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Abstract

The dynamics of a bounded viscous incompressible fluid surrounding a spherical bubble in rectilinear
motion simultaneously experiencing volume changes is examined by means of two viscous irrotational
theories, namely, viscous potential flow and the dissipation method. The forces that the liquid produces
on the bubble and on the outer spherical boundary of the liquid are determined from these two approaches
at the instant when the bubble is concentric with the outer surface. Viscous potential flow involves
surface integration of the irrotational normal stress; the dissipation method stems from the mechanical
energy balance, including the dissipation integral, evaluated in potential flow. In the inner boundary,
zero tangential stress is enforced. Two choices for the tangential stress condition on the outer boundary
are considered: Zero tangential stress or irrotational tangential stress. In a sense, this is an extension to
include viscous effects of the inviscid analysis by Sherwood [Int. J. Multiphase Flow, 25, 705, 1999]. The
potential flow that follows from Sherwood’s work is used in the derived formulae to compute the drag.
To the added-mass forces associated with the bubble acceleration and rate of change of the bubble radius
determined by Sherwood, a viscous contribution is added here that depends upon the instantaneous
bubble velocity and the inner and outer instantaneous radii of the bubble-liquid cell. When the outer
radius is taken to infinity, the expressions for the drag yield results given in the literature. If the inner and
outer radii are held fixed, results from the cell model may be used to approximate the drag on a bubble
moving in a bubbly flow with the same volume fraction as the cell. The analysis yields two results for
the viscous drag on the bubble contingent on the boundary condition applied on the outer sphere. These
formulas have been presented in the literature, although regarded as contradictories. By emphasizing
the role of the tangential stress on the outer boundary, it is shown that both results are valid as they
depend on the choice of the outer dynamic boundary condition. These results agree to first order in the
volume fraction. The terminal rise velocity of a bubble swarm is derived using the drag from the viscous
irrotational theories. Results for the drag coefficient and bubble rise velocity are compared with other
theoretical results as well as data from numerical simulations and experiments.

1 Introduction

Bubbly flows in the regime of high Reynolds and low Weber numbers exhibit bubbles that are spherical
or nearly spherical. Here these groups are defined in the usual way; the former Re ≡ 2Ua/ν and the
latter We ≡ 2ρU2a/σ, U being the bubble relative velocity, a the bubble radius, ρ and ν the density
and kinematic viscosity of the liquid, respectively, and σ the interfacial tension. In general, for very high
Reynolds numbers (O(1000), say1), the Weber number is likely greater than unity and the bubble shows
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important deviations from the spherical shape. Experimentally, the dual limit of high Reynolds and low
Weber numbers have been realized with Re = O(100) and We = O(1), respectively2. For instance,
bubbles with a diameter in the order of 1 mm rising in water satisfy the dual condition of high Reynolds
and low Weber numbers2,3. Moreover, in this regime, with a clean liquid, that is, free of impurities and
surfactants, vorticity effects are confined to a thin boundary layer on the bubble surface and to a wake in
a minute neighborhood of the bubble rear end1. Therefore, liquid motion in the bulk can be considered
irrotational. Because of these features, bubbly flows in this regime are particularly suited for analysis.
Further simplification is attained by considering bubbles of the same diameter, that is, a monodispersed
suspension. In practice, small variation about the mean bubble diameter may be achieved by preventing
coalescence with the addition of certain chemicals to the mixture in such low concentration that the
gas-liquid interface does not behave as the boundary of a rigid particle, in which case a recirculation zone
would appear at the rear side of the bubble, thereby breaking down the irrotational hypothesis2,4.

For bubbles rising under the action of gravity, the problem have also been described, besides the
Reynolds number, by the Eötvös number, which is a characteristic of the bubble size, and the Morton
number, which is a group that involves physical properties with no bubble size-dependent quantities5.
Small Eötvös numbers are associated with nearly spherical bubbles, whereas larger Eötvös indicates
highly distorted bubbles. The Weber number can be recovered by combining those three dimensionless
groups. Instead of the Morton number, the Archimedes number may be used6.

In modeling bubbly flows in the regime of low Weber and high Reynolds numbers, viscous drag is
usually computed from the liquid potential flow solution exploiting the fact that rotational (viscous)
deviations from irrotational motion are confined to thin regions adjacent to the bubbles. In this regard,
the dissipation method, based upon the mechanical energy balance, has been a commonly used approach.
A boundary layer on a clean bubble interface conforms to the zero-shear-stress boundary condition,
because of the large viscosity of the liquid compared to the small viscosity of the gas, rather than to
the no-slip constraint enforced on a solid particle. This boundary layer remains attached almost over
the entire bubble interface, as separation occurs only around the rear end. Since vorticity is contained in
these narrow regions, it is assumed that the rate of viscous dissipation is given entirely by the irrotational
motion7.

For a sphere translating in rectilinear motion with constant speed within an infinite liquid, the dis-
sipation approximation seems to have been applied first by Bateman in 1931 (see Dryden, Murnaghan
and Bateman8, p. 157) who obtained the drag 12πaµU , where µ is the liquid dynamic viscosity. Later,
Ackeret9 repeated this dissipation calculation. For a bubble in rectilinear motion, Levich (1949)10 applied
the dissipation method and attained the result given above. This drag is close to the measured value for
Reynolds numbers above 20, say11. It should be noted that for a ridig sphere, with the no-slip condition
enforced at its surface, or a spherical bubble of constant volume, for which the tangential component
of the traction vanishes at the interface, the dissipation calculation based on potential flow gives rise to
the same drag11. Moore12 found the drag 12πaµU , which in dimensionless form is written as 48/Re, by
computing the momentum deficit. In addition, he determined the structure of the boundary-layer flow
and used this information to improve upon the Re−1 result by adding a Re−3/2 contribution from the
dissipation in the boundary layer and wake. Kang and Leal13 and, recently, Joseph and Wang14 used
different methods to add a viscous correction to the normal stress and obtained 48/Re. It should be noted
that Moore15 computed a viscous drag by direct integration of the irrotational normal stress around the
bubble, thereby enforcing the zero shear stress at the interface. He found the drag 8πaµU , which fell
short of the dissipation result. Evidently, this discrepancy is resolved by adding a viscous correction to
the irrotational normal stress12–14. Tam16 extended Moore’s12 analysis to the case of a translating bubble
undergoing acceleration and found the same form of the viscous drag. The approach of potential flow with
viscous normal stresses at a gas-liquid interface was employed by Miksis, Vanden-Broeck and Keller17 to
compute numerically the shape of a rising bubble using a boundary-integral formulation.

The effect of a varying bubble radius on the force experienced by a bubble translating in an un-
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bounded liquid has been the subject of a number of works. Magnaudet and Legendre18 examined this
case by means of a frame transformation under which the bubble radius becomes fixed while conserving
dynamic similarity. The total force on the bubble is presented for both the inertia-dominated flow and the
creeping flow limits. Ohl, Tijink and Prosperetti19 conducted experimental investigations of this bubble
motion, whereas Yang, Prosperetti and Takagi20 carried out numerical simulations. Both works included
simplified dynamic models accounting for the forces acting on a bubble that compare favorably with the
experimental and numerical data. Takemura and Magnaudet21 studied experimentally the history force
on a shrinking bubble rising at finite Reynolds number. Recently, Léger and Askovic22 carried out the
modeling of the boundary layers outside and within a slowly deforming spherical bubble in rectilinear
motion. Comprehensive reviews on the advances in the understanding of single bubble dynamics have
been given by Magnaudet and Eames23 and Kulkarni and Joshi24.

Dynamic simulations of the motion of a set of N bubbles moving in a liquid at rest at infinity have
been examined in several papers (Voinov and Golovin25; Gavrilyuk and Teshukov26; Ilinsky, Hamilton
and Zabolotskaya27). Smereka28 studied the motion of a set of bubbles in a box in a periodic assembly, so
that the entire space is filled with an array of boxes. Wang and Smereka29 took the continuum limit of the
equations of motion for a finite set of bubbles in an unbounded liquid to obtain effective equations in terms
of the void fraction. In these works, potential flow is assumed for the liquid motion and viscous effects
are given by the dissipation method. Sangani and Didwania3 and Kushch et al.30 performed dynamic
simulations with the viscous drag determined from a leading order viscous correction to the irrotational
pressure computed from the analysis of the boundary layer flow around the bubbles. The former also
estimated the viscous drag on the bubbles with the gradient of the rate of energy dissipation in potential
flow. The latter considered arrays of ellipsoids to account for bubble shape deformation such that flows
with finite Weber numbers may be simulated. On the other hand, averaged equations for bubbly flows
derived from first principles have been presented by Sangani31 and Spelt and Sangani32 considering the
irrotational motion of a viscous fluid, and in Zhang and Prosperetti33 for an inviscid fluid. Recently, the
buoyant rise of a set of nearly spherical bubbles as well as deformable ones at O(100) Reynolds number
in a periodic box has been studied through direct numerical simulations of the incompressible Navier-
Stokes equations by Esmaeeli and Tryggvason6 with a front tracking/finite-volume method. Earlier, these
authors34,35 applied a similar method to study nearly spherical bubbles at Re = O(1) and Re ≈ 20. Using
the same technique, Bunner and Tryggvason36,37 considered a much larger number of bubbles for the
latter Reynolds-number regime. By placing a single bubble in a periodic box, a regular array of bubbles
of the same size was simulated by Sankaranarayanan et al.5 and Yin et al.38 using the lattice Boltzmann
method for the intermediate-Reynolds-number regime, i.e. O(10). In this regime, the wake effects in the
bubble-liquid dynamics cannot be neglected. Careful experiments and detailed measurements have been
carried out by Zenit et al.2 to study bubbly flow for small Weber and large Reynolds numbers and by
Martinez-Mercado et al.39 for intermediate and high Reynolds numbers in the range 10 to 500.

Effective properties of particulate flows including hydrodynamic transport coefficients have been mod-
eled by means of effective-medium theories. According to these approximate theories, the conditionally-
averaged field satisfies the suspending fluid equations within a suitably sized exclusion region that encloses
a reference particle or bubble and the unconditionally-averaged fields in the effective medium occupying
the rest of the space40. The method does not bear the ambiguity of the choice of proper constraints at
the interface between the effecttive medium and the exclusion region. Kushch et al.30 determined the
added mass and viscous drag coefficients for a suspension of oblate spheroidal bubbles using an effective
medium theory showing remarkable agreement with dynamic simulations. Detailed descriptions of the
effective medium theory applied in various contexts can be found elsewhere41–44.

