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Consider a planar liquid jet surrounded by a high speed gas strediowig the work
of Raynal, Villermaux, Lasheras & Hopfinger (1997), Villermad®98a) and Varga,
Lasheras & Hopfinger (2003), the corresponding basic flow can hézeé by a piece-
wise linear velocity profile such that the liquid jet veloaggyJ; and the gas velocity is
U,, with U, > U;.  The continuity of the basic velocity profile is represented bnear
transition region completely contained in the gas with thickre¢Bigure 1 a). An
observer moving with the average velodity,q = (U1 + U,)/2 parallel to the basic flow
identifies a piecewise linear velocity profile as showirigure 1 b withUg = (U2-U;)/2.
By making use of a Galilean transformation, the stability amalig performed under a
reference frame moving witll,,gwithout loss of generality.
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Figure 1 Sketch of the piecewise velocity profile for the Igpse shear layer: (a)
observer at rest; (b) observer moving with velotltyy = (U1+U,)/2 parallel to the main
flow.

The laminar basic flow for the piecewise linear profile is describedllasvt,

U,, z2>01/2
U(2) = Zl;"z -0/2<2<d/2 (1)
-U,, z<-0/2

where,z is the Cartesian coordinate along the directiomab to the basic flow. In the
analysis that follows the gas and liquid are regdrds incompressible. The density and
dynamic viscosity of the liquid phase gpeands, respectively, while, the gas density



and dynamic viscosity are designated@sand (5, correspondingly. Therefore, the
density profile is defined ap = p, for z>-0/2 and p = p, for z<-9J/2, whereas the
dynamic viscosity profile is given by = u, for z>-0/2 and yu =y, for z<-06/2.
The surface tension is denoted oy P = P(2) is the undisturbed pressure.

Consider small disturbances of the basic velocity and presslas di, v' , W and p',
such that the disturbed flow motion is

u=U +u',
V=V,

(2)
w=w,

p=P+p.

For the basic or undisturbed fluid motion two “interfaces” arefsetrtual “interface” at
z=01/2, since the gas phase is in both sides, and the actual interface-a /2, with

the gas stream above and the liquid phase below. The disturbedhffoduce small
perturbations of these interfaces, which are modeled as

z2=0/2+{(x,y,1),
and (3)
z2=-012+£&(xy,1),

for the top and bottom interfaces, respectivélysk 0 /2 and & << d/2).

The standard linear stability analysis follows with the subgiitubf (2) into the
incompressible unsteady Navier —Stokes equations, neglecting prodiicthe
disturbances and their derivatives, which are considered “smalnparison with the
remaining terms. Then, the corresponding equations for the main ior floas are
substracted. Furthermore, we assume, for simplicity, that thelhece of the velocity

field is irrotational, such thafl’u'=0. The irrotational character of the disturbance is
enforced even though the basic fluid motion clearly haszeon vorticity in the layer
-0/2<z<06/2 (Figure 1). We end up with the following system of linear phrti
differential equations:

E+U E+W’0_U:—1E’
ot 0X 0z p 0X

W v __10p
ot 0X p oy
(4)



W, jow__13p
ot 0x p 0z
y+ﬂ+a_wl:0

which governs the linear stability problem in the three regiansod/2+(,
-0/2+&<z2<0/2+{ andz<-0/2+¢.

Notice that the viscous terms have vanished in the resulting sydtemuations (4).
However, we have not assumed that the fluids are inviscid. Whatdngeluppose is
that the small disturbances are irrotational. In fact, the vtgaafsthe fluid will enter the
problem through the balance of the normal stresses. This provist@nnsain postulate
of the viscous potential flow analysis (references here). In @tbeds, the disturbance
of the basic fluid motion is regarded as irrotational flow of scoaus fluid. Inviscid
stability analysis of the piecewise linear velocity profile fomgle phase flow have been
performed by Rayleigh (1894), Drazin and Reid (1961) and recently riogin@le,
Jackson and Joslin (2003), among others. Changes in the density l@ongrinal
direction are included in the inviscid analysis presented by Cleeidrar (1961). The
steps outlined by this author in its comprehensive study of the shadality for the
piecewise linear profile are followed here with the correspondingfroatiibns that stem
from viscous potential flow and the addition of surface tension’s contribution.

