uniform flow often turn into the streamwise direction as we discussed
in Section 20.10 (see also Liu and Joseph 1993, Joseph and Feng 1996, Huang, Hu and Joseph 1997). The
extensional normal stresses at the stagnation points in viscoelastic fluids contribute to the moment which turns
the long bodies into the stream (see Fig. 20.14.b and the caption). Long chains of spherical bodies parallel
with the stream are in evidence in sedimentation and fluidization flows of viscoelastic fluids; such configurations
are opposite to those observed in Newtonian fluids. Another unusual phenomenon in viscoelastic fluids is the
two-dimensional cusp at the trailing edge of a rising air bubble (Liu et al. 1995). Below a critical capillary
number, an air bubble rising in a viscoelastic fluid adopts the shape with a cusp point in one view and a spade
edge in the orthogonal view. Figures 20.7, 20.10(c) and 20.13(c) show situations in which the normal stress is
compression at the leading edge and tension at the trailing edge; the leading edge is flattened and the trailing
edge is extended, tending to the cusped trailing edge observed in experiments. Our calculation on a smooth
sphere or an ellipse cannot lead to the exact cusp shape. However, the calculation shows that the normal stress
computed on viscoelastic potential agrees with the experiment qualitatively, much better than the pressure
which is the only normal force that can act on the body in inviscid potential flow.

20.12 Flow past a flat plate

The flow past an ellipse degenerates to the flow past a flat plate when b = 0. The complex potential is

ω =
{ −U(z cos α− i

√
z2 − a2 sinα) up-stream to the plate;

−U(z cos α + i
√

z2 − a2 sinα) down-stream to the plate.
(20.12.1)

The velocities at the upper and lower surfaces of the plate are, respectively

u = −U

(
cos α− x sinα√

a2 − x2

)
, v = 0, upper surface; (20.12.2)

u = −U

(
cos α +

x sinα√
a2 − x2

)
, v = 0, lower surface. (20.12.3)

The stagnation points at the upper and lower surfaces are x = a cos α and x = −a cos α, respectively. The
dimensionless normal stresses at the two stagnation points are

Tnn + p∞
ρU2/2

(x = a cos α) = −1 +
−α1

ρa2

4
sin4 α

− 4
Re sin2 α

, (20.12.4)

Tnn + p∞
ρU2/2

(x = −a cos α) = −1 +
−α1

ρa2

4
sin4 α

+
4

Re sin2 α
. (20.12.5)

These stresses are degenerate cases of (20.9.13) and (20.9.14), which are the stresses at stagnation points in

the flow past an ellipse. In (20.12.4) and (20.12.5), the viscoelastic term
−α1

ρa2

4
sin4 α

gives rise to extension at

both of the stagnation points; the viscous term
4

Re

1
sin2 α

leads to compression at the front stagnation point

and extension at the rear stagnation point.

347



20.13 Flow past a circular cylinder with circulation

The complex potential for the flow past a circular cylinder with circulation is (Milne-Thomson §7.12)

ω = −U(z + a2/z)− iκ log(z/a) (20.13.1)

where κ is the strength of the circulation. A dimensionless parameter κ/aU can be introduced.

We calculate the stress using the potential (20.13.1) in a second order fluid. The stress at the surface of the
cylinder, where z = aeiθ, are of interest. We find

u = − sin θ(2U sin θ + κ/a), v = cos θ(2U sin θ + κ/a); (20.13.2)

n = −4U cos 3θ/a + 2κ sin 2θ/a2, s = −(4U sin 3θ/a + 2κ cos 2θ/a2); (20.13.3)

k = 12U cos 4θ/a2 − 4κ sin 3θ/a3, q = 12U sin 4θ/a2 + 4κ cos 3θ/a3 (20.13.4)

at z = aeiθ and the stress tensor is obtained by inserting (20.13.2) – (20.13.4) into (20.9.8). The dimensionless
normal stress is given by

Tnn + p∞
ρU2/2

=
[
−1 + 4 sin2 θ +

( κ

aU

)2

+
κ

aU
4 sin θ

]
− 8

Re
cos θ

+
4α1

ρa2

[
−4 + 12 sin2 θ +

( κ

aU

)2

+
κ

aU
6 sin θ

]
(20.13.5)

where the first term on the right hand side is the inertia term, which is the same as the inviscid pressure; the
second term is the viscous term and the third term is the viscoelastic term.