A simplified approach to examine the hydrodynamics of bubbly flow for small or moderate gas volume
fraction is obtained through the so-called ‘cell-model’ representation. For nearly spherical bubbles, the
bubbly flow is assumed to be composed of identical unit spherical cells. Each cell consists of a spherical
bubble surrounded by a liquid bounded by an outer spherical envelope concentric with the bubble. The
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outer sphere radius is such that the cell void fraction is identical to the void fraction of the bubbly
flow45. The underlying hypothesis is that the dynamics within the reference cell is representative of the
dynamics in the entire bubbly flow. The choice of the outer boundary condition in the cell model has
been subject of debate (see Chhabra46 and references therein). Happel and Brenner45 argue that each
cell should be a unit independent of the rest of the assemblage, so no energy exchange takes place with
its surroundings. They thus consider that a frictionless outer boundary is adequate. Other boundary
conditions, however, have been applied in the literature. For particulate flows in the limit of creeping
motion, Cunningham47 applied the cell model with no-slip conditions on the inner and outer spherical
boundaries. Happel48 considered the same problem although imposing a zero-tangential-stress constraint
on the outer envelope. Kuwabara49 applied a zero-vorticity boundary condition on the outer sphere and
computed the drag from the dissipation integral evaluated in Stokes’ flow. However, in his formulation,
as pointed out by El-Kaissy and Homsy50, the term accounting for the work of the tangential stress on
the outer envelope is missing. The zero-vorticity constraint implies that mechanical energy is transferred
between the reference cell and the rest of the domain. For higher Reynolds numbers, Marrucci51 employed
the cell model to predict the drag on the bubble evaluating the dissipation integral from the potential
flow solution in the cell. Recently, Kendoush52 revisited Marrucci’s analysis obtaining a different drag.
We shall review this discrepancy in §3. Leclair and Hamielec53 presented the numerical solution of the
Navier-Stokes equations for the liquid motion within a unit cell with zero shear stress on the bubble
surface and zero vorticity on the outer sphere. They computed the drag on the bubble with the numerical
flow field. Reasonably good agreement with experimental data was reported. A similar numerical analysis
was performed by Manjunath et al.54 enforcing, on the contrary, a zero-tangential-stress condition on
the outer boundary. Chhabra46 also presented numerical results for a viscous liquid in a cell model
enclosing a bubble to elucidate the effect on the drag of the choice of either zero tangential stress (free
surface) or zero vorticity on the outer boundary. He concluded that the viscous force shows a stronger
dependence on the void fraction in the zero-vorticity model than in the free-surface model. All these
works have considered a cell enclosing a bubble of constant volume. More recently, Sherwood55 modeled
the dynamics of a translating spherical bubble with a time dependent radius surrounded by an inviscid
imcompressible fluid bounded externally by a spherical surface. He presented expressions for the force on
the bubble and on the outer envelope.

After surveying the literature on the cell model, we are left with the impression that the implementation
of the dissipation method lacks a systematic approach to deriving expressions for the forces starting from
the mechanical energy equation with emphasis in the role of the cell boundary conditions from dynamics
(stresses). The aim of this paper is to extend Sherwood’s55 analysis to include viscous effects by use of
purely irrotational theories, namely, viscous potential flow and the dissipation approximation. The former
approach computes the force on a given direction by direct integration of the irrotational normal stress
over the boundary, whereas the latter predicts the drag from the mechanical energy balance evaluated in
potential flow, so that the viscous effects arise from the rate of energy dissipation. First, working formulae
for the drag is developed by applying these theories to the system defined by a spherical bubble with its
center moving in a rectilinear path and undergoing volume changes within a bounded liquid domain with a
deforming outer boundary. The shape evolution of the inner and outer boundaries is assumed to be known,
such that the incompressibility constraint is satisfied. Two different conditions for the tangential stress
on the outer boundary are considered, namely, a zero-tangential-stress condition (i.e. free surface) and an
irrotational-tangential-stress condition. In the inner boundary (i.e. bubble surface), zero tangential stress
is enforced. This is the same as having two boundary-value problems. The dissipation method gives rise to
different expressions for the force on the bubble on a given direction depending upon the tangential stress
condition applied on the outer boundary of the reference cell. Viscous potential flow, on the other hand,
gives the same bubble drag independently of the choice of the outer boundary condition. Next, the flow
field is obtained from Sherwood’s potential analysis. This potential flow is then entered in the machinery
derived before to compute the forces on the spherical bubble and on the spherical outer envelope at the
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instant when both are concentric. This is the same geometric condition for which Sherwood computed
the forces. The expressions for the drag on the bubble show the added-mass contribution given by the
acceleration of the bubble translational motion and the rate of change of the bubble radius, already
given in Sherwood’s inviscid analysis, plus a viscous drag depending upon the instantaneous values of the
velocity and inner and outer radii. When neither the inner nor the outer radius changes with time, the
formulas for the drag are rewritten in terms of the cell void fraction. According to the cell model, these
expressions can be used as an approximation for the drag on a typical bubble moving in a bubbly flow
with the same average void fraction. These results for the viscous drag from the dissipation method have
been given in the literature51,52; however, the role of the dynamic boundary conditions, in particular,
that of the tangential stress on the outer boundary, is not evident there. Because each of these two
expressions for the drag corresponds to a different choice of the outer boundary condition for the stress,
these results do not contradict each other, neither is one of them in error, as has been argued in the
literature52. Results indicate that the drag from the model with an irrotational tangential stress on the
outer boundary shows a stronger dependence upon the void fraction than the drag from a free-surface
cell model. Both results for the bubble drag from the dissipation method, however, match to first order in
the void fraction. Using the formulae for the drag, expressions for the terminal rise velocity for a bubble
swarm in dimensionless form are obtained. Finally, predictions from these analyses are compared with
results from other theoretical approaches, numerical simulations and experiments.

2 Formulae for the force on an expanding bubble within a bounded
liquid from viscous irrotational theories

We present the analysis that gives rise to the formulae for the force acting on a spherical compressible
bubble along its direction of motion within a liquid confined by a spherical surface. Two types of purely
irrotational analysis are carried out, namely, viscous potential flow and the dissipation method.

2.1 Problem formulation

Consider a spherical bubble B moving within a viscous incompressible Newtonian fluid occupying the
volume V in three dimensions. Let S1 be the interface shared by the bubble B and the liquid in V and
let S2 be the outer spherical surface bounding V (figure 1). Both, S1 and S2 remain spherical during
the entire motion. Suppose the center of the bubble moves on a straight line containing the center of
the outer sphere S2 along the direction ex (fixed) with velocity U , which may be a function of time.
Moreover, suppose the bubble volume can change with time but the bubble does not rotate. The pathline
followed by the center of the bubble thus defines the axis of symmetry for this configuration. Let u be
the velocity field in the laboratory (inertial) reference frame. Let v be the velocity field with respect to
a noninertial reference frame whose origin moves with velocity Uex relative to the laboratory frame, but
it is not allowed to rotate. Velocities u and v are then related by

u = Uex + v. (2.1)

The fluid dynamics within the bubble does not enter the analysis. Suppose the following boundary
conditions are given:

On S1,

n1 · v = q̂1, (2.2)

n1 ·T · t(α)
1 = 0, with t(α)

1 ⊥ n1, (2.3)
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Figure 1: Sketch of a spherical bubble B centered at O′ sharing interface S1 with the incompressible fluid
occupying volume V bounded externally by the spherical surface S2 centered at O. The motion of the
bubble B is such that O′ moves along the fixed direction ex with speed U , and its radius can change with
time. The line containing the path of O′ also contains O, which is fixed with respect to the laboratory
frame. This line is therefore the axis of symmetry of the problem. The separation between O and O′ is
considered to be small. Because of the incompressibility of the fluid in V , changes in the radius of S2

occur in accordance with changes in the radius of B. Symbol n1 denotes the inward unit vector to V on
S1 and n2 denotes the outward unit vector to V on S2. Unit vectors t1 and t2 are orthogonal to n1 and
n2, respectively.
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On S2,

n2 · u = q2, (2.4)

n2 ·T · t(α)
2 = τ

(α)
2 , with t(α)

2 ⊥ n2, (2.5)

and α = 1, 2. Here, n1 is the inward unit normal on S1 to V (i.e. outward to the bubble) and n2 is the
outward unit normal on S2 to V ; t(α)

1 and t(α)
2 are unit vectors. Each triad {nβ, t(1)

β , t(2)
β }, with β = 1, 2,

is orthogonal and right-handed. Symbol T denotes the stress tensor.
Constraint (2.3) is a standard interfacial condition for a bubble, in which case the gas dynamic viscosity

is small in comparison to that of the liquid. We are assuming here that Marangoni stresses, which originate
from surface tension gradients, are negligible. This is typical of a clean gas-liquid interface (e.g., free of
impurities or surfactants). From (2.1) and (2.2), notice that q1 = n1 · u = Un1 · ex + q̂1 on S1.

Two choices for τ
(α)
2 in (2.5) for the outer boundary are considered in this work, namely, (i) zero

tangential stress and (ii) irrotational tangential stress. The latter is established from the potential flow
in V , which is fully determined by kinematic boundary conditions as explained in §2.2.

Using (2.2) and (2.4), the incompressibility condition and divergence theorem lead to
∫

S1

q̂1dA =
∫

S2

q2dA, (2.6)

which establishes a constraint that q̂1 and q2 must satisfy.
The forces that the fluid in V exerts on S1 and S2 in the ex direction are

D1 ≡
∫

S1

n1 ·T · exdA, (2.7)

D2 ≡ −
∫

S2

n2 ·T · exdA. (2.8)

With the decomposition ex = nβ(nβ · ex)+ t(α)
β (t(α)

β · ex), for α = 1, 2 and β = 1, 2, with summation over
α but not over β, these expressions can be written as

D1 =
∫

S1

n1 ·T · n1(n1 · ex)dA +
∫

S1

n1 ·T · t(α)
1 (t(α)

1 · ex)dA, (2.9)

D2 = −
∫

S2

n2 ·T · n2(n2 · ex)dA−
∫

S2

n2 ·T · t(α)
2 (t(α)

2 · ex)dA. (2.10)

Invoking constraints (2.3) and (2.5), we have

D1 =
∫

S1

n1 ·T · n1(n1 · ex)dA, (2.11)

D2 = −
∫

S2

n2 ·T · n2(n2 · ex)dA−
∫

S2

τ
(α)
2 (t(α)

2 · ex)dA. (2.12)

It is assumed in this analysis that the geometry of the fluid domain V is known at any time. For the
sake of simplicity, we have taken hydrostatics forces (i.e. buoyancy) out of the analysis.

2.2 Viscous potential flow

The viscous potential flow approximation of the forces on surfaces S1 and S2 is obtained by direct
integration of the stress computed for purely irrotational motion. For a free-shear surface, where the
actual tangential stress is zero, only the normal stress enters in the viscous potential flow computation
even though the irrotational tangential stress is not zero.
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For irrotational motion, the velocity field is u = ∇φ = Uex + v. For incompressible flow, the potential
satisfy

∇2φ = 0, (2.13)

with boundary conditions

n1 · ∇φ = q1 = Un1 · ex + q̂1 (2.14)

on S1, and

n2 · ∇φ = q2 (2.15)

on S2. The irrotational pressure p satisfies the Bernoulli equation:

p

ρ
+

∂φ

∂t
+
|u|
2

2

= C(t). (2.16)

The forces on the boundaries of V are computed according to (2.11) and (2.12) for irrotational motion.
For a Newtonian fluid, the stress tensor is thus given by

T = −p1 + 2µ∇⊗∇φ. (2.17)

Hereinafter, for the sake of brevity, we use the symbol D ≡ ∇⊗∇φ to refer to the strain-rate tensor in
potential flow.

On the free-shear surface S1 or bubble interface, the force in the ex direction is

D1 =
∫

S1

(−p + n1 · 2µD · n1)n1 · exdA. (2.18)

The force on the outer free surface S2 in the ex direction is, for zero tangential stress,

D2 = −
∫

S2

(−p + n2 · 2µD · n2)n2 · exdA. (2.19)

In the case of an outer boundary subject to a tangential stress given by the potential flow in the
interior, that is,

τ
(α)
2 = n2 · 2µD · t(α)

2 , (2.20)

the self-equilibration of irrotational viscous stresses on a closed surface (Appendix B) implies
∫

S1

n1 · 2µD · exdA =
∫

S2

n2 · 2µD · exdA = 0. (2.21)

Hence,

D2 = −
∫

S2

(−p)n2 · exdA. (2.22)

Thus, the force on the outer boundary is obtained solely from the irrotational pressure in this case.
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2.3 Dissipation method

In this section, the computation of the forces on the inner and outer boundaries of the fluid domain
oriented along the direction of bubble translation are obtained by used of the dissipation approximation
based upon irrotational motion. For the outer boundary, in addition to the kinematic constraint imposed
on the normal velocity, two choices are considered for the shear stress, as in §2.2: (i) Zero tangential
stress and (ii) irrotational tangential stress. Each of these possibilities leads to a set of results that are
compared with those from viscous potential flow.