The boundary conditions requires that the disturbances must vanish-aso.
Moreover, at the interfaces=9/2+{ andz=-90/2+¢, the jump of the normal stress

across the interface is balance by the surface tensionhis condition can be written as

(=p+2unMud)=-y0Mm, (5)

where n is the outward normal unit vector from the ligtthe gadiquid interface.
The notation((J= ()] _.. —(0] .. has been used to indicate the jump across teeface
defined byz=a. Clearly, forz=45/2+{ the jump in the normal stress is zero, since a
gas-liquid interface exists only at=-90/2+¢. Substitution of (2) into (5) yields
expressions for the boundary conditionszat 0/2+{ and z=-0/2+¢&. For the
piecewise linear profile, we cannot impose the icaitty of the tangential stress.

In addition, two kinematics conditions can be prigsd at the “interfaces”

_D¢_a _
w= ot - ot +ullld, atz=90/2+¢ (6)
W':D—{:g+um]{, atz=-0/2+¢ (7

Dt ot



The boundary conditions (5), (6) and (7) can also be linearized fol disiairbances
yielding,

ow' ow' 0J oU
' -p'. 42 — - — +2u,| ——| =0, az=9/2,
P27P ”{[azL [azu ”Z(ax azl— ®)
and
L, ow o0& ouU ow 0°f  0%¢
-p'._—(p, — +2U,| ——-———| -2u|— | =-y —+—= |,
P=P, (0= P.)9< ﬂz( 37 ox azl ﬂl( azl o oy )
atz=-9/2,
for the normal stress balance and,
w=£+u£, atz=91/2, (10)
ot ()4
w:ﬁwﬁ, atz=-91/2, (11)
ot o0x

for the kinematic conditions. Therefore, the pevblof linear stability analysis of a gas
liquid shear layer described by a piecewise lingafile using the viscous potential flow
approach is posed by the system of equations (#) baundary conditions (8) through
(11), with disturbances vanishing at- *o. Notice also that the fact@U /dz =0 for
z>0/2 andz<-9d/2 according to (1).

Since the problem is defined by perturbations pagallel flow, we can assume normal
modes solutions of the type

U(X,y,2,t) = %(G(Z)é("x”y*“‘) rce),
' _ 1 ~ i (kx+Hly+at)
V(X Y,2zt) = E(v(z)e +cc),
—_ 1 ~ i (kx+Hy+at)
W(X Y, zt) = E(W(Z)e +cc),
(12)

p'(X Y, zt) = %( p(2)e“ M +cc),

{xy)= %(Zei e +ce),



EX Y1) = %(Ee“k“'wm rcc),

wherec.c. stands for the complex conjugate of the previous term in parenthéses.
constantsf <<9/2 and $<< 0/2. These normal modes allow the reduction of the
system of partial differential equations to a system of ordiddfgrential equations. In

this study, we endeavor to the temporal stability analysis. ftherehe wavenumbers in
thex andy directions k andl, respectively, are enforced to be real whereas the frequency
of the disturbancev is allowed to be complex.

Substitution of (12) into (4) yields, after some algebraic manipmatio an ordinary
differential equation forv,

d>W  ~, .
-k?>w=0, 13
= (13)
with solutions,
W(z) = Ae® +Be ™™, (14)

with k =+/k?+12 . Therefore, for the three regions of the domagnewd up with the
following system

vszA?e“zZ, forz>461/2,
W=A €% +B e, for-0/2<z<d/2, (15)
vAv:Ble'zz, foz<-91/2,

satisfying the far field conditions at —» .