The force and moment on the cylinder can be obtained by direct integration of the normal stress over the
surface of the cylinder:

Fx =

2π∫

0

Tnn cos θ adθ = −4πµU, (20.13.6)

Fy =

2π∫

0

Tnn sin θ adθ = 2πκU(ρ + 6α1/a2). (20.13.7)

The moment is obviously zero. Equation (20.13.6) shows that the cylinder experiences a drag due to the viscosity;
the drag would be zero if the shear stress were included in the integration. Equation (20.13.7) shows that the
lift has a contribution from the viscoelastic effect in addition to the inviscid lift 2πκρU. Since α1 is negative,
the viscoelastic lift is opposite to the inviscid lift. When −α1/

(
ρa2

)
= 1/6, the total lift force is zero.

20.14 Potential flow of a second-order fluid over a tri-axial ellipsoid

Viana et al 2005 solved the problem of potential flow of a second-order fluid around a three-dimensional ellipsoid
using general expressions in Lamb (1932), and the flow and stress fields are computed. The flow fields are
determined by the harmonic potential but the stress fields depend on viscosity and the parameters of the second-
order fluid. The stress fields on the surface of a tri-axial ellipsoid depend strongly on the ratios of principal
axes and are such as to suggest the formation of gas bubble with a round flat nose and two-dimensional cusped
trailing edge. A thin flat trailing edge gives rise to a large stress which makes the thin trailing edge thinner.

The main goal of the calculations of Viana et al 2005 for the second-order fluid model was to identify
mechanisms which lead to “two-dimensional cusps”(see Fig. 20.17) at the trailing edge of a gas bubble rising in
an unbounded liquid where axisymmetric solutions might be expected. They calculated the effects of viscosity,
second-order viscoelasticity and inertia. The effects of viscoelasticity are opposite to the effects of inertia; under
modest and realizable assumptions about the values of the second-order fluid parameters, the normal stresses
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(a) (b)

Fig. 20.17. Two orthogonal views showing the cusped (a) and broad (b) shape of the trailing edge of an air bubble (2
cm3), rising in a viscoelastic liquid (S1). The two photographs are from Liu, Liao & Joseph (1995).

at points of stagnation change from compression to tension. The effect of inertia and elasticity are essentially
symmetric in that they depend on squares of velocity and velocity gradients but the effects of viscosity are
asymmetric.

For the rising gas bubbles, the effects of the second-order and viscous terms on the normal stress are such
as to extend and flatten the trailing edge. These calculations suggest that “two-dimensional cusping” can be
viewed as an instability in which a thin flat trailing edge gives rise to a large stress which makes the thin trailing
edge even thinner.

20.15 The lift, drag and torque on an airfoil in foam modeled by the potential flow of a
second-order fluid

We compute the irrotational streaming flow of a second-order fluid past a Joukowski airfoil. The pressure and
extra stress are evaluated using the irrotational flow theory, and the lift, drag and torque on the airfoil are
obtained by integration of the normal stress over the surface of the airfoil. Our calculation can give rise to a lift
force opposite to what would be predicted from the classical theory of aerodynamics. The result is in qualitative
agreement with the experiments of the flow of a foam past an airfoil by Dollet, Aubouy and Graner 2004.

20.15.1 Introduction

Dollet, Aubouy and Graner (G2004) (hereafter referred to as DAG2004) performed experiments of the flow of a
foam past an airfoil. They observed a striking feature that the lift force on the airfoil is opposite to what would
be predicted from the classical theory of aerodynamics. They argued that this inverse lift is due to the effect of
elasticity of the foam.

