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Abstract: The present paper studies the in�ltration of an incompressible liquid in an initially

dry (or partially dry), deformable spongeous material made of an incompressible constituent in the

slug-
ow approximation having in mind the application to some industrial processes involving 
ow

through spongeous materials and, in particular, some composite materials manufacturing processes.

The resulting initial-boundary value problem is of Stefan type, with suitable interface conditions and

evolution equations describing the position of the interfaces delimiting the saturated region within

the porous material. Di�erent models are then suggested in the saturated region, depending on the

importance of the inertial terms and on the constitutive equation for the stress. Comparison of the

simulation with known experimental results is satisfactory.

1. Introduction

Many manufacturing processes used to fabricate composite materials consist in injecting

a metallic, ceramic or polymeric melt in a deformable porous material. This solid preform

can be made of a sponge-like material, or of a solid consituent in the form of mats, �bers,

whiskers, particulates, 
akes, or wires [1{6].

After solidi�cation of the melt, the reinforcing network within the composite material

is in charge of carrying the major stresses and loads, while the solidi�ed matrix material

holds the reinforcing elements together, enabling the transfer of the stresses and loads to

them.

These manufacturing processes, usually referred to as resin transfer molding (RTM),

structural resin injection molding (SRIM), and squeeze casting, can be schematized as

in�ltration problems in initially dry porous media. In modelling them in the literature it

is often assumed that the solid preform is rigid, in spite of the fact that several papers

show deformation of the solid constituent and stress the importance of monitoring the

dynamical evolution of the deformation and stress states to identify in advance possible
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inhomogeneities and damages in the reinforcing network (see [7{20] and [21] for a recent

review on the subject.) Furthermore, from the industrial point of view there is a crucial

need of identifying a good compromise between rate of production and quality of the prod-

uct, say, obtaining a homogeneous composite material, avoiding ruptures of the reinforcing

�bers which can lead to material failures, and so on. This requires a detailed description

of the whole dynamics of the coupling between the 
ow and the deformation of the porous

material.

In fact, when a 
uid 
ows through a deformable porous medium the forces associated

with the 
ow deform the porous material. In turn, the deformation of the porous medium

in
uences the 
ow. The competition among the stress in the solid element, pressure in

the liquid element and inertial and body forces will determine the evolution of the system,

which is very di�erent from that experimentally observed when the coupling between 
uid


ow and deformation of the porous medium is absent. In fact, the strain distribution in a

deformable porous medium is uniform if it is subjected to a steady mechanical compression

and highly nonuniform if the strain is produced by 
uid 
ow (see, for instance, Fig. 1 of

[22]).

Similar coupled 
ow/deformation problems have been studied in several di�erent sci-

enti�c �elds: in soil mechanics (see, for instance [23{26] and references therein), in magma

mechanics [27{33], in bio-mathematics [34{49] and references therein, and in dealing with

several industrial processes such as paper pulp rolling, fabric dyeing and drying, co�ee

brewing, and so on [50{53].

Having in mind the application to those industrial processes involving 
ow through

sponge-like materials and, in particular, injection molding and squeeze casting processes,

in the present paper we study the problem of the spontaneous relaxation of a compressed

wet sponge and the in�ltration of an incompressible liquid in an initially dry (or partially

dry) deformable spongeous material made from an incompressible solid in the slug-
ow

approximation.

This assumption, which is acceptable when the driving pressure gradient is much

larger than the driving force due to capillary pressure, allows the de�nition of a sharp

front separating the fully saturated porous medium from the unin�ltrated portion.

Our attention is focused, however, on the saturated region, assuming that the un-

in�ltrated porous material is rigid, as occurs for some synthetic sponges. The coupled

problem obtained considering a porous material deformable both when dry and when wet

is currently under study [54].

After this introduction, the second and third sections of the present paper deal, re-

spectively, with the formulation of the three- and the one-dimensional in�ltration model,

the fourth section with the formulation of the interface conditions and of the evolution
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equations for the boundaries delimiting the saturated region, and the �fth section with a

discussion on the role of inertia and of several constitutive equations for the stress.

It is found that the resulting one-dimensional model is of Stefan type, with suitable

evolution equations describing the position of the interfaces. The system of partial dif-

ferential equations in the saturated porous material is hyperbolic or parabolic according

to whether the inertial terms are neglected or not, and to the stress constitutive assump-

tions. A simulation is, then, performed to show the importance of these terms and the

applicability of the model. Finally, a comparison with an in�ltration experiment made by

Sommer and Mortensen [17] is performed.