Suppose now that the fluid motion in V is governed by the incompressible Navier-Stokes equations
with an appropriate set of boundary conditions that includes (2.2)-(2.5). The rate of change of kinetic
energy in V is

dE

dt
=

d

dt

∫

V
ρ
|u|
2

2

dV =
∫

V
u · ρ

(
∂u
∂t

+ u · ∇u
)

dV. (2.23)

The last equality in (2.23) follows from the fact that mass crosses neither S1 nor S2. The fluid has density
ρ and dynamic viscosity µ. From (2.23), the Navier-Stokes equations and divergence theorem lead to

dE

dt
= −

∫

S1

n1 ·T · u dA +
∫

S2

n2 ·T · u dA−
∫

V
2µD[u] : D[u] dV, (2.24)

where T is the stress tensor for a Newtonian fluid and the strain-rate tensor

D[u] =
1
2
(∇u +∇uT ). (2.25)

Using (2.1) and (2.7), expression (2.24) leads to

UD1 = −dE

dt
−

∫

S1

n1 ·T · v dA +
∫

S2

n2 ·T · u dA−
∫

V
2µD[u] : D[u] dV. (2.26)

Expanding the surface integrals, this expression may be written as

UD1 = −dE

dt
−

∫

S1

n1 ·T · n1(n1 · v) dA−
∫

S1

n1 ·T · t(α)
1

(
t(α)
1 · v

)
dA

+
∫

S2

n2 ·T · n2(n2 · u) dA +
∫

S2

n2 ·T · t(α)
2

(
t(α)
2 · u

)
dA

−
∫

V
2µD[u] : D[u] dV. (2.27)

With boundary conditions (2.2)-(2.5), we have

D1 =
1
U

(
−dE

dt
−

∫

V
2µD[u] : D[u] dV + W

)
, (2.28)

where

W = −
∫

S1

n1 ·T · n1q̂1 dA +
∫

S2

n2 ·T · n2q2 dA +
∫

S2

τ
(α)
2

(
t(α)
2 · u

)
dA. (2.29)

Expression (2.28) gives the force on S1 in the ex-direction due to a Navier-Stokes flow in V satisfying
an appropriate set of boundary conditions on S1 and S2 that includes those given in (2.2)–(2.5).

To evaluate the volume integrals in (2.28) we now assume that the fluid motion is irrotational, with ve-
locity field u = ∇φ. This approximation is satisfactory when the contribution of the rotational component
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of the fluid motion to the rate of change of kinetic energy and the viscous dissipation is assumed to be
small in comparison with the irrotational contribution. This potential flow is obtained from the solution
of the boundary-value problem (2.13)-(2.16). Clearly, such potential flow cannot satisfy, in general, the
complete set of boundary conditions that the Navier-Stokes motion does satisfy. With the potential flow
assumption, (2.23) for the kinetic energy yields

dE

dt
=

∫

V
∇ ·

[
uρ

(
∂φ

∂t
+
|u|
2

2
)]

dV =
∫

V
∇ · [u (ρC(t)− p)] dV

= −
∫

S1

(−p)n1 · udA +
∫

S2

(−p)n2 · udA

= −U

∫

S1

(−p)n1 · exdA−
∫

S1

(−p)n1 · vdA +
∫

S2

(−p)n2 · udA, (2.30)

with (2.16) and ∇ · u = 0.
Regarding the dissipation integral, denoting D = D[u = ∇φ], one can readily show that for irrotational

motion the following result holds
∫

V
2µD : DdV = −

∫

S1

n1 · 2µD · udA +
∫

S2

n2 · 2µD · udA

= −U

∫

S1

n1 · 2µD · exdA−
∫

S1

n1 · 2µD · vdA +
∫

S2

n2 · 2µD · udA. (2.31)

2.3.1 Zero tangential stress on the outer boundary

Suppose the outer boundary is also a free surface. Therefore, τ
(α)
2 ≡ 0 in the last integral of (2.29) for W .

The discrepancy between the nonzero irrotational shear stress and the zero shear stress that the
Navier-Stokes equations must satisfy at the free surface induces a (viscous) rotational correction to the
irrotational normal stress that also enters the computation of the work integrals in (2.29). In the present
formulation, this extra stress is ignored. With this assumption, W in (2.29) is computed in potential flow

W = −
∫

S1

(−p + n1 · 2µD · n1) q̂1 dA +
∫

S2

(−p + n2 · 2µD · n2) q2 dA, (2.32)

and thus the entire right-hand side of (2.28) is furnished by purely irrotational theory and a computable
formula for D1 is obtained.

In inertia-dominated problems, in which viscosity can be regarded as ‘small’ and perturbations of the
irrotational motion are confined to narrow boundary layers, evaluating the right-hand side of (2.28) from
potential flow implies that the viscous contribution to the drag, to first order in the ‘small’ viscosity µ,
is assumed to arise solely from the rate of energy dissipation, thereby neglecting any possible first order
viscous effect coming from the first and last terms in the right-hand side of (2.28).

In the particular case of q̂1 = q2 = 0, the integrals in (2.29) are annihilated and the approximation
of W is not an issue. This case represents an extension to a bounded domain of the analysis carried
out by Joseph, Liao and Hu56 and Joseph and Liao11 that applies the dissipation approximation to a
non-expanding bubble translating in an unbounded domain.

Substitution of (2.30)–(2.32) into (2.28), after some algebra, yields this expression for the force on the
bubble surface in the ex-direction according to the dissipation method,

D1 =
∫

S1

(−p + n1 · 2µD · n1)n1 · exdA +
1
U

∫

S1

n1 · 2µD · t(α)
1

(
t(α)
1 · u

)
dA

− 1
U

∫

S2

n2 · 2µD · t(α)
2

(
t(α)
2 · u

)
dA. (2.33)
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To determine the force D2 on S2 in the ex-direction by the dissipation method, we follow a procedure
similar to that given above for D1, with the difference that the governing equations are transformed to
a noninertial reference frame that translates with velocity Uex. The steps are presented in Appendix A.
There, an expression for the force on S2 with respect to the noninertial frame is written from the trans-
formed mechanical energy equation. Then, an expression for the force D2 with respect to the laboratory
frame can be obtained by evaluating the integrals in potential flow and by employing the transformation
rules that link both coordinate systems. The outlined procedure, detailed in Appendix A, gives rise to
the relation

D2 = −
∫

S2

(−p + n2 · 2µD · n2)n2 · exdA +
1
U

∫

S2

n2 · 2µD · t(α)
2

(
t(α)
2 · v

)
dA

− 1
U

∫

S1

n1 · 2µD · t(α)
1

(
t(α)
1 · v

)
dA. (2.34)

Next, by used of (2.33) in (2.34), with the aid of (A.23) from the self-equilibration of irrotational
viscous stresses, we obtain the net force that must be applied to the liquid system in the ex-direction

− (D1 + D2) = −
∫

S1

(−p)n1 · exdA +
∫

S2

(−p)n2 · exdA. (2.35)

Clearly, the dissipation approximation is an irrotational theory that gives rise to results that are
different from those obtained from viscous potential flow in §2.2. The discrepancy between these two
irrotational methods, in the case of an outer free surface, is given by the last two terms in the right-hand
side of (2.33) and (2.34).

2.3.2 Irrotational tangential stress on the outer boundary

The dissipation analysis in §2.3.1 can be slightly modified to consider an outer surface on which the
tangential stress is constrained to be purely irrotational, computed from the solution of the boundary-
value problem (2.13)–(2.16). A motivation for this alternative outer boundary condition is discussed in
§3.3. In this case, boundary condition (2.5) becomes

τ
(α)
2 = n2 · 2µD · t(α)

2 , (2.36)

on S2, where D ≡ ∇⊗∇φ. Thus, there is no discrepancy between the irrotational tangential stress and
the tangential stress condition that the Navier-Stokes motion must satisfy. Since (2.36) holds, the normal
component of the stress on S2 is also irrotational. Therefore, with no approximation, (2.29) now takes
the form

W = −
∫

S1

n1 ·T · n1q̂1 dA +
∫

S2

(−p + n2 · 2µD · n2) q2 dA

+
∫

S2

n2 · 2µD · t(α)
2

(
t(α)
2 · u

)
dA. (2.37)

This expression is used in (2.28). The next step consists in approximating the remaining terms in the
right-hand side of (2.28) for potential flow satisfying (2.13)–(2.16). By used of (2.30)–(2.31), the entire
analysis thus leads to

D1 =
∫

S1

(−p + n1 · 2µD · n1)n1 · exdA +
1
U

∫

S1

n1 · 2µD · t(α)
1

(
t(α)
1 · u

)
dA. (2.38)
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The force D2 on the outer boundary S2 is obtained by direct integration of the (irrotational) stresses
using the fact that the viscous irrotational stresses are self-equilibrated on any closed surface (Appendix
B). Thus,

D2 = −
∫

S2

(−p)n2 · exdA. (2.39)

It is worth mentioning that the analysis in Appendix A would lead to a different result for the force
on S2 since the zero-tangential-stress boundary condition at the bubble surface would enter the integral
analysis in the dissipation approximation giving rise to D2. On the contrary, (2.39) is an ‘exact’ result
obtained here from direct integration over the outer boundary where the stress is known to be irrotational.
Therefore, no information from the inner boundary is needed. These formulae are used in the end of §3.3.

3 Computation of the forces from the potential flow solution

To compute the forces on the bubble interface and the outer liquid boundary by used of the formulae
obtained in §2, the solution of the boundary-value problem (2.13)–(2.16) for the flow is needed. This
problem was examined by Sherwood55. Because he considered an inviscid fluid, the forces were given
solely by the irrotational pressure. Since the analysis is explanatory and for the sake of completeness,
a version of Sherwood’s analysis is presented here in §3.1. The resulting flow field is then used in the
computation of the viscous irrotational effects that gives rise to a viscous drag.

3.1 Potential flow field

In the bubble-liquid system defined in §2.1, let R1 be the radius of the bubble and R2 the radius of the
outer surface and let ε be the separation between the centers of the bubble and the outer sphere. Then,
the translational velocity is U = ε̇. Recall that the center of the bubble moves along the fixed direction ex,
and its pathline contains the center of the outer envelope, thereby defining the axis of symmetry for the
flow field. According to the notation defined in §2, the bubble interface and the outer sphere are denoted
as S1 and S2, respectively. The analysis that follows aims to predict the forces exerted by the liquid on
the bubble and the outer container along ex for ε = 0. The analysis is thus carried out for ε/R1 ¿ 1 and
ε/R1 ¿ R2/R1 − 1.