Besides the inverse lift on an airfoil, many other unusual features of flows observed in viscoelastic fluids but
not in Newtonian fluids can be understood by considering the competition between the effects of inertia and
viscoelasticity; for example, the stable orientation of a sedimenting long particle (Liu and Joseph 1993, Galdi
et al. 2002, Wang et al. 2004), chaining of particles in extensional and shear flows and in sedimentation and
fluidization (Michele et al. 1977, Joseph 1996, 2000, chap. 7), and the two-dimensional cusp at the trailing edge
of a rising air bubble (Liu, Liao and Joseph 1995). Our understanding of these phenomena relies on two pillars:
a viscoelastic “pressure” generated by normal stress due to shear (Joseph and Feng 1996) and a change in the
sign of the normal stress at points of stagnation (Wang and Joseph 2004). These explanations are suggested
by analysis of the second-order fluid model which arises asymptotically for motions which are slow and slowly
varying.

Wang and Joseph (2004) considered the potential flow of a second-order fluid over a sphere or an ellipse and
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calculated the normal stress at the surface. The irrotational normal stress depends in a significant way on the
viscosity and viscoelastic parameters and produces torques on solid particles and deformations of gas bubbles
which are in qualitative agreement with experiments. The stress T in an incompressible second-order fluid is
given by

T = −p1 + µA + α1B + α2A2, (20.15.1)

where A = L + LT is the symmetric part of the velocity gradient L = ∇u,

B = ∂A/∂t + (u · ∇)A + AL + LT A, (20.15.2)

µ is the zero shear viscosity, α1 = −n1/2 and α2 = n1 + n2 where [n1, n2] = [N1(γ̇), N2(γ̇)] /γ̇2 as γ̇ → 0 are
the constants obtained from the first and second normal stress differences.

In this work, we apply potential flow theory to the flow of a second-order fluid past an airfoil and compute the
lift, drag and torque by integration of the normal stress over the surface of the airfoil. Our calculation can give
the inverse lift as observed by DAG2004, but quantitative comparison between our results and the experimental
ones does not yield good agreement; though foams are elastic, they are almost certainly not well described by
a second-order fluid model. DAG2004 showed evidence that the inverse lift on an asymmetric object exists in
a 0.5% by weight cellulose solution, which suggests that the inverse lift on an asymmetric object is a common
feature in viscoelastic fluids, not only in foams. Our calculation provides a way for explicit analysis of the
viscoelastic effects in such problems and offers partial explanation for the inverse lift. We regard the results
using the potential flow of a second-order fluid as tentative and subject to ultimate validation by experiments
and direct numerical simulation using other models.

20.15.2 Numerical method

We consider a uniform streaming flow with the velocity U0 past a cambered airfoil at an angle of attack α. The
calculation is carried out using dimensionless parameters. Following scales are used

[length, velocity, pressure and stress, time] = [l, U0,
1
2
ρU2

0 ,
l

U0
], (20.15.3)

where l is the length of the airfoil and ρ is the density of the fluid. There are two controlling parameters in this
problem:

Re =
ρU0l

µ
, β =

−α1

ρl2
, (20.15.4)

where Re is the Reynolds number and β ∗ Re would give the Deborah number. Only the normal stress Tnn =
−p + τnn at the surface is considered and the shear stress is ignored. The lift, drag and torque coefficients are
defined as

CL =
L

1
2ρU2

0 l
, CD =

D
1
2ρU2

0 l
, CT =

T
1
2ρU2

0 l2
. (20.15.5)

All the variables in the rest part of this section are dimensionless.

The airfoil is obtained by the Joukowski transformation

z = ζ +
c2

ζ
, (20.15.6)

in conjunction with a circle in the ζ plane. The center of the circle is displaced a distance m from the origin
at an angle δ from the x axis and it is in the second quadrant (see Fig. 20.18). Here m is assumed to be small
compared with unity. The circumference of the circle passes through the critical point ζ = c for the Joukowski
transformation, which corresponds to the sharp trailing edge of the airfoil in the z plane.