2. In�ltration Model

Consider the in�ltration of an incompressible liquid in a deformable porous material (some-

times called sponge in this paper for brevity) made up of an incompressible solid con-

stituent. Deformable porous media models can be deduced on the basis of the theory of

mixtures [53{59], or by average methods, e.g. ensemble average [60, 61]. A recent review of

the subject with special attention to its application to composite material manufacturing

is given in [21].

In absence of chemical reactions and phase changes conservation of mass of each

constituent writes

@�

@t
+r � (�VS) = 0 ; (2:1)

�
@�

@t
+r � [(1� �)VL] = 0 ; (2:2)

where � is the volume fraction of the solid constituent and VS and VL are, respectively,

the velocity of the solid and the liquid constituent.

The momentum equations for the constituents write

�S�

�
@VS

@t
+VS � rVS

�
= r �TS + �S�g +m� ; (2:3)

�L(1� �)

�
@VL

@t
+VL � rVL

�
= r �TL + �L(1� �)g �m� ; (2:4)

where �S and �L are true density of the solid and of the liquid constituent, respectively,

TS and TL are the so-called partial stress tensors, m� is the interaction force, which is

related to the local interactions between the constituents across the interface separating

them, and g is the gravitational acceleration.

The main di�culty in using (2.3, 2.4) is in formulating and validating the constitutive

relations for the interfacial force m� and the partial stresses TS and TL appearing in
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them, since they cannot be measured directly. However, adding them gives

�c

�
@Vm

@t
+Vm � rVm

�
= �rPL +r �Tm + �cg ; (2:5)

where �c = ��S + (1 � �)�L is the composite density, i.e. the density of the mixture

considered as a whole, Vm = [��SVS + (1 � �)�LVL]=�c is the mass average velocity,

Tm is the excess stress tensor for the mixture, and PL is the pore liquid pressure, which

is constitutively undetermined as a direct consequence of the assumption that the two

constituents are separately incompressible.

Equation (2.5) is the momentum equation one would obtain considering the wet porous

material as a whole, avoiding being concerned about the copresence of solid and liquid

constituents in it. In particular, the constitutive equation for Tm can be tested conceiving

ad hoc experiments on the wet material.

On the other hand, under some assumptions (namely, isotropy of TL, negligible con-

tribution due to the acceleration of the liquid constituent compared, say, with the pressure

gradient, linear dependence ofm� on the velocity di�erence [22, 56]) it is possible to deduce

from (2.4) Darcy's law for the in�ltration of liquids through deformable porous media

VL �VS = �
1

(1� �)�
K(B)(rPL � �Lg) ; (2:6)

where � is the liquid viscosity,K is the permeability tensor, and B is the left Cauchy{Green

strain tensor for the solid.

Coherently with the assumption that the contribution due to the acceleration of the

liquid constituent is negligible compared with the pressure gradient, the liquid acceleration

is also dropped in Eq.(2.5) which then simpli�es to

�S�

�
@VS

@t
+VS � rVS

�
= �rPL +r �Tm + [�S�+ �L(1� �)]g : (2:7)

The two continuity equations (2.1, 2.2) imply that

r �VC = 0 where VC = �VS + (1� �)VL (2:8)

is the composite velocity.

>From Darcy's law (2.6) we can readily eliminate VL from (2.8) to obtain

r �

�
VS �

1

�
K(B)(rPL � �Lg)

�
= 0 : (2:9)

The three-dimensional model is then obtained considering Eqs.(2.1), (2.7), and (2.9).
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It is worthwhile to remember explicitly that the continuity equation for the solid

constituent (2.1) can be written in Lagrangian coordinates as

detF =
��
�

(2:10)

where F is the deformation gradient for the solid, �� is the volume ratio of the undeformed

reference con�guration and we have used the incompressibility assumption.

3. The One-Dimensional In�ltration Model

Assume now that the solid and the liquid constituents are placed in a vertical tube (g =

�gex), that both 
ow and strain take place along the vertical direction x and that the

medium is isotropic in a plane perpendicular to this axis (such that the in�ltration direction

is a principal direction of the preform permeability tensor).

In this case the only non-trivial component of the strain tensor is the ex
 ex compo-

nent. In particular, de�ning the Lagrangian strain tensor

E =
1

2
(B� I) = "ex 
 ex ; (3:1)

it readily follows that

" =
1

2
(detB� 1) =

1

2
[(detF)2 � 1] =

1

2

�
�2
�

�2
� 1

�
(3:2)

and that the only non-constant component of the Cauchy{Green strain tensor is

Bxx = (detF)2 =
�2
�

�2
; (3:3)

which means that, in one-dimensional problems, the dependence of the permeability tensor

K on B is equivalent to that on �=��.