The volume occupied by the liquid for all time is 4π(R3
2 −R3

1)/3. Then,

R2
1Ṙ1 = R2

2Ṙ2, (3.1)

where the ‘dot’ denotes time differentiation. Using spherical polar coordinates (r, θ) with orthonormal
basis {er, eθ}, and the center of S2 given by r = 0, the bubble surface is described by

r = ε cos θ + R1

[
1−

(
ε

R1

)2

sin2 θ

]1/2

. (3.2)

Expanding around ε = 0,

r = R1 + ε cos θ + O(ε2). (3.3)
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The harmonics velocity potential φ that gives rise to an axisymmetric flow field is

φ =
B0

r
+

∞∑

l=1

(
Alr

l + Blr
−l−1

)
Pl(cos θ), (3.4)

such that u = ∇φ. In (3.4), Pl denotes the Legendre polynomial of degree l (see Strauss57, p. 275). This
potential must satisfy the boundary conditions,

n1 · ∇φ
∣∣
S1

= q1 = Un1 · ex + q̂1 = Ṙ1 + ε̇ cos θ − εε̇

R1
sin2 θ + O

(
ε2

)
, (3.5)

and

n2 · ∇φ
∣∣
S2

= q2 = Ṙ2, (3.6)

where q̂1 = Ṙ1 and, to first order in ε,

n1 = er + eθ
ε

R1
sin θ, (3.7)

and n2 = er. Condition (3.6) yields

B0 = −R2
2Ṙ2 = −R2

1Ṙ1, (3.8)

and

AllR
l−1
2 = Bl(l + 1)R−l−2

2 for l > 1. (3.9)

With potential (3.4), the velocity field components in the (r, θ) frame are obtained, u = erur + eθuθ =
er∂φ/∂r + eθ∂φ/r∂θ,

Turning to the bubble surface S1, boundary condition (3.5) allows us to find the coefficients in (3.4).
In so doing, it is convenient to expand these coefficients as a power series in ε. That is,

Al = A
(0)
l + A

(1)
l ε + A

(2)
l ε2 + · · · , Bl = B

(0)
l + B

(1)
l ε + B

(2)
l ε2 + · · · , (3.10)

for l > 1, where A
(j)
l and B

(j)
l are related through (3.9). Sherwood55 obtained, for l = 1,

A1 = −R3
1(ε̇ + 2εṘ1R

−1
1 )

R3
2 −R3

1

, B1 = −R3
1R

3
2(ε̇ + 2εṘ1R

−1
1 )

2(R3
2 −R3

1)
, (3.11)

to first order in ε. Some detail on the computations of these coefficients by imposing constraint (3.5) is
given in Appendix C, where expressions for A2 and B2 to leading order are presented as well. There, we
also show that A

(0)
l = B

(0)
l = 0 for l > 2 and that A

(1)
l = B

(1)
l = 0 for l > 3. Since the forces on S1

and S2 in the ex-direction are computed for ε = 0, it suffices to find the coefficients B0, A1, B1, A2 and
B2 to first order in ε and then calculate their time derivatives. These computations will show, however,
that only l = 1 terms—and thus A1 and B1—are actually needed because of orthogonality properties of
Legendre polynomials.

The fluid pressure p distribution on S1 and S2 can be obtained from Bernoulli equation (2.16). The
derivative ∂φ/∂t needed to compute p is obtained from (3.4) by differentiating the coefficients and then
putting ε = 0, with r = R1 or r = R2.
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Using standard formulae, the components of the strain-rate tensor in spherical-polar coordinates can
be computed from u = ∇φ, with φ given in (3.4). These computations yield

Drr = er · 2µD[∇φ] · er =
∞∑

l=0

[
l(l − 1)Alr

l−2 + (l + 1)(l + 2)Blr
−l−3

]
Pl(cos θ), (3.12)

Drθ = er · 2µD[∇φ] · eθ =
∞∑

l=1

[
(l − 1)Alr

l−2 − (l + 2)Blr
−l−3

]
dPl(cos θ)/dθ. (3.13)

For ε = 0, at r = R1, the velocity component ur is given by (3.5) and the component uθ = ∂φ/r∂θ; hence,

ur = Ṙ1 + ε̇ cos θ, uθ = − (
A1 + B1R

−3
1

)
sin θ. (3.14)

At r = R2, with ε = 0, ur = ∂φ/∂r and uθ = ∂φ/r∂θ give

ur = −B0R
−2
2 , uθ = − (

A1 + B1R
−3
2

)
sin θ. (3.15)

With ε = 0, evaluating (3.12) and (3.13) at r = R1 yields

Drr = 2B0R
−3
1 + 6B1R

−4
1 cos θ, Drθ = 3B1R

−4
1 sin θ, (3.16)

and, at r = R2, we have

Drr = 2B0R
−3
2 + 6B1R

−4
2 cos θ, Drθ = 3B1R

−4
2 sin θ. (3.17)

In these results, B0 is given by (3.8) and A1 and B1 are given in (3.11) with ε = 0. It is worth noting
that the alternative approach of computing the velocity potential from a boundary-value problem that
considers two instantaneously growing or collapsing concentric spheres would have sufficed to obtain the
strain-rate tensor D[∇φ], since it only involves spatial partial differentiation.

Below, the forces on the bubble interface S1 and the outer boundary S2 are computed from the formulae
of this section and §2 for ε = 0. When the bubble and the outer surface are concentric, n1 = n2 = er,
t1 = t2 = eθ, with er · ex = cos θ and eθ · ex = − sin θ.

3.2 Forces—Viscous potential flow

The force on the bubble according to viscous potential flow is computed from (2.18). For the spherical
bubble, with ε = 0 at r = R1, this expression becomes,

D1 = 2πR2
1

∫ π

0
(−p + 2µDrr)

∣∣
R1

cos θ sin θdθ. (3.18)

With Bernoulli equation (2.16), computing ∂φ/∂t, and using (3.14) and (3.16), we get

D1 = −4
3
πρR3

1

[
ε̈(2R3

1 + R3
2)

2(R3
2 −R3

1)
+

ε̇Ṙ1(15R3
1 + 3R3

2)
2R1(R3

2 −R3
1)

+
6νε̇

R2
1

R3
2

(R3
2 −R3

1)

]
. (3.19)

Taking R2 →∞, this expression leads to

D1 = −4
3
πρR3

1

[
ε̈

2
+

3ε̇Ṙ1

2R1
+

6νε̇

R2
1

]
. (3.20)

In particular, for a spherical bubble of constant volume that translates with constant velocity (i.e.
Ṙ1 = 0 and ε̈ = 0), (3.20) reduces to D1 = −8πµε̇R1 a result found by Moore (1959) from direct
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integration of the viscous normal stress in irrotational motion. If the fluid is considered inviscid, then
the drag is zero (d’Alembert’s paradox). When the acceleration ε̈ is not zero, (3.20) gives rise to the
apparent-mass.

With Ṙ1 = 0 and the void fraction α = (R1/R2)3, (3.19) reduces to

D1 = −4
3
πρR3

1

[
ε̈(1 + 2α)
2(1− α)

+
6νε̇

R2
1

1
(1− α)

]
, (3.21)

in agreement, when ν = 0, with (AI.11) of Zuber58 for the force on a spherical bubble moving within
a inviscid liquid bounded by a spherical shell. This leads to the cell void fraction correction of the
accelerated-apparent mass given in (3.20).

For ‘small’ α, it is useful to write (3.21) in the form

D1 = −4
3
πρR3

1

[
ε̈

2
(1 + 3α) +

6νε̇

R2
1

(1 + α)
]

+ O(α2). (3.22)

The force on the outer sphere, r = R2, with ε = 0, is obtained from (2.19) when the outer boundary
is a free surface. This yields,

D2 = −2πR2
2

∫ π

0
(−p + 2µDrr)

∣∣
R2

cos θ sin θdθ. (3.23)

Finding ∂φ/∂t, with (3.15) and (3.17), this formula gives,

D2 =
4
3
πρR3

2

[
3ε̈R3

1

2(R3
2 −R3

1)
+

ε̇R2
1Ṙ1(15R3

2 + 3R3
1)

2R3
2(R

3
2 −R3

1)
+

6νε̇

R2
2

R3
1

(R3
2 −R3

1)

]
. (3.24)

Using (3.19) and (3.24), the total force that must be applied to the system is

− (D1 + D2) = −4
3
πρR3

1

[
ε̈ +

6ε̇Ṙ1

R1
− 6νε̇

R2
1

R2(R2
2 −R2

1)
(R3

2 −R3
1)

]
. (3.25)

For ν = 0 (inviscid fluid), these results reduce to those obtained by Sherwood55. The force D2 when the
irrotational stress is specified on S2 is given by (3.24) with ν = 0. This follows from (2.22).

3.3 Forces—Dissipation method

The force D1 on the bubble interface S1 in the ex-direction can be obtained by used of (2.33) when a
zero shear stress is prescribed on the outer boundary. This formula can be written as,

D1 = 2πR2
1

∫ π

0
(−p + 2µDrr)

∣∣
R1

cos θ sin θdθ +
2πR2

1

ε̇

∫ π

0
(2µDrθuθ)

∣∣
R1

sin θdθ

− 2πR2
2

ε̇

∫ π

0
(2µDrθuθ)

∣∣
R2

sin θdθ. (3.26)

With (2.16) for the pressure, (3.14) and (3.16), (3.26) leads to

D1 = −4
3
πρR3

1

[
ε̈(2R3

1 + R3
2)

2(R3
2 −R3

1)
+

ε̇Ṙ1(15R3
1 + 3R3

2)
2R1(R3

2 −R3
1)

+
9νε̇

R2
1

R2(R5
2 −R5

1)
(R3

2 −R3
1)2

]
. (3.27)

This expression, with R2 →∞, reduces to

D1 = −4
3
πρR3

1

[
ε̈

2
+

3ε̇Ṙ1

2R1
+

9νε̇

R2
1

]
. (3.28)
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For a spherical bubble of constant volume moving with constant velocity ε̇ in an infinite fluid, (3.28)
gives D1 = −12πµε̇R1. This result has been obtained with the dissipation method in potential flow by
several authors8–12,14,56.

Moore12 has examined the discrepancy between the viscous potential flow solution and the correct
dissipation result for the drag over a spherical bubble of constant volume translating in an unbounded
domain. Moore explains, citing an idea due to G. K. Batchelor, that the addition of an extra-pressure or
viscous correction to the irrotational normal stress can compensate such discrepancy. From a boundary-
layer type of analysis assessing the order of magnitude of the various terms in the steady governing
equations, Moore concludes that the extra-pressure ‘contributes to the drag on the bubble to the same
order as the viscous stresses’12, since he found that this extra-pressure is first order in the dimensionless
viscosity. If the extra-pressure produces work, this is evidently neglected in the approach used here (that
is, for nonzero choices of q̂1 and q2), for W in (2.29) is approximated by the irrotational pressure and
irrotational viscous normal stress.

For a bubble of variable radius in an unbounded fluid, the viscous part in (3.28) can be reduced
from the multiple-bubble analysis by Voinov and Golovin25. They applied a Lagrangian formulation to
examine the motion of a set of N bubbles of varying radius translating in a liquid otherwise at rest with
dissipative forces computed from the rate of viscous dissipation evaluated in potential flow. Magnaudet
and Legendre18 obtained (3.28) by transforming the original problem to a reference frame in which
the bubble radius remains fixed, while preserving the dynamic similarity in the transformation. In the
limit when Re >> 1 or URe >> 1, where the Reynolds number Re = R1U/ν and the velocity ratio
U = |Ṙ1|/U , the boundary layer is thin. The transformed problem thus involves a bubble of constant
radius in an unsteady flow and the drag force is computed to first order in the viscosity by evaluating the
kinetic energy and the viscous dissipation from potential flow (see Tam16). Then, the force in physical
space is found by simply applying the known rules that link the transformed problem to the original
one. This method contrasts with the approach described in §2.3 that gives rise to (3.28), in which the
work of the normal stress due to the radial motion of the bubble interface and the contribution of this
motion to the liquid kinetic energy are modeled by potential flow in a rather heuristic way. The fact
that (3.28) agrees with the force given by Magnaudet and Legendre (1998) indicates that the combined
viscous contribution from dE/dt and W in (2.28) is null up to order O(Re−1). This may be explained
by considering that the component of the total motion attributed to the bubble radial expansion and
contraction is of the source-sink type, hence of irrotational nature.

The result obtained above can be readily used to approximate the dynamics in a bubbly flow with void
fraction α by applying the cell model described in §1. In the case of Ṙ1 = 0, with the cell void fraction
α = (R1/R2)

3, (3.27) gives the added-mass and viscous contributions to the force acting on each bubble

D1 = −4
3
πρR3

1

[
ε̈(1 + 2α)
2(1− α)

+
9νε̇

R2
1

(1− α5/3)
(1− α)2

]
, (3.29)

which agrees with Zuber’s58 result for ν = 0. The viscous part in (3.29) is the widely cited result obtained
with the dissipation approximation by Marrucci51. For ‘small’ α, (3.29) may be written as

D1 = −4
3
πρR3

1

[
ε̈

2
(1 + 3α) +

9νε̇

R2
1

(1 + 2α)
]

+ O(α2). (3.30)

It should be noted that (3.29) has been derived from a cell model with a frictionless outer boundary, such
that no work is exchanged by the reference cell with the surroundings.