Substitution of the normal modes (12) and the smiufor w given in (15) into the
boundary conditions foz =+ /2 (8) trough (11), determines the dispersion retafar
the eigenvaluec. Hereafter, by invoking the Squire’s theorem @Q® is assumed that
the wavenumbel = 0. This theorem states that “to each unstdteetdimensional
disturbance there corresponds a more unstable iwergional disturbance” (Criminale
et al., 2003). In convenient dimensionless form, treulteng dispersion relation can be
written as

®+(Q+n)2p- 1+ p)(Q+n) - (1+[1)ﬂ1/72}} | 16

e =[1+(Q ‘”)][q) +(Q+n{20 - L-P)Q+n) - U- 2) 817}



with,

0 N i2
®= J1,7 +(Wie2}73 + 2’72/1181’ ﬂl = E (17)

andi =+/-1. The number< and  are the dimensionless complex frequency of the
disturbances and the dimensionless wavenumbegaesgly, defined as

Q:-U@ and 7 =ko. (18)

0

The normal modes have been takened& and Squire’s theorem has been invoked.
Expanding Q = Q, +iQ,, since « is complex, temporal instability takes place when

Q. >0. The density and viscosity ratigs and iz are prescribed as

P2 and ﬂ:&.
Py Hy

b= (19)

Re; represents a Reynolds number based on the liquipegies;We, is the Weber
number, which weighs surface tension forces with igartia effects; finally,)); is the

Richardson number, which weighs buoyancy (grawitigh liquid inertia effects. They
are defined as follows,

2 —_—
Re =200 we =PHe0 gy 5 - (ATR)E0

(20)
2 y pUg

wherev, = 14/ p, is the kinematic viscosity of the liquid. Therefpdispersion relation
(16) for the dimensionless eigenval@ehas the generic form

D,(Q.77, . /1. Re;, We,, J,) =0, (21)
A Reynolds number based on the inertia of phagm®) (can also be defined,

Re, = U°5, suchthat Re = 4 Re,, (22)
V, P

and, then, the eigenvalue relation (21) can befirestbas

D,(Q,7, P, i1, Re, We,, J,) =0, (23)



Therefore, by specifyingd, i and Re,, the parameterRe, is already fixed. The
dispersion relation (16) can be written as a cebjigation as follows,

8,0 +a,0% +aQ+a,=0, (24)

with Q =Q +n. The coefficients are defined as,

a,=—(+p), (25)

8, =2p - L+ D)An* - A-27)(1+ p) + (1- P)e ™, (26)

a, = ®+ (1-20)20 - 1+ 1) Bn?]-[2p - A- ) Bn*k™ (27)
a,=|a-2n)-e?|o. (28)

In the case of inviscid fluids, taking, - @nd g, - 0 in (16), and neglecting
gravitational and surface tension effecs ¢ a@dWe, — ) yields ® - 0 and (16)
reduces to

o —f14 (@] 22 AFD)NQ+n)
e =[1+(Q n)]{zﬁ_ - m(mn)] (29)

for which (24) becomes a quadratic equation

a0’ +aQ+a,=0, (30)
with
8, =—(L+p), (31)
a,=2p - (1-27)(1+ p) + (L- P)e™, (32)
a, = 2p|@-27) - ™. (33)

Expression (29) is the same dispersion relatiorainbtl by Villermaux (1998a) and
Marmottant & Villermaux (2004) with respect to afaeence frame moving with the
velocity Uayg = (U1+U5)/2. Notice that by considering fluids 1 and Z&the same fluid
in (29), one can readily find the dispersion relatfirst obtained by Rayleigh (1894) and
also discussed by Drazin & Reid (1981) and Cringeabl. (2003).
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Figure 2 Growth rate versus wavenumber (dimensg®m)lfrom inviscid potential flow for various demysi
ratios ,[7 : 0.001, 0.01, 0.1 and 1. Surface tension anditgtaonal effects are neglected (gas Weber
number We, — oo and Richardson numbed, =0). Our plots reproduce the results obtained by