The same is not true for the excess stress tensor Tm which refers to the whole mixture.

In this case the possible dependence on the Cauchy{Green strain tensor involves not only

the volume fraction (as in (3.3)), but also the 
uid properties.

Initially the sponge is at rest and compressed at a volume ratio �0(x). Only part of

it dips into the liquid, say for x 2 [xB0; xT0], xB0 being the position of the border of the

sponge in the liquid (the other end of the sponge is held �xed), and xT0 being the position

of the liquid interface inside the sponge (see Fig. 1a.) The rest is dry, i.e.,8<
:
�(t = 0; x) = �0(x)

VS(t = 0; x) = VL(t = 0; x) = 0
for x 2 [xB0; xT0] : (3:4)
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(a) (b)

Figure 1 | Schematization of the one-dimensional in�ltration problem

At time t = 0 a pressure gradient is applied between the extrema of the sponge driving

the in�ltration of the liquid upwards into the sponge. As time goes by, the liquid which

penetrates into the sponge forms a horizontal interface xT (t). This is an air{liquid interface

at the top of the liquid separating the fully saturated from the dry part of the compressed

sponge. At the same time the wet sponge expands downwards into the pure liquid forming

another horizontal interface xB(t). This is the bottom border of the sponge that lies within

the liquid (see Fig. 1b). The in�ltration model we will deal with is, of course, valid in the

fully saturated region [xB(t); xT (t)].

In doing this, capillary phenomena are simpli�ed assuming the existence of a sharp

front which divides the fully saturated porous medium from the remaining unin�ltrated

portion. This assumption, often called slug-
ow approximation, is valid when the applied

pressure is much larger than the capillary pressure.

In our analysis we also assume that the dry sponge is sti�. In fact, there are many
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porous materials that are rigid when dry and soften when wet (e.g., some synthetic

sponges). The case in which the sponge is not rigid is currently under consideration

[54].

In one-dimension, Eq.(2.8) implies that the composite velocity VC does not depend

on x, that is

�VS + (1� �)VL = C(t) : (3:5)

Since the composite velocity is continuous across xB(t) [21, 62], going all the way down

to where there is only pure liquid, it is evident that C(t) is equal to the in
ow velocity.

Equation (3.5) and Darcy's law (2.6) give

VS = C(t) +
K(�)

�

�
@PL
@x

+ �Lg

�
; (3:6)

VL = C(t)�
�

1� �

K(�)

�

�
@PL
@x

+ �Lg

�
; (3:7)

or
@PL
@x

=
�

K(�)
[VS � C(t)]� �Lg : (3:8)

The one-dimensional model then takes the following form

@�

@t
+ VS

@�

@x
+ �

@VS
@x

= 0 (3:9)

�S�

�
@VS
@t

+ VS
@VS
@x

�
= �

�

K(�)
[VS � C(t)] +

@�

@x
� �(�S � �L)g (3:10)

for x 2 [xB(t); xT (t)], where the constitutive relation for the stress � is still to be speci�ed.

The quantity C(t), which appears in Eqs.(3.6){(3.10) depends on how the liquid con-

stituent is pushed into the sponge. The simplest case is when we are completely able to

govern the in
ow, for instance, we are able to steadily push liquid into the porous medium,

which means C(t) =const.

A more interesting situation arises when the pressure di�erence

�PL(t) = PL(xB(t))� PL(xT (t)) (3:11)

between the top and the bottom interface is prescribed (say, constant). In setting the

pressure at the top interface, for example equal to the atmospheric pressure, we assume

that the gas viscosity is so small that it is easily expelled from the dry portion of the

porous material, o�ering negligible resistence. In this case, integrating (3.8) we have

�PL(t) = C(t)

Z xT (t)

xB(t)

� dx

K(�(t; x))
�

Z xT (t)

xB(t)

�VS(t; x)

K(�(t; x))
dx+ �Lg[xT (t)� xB(t)] ; (3:12)
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or

C(t) =

1

�
f�PL(t)� �Lg[xT (t)� xB(t)]g+

Z xT (t)

xB(t)

VS(t; x)

K(�(t; x))
dx

Z xT (t)

xB(t)

dx

K(�(t; x))

: (3:13)

4. Evolution of the Interfaces and Interface Conditions

The system of equations (3.9, 3.10) has to be integrated in the time-varying domain

[xB(t); xT (t)]. We have then to determine the evolution equations for xB(t) and xT (t)

and to join to (3.9, 3.10) proper interface conditions on � and VS .