The force D2 in the ex-direction on surface S2 can be obtained from either (2.34) or (2.35). The latter
expression can be written as

D1 + D2 = 2πR2
1

∫ π

0
(−p)

∣∣
R1

cos θ sin θdθ − 2πR2
2

∫ π

0
(−p)

∣∣
R2

cos θ sin θdθ, (3.31)
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which, with (3.27), leads to

D2 =
4
3
πρR3

2

[
3ε̈R3

1

2(R3
2 −R3

1)
+

ε̇R2
1Ṙ1(15R3

2 + 3R3
1)

2R3
2(R

3
2 −R3

1)
+

9νε̇

R2
2

R1(R5
2 −R5

1)
(R3

2 −R3
1)2

]
. (3.32)

Again, Sherwood’s results are recovered taking ν = 0 in (3.27) and (3.32).
The total force that must be applied to the system is obtained from (3.31):

− (D1 + D2) = −4
3
πρR3

1

(
ε̈ +

6ε̇Ṙ1

R1

)
, (3.33)

in agreement with the inviscid result by Sherwood55.
Consider now an outer boundary S2 in which the tangential stress is given by the irrotational motion

satisfying the boundary-value problem (2.13)-(2.16), such that the zero-tangential-stress constraint does
not hold. Under this framework, the formulae of §2.3.2 can be applied yielding an expression for the force
D1 on the bubble and the force D2 on the outer spherical envelope. Applying (2.38), we obtain,

D1 = −4
3
πρR3

1

[
ε̈(2R3

1 + R3
2)

2(R3
2 −R3

1)
+

ε̇Ṙ1(15R3
1 + 3R3

2)
2R1(R3

2 −R3
1)

+
9νε̇

R2
1

R6
2

(R3
2 −R3

1)2

]
. (3.34)

With Ṙ1 = 0, in terms of the void fraction α, this expression becomes,

D1 = −4
3
πρR3

1

[
ε̈(1 + 2α)
2(1− α)

+
9νε̇

R2
1

1
(1− α)2

]
. (3.35)

To first order in α, (3.35) also leads to (3.30). The viscous part of (3.35) has been given by Kendoush52,
as discussed below. The force D2, according to (2.39), can be obtained from either (3.24) or (3.32) taking
ν = 0. For the two outer boundary conditions examined here, note that the force on the bubble increases
with the void fraction according to both irrotational theories.

4 Discussion

The force acting on a spherical compressible bubble in rectilinear motion within an incompressible fluid
bounded externally by a spherical surface has been computed above at the instant in which both spheres
are concentric. The analysis is carried out using two different irrotational approximations, namely, viscous
potential flow (§§2.2 and 3.2), which directly integrates the irrotational normal stress over the bubble
surface, and the dissipation method (§§2.3 and 3.3), in which the integration of the various terms in the
mechanical energy equation, including the rate of energy dissipation, is carried out assuming irrotational
motion, after satisfying actual boundary conditions for Navier-Stokes motion. The dissipation method
stems from the fact that viscous irrotational stresses are self-equilibrated, but its power does not van-
ish59. In addition, the force on the outer surface is also computed. In particular, by keeping the bubble
radius constant, one can use the results to approach the force on a bubble moving in a monodispersed
homogeneous bubbly flow having the same void fraction as the reference cell and satisfying the dual limit
of large Reynolds and small Weber numbers, for in this case the velocity field differs very little from that
in irrotational motion. This is in accord with the well-known cell-model approximation.

In the present formulation of the dissipation method, the tangential stress is set to zero on the inner
boundary, but two possibilities are considered for the outer boundary, either a zero tangential stress or
an irrotational tangential stress. Since the irrotational tangential stress on the outer boundary is not
identically zero, this stress does work against the remainder of the domain, as shown in (2.37). This
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boundary condition thus contradicts the postulate by Happel and Brenner45 of regarding each cell as
an independent entity in the sense that energy transfer should not occur between the unit cell and the
neighboring fluid. This is the case with the model with zero tangential stress on both the inner and outer
boundaries (i.e. free-surface cell model), leading to Marrucci’s drag when the bubble speed is constant.
Nevertheless, if the cell model is used to describe a bubbly flow with ‘weak’ rotational effects confined
to a thin layer adjacent to the bubble interface and a minute wake at the bubble rear, such that the
liquid motion is essentially irrotational, the choice of irrotational stresses on the outer envelope appears
reasonable.

The viscous drag from the viscous potential flow solution (3.21) is always lower than the viscous drag
obtained from the dissipation method with either outer boundary condition, (3.29) or (3.35), for the same
volume fraction α. It is well known12 that the drag on a single bubble rising steadily in a liquid from
the integration of the viscous irrotational normal stress (i.e. viscous potential flow in this paper) is 2/3
of that predicted by the dissipation method, which gives the correct trend for a large-Reynolds-number
spherical bubble. Therefore, one may expect the results from the dissipation method to be closer to the
actual viscous drag than those from viscous potential flow for nonzero α.

For a bubble moving with constant velocity, i.e. ε̈ = 0, (3.35) reduces to the drag found by Kendoush52

with the dissipation method using a cell model. Nonetheless, in his analysis, it is not stated what dynamic
constraint (stress) is prescribed at the outer boundary. Expressions (3.34) and hence (3.35) were attained
here by imposing an irrotational tangential stress on the outer boundary. Both Marruci51 and Kendoush52

used the irrotational velocity profile determined by the domain configuration and the kinematic conditions
(normal velocity component) on the inner and outer boundaries. Kendoush’s working equation [his (5)]
can be obtained from (2.38) by used of (2.1).

Kendoush also argues that Marrucci’s result, given in (3.29) for ε̈ = 0, is incorrect, reasoning that
the upper integration limit in Marrucci’s dissipation integral should have been taken to infinity instead
of using the outer radius, as originally specified by Marrucci. Although implementing this change in
Marrucci’s formulation does lead to (3.35) instead of (3.29), we find this modification rather contradictory
since in the cell model the liquid is bounded, and the velocity profile employed is that of a confined fluid.
The analysis that led to (3.29) verifies that Marrucci’s formula for the viscous drag is correct; it is found
here from the mechanical energy balance by considering frictionless inner and outer boundaries and
irrotational motion in the bulk of fluid. It should be noted that Marrucci did not prescribe any external
boundary condition from dynamics (i.e. stress), although he mentioned Happel’s48 assumption of a free-
surface condition for the outer boundary in a creeping-flow cell model as a prominent antecedent of his
work. He only indicates that boundary-layers contributions to the total energy dissipation are neglected
in his analysis.

While a zero tangential stress is the obvious choice for the bubble interface, an alternative constraint,
that is, an irrotational stress condition, may be specified on the outer boundary. In sum, (3.29) and
(3.35) arise through the dissipation method applied to the same configuration with the same frictionless
condition on the inner boundary but each satisfying a different condition on the outer boundary, thereby
yielding different results. Nonetheless, the drag is the same to first order in the void fraction.

4.1 Comparison with numerical and other analytical results

The viscous irrotational theories considered here can be compared with results from other analytical
models, numerical simulations and experimental data. We have in mind the situation of gas being bubbled
through a stagnant liquid in a continuous manner by injecting a constant gas flow rate or the case of
a swarm of spherical bubbles rising by buoyancy in a liquid otherwise at rest. The latter case can be
placed in the framework of the cell-model analysis carried out here by letting U be the velocity of the
rising bubble swarm with respect to the container wall51,53. If a steady gas flow rate is bubbled through
the same container, the actual bubble velocity Ub referred to the container walls is related to U by the
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expression Ub = U/(1− α) as a result of mass conservation60, where α is also the gas volume fraction in
the bubbly flow. In this case, U also represents the gas drift velocity, that is, the difference of the actual
gas velocity, Ub, and the gas volumetric flow rate per unit of cross sectional area being pushed into the
system60. It is assumed that the bubbles in the swarm are nearly spherical, homogeneously distributed,
and with negligible variations of the equivalent bubble diameter with respect to the mean value. The
equivalent bubble diameter is the diameter of the sphere with the same volume of the bubble. We are
referring to this definition when we use the term ‘bubble diameter’.

In Figure 2(a) the predictions by the irrotational theories for the drag coefficient CD are presented
and compared with those listed in Chhabra46 from the numerical solution of the steady incompressible
Navier-Stokes equations using both the free-surface and the zero-vorticity cell-model approximations for
Re = 100, where Re = 2R1Uρ/µ, thereby suitable for comparison with the viscous irrotational theories.
Numerical results for Re = 20 are also included to illustrate the change in CD with Re. Chhabra collected
the results obtained by Manjunath et al.54 using the finite-element method for a cell model with zero
tangential stress both on the inner and outer boundary and new results generated with the same numerical
method solving the governing equations for the same physical domain and boundary conditions except
that at the outer boundary the vorticity is set to zero instead of the tangential stress. The drag D on a
bubble may be written in the form

D =
1
2
ρU2πR2

1CD, (4.1)

an expression that defines the drag coefficient CD. Using the results for the viscous drag from (3.21), (3.29)
and (3.35), expressions for the drag coefficient can thus be written, respectively, for viscous potential flow
(VPF) and the dissipation method (DM) with either a zero tangential stress or an irrotational tangential
stress on the outer boundary. In this order, we obtain,

CD1 =
32
Re

1
(1− α)

, CD2 =
48
Re

(1− α5/3)
(1− α)2

, CD3 =
48
Re

1
(1− α)2

. (4.2.a, b, c)

Figure 2(a) shows that the DM with the irrotational-tangential-stress condition on the outer boundary
exhibits fair agreement with the numerical results for the zero-vorticity cell model for the range of void
fraction considered in the study. In this formulation of the dissipation approximation, the potential flow
hypothesis is brought from the bulk of the fluid to include the outer boundary. Predictions from the DM
with the zero-tangential-stress condition on the outer surface are close to the numerical simulations using
a cell model with the same constraint, as expected for Re = 100. VPF, on the other hand, consistently
underpredicts the numerical solution, which is the extension to a bubbly suspension of the known result
for a single bubble rising in an infinite medium12. From the two curves rendered by DM, the cell model
with an irrotational shear stress on the outer boundary predicts values for the drag coefficient CD that
display a stronger dependence on the void fraction than those from the cell model with a zero-shear-stress
condition. A similar trend is described by the numerical results by Chhabra, who commented on this, for
Re = 100 (represented by symbols), that is, results from the zero-vorticity cell model are more dependent
upon the void fraction than results from the free-surface cell model. This trend agrees with that reported
by Happel and Brenner45 and El-Kaissy and Homsy50. Happel and Brenner framed their discussion under
the analysis of creeping flow; El-Kaissy and Homsy carried out regular perturbation techniques on the
Navier-Stokes equations. A comparison of numerical predictions for the drag coefficient with Marrucci’s
drag [cf. (4.2.b)] has been presented by Manjunath et al. using the free-surface cell model.