Villermaux (1998a). The dimensionless wavenumbeiven byA /0 = 271/, wheredis the thickness

of the vorticity layer in the basic flow (see Figut). The most dangerous wave is determined by the
maximum value of Inm@).
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Figure 3 Growth rate versus wavenumber (dimensgm)lfrom inviscid potential flow for a densityicat
of ,[7 = 0.0012 (ahwater) considering surface tension effects, fdfedint values of the gas Weber
numbeM/e,, neglecting gravitational effectsJ{ =0). The dimensionless wavenumber is given by
Ald =2n/n, wheredis the thickness of the vorticity layer in the ioaffow (see Figure 1). The most
dangerous wave is determined by the maximum vdilm(@2).
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Figure 4 Growth rate versus wavenumber (dimensionless) fromaugiguotential flow

for various viscosity ratiogz : 0.018 (airwater), 0.0018, 0.00018 and 0.000018, density
ratio p = 0.0012 (air-water) and three different valueshef gas Reynolds numb&e, :
(a) 10, (b) 100 and (c) 1000. Surface tensiongraslitational effects are neglected (gas

Weber numberWe, — o and Richardson numbed, = ).0 The dimensionless

wavenumber is given by /d =2n/n, wheredis the thickness of the vorticity layer in
the basic flow (see Figure 1). The most dangeveane is determined by the maximum
value of ImQ).
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Figure 5 Growth rate versus wavenumber (dimensionless) froraugiquotential flow
for variousWe,: 1, 10, 100 ando for a gas Reynolds numb&e, = 1000, density ratio

p = 0.0012 (akwater) and viscosity ratigz = 0.018 (air-water). Gravitational effects
are neglected (Richardson numb&r= ). OWhen surface tension is considered, the
viscous mode (peak to the right) is overcome byirtisscid mode (peak to the left). For
IPF (dash-dotted line)\WWe, — . The dimensionless wavenumber is given by
Ald =2nln, wheredis the thickness of the vorticity layer in the ioaffow (see Figure

1). The most dangerous wave is determined by tlgimum value of InQ).
Examination of this plot suggests that if the wawgth of the most dangerous wave for
air-water predicted by IPF is in agreement witheskpents as indicated in the literature,
then, when using VPF, surface tension effects dab@meglected in order to obtain the
correct trend. This conclusion is a consequendbeogttenuation of the “viscous” mode
(right peak in the spectrum) when decreasing théaNewumberWe,, whereas the

“inviscid” mode (left peak) remains essentially enprbed.
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Figure 6 Growth rate versus wavenumber (dimensionless) froraugiguotential flow

for variousRe: 0.1, 10, 100 and 1000 when both phases 1 and 2 corresponds to the same
fluid. Obviously, neither gravitational effects nor surface tensiects enter the
problem. For allRe, the curves collapse with the inviscid case! These resultbean
anticipated from Eq. (1) settingg = 1 and =1 and comparing with the inviscid
solution. The dimensionless wavenumber is givenAdy) =2nr/n, where d is the
thickness of the vorticity layer in the basic fldgee Figure 1). The most dangerous
wave is determined by the maximum value of@)(
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Comparison with experimental data

In this section we compare experimental results for the interface veapesficyf and the
dimensionless wavelength/d of the most amplified wave with predictions from the
model described previously. The experimental data is taken froritagreure and is
divided in three sets depending upon the type of data measured (wawenfrg or
wavelength) and the gdigiuid configuration (planar or axisymmetric). The interface
wave frequency is the ratio of the convection velocity to the distance between two
consecutive structures,

f=—c, (34)

or, expressed as a dimensionless number,

fo_9 35
Uc A ! ( )
which describes a Strouhal number for the passing of the wavésheAdata sources
considered provide an expression for the dependence of the vorticity 8sekren the
gas Reynolds number based on the thickness of the gas nozzle, whm&edswith the
shape and dimensions of the experimental set-up. Therefore, usingectreled
frequencies and the thicknegs one can computel/d from (35) if the convection
velocity is known. In all the referred works, the convection velodtgxpressed as
(Bernal and Roshko 1986; Dimotakis 1986):

u, + U
Uc:\/zl P, 2’ (36)

