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SUMMARY
We are developing the DNS/LES capability for turbulent cav-

itating flows in complex geometries. The multiphase medium
is represented using a homogeneous equilibrium model that as-
sumes thermal equilibrium between the liquid and the vapor
phase. The governing equations are the compressible Navier
Stokes equations for the liquid/vapor mixture along with a trans-
port equation for the vapor mass fraction. A separate energy
equation is solved, as opposed to assuming isothermal flow. The
unstructured compressible algorithm in [1] has been extended to
solve for multiphase flows. A characteristic filter based shock
capturing scheme is developed to handle shocks and contact dis-
continuities in non-ideal gases and mixtures. The shock captur-
ing is applied in a predictor-corrector approach, where the base
scheme is non-dissipative and symmetric. The numerical method
is validated for benchmark problems and applied to a cavitating
flow over a circular cylinder.

INTRODUCTION
Cavitation occurs in a wide variety of situations. e.g. in-

side vortices, in valves, behind orifices and on propulsor blades.
The physical consequences include noise, vibration and surface
erosion. One approach to physically model cavitating flows is
the homogeneous mixture model [2, 3] where the mixture of wa-
ter and vapor is modeled as a compressible fluid. High fidelity
turbulent cavitating flow simulations are very challenging. Tur-
bulence has a broadband spectrum which requires non dissipative
numerical schemes to represent smaller scales accurately. How-
ever non dissipative schemes become unstable at high Reynolds
numbers. Furthermore, cavitation is characterized by large gra-
dients in density, and strong shock waves that form during va-
por cloud collapse. These challenges are compounded by com-
plex geometries. An algorithm that addresses these challenges
is developed. Complex geometries are represented by unstruc-
tured grids. A novel predictor corrector characteristic filter based
shock capturing scheme is developed for the mixture of vapor
and water to handle contact discontinuities and shock waves. The

predictor step is non dissipative and discretely energy conserving
which makes it both robust and accurate at high Reynolds num-
bers. Also, the total energy equation is solved instead of invoking
the isothermal assumption, as is commonly done.

This paper discusses our numerical method, validates it for
benchmark problems and applies it to study cavitation behind a
circular cylinder. The paper is organized as follows. The ‘Numer-
ical method’ section outlines the governing equations along with
the source terms for evaporation of water and condensation of
vapor. It also discusses the characteristic filter based shock cap-
turing method applied to multiphase flows. The ‘Results and Dis-
cussion’ section discusses the numerical validation of the method
using a multicomponent shock tube problem and a multiphase
shock tube problem. Finally the algorithm is applied to study
cavitation behind a circular cylinder for three different cavitation
numbers.

NUMERICAL METHOD
Governing Equations

The governing equations are the compressible Navier Stokes
equations along with an advection equation for mass fraction of
vapor.

∂ρ

∂ t
= − ∂
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∂ρY
∂ t

= − ∂

∂xk
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where ρ, ui, p, ET and Y are density, velocity, pressure , total en-
ergy and mass fraction of vapor, respectively. The viscous stress
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σi j and heat flux Qi are given by

σi j = µ
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+
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− 2

3
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∂xk
δi j

)
, (2)

Qi = k
∂T
∂xi

. (3)

Se and Sc are source terms for evaporation of water and conden-
sation of vapor given by

Se = 0.1α
2(1−α)2 ρl

ρg

max((pv −p),0)√
2πRgT

(4)

Sc = 0.1α
2(1−α)2 max((pv −p),0)√

2πRgT
(5)

where α is the volume fraction of vapor and pv is the vapor pres-
sure given by

pv = pkexp((1− Tk

T
)(a+(b− cT)(T−d)2)) (6)

where pk = 22.130 Mpa , Tk = 647.31 K , a = 7.21, b = 1.152e-5,
c = -4.787e-9, d = 483.16. The equation of state for the mixture
of vapor and water is given by the summation of partial pressure
of the individual phases:

p = Y ρRgT +(1−Y )ρKlT
p

p+Pc
(7)

where Rg,Kl and Pc are constants associated with the equation of
state of vapor and liquid.

The relation for speed of sound in the mixture is obtained
from the equation of state using the Gibbs equation and is given
by

a2 =
C1T

C0 −
C1

Cpm

,where

C0 = 1− (1−Y )ρKlT
Pc

(p+Pc)2 (8)

C1 = RgY −Kl(1−Y )
P

p+Pc

Cpm = YCpg +(1−Y )Cpl .

The dimensionless form of the governing equations are dis-
cretized using a cell-centered finite volume scheme. The sim-
ulations employ a modified least-square method for face recon-
struction, which is more accurate than a simple symmetric re-
construction, and more stable than a least square reconstruction.
The solution is advanced in time using a second-order explicit
Adams-Bashforth scheme.