In the ζ plane, a generic point (r, θ) on the circle satisfies

a2 = r2 + m2 − 2rm cos(δ − θ), (20.15.7)

350



m

a

δ

c−c

ζ plane

z plane 

Fig. 20.18. The mapping planes for a Joukowski airfoil. In the ζ plane, the center of the circle is displaced a distance m
from the origin at an angle δ from the x axis and it is in the second quadrant. The center of the mass in the z plane
(x0, y0) is marked.

which gives rise to

r = m cos(δ − θ) +
√

a2 −m2 sin2(δ − θ). (20.15.8)

The critical point (c, 0) is on the circle and satisfies

r(θ = 0) = c = m cosδ +
√

a2 −m2 sin2δ. (20.15.9)

The surface of the airfoil in the z plane is then given by

z = reıθ +
c2

r
e−ıθ, (20.15.10)

or

x =
(

r +
c2

r

)
cosθ and y =

(
r − c2

r

)
sinθ. (20.15.11)

The length of the airfoil can be calculated from x(θ = 0)− x(θ = π) with the aid of (20.15.8) and (20.15.11):

1 = m cosδ + 3
√

a2 −m2 sin2δ +

(
m cosδ +

√
a2 −m2 sin2δ

)2

−m cosδ +
√

a2 −m2 sin2δ
. (20.15.12)

Let ẋ = dx/dθ and ẏ = dy/dθ, then the unit norm on the surface pointing outward from the airfoil can be
written as

n = nxex + nyey =
ẏex − ẋey√

ẋ2 + ẏ2
, (20.15.13)

and

ds =
√

ẋ2 + ẏ2dθ. (20.15.14)

Among the four geometric parameters c, a, m and δ, we choose to prescribe m and δ, then compute c and a

from (20.15.9) and (20.15.12), respectively.

The complex potential for a uniform flow past a circle with circulation at an angle of attack α in the ζ plane
is

f(ζ) =
[
(ζ −meıδ)e−ıα +

a2eıα

ζ −meıδ

]
+

ıΓ
2π

log
(

ζ −meıδ

a

)
. (20.15.15)

The circulation Γ is determined by Kutta condition, which requires df/dζ = 0 at the critical point ζ = c.
Calculation shows that

Γ = 4π (c sinα−m cosδ sinα + m sinδ cosα) . (20.15.16)
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Equation (20.15.15) along with the inverse Joukowski transformation

ζ =
z

2
±

√
z2

4
− c2 (20.15.17)

gives the potential for the flow past an airfoil in the z plane. The velocities can be evaluated using the potential

u =
1
2

(
df

dz
+

df̄

dz̄

)
and v =

ı

2

(
df

dz
− df̄

dz̄

)
, (20.15.18)

where the overbar denotes conjugate variables. Wang and Joseph (2004) gave the expression for the stress of a
second-order fluid evaluated using a two-dimensional potential flow solution

T =
[−p∞ − 1 + u2 + v2 + β(n2 + s2)

]
1 +

2
Re

[
n s

s −n

]
− 2βu

[
k q

q −k

]
− 2βv

[
q −k

−k −q

]
, (20.15.19)

where

n =
d2f

dz2
+

d2f

dz2 , s = ı

(
d2f

dz2
− d2f

dz2

)
, (20.15.20)

k =
d3f

dz3
+

d3f

dz3 , q = ı

(
d3f

dz3
− d3f

dz3

)
. (20.15.21)

The normal stress at the surface of the airfoil can be computed from

Tnn = n ·T · n, (20.15.22)

where n is given in (20.15.13). The drag and lift coefficients are obtained by integration of Tnn over the airfoil
surface

CD =
∮

Tnnnx ds, CL =
∮

Tnnny ds. (20.15.23)

We compute the torque with respect to the center of the mass z = (x0, y0) by integration

CT =
∮

[(x− x0)ny − (y − y0)nx]Tnn ds. (20.15.24)

20.15.3 Results

We use a Joukowski airfoil described in DAG2004, which can be obtain by setting m = 0.0911 and δ = 0.688π

in our calculation. The angle of attack is fixed at α = 0, in accordance with the experiments of DAG2004.
Although the velocity is finite everywhere on the airfoil surface, the velocity gradients are singular at the front
nose and trailing edge (corresponding to θ = π and θ = 0, respectively). The numerical integrations (20.15.23)
and (20.15.24) cannot converge near these singular points when β 6= 0 and they have to be excluded from
the integration interval. A small number ∆ is introduced and the integrations are performed in the following
intervals

