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The breakup of a thin liquid film moving in a second fluid utilizing viscous potential
analysis and considering disjoining pressure is studied. The occurrence of cavitation due
to local pressure drop in the film has been considered. For a large Weber number and
density ratio, cavitation might occur and it could be the main reason for breakup.

1. Introduction
Instability of moving film occurs in liquid atomizers where films breakup into threads

and later into droplets. Dorman (1952) and Fraser & Eisenklam (1953) and later Dom-
browski & Fraser (1954) were the first to describe the break-up and drop formation of
plane fan sheets. Shea (1955) and Squire (1953) studied temporal (spatially periodic) be-
havior on an infinite liquid sheet. Sirignano & Mehring (2000) extended these studies to
examine spatially developing distortion on a semi-infinite sheet flowing from an injector
nozzle. Lin (1981) conducted a linear temporal and spatial stability analysis of a viscous
liquid sheet falling in gravity. A complete review article by Sirignano & Mehring (2000)
on disintegration of liquid streams provided relevant researches.

Stability analysis of stationary films for the critical thickness at which spontaneous lo-
cal thinning first occurs have been given by Scheludko (1967), Ruckenstein & Jain (1974)
and for films on solids, Homsy (1975) and Williams & Davis (1982). The term“disjoining
pressur” was introduced by Deryagin to designate the excess pressure in a thin layer
compared with a thick one. If film thickness h is small enough, the stabilizing effects
of surface tension are insufficient and the film will thin under the influence of the large
disjoining pressure. The stability analysis gives the critical h, the wave length and max-
imum growth rate of the most unstable disturbance. Lucassen et al. (1970); Vrij et al.
(1970) considered instability of free liquid films utilizing Helmholtz decomposition.

In present study, the instability of a moving thin film in a still fluid by Squire (1953) is
extended to include viscous effects and disjoining pressure utilizing viscous flow analysis.

2. Theoretical Development
Consider a two dimensional film of fluid of density ρ1 and viscosity µ1, surface tension

γ and thickness 2h0 moving with velocity U through a fluid of density ρ2 and viscosity
µ2 which is at rest (see figure 1). The film oscillation can divided into symmetric and
antisymmetric modes. An investigation of antisymmetric disturbances can be carried out
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Figure 1: Sketch of symmetrical waves

by the same procedure explained below. λ = 2π/k is the wavelength, t is time, and σ is
the growth rate. φ = −Ux + φ1 is the velocity potential of the motion of inner liquid
where φ1 is the disturbance potential and let φ2 be the velocity potential of the outer
liquid. From kinematic boundary conditions at y = ±h we have

∂h

∂t
+ U

∂h

∂x
= −∂φ1

∂y
,

∂h

∂t
= −∂φ2

∂y
(2.1)

φ1 and φ2 satisfying Laplace’s equation corresponding to symmetric oscillations can be
written as

φ1 = ia
(σ

k
− U

) cosh ky

sinh kh0
exp i(kx− σt) (2.2)

φ2 = −ia
σ

k
exp[−k(y − h0)] exp i(kx− σt) (2.3)

Satisfying normal stress at the free surface, we have

τyy2 − τyy1 + γ
∂2h

∂x2
= 0 (2.4)

where τyyi = −pi + 2µi
∂vi

∂y and i is 1 for inner liquid and 2 for the outer liquid. From
linearized Bernoulli equation

−ρ1(
∂φ1

∂t
+ U

∂φ1

∂x
) + p1 + Φ = C1, −ρ2

∂φ2

∂t
+ p2 = C2 (2.5)

Φ related to disjoining pressure is defined as

Φ = ΦB + A/6π(2h)3 (2.6)
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where A is Hamaker constant. Now we define η that h = h0+η. Thus, we have
∫∞
−∞ ηdx =

0. Linearizing equation 2.6 we have

Φ(2h) = ΦB +
A

48π

[
1
h3

0

− 3η

h4
0

]
(2.7)

Combining 2.4, 2.5, and 2.7, one can write

ρ1
∂φ1

∂t
+ ρ1U

∂φ1

∂x
+ C1 + 2µ1

∂2φ1

∂y2
− ρ2

∂φ2

∂t
− C2 − 2µ2

∂2φ2

∂y2

= −γ
∂2η

∂x2
+

A

48πh3
0

− Aη

16πh4
0

(2.8)

The Basic (undisturbed) state can be written as

C1 − C2 = ΦB +
A

48πh3
0

(2.9)