Although numerical simulations and analytical models can predict the drag acting on a bubble in
a bubbly suspension, perhaps the most convenient way of evaluating their performance is comparing
theoretical results for the terminal rise velocity of the bubbles with experimental data. This is because



sher-jul262008-iecr.tex 20

0 0.1 0.2 0.3 0.4 0.5
10-1

100

101

C
D

10

0.1

1.0

V
is

co
us

dr
ag

co
ef

fic
ie

nt
,

Gas volume fraction,α

(a)

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(b)∞
U

/U
N

or
m

al
iz

ed
bu

bb
le

sw
ar

m
ri

se
ve

lo
ci

ty
,

Gas volume fraction, α

Figure 2: (a) Drag coefficient CD as a function of the void fraction α. (b) Normalized bubble swarm rise
velocity U/U∞ as a function of the gas volume fraction α. The graphs for CD vs. α are determined with
Re=100, except where indicated. The curves of U/U∞ vs. α are valid for Re À 1 but do not explicitly
depend on Re. Thin solid line: VPF (4.2.a) and (4.3.a); thick dashed line: DM with zero tangential stress
on the outer boundary (4.2.b) and (4.3.b); thick solid line: DM with irrotational tangential stress on the
outer boundary (4.2.c) and (4.3.c); thin solid line with ¦: Marrucci51; N and M: numerical simulations
with free-surface cell model by Chhabra46 for Re=20 and Re=100, respectively, where (4.6) is used for
the normalized velocity; • and ◦: numerical simulations with zero-vorticity cell model by Chhabra for
Re=20 and Re=100, respectively. DM stands for the dissipation method and VPF stands for viscous
potential flow. The symbols for α = 0 correspond to the numerical results by Manjunath et al.54 using a
free-surface cell model. U∞ denotes the single bubble rise velocity from the dissipation method.
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measurements of this magnitude are somewhat abundant in the literature. The terminal velocity U of a
swarm of spherical bubbles of equal size rising due to buoyancy can be determined by equating the drag
on a bubble with the lift force that drives the bubble upwards, given by the buoyancy force corrected by
the bubble weight, that is, 4πR3

1(ρM−ρG)g/3, g being the acceleration of gravity, ρG the gas density and
ρM ≡ ρ(1− α) + ρGα, the averaged density of the mixture52,58,61. Using (3.21), (3.29) and (3.35) for the
drag, we thus find,

U

U∞
=

3
2
(1− α)2,

U

U∞
=

(1− α)3

(1− α5/3)
,

U

U∞
= (1− α)3, (4.3.a, b, c)

for VPF, and the DM with either a zero tangential stress or an irrotational tangential stress at the outer
boundary of the cell, respectively. Here, U∞ is the bubble velocity in the limit of infinite dilution, that
is for α = 0, computed from the DM1, U∞ = R2

1(ρ− ρG)g/9µ. Hence the bubble rise velocity for infinite
dilution according to VPF is 3U∞/2. Expression (4.3.c) has been given by Kendoush52. Expression (4.3.b)
times the factor (1−α)−1 gives the rise velocity model by Marrucci51, who apparently used the density of
the liquid ρ instead of the density of the mixture ρM in the buoyancy force. Richardson and Zaki62 favored
the use of the density of the liquid over the density of the suspension ρM in computing the buoyancy force
acting on solid particles settling in a liquid at the same rate, pointing out that each particle displaces
its own volume of liquid, not of suspension. Kuwabara49 also used the density of the liquid instead of
that of the suspension for the buoyancy force needed in the evaluation of the terminal settling velocity
of spheres uniformly arranged in a liquid. Manjunath et al. proposed to compute the steady rise velocity
of the bubble swarm with the buoyancy force determined by the density of the liquid. On the other
hand, Zuber58 applied the one-dimensional momentum equation for two-phase flow to the case of steady
vertical motion of particles in a fluid neglecting the friction at the walls, finding that the buoyancy force
determined with the density of the mixture balances the drag force on a particle and its weight. Based
upon experimental studies on the settling velocity of spheres in two-component solid-liquid suspensions,
Poletto and Joseph63 affirmed that the effective density approaches the average density of the mixture
in the case of a test particle of the same diameter as the suspended particles, or larger. Moreover, they
entered the average density of the mixture to account for the effective buoyancy on a test particle in
a model describing the settling of a test sphere in a suspension. Kendoush also used the density of the
mixture in finding the terminal rise velocity of a bubble swarm. This approach was adopted above.

Expressions (4.3.a, b, c) are plotted in figure 2(b) as function of the void fraction. To use the numerical
results for CD compiled in Chhabra for fixed Reynolds number Re and varying α to predict the ratio
U/U∞, the drag D in (4.1) is equated to the buoyancy force minus the bubble weight. That is,

CD
1
2
ρU2πR2

1 =
4
3
πR3

1(ρ− ρG)g(1− α). (4.4)

Writing a similar expression in the infinite dilution limit, α = 0, for a bubble of radius R1 rising with
velocity U∞ in the same liquid, according to the dissipation method, the drag coefficient being CD,∞,
and combining with (4.4), we find64

U

U∞
= (1− α)1/2

(
CD,∞
CD

)1/2

. (4.5)

With CD,∞ given by the known expression CD,∞ = 48/Re∞, and U/U∞ = Re/Re∞, (4.5) represents and
implicit relation for Re∞, for known values of α and Re, a pair that determines the drag coefficient CD

from the numerical analysis. Expression (4.5) can be written in explicit form,

U

U∞
= (1− α)

48
ReCD

(4.6)
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The results from (4.6) for Re=20 and 100 are represented with symbols in figure 2(b).
The trend depicted by the viscous irrotational theories in figure 2(b) indicates a decrease in the ratio

U/U∞ for the bubble swarm with increasing void fraction. For a given gas-liquid system for which the dual
limit of large Reynolds number and small Weber number is satisfied, this trend indicates that increasing
bubble concentration hinders the bubble swarm rise speed. DM with an irrotational tangential stress
on the outer boundary of the cell model gives the lowest normalized velocity amongst the irrotational
theories described in this paper. Slightly higher values are obtained from the DM when a zero tangential
stress is prescribed on the outer boundary for the same volume fraction. In addition, results from the
former model are somewhat more dependent on the void fraction than results from the latter model.
VPF predicts much higher normalized bubble swarm velocities than the other models considered in the
analysis as the first order viscous correction to the irrotational pressure associated with the vortical layer
is omitted, thereby predicting a lower drag. Marrucci’s formula predicts dimensionless velocities that
lie in between those from VPF and the other viscous irrotational theories and shows a less pronounced
dependence on the gas volume fraction.

The results obtained here (plotted as symbols) from the drag coefficients reported in Chhabra from
numerical simulations also show a decrease in U/U∞ as the void fraction α increases. In the limit of
infinite dilution, the points included in figure 2(b) are given in Manjunath et al. from their numerical
solution. The remark stated above regarding the hindering effect due to increasing gas concentration
cannot be drawn from the points determined by the numerical solution, as each data series corresponds
to a fixed bubble swarm Reynolds number, Re. Since (4.6) with the numerical results for CD in Chhabra
for Re = 20 and 100 yields an increasing Re∞ as α increases, the ratio Re/Re∞ and hence U/U∞
ought to decrease. To investigate the effect of increasing gas volume concentration on bubble rise velocity
using numerical simulations at finite Reynolds number, another type of plot is needed; this can be found
elsewhere52,53(see below). For both Re =20 and 100 and α > 0, the normalized velocity predictions
from the free-surface cell model are larger than the results from the zero-vorticity cell model obtained
by means of computational fluid dynamics analysis. As expected, this trend agrees with that shown by
the DM results for U/U∞ with the zero-tangential-stress model leading to a somewhat larger values in
comparison with the model with an irrotational tangential stress on the exterior surface. Larger values
of U/U∞ are predicted for bubble swarms for which Re = 20 than for swarms with Re = 100 at a fixed
gas volume fraction and for the same type of cell model. The difference between both series decreases as
the gas volume fraction increases.

The decrease of the normalized bubble swarm velocity U/U∞ as Re increases for fixed α may be
explained by considering the limit of low Reynolds number. For creeping motion of a single bubble in an
unbounded medium, the drag is known65 to be 4πµR1U . Therefore, the bubble terminal rise velocity is
U/U∞=3, which is well above the corresponding value for Re = 20, U/U∞ ≈1.7 [see figure 2(b)]. As the
Reynolds number increases towards the other limit Re À 1, U/U∞ should tend to 1. This tendency is
also observed for a bubble swarm, that is, for α > 0.

As the Reynolds number increases, it is reasonable to expect that U/U∞ for given α approaches the
curves resulting from the DM, since these curves represent the limiting values for Re À 1. Whereas for
α = 0 and Re = 100, U/U∞ ≈ 1.2, and a decreasing trend should be expected, so that U/U∞ → 1 as
Re increases, the data obtained from numerical experiments for α > 0 using the free-surface cell model
apparently have already reached their limit, given by the DM analysis for the same type of cell model.
In the case of the data set corresponding to the zero-vorticity cell model, for α > 0 the magnitudes of
U/U∞ are already slightly under their expected limiting values, the graph of the DM with an irrotational
tangential stress on the exterior boundary. Discarding issues related to the approximations employed in
the numerical scheme, one possible explanation for this result is the increasing trend of the product ReCD

with increasing Re that, by virtue of (4.6), leads to a decrease in U/U∞. Should this trend be reversed,
ReCD would start decreasing slowly as Re continues increasing so that the limiting value would be closely
approached, and U/U∞ would become insensitive to changes in Re.
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In closing, one should mention that results for U/Uα=0 as function of the gas volume fraction, Uα=0

being the velocity of a bubble rising in an unbounded medium (Uα=0 6= U∞), were reported by LeClair
and Hamielec53 for infinite dilution Reynolds numbers up to Reα=0=1000 from their numerical solutions
employing the zero-vorticity cell model. There, the hindering of bubble motion as the bubble concentration
increases is demonstrated from the simulations. They pointed out that a standing vortex ring in the bubble
rear stagnation region was not present. They assert that for such a high Reynolds number, the limit given
by potential flow theory is approached. From the dissipation method, the drag coefficient defined in (4.1)
leads to the result CD ≈ 0.048 yet they plotted a drag coefficient, defined in the same manner, of
CD ≈ 0.1. Appreciable covective effects that overcome the capabilities of the numerical scheme66 are
perhaps the cause of such a significant difference. Therefore, we opted not to include their data for such
a high Reynolds number in the comparisons carried out in the present work.

4.2 Comparison of the theory against experimental data

Comparison of the theory with experimental data for the velocity Ub of the bubbles in a bubbly flow
as a function of the void fraction is presented in figure 3. One data set corresponds to the experiments
conducted by Zenit et al.2 to study a monodispersed suspension of bubbles moving in a vertical channel
satisfying the dual limit of large Reynolds number and small Weber number. The mixture is produced by
bubbling gas at a constant volumetric flow rate through a stagnant liquid. They used a dilute aqueous
electrolyte solution with gas nitrogen. A monodispersed suspension is obtained with the addition of a
salt to the liquid, that helps preventing bubble coalescence. The mean equivalent bubble diameter of the
suspension increases from 1.364 mm to 1.696 mm for gas volume fraction in the interval 0 . α 6 0.20.
The aspect ratio decreases in this interval from 1.3 to 1.1 and the Reynolds and Weber numbers decrease
with the void fraction from Reb = 380 and Web = 1.5 for α ≈ 0 to Reb = 260 and Web = 0.5 for
α = 0.20. For this data set, Zenit et al. gives the fitting Ub = U0(1 − α)n, with U0 = 0.269 m s−1 and
n = 2.796. They report that U0 < U∞ = 0.320 m s−1, measured from the rising of a single bubble in a
larger pipe, a value that is just within 1% of the result predicted by the theory for an oblate ellipsoid67.
This sudden steep decrease in bubble velocity with gas concentration for very dilute suspensions has been
attributed by Zenit et al. to the effects of bubble-wall collisions. They discuss this issue in depth while
including additional experimental evidence, and the interested reader should refer to their work. Another
data set is taken from the series of experiments performed by Martinez-Mercado et al.39 with a flux of
gas nitrogen bubbling through a variety of stagnant liquids. We choose the set of measurements obtained
with a mixture of water-glycerin (15% wt.) because the bubbles were nearly spherical and the Reynolds
number was O(100). In the experiments with this liquid, the mean bubble diameter decreases from 1.3 to
1.2 mm with increasing void fraction from 0 to 0.05, whereas the aspect ratio remained constant about
1.05. The measured Reynolds and Weber numbers decrease from Reb = 120 and Web = 0.60 to Reb = 70
and Web = 0.22 for void fraction increasing in the range 0 . α 6 0.05. Again, a rapid decrease in the
bubble velocity in the region of a very dilute suspension was observed as the velocity for a single bubble
in an infinite medium is 0.287 m s−1 computed from the theory for a clean oblate ellipsoidal bubble67

(note that they reported the value of Re∞ instead). They speculate that the sudden increase in the drag
that slows down the bubbles might be caused by velocity fluctuations arising from bubble-wall collisions.