0 + ∆ ≤ θ ≤ π −∆, and π + ∆ ≤ θ ≤ 2 ∗ π −∆. (20.15.25)

First we test the inviscid Newtonian fluid. Classical potential flow theory for inviscid fluid shows that the
drag is zero (D’Alembert’s paradox), and the lift coefficient is

CL =
ρU0Γ
1
2ρU2

0 l
= 2

Γ
U0l

= 1.90302, (20.15.26)

where the dimensionless expression for the circulation (20.15.16) has been used for the calculation.† The torque

† Currie (1974, §4.18) used approximations to the first order of m and obtained another expression for the lift coefficient on the
airfoil in an inviscid fluid

CL = 2π(1−m cosδ) sin(α + 4m sinδ) = 1.969, (20.15.27)

which is close to the exact lift coefficient (20.15.26).

352



on the airfoil with respect to the origin z = 0 can be computed using the Blasius’ theorem (written in dimen-
sionless form)

C0
T =

∮
(xny − ynx)Tnn ds = −Real

(∮
zW 2 dz

)
= −0.0965562, (20.15.28)

where W = df(z)/dz is the complex velocity. Then the torque with respect to the center of the mass (x0 =
−0.1362, y0 = 0.0978)can be obtained

CT =
∮

(xny − ynx)Tnn ds− x0

∮
nyTnn ds + y0

∮
nxTnn ds

= C0
T − x0CL + y0CD = 0.162651. (20.15.29)

Now we compute CD, CL and CT by integration of the normal stress over the airfoil surface. The inviscid
Newtonian fluid can be achieved by setting Re →∞ and β = 0. The results are listed in the first row of Table
20.1 and they are in perfect agreement with the classical potential flow theory. The calculation for the inviscid
fluid can converge with ∆ = 0; we set ∆ = 0.05 and repeat the calculation to test the effect of ∆. The second
row of Table 20.1 shows that the disturbance caused by this ∆ is small and CD, CL and CT remain almost the
same.

The total stress can be decomposed into three parts, the inertia term, the viscous term and the viscoelastic
term. For an inviscid Newtonian fluid, the inertia term is the only term in the total stress. We can probe the
viscous term by setting Re to be a finite number. In the second section in Table 20.1, we set Re = 1 and 10
and β = 0. The viscous effects lead to a positive drag, indicating that the viscous stress gives rise to a drag
on the airfoil in the same direction as the incoming flow. The lift CL increases from the value for an inviscid
Newtonian fluid, showing that the viscous stress gives rise to a lift force pointing upward, in the same direction
as the aerodynamic lift. The viscous stress also gives rise to a counter-clockwise torque, which is in the same
direction as the torque induced by the inertia term. The viscous effects are stronger when Re is smaller.

We set Re → ∞ and β = 0.01, 0.05 and 0.1 to suppress the viscous effects and investigate the viscoelastic
effects. The third section in Table 20.1 shows that the viscoelastic term gives rise to a negative drag, which is
opposite to the incoming flow. The viscoelastic term leads to a negative lift, which offsets the lift by inertia and
gives a total lift which points downward when β is large enough. This result is in agreement with the conclusion
in DAG2004 that the inverse lift is generated by viscoelasticity of the fluid. The torque due to the viscoelastic
stress is clockwise, opposite to the inertia and viscous torques.

Next we consider the combined effects of the inertia term, the viscous term and the viscoelastic term. We
arbitrarily set Re from 1 to 3 and keep β to be a constant at 0.1. When 1 ≤ Re ≤ 2.5, the viscous contribution
to CD outweigh the viscoelastic contribution and leads to a positive drag; however, the viscoelastic contribution
to CL prevails over the viscous contribution and gives rise to a negative lift. The viscous effects attenuate as Re

increases and the viscoelastic effects become dominant. When Re = 3, both CD and CL are negative, showing
dominant viscoelastic effects. When the torque is concerned, the viscoelastic term gives the major contribution
when 1 ≤ Re ≤ 3 and β = 0.1 and the torque is clockwise.