The bottom interface xB(t) is a material interface for the porous medium and therefore

it has to move with the velocity of the porous medium at the bottom interface

dxB
dt

(t) = VS(t; xB(t)) : (4:1)

Similarly, the top interface xT (t) is a material interface for the liquid and therefore it

has to move with the velocity of the liquid at the top interface

dxT
dt

(t) = VL(t; xT (t)) : (4:2)

However, the composite velocity is constant throughout the sponge and has to be

continuos across xT (t) [21, 62]. If the dry porous material is assumed to be rigid, then

evaluating (3.5) on both sides of the top interface xT (t) gives

C(t) = �(t; xT (t))VS(t; xT (t))+ [1��(t; xT (t))]VL(t; xT (t)) = [1� �0(xT (t))]VL(t; xT (t)) :

(4:3)

This allows to rewrite (4.2) as

dxT
dt

(t) =
C(t)

1� �0(xT (t))
; (4:4)

and to deduce the boundary condition

VS(t; xT (t)) =
�(t; xT (t))� �0(xT (t))

�(t; xT (t))[1� �0(xT (t))]
C(t) : (4:5)

The other boundary condition is the stress-free condition at the bottom interface

�(t; xB(t)) = 0 : (4:6)
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It is worthwhile to observe explicitly that the time derivative of the total solid mass

wet by the liquid is

d

dt

Z xT (t)

xB(t)

�(t; x) dx = �(t; xT (t))

�
dxT
dt

� VS(t; xT (t))

�
=

�0(xT (t))

1� �0(xT (t))
C(t) : (4:7)

This relation is useful to control the computational error made in the numerical integration.

In particular, if C(t) = 0, then the total solid mass wet by the liquid is conserved.

This is a direct consequence of the sti�ness assumption on the dry sponge.

5. The Role of Inertia and of the Stress Constitutive Equation

In consolidation theory and in all �elds of application of deformable porous media models,

the inertia of the solid constituent is often neglected. Even when inertial terms are retained

in the derivation of the model (see, for instance, [27, 28, 38, 49]), they are eventually

neglected in the applications.

This approximation is equivalent to saying that the stress in the solid and the pressure

exerted by the liquid balance each other, setting each solid element in equilibrium (in this

section gravity is neglected for sake of simplicity). In fact, in this case, the momentum

equation (2.5) takes the form of a stress equilibrium equation

@�

@x
=

@PL
@x

: (5:1)

The velocity of the liquid and of the solid constituents are then determined by the

joined action of Darcy's law and of the conservation equation (3.5). In fact, in Eqs.(3.6,

3.7) the pressure gradient is functionally related to the volume ratio through (5.1) and

the constitutive relation, that is a change in liquid pressure readily determines a change of

volume ratio. The change in volume fraction and pressure gradient will then determine a

change in the relative 
ow of the liquid with respect to the solid preform, which has to be

such that the composite velocity is x-independent.

In this conceptual schematization of events one excludes the situation whereby the

solid preform can be deformed by the direct action of the change of the liquid pressure

gradient, assuming that the pressure gradient is entirely absorbed as stress in the solid pre-

form. Keeping, instead, the inertial term of the solid constituent allows the non-equilibrium

between stress in the solid element and liquid pressure acting on it to in
uence directly the

evolution of the wet porous medium. This can be a non-negligible e�ect, as for example

in composite manufacturing by in�ltration and in some bio-mechanical problems.

In this section attention is focused on the e�ects of the assumptions made on the rel-

ative importance of the inertial term and on the form of the stress constitutive relation. It
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is shown that, as a consequence of these assumptions, the model possesses di�erent math-

ematical characteristics and that inertial terms are important at early times, where the

meaning of early depends on the physical parameters and on the constitutive assumptions.

This section concludes with a description of a simulation that was performed to quantify

these e�ects.

The main di�culty in dealing with deformable porous media, however, is not in treat-

ing the inertial term, but in correctly formulating the stress constitutive relation for the

wet material as a whole. This is due to the fact that at the present time there are not

enough experimental results available to guide the choice of one constitutive relation over

another, but only general measurement of the viscoelastic properties of the constituents

and observation of viscoelastic behavior of the wet material [5, 59{62, 64, 68, 71{75].