Jo. e:

Table 1 summarizes some features of the experimental datal r8ters to the wave
frequency data by Rayndl al. (1997), for an air - water sheet system (planar situation).
Set 2 considers the frequency data by Marmottant & Villern{a0®4) for a cylindrical
liquid jet surrounded by a gas stream (axisymmetric configuratidapally, Set 3
considers the wavelength data measured by Vatgal.(2003) and Marmottant &
Villermaux (2004) for their axisymmetric configurations.

Table 2 presents the fluid properties used in the computationgccantit in this
investigation.

Marmottant & Villermaux have discussed some conditions for which rtteen
assumptions of the model remains valid. The critical vétae =50 establishes a
threshold below which damping effects of viscosity starts to be tamo(Betchov &
Szewczyk 1963; Villermaux 1998b). Almost the entire dataset in itlvisstigation
satisfies this condition. Furthermore, the adopted large vortlajggr description
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remains valid in opposition to the thin vorticity layer charactgtiby a KelviA
Helmholtz instability limit if the following condition is satisfied,

vv%(&j >125, (37)

P
For the data considered in this study, the average value of the dinless number in

the L.H.S. of (37) is about 65 and 85% of the points satisfy this condfiolly, in the
case of the axisymmetric jet, capillary instability is overcomehiasinstability if

3 2
Wed(&] [&j >>1,  with  We, =PY20 (38)
p)\ o y

where 0 is the diameter of the liquid nozzle. Condition in (38) is satidfig all points
in the database.

Table 1 Experimental datasets used in this investigation.

Source N of Fluids Configuration Data measured
points
Setl Raynattal. 68 air-water planar wave frequency
Set 2 Ma_rmottant & 76 air-water axisymmetric wave frequency
Villermaux

Marmottant & 20
Villermaux

Set 3 air-water axisymmetric wavelength

Vargaet al. 5




Table 2 Fluid properties used for the predictions of the present model.

Fluid Density Dynamic Surface
(kg / ms) VISCOSIty tension
(Pa.s) (N/m)
Air 1.2 1.8x 10 -
Water 998 1.0 x 18 7.0 x 10
Glycerine 1257 7.8x 10 6.3 x 107

14
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Figure 6 Comparison of results for interfacial wave frequéorcwir-water: (a) VPF vs.
experimental results; (b) IPF vs. experimental results, andRE)vs. IPF. These plots
show that VPF and IPF predictions give rise to similar refoitair-water. VPF and IPF
generate results in close agreement with the experimentafatahe planar dataset (Set
1), whereas under-predict the experimental values for the axisjno sets (Sets 2 and
3). These trends suggest that a model that considers a cylindrical jet mayube usef
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Figure 7 Comparison of results for interfacial wave frequeacir-glycerine and air-
water: (a) VPF predictions; (b) IPF predictions, and (c) VPFIRE for air-glycerine.
Finite values oflVe, are considered. VPF predictions do not show significant differences
with IPF results when water is replaced by a more viscousllagiglycerine. This trend

is confirmed in (c) where predictions from VPF and IPF are compared in tleepsaim
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Figure 8 Interfacial wave frequency as a function of the ta¢ / o for air-water: (a)
Experimental data; (b) predictions from VPF and (c) predictioos fiPF. The
theoretical predictions consider finiee, defined from the fluid properties and flow rates
for every experimental point. Linear models with zero intereeptfitted to both the
experimental data corresponding to the planar motion (Set 1) and tthefodathe
axisymmetric case (Sets 2 and 3). For VPF and IPF, linear models vatimtszcept are
fitted to the predictions corresponding to the entire dataset 1S2tand 3). The planar