We plot the normal stress on the airfoil surface as a function of the angle θ in Fig. 20.19; the three curves
correspond to the inviscid Newtonian fluid with Re = ∞, the viscous Newtonian fluid with Re = 10, and the
viscoelastic fluid with Re = 10 and β = 0.01, respectively. We set p∞ = 0 in this calculation. The pressure
is the only component of the normal stress for the inviscid Newtonian fluid. The front nose (θ = π) is the
stagnation point and the pressure gives rise to a compressive nornal stress at θ = π. For the Newtonian fluid
with Re = 10, the viscous stress comes into play; Fig. 20.19 shows that the viscous effects make the normal
stress more compressive at the stagnation point. For the viscoelastic fluid with Re = 10 and β = 0.01, the
normal stress varies dramatically near the stagnation point. Although we cannot compute the normal stress
precisely at θ = π because it is singular, we can compute points close to θ = π and connect them to obtain a
curve. The curve in Fig. 20.19 shows that Tnn becomes tensile near θ = π due to the viscoelastic effects. This
change of sign of the normal stress at the stagnation point plays a role in the inverse lift force on the airfoil;
it also has significant importance in many unusual features in viscoelastic fluids, such as the stable orientation
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Re β ∆ CD CL CT

∞ 0 0 0 1.903 0.1627
∞ 0 0.05 10−6 1.903 0.1626

1 0 0.05 11.674 4.288 2.670
10 0 0.05 1.167 2.141 0.4134

∞ 0.01 0.05 -0.3937 1.029 -0.4167
∞ 0.05 0.05 -1.969 -2.465 -2.734
∞ 0.1 0.05 -3.937 -6.833 -5.630

1.0 0.1 0.05 7.737 -4.449 -3.123
1.5 0.1 0.05 3.846 -5.244 -3.959
2.0 0.1 0.05 1.900 -5.641 -4.377
2.5 0.1 0.05 0.732 -5.879 -4.627
3.0 0.1 0.05 -0.0459 -6.038 -4.795

Table 20.1. The lift, drag and torque coefficients on a Joukowski airfoil in the potential flow of a second-order
fluid as a function of the controlling parameters Re and β (20.15.4). The profile of the airfoil is determined by

m = 0.0911 and δ = 0.688π, and the angle of attack is fixed at α = 0.
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Fig. 20.19. The normal stress on the airfoil surface as a function of the angle θ. The solid line corresponds to the inviscid
Newtonian fluid with Re = ∞, the dashed line to the viscous Newtonian fluid with Re = 10, and the dash-dotted line to
the viscoelastic fluid with Re = 10 and β = 0.01.

of a sedimenting long particle, chaining of particles in extensional and shear flows, and the cusp at the trailing
edge of a rising air bubble (Wang and Joseph 2004).

DAG2004 measured the drag and lift on an airfoil in the streaming flow of a foam. The drag is in the same
direction as the streaming flow; the lift is in the opposite direction to what would be predicted from the theory
of aerodynamics. Compared to our calculation, their experiments correspond to the regime in which the viscous
contribution prevails for the drag, whereas the viscoelastic contribution prevails for the lift. In Figure 20.20 the
lift and drag coefficients measured by DAG2004 are plotted against the Reynolds number.

Our calculation cannot reproduce the experimental results of DAG2004 shown in Figure 20.20 quantitatively.
The parameter β for the foam used in the experiments is not known. We cannot find a value of β which leads
to good agreement between our calculation and the experimental results. Part of the reason may be due to the
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Fig. 20.20. The magnitude of CL and CD on an airfoil in the flow of a foam measured by DAG2004 against the Reynolds
number. The drag is in the uniform flow direction; the direction of the lift force is opposite to what would be predicted
from the theory of aerodynamics.

fact that the experiments of DAG2004 are in low Reynolds number (Re ∼ 0.1) regime and the yield stress of
the foam plays an important role, which is not accounted for in the second-order fluid model. Nevertheless,
our calculation can correctly predict the directions of the drag and lift and is an improvement on the inviscid
potential flow theory in aerodynamics. Potential flow of a second-order fluid provides an explicit and effective
way of analyzing viscoelastic effects in simple flows.
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