In fact, despite recognizing the importance of viscoelastic e�ects, most papers perform

or report on measurements of the stress-strain relation in uni-axial compression tests in

the equilibrium condition

� = �(") ; (5:2)

ruling out any viscoelastic e�ect. This corresponds to neglecting the e�ect due to the

presence of the liquid matrix in the pores and to approximating the wet sponge as an

elastic material.

In reality, the solid preform and the liquid matrix cannot deform independently but

have to carry the load by joint deformation. This, however, does not require adding two

constitutive equations, one for each constituent, since

Tm = �TS + (1� �)TL � h �(V�Vm)
 (V�Vm) i ; (5:3)

where the last term is an averaged interaction term which is hard to model (see, for

instance, [21, 60, 61].)

It is convenient, therefore, to look directly for a constitutive relation for the wet mate-

rial as a whole which possesses the characteristics exhibited by experimental observations.

The viscoelastic behavior of composite materials in their �nal solid form has been

experimentally studied by many authors (see, for instance, [1{6] and references therein).

But in modelling the in�ltration of a deformable medium it is necessary to know the stress-

strain functional relationship when the matrix material is still in its liquid form. This piece

of information is lacking for the materials usually used in composite manufacturing. The

only paper we found that gives quantitative data of the stress relaxation of a mixture is

the one by Kim, McCarthy, and Fanucci [11].

Some more information can be obtained looking at similar studies dealing with the

viscoelastic properties of articular cartilages (see, for instance, [35, 36, 41, 43, 47{50]). In
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fact, the human body itself can be divided into several subsystems that can be schematized

as deformable porous media permeated by organic liquids (articular cartilages, arteries,

lungs, liver, kidneys, muscles, cornea, heart, brain, subcutaneous layer, and what is gener-

ally called in biomathematics soft tissue). Of course, in describing these systems osmotic

e�ects should also be included. However, these studies show experimental evidences for

the need to model the mixture at least as a Voigt-Kelvin solid

Tm = �

�
�E

DE

Dt
+ E

�
; (5:4)

or as an anelastic solid

�T
DTm

Dt
+Tm = �

�
�E

DE

Dt
+ E

�
; (5:5)

where
DM

Dt
=

@M

@t
+Vm � rM�WM+MW � a(DM+MD) (5:6)

is the convective derivative, D and W are the symmetric and antisymmetric part of the

mass average velocity gradient and a is a parameter ranging between �1 and 1 (see [73]).

The fact that the convective derivative is based on the mass average velocity is related

to the fact that the constitutive equation refers to the momentum equation of the mixture

as a whole, without distinguishing macroscopically its components.

The constitutive equation (5.4) is not the only or the most general one that might

be tried for our wet sponge. However, three parameter models are commonly used for

viscoelastic 
uids and solids (see [73{75].) Rheometrical methods for measuring the pa-

rameters are well known. Experiments are required in this direction in order to open a

proper discussion. For instance, we think it could be useful to perform dynamical tests

aimed at evaluating the response of the wet sponge compressed at di�erent volume ratios

to oscillatory twist and compression.

It is useful to recall explicitly that in one dimension, strain and volume ratio are

related through (3.2) and that measurements usually give the stress-volume ratio relation

with the stress taken positive in compression, i.e.

� = ��(�) ; with �0(�) =
d�

d�
> 0 (5:7)

where

�(�) = ��

�
1

2

�
�2
�

�2
� 1

��
= ��(") ; (5:8)
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(a) (b)

Figure 2 | Behavior of the dimensionless (a) stress �(�)=�(�c) and (b) permeability

K(�)=K(�r) as a function of the volume ratio. In the simulation �r = 0:135175, �c = 1=3,

�(�c) = 9:7076 104 sec and K(�r) = 1:685 10�11m2.

(see Figure 2a).

In one dimension we can then write

D"

Dt
=
@"

@t
+ Vm

@"

@x
� 2a"

@Vm
@x

= �
�2
�

�3

�
@�

@t
+ Vm

@�

@x
� a�

�
�2

�2
�

� 1

�
@Vm
@x

�

=�
�2
�

�3

�
(Vm � VS)

@�

@x
� �

@VS
@x

� a�

�
�2

�2
�

� 1

�
@Vm
@x

� (5:9)

where we have used Eq.(3.2) and the continuity equation (3.9). Using (3.5), we can express

Vm as

�cVm = (�S � �L)�VS + �LC(t) : (5:10)

In our one-dimensional mixture model we allow the parameters in the constitutive

equation to depend on the material parameters of the 
uid and the solid constituents and

on the strain, as occurs for models of White-Metzner type. This is done in order to be

consistent with the nonlinear elastic setting commonly described in steady compression

tests.