1 The predictions from the irrotational theories described here are compared with the experimental
data for the dimensionless velocity Ub/U∞ in figure 3, where U∞ takes the values given above for both
experimental data sets. In addition, Zenit et al. took the model by Spelt and Sangani32 for the drag
coefficient and found an expression for the normalized bubble velocity Ub/U∞ for vertical bubbly flow
through stagnant liquid

Ub

U∞
=

(1− α)
1 + 3

20αA
. (4.7)



sher-jul262008-iecr.tex 24

0 0.04 0.08 0.12 0.16 0.2
0.2

0.4

0.6

0.8

1

∞
U

/U
b

N
or

m
al

iz
ed

bu
bb

le
ve

lo
ci

ty
,

Gas volume fraction, α

Figure 3: Normalized bubble velocity Ub/U∞ as a function of the gas volume fraction α for gas bubbling
continuously in a stagnant liquid. Two data sets from experiments are included for comparison. Thick
dash-dot-dotted line: fitting of data from experiments with nitrogen in aqueous solution by Zenit et al.2;
2: experiments with nitrogen in water-glycerin (15% wt.) by Martinez-Mercado39; thick dashed line: DM
with zero tangential stress on the outer boundary (4.3.b); thick solid line: DM with irrotational tangential
stress on the outer boundary (4.3.c); thin dash-dotted line: model by Spelt and Sangani32 (4.7); thin solid
line with ¦: Marrucci51. DM stands for the dissipation method and VPF stands for viscous potential flow.
Predictions are given by Ub = U/(1−α). For the experiments, U∞ was determined from Moore’s theory67.
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Here the parameter A denotes the inverse of the bubble vertical velocity variance normalized by the
square of the mean bubble velocity. A fit for A = A(α) with measurements by Zenit et al.2 is given in
Kushch et al.30, A = (0.02 + 0.5α)−1. This fitting may be regarded as particular for the set of conditions
of the experiments from which it is obtained. Predictions from (4.7) are included in figure 3. Note
that A does not approach zero as α → 0; this is explained by the oscillations in the bubble trajectory
associated with bubble-wall interactions observed in a single bubble experiment2. The drag coefficient
formula referred to above was derived by Spelt and Sangani by solving for a viscous potential that adds
a first order correction in the dimensionless viscosity to the irrotational flow field. Their expression for
the drag coefficient depends upon the void fraction and an additional parameter A, defined above, and
is needed in their system of average equations for bubbly flow in the regime of large Reynolds and small
Weber numbers. They present comparisons with dynamics simulations, in which satisfactory agreement
is demonstrated.

The experiments show that greater concentration of bubbles leads to a hindering of their motion
and the models follow this trend. Figure 3 indicates that the theory overpredicts the measurements in
the interval of gas volume fraction considered. This trend has been reported by Zenit et al.2 from the
comparison of their data with the model by Spelt and Sangani32. This discrepancy was attributed to
several factors, namely, bubble deformation, departures of the liquid dynamics from irrotational motion
due to the presence of surface-active contaminants, and energy dissipation associated with bubble shape
oscillations2. A similar discrepancy was noted by Kushch et al.30 after comparing their model, derived
using an effective-medium theory for oblate spheroidal bubbles, with the data by Zenit et al. They suggest
that viscous dissipation originated by the container walls might be the cause of such a discrepancy. Figure
3 shows that the model by Spelt and Sangani for Ub/U∞ presented in Zenit et al., with the fit for A
obtained from their experimental data, gives the best approximation to the measurements. Moreover,
the difference for all models is the least with the data by Zenit et al., for which the Reynolds number
(380 ≥ Reb ≥ 260) is about three times that of Martinez-Mercado et al. This is consistent with the notion
that the formulae considered here is valid for Reb À 1, and thus these models ought to be considered
limiting cases as long as the bubbles remain nearly spherical (i.e., Web < 1).

From the set of viscous irrotational theories analyzed in §§2 and 3, that obtained from the dissipation
method with an irrotational tangential stress on the outer boundary gives the smallest discrepancy and
also depicts the same slope as the data set by Zenit et al. Nevertheless, when the bubbles are modeled
as oblate ellipsoids using Moore’s67 model for U∞, and the variation of the equivalent diameter of the
bubbles and aspect ratio with the void fraction is accounted for, the curve of U/U∞ versus α for the
experimental data by Zenit et al. becomes rather concave, as presented in their work (not shown here),
resembling the curvature of the graph rendered by the model of Spelt and Sangani.

5 Closing remarks

The assumed irrotational dynamics of the incompressible fluid surrounding a spherical bubble of variable
radius and bounded externally by a spherical surface, is applied to the computation of the drag acting
on the bubble and on the outer surface when a relative translation exists between them. A simpler
computation of the drag is given by the integration of the irrotational normal stress, including the viscous
part. Another viscous irrotational formulation based upon the mechanical energy balance, namely, the
dissipation method, is employed, leading to a different form of the drag. A major aspect of the formulation
of the dissipation method presented here is the way the tangential stress boundary condition on the
exterior surface enters the analysis. Two choices are considered for this boundary condition, namely, a
zero tangential stress and an irrotational tangential stress. In particular, when the bubble volume is held
constant, these expressions for the drag are taken as an approximation, in the sense of the classical cell
model, of the drag acting on a swarm of identical bubbles. These results are then used to find expressions
for the suitably normalized terminal rise velocity of the bubble swarm. These formulae are evaluated by
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comparing against other theoretical approaches, numerical simulations of the cell-model and experimental
data for bubbly flow.

The results for the drag coefficient obtained by the dissipation approximation in a cell with either
a zero tangential stress or an irrotational tangential stress on the exterior surface show fair agreement
with results given in the literature from numerical solutions of the steady incompressible Navier-Stokes
equations for a free-surface cell model or a zero-vorticity cell model, respectively, for a bubble-swarm
Reynolds number Re=100. Similar trend is observed for the bubble swarm terminal rise velocity normal-
ized by the terminal rise velocity of a bubble according to the dissipation method, U/U∞, for nonzero
gas volume fraction, α > 0.1. This bubble swarm rise velocity is found by the equilibration of the viscous
drag and bubble weight with the buoyancy force determined by the gas-liquid mixture density. In the
infinite dilution limit, the bubble velocity is still larger than the value given by the dissipation method,
which should be approached as Re increases. On the other hand, the simpler integration of the normal
stress from viscous potential flow gives unsatisfactory predictions. The comparison with the experimental
data for bubble velocity in bubbly flow through a stagnant liquid, indicates that the model by Spelt and
Sangani, which requires knowledge of the bubble vertical velocity variance, gives the best approximation;
it is followed by predictions from the dissipation method with an exterior irrotational-tangential-stress
boundary condition.
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Appendix A: Force on the outer boundary by the dissipation method

In this analysis we obtain an expression for the force D2 that the fluid in V exerts on the outer boundary
S2 in the ex-direction by used of the dissipation method. The analysis involves writing the equations of
motion with respect to a noninertial coordinate system. This procedure parallels that of §2.3 for the force
D1 on the bubble interface S1 when the outer boundary S2 is a free surface.

The incompressible Navier-Stokes equations relative to the laboratory reference frame are

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + µ∇2u, (A.1)

∇ · u = 0. (A.2)

Consider a noninertial reference frame with an origin that moves with velocity Uex relative to the
laboratory frame and does not rotate. The transformation between coordinate systems is governed by
the relations

x̂ = x−
∫ t

0
U(t′)exdt′, t̂ = t, v = u− Uex. (A.3.a, b, c)

The form of the incompressible Navier-Stokes equations is invariant under the transformation (A.3)
provided a pseudopressure p̂ is defined as68

p̂ ≡ p + ρU̇ex · x̂, (A.4)
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so that the governing equations in the noninertial reference frame may be written as

ρ

(
∂v
∂t̂

+ v · ∇̂v
)

= −∇̂p̂ + µ∇̂2v, (A.5)

∇̂ · v = 0. (A.6)

With T̂ ≡ −p̂1 + µ
(
∇̂v + ∇̂vT

)
, the right-hand side of (A.5) is ∇̂ · T̂. Moreover, with (A.4),

T̂ = T− ρU̇ex · x̂. (A.7)

Let

D̂2 ≡ −
∫

S2

n2 · T̂ · exdA. (A.8)

With (2.8) and (A.7), (A.8) yields

D̂2 = D2 +
∫

S2

ρU̇ex · x̂(n2 · ex)dA. (A.9)

The fluid motion is subjected to the following boundary conditions:
On S1,

n1 · v = q̂1, (A.10)

n1 · T̂ · t(α)
1 = n1 ·T · t(α)

1 = 0, for t(α)
1 ⊥n1. (A.11)

On S2,

n2 · u = q2, (A.12)

n2 · T̂ · t(α)
2 = n2 ·T · t(α)

2 = 0, for t(α)
2 ⊥n2, (A.13)

and thus both surfaces are taken as free surfaces. Taking the inner product of (A.5) with v and invoking
(A.6), leads to the mechanical energy equation for the motion relative to the noninertial reference frame.
That is, in integral form,

dÊ

dt̂
= −

∫

S1

n1 · T̂ · v dA +
∫

S2

n2
ˆ·T · v dA−

∫

V
2µD̂[v] : D̂[v] dV, (A.14)

where,

dÊ

dt̂
=

d

dt̂

∫

V
ρ
|v|
2

2

dV =
∫

V
v · ρ

(
∂v
∂t̂

+ v · ∇̂v
)

dV, (A.15)

and D̂[v] = 1
2

(
∇̂v + ∇̂vT

)
.

With (A.3.c) and (A.8), (A.11) and (A.13), (A.14) may be written as

D̂2 =
1
U

(
dÊ

dt̂
+

∫

V
2µD̂[v] : D̂[v] dV − Ŵ

)
, (A.16)

where,

Ŵ = −
∫

S1

n1 · T̂ · n1q̂1 dA +
∫

S2

n2 · T̂ · n2q2 dA. (A.17)
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Now, the integrals in the left-hand side of (A.16) are evaluated in potential flow, v = ∇̂φ̂. Momentum
balance (A.5) reduces to the Bernoulli equation for potential flow, i.e.

p̂

ρ
+

∂φ̂

∂t̂
+
|v|
2

2

= B(t̂). (A.18)

Then, (A.15) yields

dÊ

dt̂
= −

∫

S1

(−p̂)q̂1dS +
∫

S2

(−p̂)q2dS − U

∫

S2

(−p̂)n2 · exdS. (A.19)

Denoting D̂ = D̂[v = ∇φ̂], the dissipation integral in (A.16) becomes
∫

V
2µD̂ : D̂dV = −

∫

S1

n1 · 2µD̂ · vdA +
∫

S2

n2 · 2µD̂ · vdA

= −
∫

S1

n1 · 2µD̂ · n1q̂1dA−
∫

S1

n1 · 2µD̂ · t(α)
1 (t(α)

1 · v)dA

− U

∫

S2

n1 · 2µD̂ · exdA +
∫

S2

n2 · 2µD̂ · n2q2dA

+
∫

S2

n2 · 2µD̂ · t(α)
2 (t(α)

2 · u)dA, (A.20)

by use of v = u−Uex and boundary conditions (A.10) and (A.12). Substitution of (A.19) and (A.20) in
(A.16), with (A.17) given by potential flow, leads to

D̂2 = −
∫

S2

(
−p̂ + n2 · 2µD̂ · n2

)
n2 · exdA +

1
U

∫

S2

n2 · 2µD̂ · t(α)
2

(
t(α)
2 · v

)
dA

− 1
U

∫

S1

n1 · 2µD̂ · t(α)
1

(
t(α)
1 · v

)
dA. (A.21)

Using (A.4) and (A.9), with D = D[u] = D̂[v] from the transformation (A.3), expression (A.21) gives
rise to (2.34) in §2.3.1.