data fitting in (a),f =0.008Q ./, shows close agreement with the fitting obtained by
Raynalet al. (1997), f =0.008U_. /0. Differences are attributed to the human factor

acting in the process of data extraction from figures in tlggnal work to tables in this
study. Experimental data in (a) corresponding to axisynenetperiments (Sets 2 and
3) follow a different trend as compared with the planar case.imfas behavior was
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observed by Raynatk al. using data recorded from axisymmetric experiments (tha da
is not included in this work since the dependencé oh Re, was not reported in the
original work). Results in (b) from VPF and (c) from IPF iarelose agreement with the
experimental results for the planar dataset. The VPF dnapproaches utilized in this
investigation consider the planar configuration. In addition, VPF andptBéiction
fittings are almost the same (about 1% difference), as observed in (b).and (c)
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Figure 9 Interfacial wave frequency as a function of the ta¢ / o for air-water: (a)
predictions from VPF and (b) predictions from IPF. The theotgtiealictions consider
infinite We,; therefore, surface tension effects are neglected. For Miglar models
with zero intercept are fitted to both the predictions corresponditiget planar motion
(Set 1) and the predictions for the axisymmetric case GSetsd 3). IPF predicts
f OU. /0 for the entire set of points (the reader may inspect the dispaelation with

no surface tension effects (29)). The predictions from VPF insf@w strong
discrepancy with the results presented in Figure 8 (b) when ¥Watés considered. This
trend can be traced back to the results described in Figure 5, lRErenodel predicts
shorter “most dangerous” waves whéfe, tends to infinity than the inviscid results.
Figures 8 (b) and 9 (a) indicate that surface tension effeotddsnot be neglected when
using VPF model. The trendline from IPF in (b) agrees withctireesponding fitting

line obtained by Raynadt al. (1997) as expected since these authors used an inviscid
approach to the stability problem neglecting surface tensionteffe&s represented in
Figure 3, inviscid theory is not sensitive to changedMs at least in the interval
considered in this investigation.
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Figure 10 Interfacial wave frequency as a function of the &/ o for (a) predictions
from VPF and (b) predictions from IPF when the properties of waterreplaced by
those of glycerine (density, viscosity and surface tension — see Table 2hgkdwpsame
gas and liquid velocities. The theoretical predictions considee ii; defined from

the fluid properties (air-glycerine) and flow rates for evexgegimental point.

Linear

models with zero intercept are fitted to the predictions correspgrdithe entire set of
points. The difference observed between the fittings for WHRF is about 13 %. For
air-water this difference was 1%.
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Figure 11 Comparison of the dimensionless wavelength from VPF afRdwith
experimental results for air-water. The experimental véelueSet 1 (planar experiment)
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tend to be closer to the %4%ine than the experimental values from Sets 2 and 3
(axysimmetric experiments).

Remark on Figures8 and 11:

Marmottant & Villermaux (2004) attributed the discrepancies betwexperiments and
theory to the assumption of a piecewise velocity profile. Thgyea that “the vorticity
is not constant in the experimental boundary layer, contrary to thee jmefile used in
the stability analysis. The effective linear boundamer thickness to use in a prediction
that matches experimental results is 4 to 6 times largers i lwonsistent with the fact
that experimental profiles are smoother than a broken line profileg validity of this
assertion may be questioned in light of the close agreemenediettheory and
experiments for the planar case in terms of the wave freqdiency

If we define the quantity
a=—, (39)

Then the ratioa,,,/ay,, = 4.4 for the axisymmetric case (Sets 2 & 3) while equals 1.2

for the planar case (Set 1). For the axisymmetric data ahbtéant & Villermaux (Set
2 only) a ratio of about 3.0 is found, which coincides with the value reportdeeir
work.
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