Taking into account Eq.(5.9) the constitutive relation for one-dimensional deforma-
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tions of an anelastic solid (see (5.5)) can then be written as

��(�; �)

�
@�

@t
+ Vm

@�

@x
� 2a�

@Vm
@x

�
+ � =

= ��(�; �)

8<
: 2��(�; �)

�
�
�2

�2
�

� 1
� �(Vm � VS)

@�

@x
� �

@VS
@x

� a�

�
�2

�2
�

� 1

�
@Vm
@x

�
+ 1

9=
; ;

(5:11)

while that of a Voigt-Kelvin solid (see (5.4)) as

� = ��(�; �)

8<
: 2��(�; �)

�
�
�2

�2
�

� 1
� �(Vm � VS)

@�

@x
� �

@VS
@x

� a�

�
�2

�2
�

� 1

�
@Vm
@x

�
+ 1

9=
; : (5:12)

Going back to the evolution equation, if inertia is neglected, then the system of equa-

tions (3.9, 3.10) can be reduced to the single equation

@�

@t
+ C(t)

@�

@x
+

1

�

@

@x

�
K(�)�

@�

@x

�
= 0 (5:13)

where we have neglected gravity for sake of simplicity.

Assuming that the mixture behaves like an elastic material implies joining the consti-

tutive relation (5.7) to Eq.(5.13) which yields the nonlinear convection-di�usion equation

@�

@t
+ C(t)

@�

@x
=

1

�

@

@x

�
K(�)��0(�)

@�

@x

�
: (5:14)

If the mixture is modelled as an anelastic solid using (5.11), or as a Voigt-Kelvin solid

using (5.12), we have a model which is still parabolic, but with a structure which presents

similarities to the KdV equation and to the models obtained studying magma mechanics

[27{33]. We remind that these models admit solutions for �nite-amplitude solitary waves

of permanent form and constant velocity, which thus might also be allowed by the present

model. In this case, in analogy with what occurs in 
uidized beds, one could talk of void

waves in deformable porous media.

If, instead, the inertia of the solid constituent is not neglected and the mixture is

modelled as an elastic material, then the resulting model

8>><
>>:

@�

@t
+ VS

@�

@x
+ �

@VS
@x

= 0

�S�

�
@VS
@t

+ VS
@VS
@x

�
+�0(�)

@�

@x
+

�

K(�)
[VS � C(t)] = 0

(5:15)
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is hyperbolic. The same is also true if an anelastic constitutive equation is combined with

Eq.(3.10).

In the simulation which follows we integrate the di�erent models considered above

under the same physical situation but for di�erent values of the parameters to analyze

the di�erences between the results. In order to do that it is convenient to introduce

dimensionless variables by scaling lengths, time and velocities by the characteristic length

xT0�xB0, time �(xT0�xB0)
2

Kr�c
, and velocity Kr�c

�(xT0�xB0)
whereKr = K(�r) is the permeability

of the relaxed sponge (i.e., �r is such that �(�r) = 0) and �c = �(�c) is the stress of the

sponge at a given volume ratio �c, say �c = �0(xT0).

In this way the momentum equation writes

P�

�
@VS
@t

+ VS
@VS
@x

�
= �

1eK(�)
[VS � eC(t)] + @e�

@x
; (5:16)

where

P = �S�c

�
Kr

�(xT0 � xB0)

�2
(5:17)

is a dimensionless parameter which gives a measure of the relative importance of the inertial

term.

All variables in (5.16) are now dimensionless. In particular, eK(�) = K(�)=K(�r),e�(�) = �(�)=�(�c), and the dimensionless in
ow velocity eC(t) is either given or determined

by the dimensionless form of Eq.(3.13)

eC(t) =
�PL(t)

�
+

Z xT (t)

xB(t)

VS(t; x)eK(�(t; x))
dx

Z xT (t)

xB(t)

dxeK(�(t; x))

; (5:18)

if the pressure drop �PL between the sponge extrema is given.

The dimensionless form of the remaining equations if formally unchanged. The initial-

boundary value problem is, then formed by Eqs.(3.9) and (5.16) joined with one of the

constitutive equations (5.7), (5.11), or (5.12), with the evolution equations for the bound-

aries (4.1, 4.4) and the boundary conditions (4.5, 4.6).