Finally, expression (2.35) for D1+D2 is obtained by used of the self-equilibration of irrotational viscous
stresses. This implies,∫

V
∇ · 2µD · exdV = −

∫

S1

n1 · 2µD · exdA +
∫

S2

n2 · 2µD · exdA = 0, (A.22)

which gives rise to the relation,∫

S1

n1 · 2µD · n1(n1 · ex)dA +
∫

S1

n1 · 2µD · t(α)
1 (t(α)

1 · ex)dA

=
∫

S2

n2 · 2µD · n2(n2 · ex)dA +
∫

S2

n2 · 2µD · t(α)
2 (t(α)

2 · ex)dA = 0. (A.23)

The fact that each of the surface integrals in (A.22) vanishes is shown in Appendix B.

Appendix B: The net resultant of the viscous stress on a closed surface
in potential flow‡

Consider a closed surface S bounding a region V of incompressible Newtonian fluid in which the motion
is irrotational. The deviatoric stress is given by τ = 2µ∇ ⊗ ∇φ, where φ is the velocity potential that

‡R. Fosdick and J. C. Padrino, Aerospace Engineering and Mechanics Department, University of Minnesota, Minneapolis,
Minnesota 55455, USA.
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satisfies Laplace’s equation in V , by continuity, and µ is the dynamic viscosity. Then, the divergence of
τ is zero in V . As a consequence, the statement ‘the traction vectors n · τ have no net resultant on each
and every closed surface in the domain V of flow’69 follows immediately, since

∫

D
∇ · τdV =

∫

Γ
n · τdA = 0, (B.1)

by used of the divergence theorem, where D is an arbitrary volume in V with boundary Γ, and n is the
outward normal unit vector to Γ. The surface integral in (B.1) represents the net irrotational viscous
stress over Γ.

A proof of the above statement that the surface integral in (B.1) vanishes for every closed surface in the
fluid domain is not obvious for a ‘periphractic’ region. A three-dimensional region is periphractic ‘when
it is bounded internally by one or more closed surfaces’ (Milne-Thomson70, p. 97). Thus, a periphractic
region has one or more holes embedded in it, but no hole runs through the outer boundary, and thus the
volume is simply connected.

Consider now a periphractic three-dimensional region bounded externally by a surface S enclosing a
fluid volume V and one or more embedded holes. Suppose the fluid motion in V is irrotational. Consider
a closed surface Γ immersed in V . This surface may surround a volume totally filled with fluid or there
can be one or more holes enclosed by Γ. We wish to show that

∫

Γ
n · τdA =

∫

Γ
n · 2µ∇⊗∇φdA = 0 . (B.2)

Using Cartesian index notation, since τij = 2µφ,ij and φ,ii = 0, where ‘,’ denotes partial differentiation
with respect to the Cartesian coordinates indexed after it, we may write

τij = εiktεjrsBrk,st , (B.3)

provided we take

Brk ≡ −2µδrkφ , (B.4)

where εijk is the permutation symbol and δij is the Kronecker delta. This follows by simple reduction of
indices, since, with (B.4), (B.3) yields

τij = −2µεiktεjrsδrkφ,st = −2µεiktεjksφ,st = −2µ(δtsδij − δtjδis)φ,st = 2µφ,ij . (B.5)

The form of (B.3) is known as a ‘Beltrami representation’ of the stress (see §4 in Fosdick and Royer-
Carfagni71). Note that τij is symmetric provided Bij is also symmetric. Now, with this representation
and using Stokes’ theorem, we have

∫

Γ
niτijdA =

∫

Γ
niεiktεjrsBrk,stdA = 0 (B.6)

for every closed surface Γ in V . Thus, (B.2) holds and the net viscous irrotational stress on any closed
surface Γ in V is zero.

It is also true that, because of the Beltrami representation above, the moment of the irrotational viscous
stress on every closed surface Γ in V about any fixed point (say, the origin of the coordinate system) is
zero. That is,

∫

Γ
x× (n · τ ) dA = 0 , (B.7)
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or, in Cartesian index notation,
∫

Γ
εlmjxmniτijdA = 0 . (B.8)

By applying the divergence theorem, Joseph72 obtained (B.7) without using representation (B.3) for
a region with no embedded holes.

Both balances together say that any closed surface Γ in V is ‘self-equilibrated’. Results (B.2) and (B.7)
apply, in particular, to the outer and inner boundaries of V .

Appendix C: Velocity potential coefficients

The expression for q1 in (3.5) may be rewritten in terms of Legendre polynomials as

q1 = Ṙ1 + ε̇P1(z)− 2
3

εε̇

R1
(1− P2(z)) + O(ε2), (C.1)

where z = cos θ. Using (3.4) for the potential φ, expansion (3.10) for coefficients Al and Bl, and (3.7) for
n1, we can compute

n1 · ∇φ
∣∣
S1

= −B0R
−2
1 + 2εB0R

−3
1 P1(z) +

∞∑

l=1

[
lA

(0)
l Rl−1

1 − (l + 1)B(0)
l R−l−2

1

]
Pl(z)

+ ε
∞∑

l=1

[
lA

(1)
l Rl−1

1 − (l + 1)B(1)
l R−l−2

1

]
Pl(z)

+ ε
∞∑

l=2

[
(l − 1)2A(0)

l−1R
l−3
1 + {(l + 1)2 − 2}B(0)

l−1R
−l−2
1

] l

2l − 1
Pl(z)

+ ε

∞∑

l=0

[
(l2 − 2)A(0)

l+1R
l−1
1 + (l + 2)2B(0)

l+1R
−l−4
1

] l + 1
2l + 3

Pl(z) + O(ε2). (C.2)

Then, satisfying (3.5) with (C.1) and (C.2), applying orthogonality of Legendre polynomials and equating
terms of alike powers of ε, gives rise to this set of relations for the coefficients (3.10):

−BoR
−2
1 = Ṙ1 (C.3)

A
(0)
1 − 2B

(0)
1 R−3

1 = ε̇ (C.4)

2B0R
−3
1 + A

(1)
1 − 2B

(1)
1 R−3

1 +
2
5

(
−A

(0)
2 + 9B

(0)
2 R−5

1

)
= 0 (C.5)

2A
(0)
2 R1 − 3B

(0)
2 R−4

1 = 0 (C.6)

2A
(1)
2 R1 − 3B

(1)
2 R−4

1 +
2
3

(
A

(0)
1 R−1

1 + 7B
(0)
1 R−4

1

)
+

3
7

(
2A

(0)
3 R1 + 16B

(0)
3 R−6

1

)
=

2
3

ε̇

R1
, (C.7)

and, for l > 3,

lA
(0)
l Rl−1

1 − (l + 1)B(0)
l R−l−2

1 = 0 (C.8)

lA
(1)
l Rl−1

1 − (l + 1)B(1)
l R−l−2

1 +
[
(l − 1)2A(0)

l−1R
l−3
1 + {(l + 1)2 − 2}B(0)

l−1R
−l−2
1

] l

2l − 1

+
[
(l2 − 2)A(0)

l+1R
l−1
1 + (l + 2)2B(0)

l+1R
−l−4
1

] l + 1
2l + 3

= 0. (C.9)
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Furthermore, we recall (3.8) and (3.9),

B0 = −R2
2Ṙ2 = −R2

1Ṙ1, (C.10)
AllR

l−1
2 = Bl(l + 1)R−l−2

2 for l > 1, (C.11)

respectively. Note that (C.3) is satisfied by (C.10).
From (C.6) and (C.8), by used of (C.11), we obtain A

(0)
l = B

(0)
l = 0 for l > 2. Then, using these results

in (C.9), combined with (C.11), yields A
(1)
l = B

(1)
l = 0 for l > 3.

Next, the system (C.4)-(C.7) gives rise to expressions for A
(0)
1 , B

(0)
1 , A

(1)
1 and B

(1)
1 . This leads to (3.11),

and also to A
(1)
2 and B

(1)
2 after some algebra. That is, to first order in ε,

A2 = − 3εε̇R3
1R

3
2

2(R3
2 −R3

1)(R
5
2 −R5

1)
, B2 = − εε̇R3

1R
8
2

(R3
2 −R3

1)(R
5
2 −R5

1)
. (C.12)

Notice that, although A2 = B2 = 0 for ε = 0, their time derivatives, needed in the unsteady Bernoulli
equation, do not vanish, in general, at ε = 0. However, it turns out that the l = 2 terms do not contribute
at all to the forces on S1 and S2 in the ex-direction with ε = 0 because of orthogonality of Legendre
polynomials.
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List of Figure Captions

Figure 1: Sketch of a spherical bubble B centered at O′ sharing interface S1 with the incompressible fluid
occupying volume V bounded externally by the spherical surface S2 centered at O. The motion of the
bubble B is such that O′ moves along the fixed direction ex with speed U , and its radius can change with
time. The line containing the path of O′ also contains O, which is fixed with respect to the laboratory
frame. This line is therefore the axis of symmetry of the problem. The separation between O and O′ is
considered to be small. Because of the incompressibility of the fluid in V , changes in the radius of S2

occur in accordance with changes in the radius of B. Symbol n1 denotes the inward unit vector to V on
S1 and n2 denotes the outward unit vector to V on S2. Unit vectors t1 and t2 are orthogonal to n1 and
n2, respectively.

Figure 2: (a) Drag coefficient CD as a function of the void fraction α. (b) Normalized bubble swarm rise
velocity U/U∞ as a function of the gas volume fraction α. The graphs for CD vs. α are determined with
Re=100, except where indicated. The curves of U/U∞ vs. α are valid for Re À 1 but do not explicitly
depend on Re. Thin solid line: VPF (4.2.a) and (4.3.a); thick dashed line: DM with zero tangential stress
on the outer boundary (4.2.b) and (4.3.b); thick solid line: DM with irrotational tangential stress on the
outer boundary (4.2.c) and (4.3.c); thin solid line with ¦: Marrucci51; N and M: numerical simulations
with free-surface cell model by Chhabra46 for Re=20 and Re=100, respectively, where (4.6) is used for
the normalized velocity; • and ◦: numerical simulations with zero-vorticity cell model by Chhabra for
Re=20 and Re=100, respectively. DM stands for the dissipation method and VPF stands for viscous
potential flow. The symbols for α = 0 correspond to the numerical results by Manjunath et al.54 using a
free-surface cell model. U∞ denotes the single bubble rise velocity from the dissipation method.

Figure 3: Normalized bubble velocity Ub/U∞ as a function of the gas volume fraction α for gas bubbling
continuously in a stagnant liquid. Two data sets from experiments are included for comparison. Thick
dash-dot-dotted line: fitting of data from experiments with nitrogen in aqueous solution by Zenit et al.2;
2: experiments with nitrogen in water-glycerin (15% wt.) by Martinez-Mercado39; thick dashed line: DM
with zero tangential stress on the outer boundary (4.3.b); thick solid line: DM with irrotational tangential
stress on the outer boundary (4.3.c); thin dash-dotted line: model by Spelt and Sangani32 (4.7); thin solid
line with ¦: Marrucci51. DM stands for the dissipation method and VPF stands for viscous potential flow.
Predictions are given by Ub = U/(1−α). For the experiments, U∞ was determined from Moore’s theory67.