Subtracting 2.9 from ?? gives rise to

ρ1
∂φ1

∂t
+ ρ1U

∂φ1

∂x
+ 2µ1

∂2φ1

∂y2
− ρ2

∂φ2

∂t
− 2µ2

∂2φ2

∂y2
= −γ

∂2η

∂x2
− Aη

16πh4
0

(2.10)

Utilizing boundary condition at the free surface and substituting for φ1 and φ2 equations
2.2 and 2.3, one finds the dispersion relation as

σ

kU
=
−b̃±

√
b̃2 − ãc̃

ã
(2.11)

where

ã = 1 +
ρ2

ρ1
tanh kh0

b̃ = −1 +
iµ1k

ρ1U
+

iµ2k

ρ1U
tanh kh0

c̃ = 1− 2iµ1k

ρ1U
− γk

ρ1U2
tanh kh0 +

A

16πh4
0kρ1U2

tanh kh0 (2.12)

We are also interested on the occurrence of cavitation. In the traditional criterion of
cavitation, cavitation occurs when the pressure drops below the breaking strength of
liquid, which we call critical pressure or critical stress, and in an ideal case is the vapor
pressure at local temperature. Bair & Winer (1992) and, independently, Joseph (1998),
proposed that the important parameter in cavitation is the total stress which includes
both the pressure and viscous stress. Kottke et al. (2005) conducted an experiment on
cavitation in creeping shear flow, where the reduction of hydrodynamic pressure does
not occur. They observed the appearance of cavitation bubbles at pressures much higher
than vapor pressure. Their data on cavitation inception agrees well with the total stress
criterion for cavitation. Maximum total stress for a moving sheet can be calculated as
follows

τ = iρ1σφ1 − iUkφ1 − C2 − i
Akφ2

16πh4
0σ

+ 2µ1φ1

[ −k2 ik2 tanh ky
ik2 tanh ky k2

]
(2.13)

τ1 =
τxx + τyy

2
+

√(
τxx − τyy

2

)2

+ τ2
xy (2.14)
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Figure 2: Growth rate as a function of wave number

In the next section, we observe that in some cases maximum total stress is large enough,
pressure is low, that cavitation occurs. In this cases breakup occurs due to pulling apart
of liquid sheet instead of necking down.

3. Results and Discussion
The dimensionless growth rate is plotted as a function of wave number for air and water

in figure 2 where m = µ2
µ1

= 0.02 and r = ρ2
ρ1

= 0.001. As it can be seen as h0 increases
for a fix Reynolds number the maximum growth rate increases. However, the cutoff wave
number remains constant. Increasing h0 for a constant Weber number results in decrease
of the maximum growth rate and cutoff wave number. The effect of Hamaker constant
on the maximum growth rate is shown in figure 2(c). Both the maximum growth rate
and the cutoff wave number increases as A increases. The relation between the maximum
growth rate and h0 is plotted in figure 3.

Using equation 2.13 and 2.14, we calculate pressure and total stress for the stream of
water. Figure 4 shows sheet thickness h, centerline pressure and total stress, assuming
C2 is atmospheric pressure. The sheet of water is moving at Re = 5000, We = 1.4× 105

where m = 0.02, and 0.02, A = 3.7 × 10−20J . Initial disturbance, a, of 5%h0 has been
used. As it can be seen viscous stress is small and pressure and total stress criteria for
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Figure 3: Maximum growth rate for different film thickness
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Figure 4: Sheet of water is moving at Re = 5000, We = 1.4 × 105, m = 0.02, and 0.02,
A = 3.7× 10−20J

cavitation leads to the same results. Very low pressure occurs where h is maximum which
could results in the cavitation.

Pressure at the centerline of moving sheet of water at real(σmax)t = 25 is shown in
figure 5. The effect of Reynolds number, Weber number, density ratio and viscosity ratio
are demonstrated. Lower pressure occurs at lower Reynolds number. The viscosity ratio
does not change the pressure for fixed Re, We and r. No cavitation occurs for small
density ratio and small We number.

4. Conclusions
The breakup of a thin liquid film moving in a fluid utilizing viscous potential analysis

and considering disjoining pressure is studied. The occurrence of cavitation has been
studied. For the large Weber number and density ratio, cavitation might occurs will be
the main reason for breakup. In these cases breakup occurs due to pulling apart of liquid
sheet instead of necking down.
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Figure 5: Pressure at the centerline of moving sheet of water
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