Furthermore, it is assumed that the sponge is initially at rest and compressed at a

solid volume fraction

� =

8<
:
�r + (�c � �r)

tanhnx
tanhn 0 � x � 1

�c x > 1

(5:22)
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(a)

Figure 3 | Spontaneous relaxation of a wet compressed elastic sponge. The fully relaxed

sponge has a solid fraction �r = 0:135175 (see Fig. 2a). The dry sponge (x > 1) is

compressed at a volume fraction �c = 1
3 . Referring to Eq.(5.16), P > 0 gives rise to

hyperbolic propagation, whereas P = 0 gives rise to a nonlinear di�usion equation (see

Eq.(5.14)) with a characteristic monotone relaxation as shown in (a). Larger values of

P give rise to wave propagation, and over-relaxation (� < �r) as is evident in (b) and

(c) which correspond, respectively, to P = 0:1 and P = 1. The solid volume fraction is

plotted versus x at di�erent times t = 0:1; 0:2; 0:4; 0:8; 1:6; 2:4. The dotted line represents

the initial condition.
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(b)

(c)
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(a)

(b)

Figure 4 | Spontaneous relaxation of a wet compressed Voigt{Kelvin sponge, i.e. Eqs.(4.6)

combined with (5.8) with �� = 0:1. The fully relaxed sponge has a solid fraction �r =

0:135175 (see Fig. 2a). The dry sponge (x > 1) is compressed at a volume fraction �c =
1
3 .

The coe�cient of the inertial term in (5.16) is P = 0:1 in (a) and P = 1 in (b). Higher

values of �� correspond to a larger dissipation which has the e�ect of smoothing the

oscillations which arise for the elastic sponge. The solid volume fraction is plotted versus

x at di�erent times t = 0:1; 0:2; 0:4; 0:8; 1:6; 2:4. The dotted line represents the initial

condition.
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with n = 10, �c =
1
3 , and where �r is the volume ratio of the relaxed state, i.e. �(�r) = 0.

In performing the simulation we used the data relative to the polyurethane sponge

used in the experiments of Refs.[5, 92{95].

The value of P depends strongly on the initial length of the wet sponge. For the

polyurethane sponge we are considering it can reach values of order one for millimeter-

sized specimens. Still higher values can be achieved in composite manufacturing since the

solid preforms used in applications have higher densities, permeabilities and stresses.

Figures 3 through 6 present computations which bring into focus various special e�ects

associated with inertia and di�erent constitutive equations. In order to illustrate the e�ect

of the inertial and of the viscoelastic terms we �rst consider in Figures 3 and 4 the case

of spontaneous relaxation of an initially compressed sponge immersed in the pure liquid

with no pressure gradient forcing the in�ltration process, i.e. C(t) = 0.

Figure 3 shows the evolution of the sponge assuming that the wet sponge behaves

like an elastic material. In Figure 3a inertia is neglected, while Figs. 3b and 3c give the

evolution of the volume fraction versus x at di�erent times when inertia is considered. We

remind that the model is parabolic in the former case, and hyperbolic in the latter case.

The hyperbolic character can be easily identi�ed when the continuous evolution of the

system is looked at directly on the computer screen and is more pronounced at higher P.

One can actually notice that the relaxed state propagates into the sponge. The propagation

of condensation-rarefaction waves may lead, especially at higher P and early times, to the

development of regions near the border of the sponge x = xB(t) with volume ratio smaller

than the one corresponding to the relaxed state (that is, � < �r). >From a practical point

of view this is an undesirable e�ect for those �brous materials which are particularly fragile

to expansions. This over-relaxation of the sponge can be already identi�ed in Figs. 3b,c in

spite of the fact that the numerical integration starts from a smooth initial condition.

Figure 4 shows the evolution with inertia considered and assuming that the wet sponge

behaves like a Voigt-Kelvin solid with �� = 0:1. The higher �� is the smoother the

evolution is. In particular, it inhibits over-relaxation. The e�ect of the additional term in

the constitutive equation is felt for times at most one order of magnitude larger than ��.

Figure 5 presents results of a simulation of the in�ltration into the dry sponge com-

pressed at a constant volume ratio �c =
1
3 due to a constant pressure di�erence �P =

P (xB) � P (xT ) = �(�c). The pressure di�erence pushes liquid into the sponge, so that

the front x = xT dividing the wet sponge from the dry sponge advances. At the same time

the other front relaxes into the liquid.

At early times the �ltration of the 
uid into the sponge may cause over-compression of

the sponge near x = xT (i.e. regions with volume ratio � > �c), because the permeability

there is much smaller (remember that the dry sponge is assumed to be sti�, otherwise this
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over-compression would compress further the dry sponge). This is not evident in Figure 5

because of the time scale but is put in evidence in Figure 6a. This e�ect is more pronounced

for larger values of the inertial parameter P and less pronounced if �� 6= 0 as is shown in

Fig. 6b. The introduction of a non-vanishing �� gives little di�erences at longer times.

Finally, in Figure 7 we present a comparison with some experimental data obtained

by Sommer and Mortensen [17] who performed an in�ltration experiment in a dry spon-

geous material which has some similarities with our problem. Their experimental setting,

however, is not fully consistent with our assumptions, and therefore the comparison can

only be qualitative. In fact,

1 { Their dry sponge is not sti�, and in fact it appears to relax as time goes by.

2 { Their in�ltration experiment is nearly unidirectional because of the presence of \lateral

strain experienced by the porous medium (which therefore) is associated with �nite

velocities in y and z directions" (from [17].)

3 { It is hard from their data to identify the initial conditions, which, however will not

have VS(t = 0; x) = 0.

Our parameters depends crucially on the initial width xT0 � xB0 of the wet sponge.

We identi�ed this by considering the moment at which the bottom border of the sponge

has zero velocity, which occurs at t � 5 sec and assume that this is true for all x, which is

not strictly true. In this instant the width of the wet sponge appears to be about 4 cm.

Our results also depend on �0(x), which cannot be obtained from their data.

In order to compare our numerical results with the just mentioned experimental data

we need introduce new dimensionless variable

� =
x� xB(t)

xT (t)� xB(t)
(5:23)

which maps the interval [xB(t); xT (t)] into the �xed interval [0; 1].

We compared our numerical results only with the experimental data they measure after

17 and 31 seconds (which correspond to our 12 and 26 seconds because of our de�ning the

initial condition after 5 seconds), since for later times the relaxation of the dry sponge

appears to in
uence the experimental data.

We observed that the initial condition �0(x) strongly in
uences the evolution of the

interfaces xB(t) and xT (t), but when the interval is mapped onto [0; 1] the solution for

t >15 sec. appears to be insensitive to variation in �0(x). Taking into account the di�er-

ences between Sommer and Mortensen's and our set up, the comparison can be considered

satisfactory.

The simulation presented above give an indication of possible scenarios; but in order

to perform a more detailed simulation it is necessary to have more data on the properties
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Figure 5 | In�ltration in a sponge compressed at a constant volume ratio �c =
1
3 due to

a pressure di�erence P (xB) � P (xT ) = �(�c). The front x = xB(t), i.e. the border of

the wet sponge, travels to the left, while the in�ltration front x = xT (t) dividing the wet

sponge from the dry sponge travels to the right.
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(a) (b)

Figure 6 | Blow up of Figure 5 to show over-compression (� > �c) of the sponge near

x = xT (t) at early times. Over-relaxation (� < �r) is also present (but not so evident) in

(a) which corresponds to P = 0:1 ; �� = 0. In (b) P = 0:1 ; �� = 0:1. Over-compression

is smoothed out and over-relaxation does not occur.
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Figure 7 | Comparison of the numerical results with experimental data obtained by

Sommer and Mortensen [17]. The interval [xB(t); xT (t)] is linearly mapped onto [0; 1]

through (5.23). The results obtained for t =12 sec. and t = 26 sec. are in good agreement

with the experimental data measured at t =17 sec. (crosses) and t = 31 sec. (circles.)

Remember that our simulation starts about 5 seconds after Sommer and Mortensen record

their data.

of the wet sponge. Once this is available we can use the modelling procedure presented

here to develop a systematic simulation of the technological problem.

6. Conclusions

In the present paper we have deduced a model which can be applied to those industrial

processes involving 
ow through sponge-like materials and, in particular, to some processes

used to fabricate composite materials.

The sensitivity of the model to the assumption made on the importance of the inertial

term and on the constitutive relation is examined in detail showing signi�cant di�erences.

For instance, elastic constitutive models may lead to over-relaxation near the sponge bor-

der, and wave propagation, while Voigt-Kelvin constitutive models have a smoothing e�ect.

A proper discussion can be opened when the results of dynamical tests on wet spongeous

materials are available.

Finally, a comparison with a similar experiments done by Sommer and Mortensen [17]
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yields a satisfactory agreement.
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