Characteristic Filter based Shock Capturing
The predictor step described above is non-dissipative and

hence cannot capture discontinuities. An external shock cap-
turing mechanism is therefore provided. The characteristic fil-
ter based shock capturing [4] was extended to unstructured grids
for ideal gases in [1]. This method has further been extended to
non-ideal gases and mixtures of fluids. A non linear filter has
been implemented independent of the base scheme in a predictor
corrector method. The main advantage of using a non linear filter
over a linear filter is that the amount of dissipation applied to each
equation is controlled separately based on the characteristics and
hence there is a better control over the numerical dissipation. The
dissipation is further localized to regions of large divergence and
large gradients of mass fraction. Once a physical time step ∆t is
advanced to get the solution q̂n+1 from qn, the final solution qn+1

at t +∆t is obtained from a corrector step

qn+1
cv = q̂n+1

cv − ∆t
Vcv

∑
faces

(F∗
f .n f )A f (9)

where F∗
f is the filtered numerical flux of the following form

F∗
f c =

1
2

R f cΦ
∗
f c. (10)

Here, R f c is the right eigenvector vector at the face computed us-
ing Roe-average of left and right control volumes. The expression
for the l th component of Φ∗, φ ∗l is given by

φ
∗l
f c = kθ

l
f cφ

l
f c (11)

where, k is an adjustable parameter and θ f c is the switch function
given by

θ f c =
√

0.5(θ̂ 2
icv1 + θ̂ 2

icv2)

θ̂icv1 =
|α f c|− |α f 1|
|α f c|+ |α f 1|

(12)

θ̂icv2 =
|α f 2|− |α f c|
|α f 2|+ |α f c|

.

Here, α f = R−1
f (qicv2 − qicv1) is the difference between charac-

teristic variables across the face. The subscript ’fc’ stands for the
face for which fluxes are being calculated and subscripts ’f1’ and
’f2’ stand for the two most parallel faces to the face ’fc’. Further
details on implementation of the characteristic filter based shock
capturing may be found in [1].

RESULTS & DISCUSSION
Numerical Validation

Speed of Sound : The speed of sound obtained from the
equation of state is compared with the experimental data in [5]
and is presented in Figure 1. It can be observed that the speed of
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Figure 1. Speed of sound in water and vapor mixture.

sound in water is close to 1500 m/s and that in vapor is about 486
m/s. On addition of even a small amount of vapor, the speed of
sound in the mixture reduces to about 30 m/s and this low speed
of sound can yield locally supersonic regions in cavitating flows.

Multicomponent Shock tube : A one dimensional shock
tube [6] with air on one side of the interface and helium on the
other side is simulated. The shock wave refracts at the gas in-
terface, leading to a transmitted and a reflected shock wave. The
transmitted shock wave will travel faster or slower than the inci-
dent shock wave depending on the speed of sound in the fluids.
The initial conditions correspond to a weak shock wave with a
Mach number Ms = 1.1952 in air propagating towards a region
occupied by helium. The computational domain is discretized
uniformly using 1000 cells.The initial conditions are given by

Q = [ρ,u,P,γ,Y ]
QA1 = [1.7017,98.956,1.5.105,1.4,0.0]

QA2 = [1.2763,0.000,1.0.105,1.4,0.0] (13)
QHe = [0.1760,0.000,1.0.105,1.67,0.0].

Figure 2 shows the comparison of numerical and exact so-
lution at t = 864µs. The comparison shows that the numerical
method is able to accurately capture shock waves and contact dis-
continuities. The transmitted shock wave travels faster than the
incident shock wave since the acoustic speed in helium is greater
than that in air.

Multiphase shock tube : A two phase shock tube [7] with
water and compressed air is simulated. The driver section con-
tains liquid water at high pressure and the driven section contains
compressed air at lower pressure. The density and pressure differ
by ratio a of 20 and 104 across the discontinuities.The computa-
tional domain is discretized uniformly using 1000 cells and the

Figure 2. Results for air-helium shock tube.

Figure 3. Results for air-water shock tube.

initial conditions are given by

Q = [ρ,u,P,γ,Y ]
QW = [1000,0,1.5.109,4.4,0.0] (14)

QA = [50,0,1.0.105,1.4,1.0].

Figure 3 shows the comparison between numerical and exact so-
lution at 240 µs. Although the jumps agree very well with the
analytical results, small oscillations in density, velocity and pres-
sure are seen near the contact discontinuity. This is a character-
istic feature of conservative schemes applied to multi component
flows. It occurs due to the fact that two different equations of state
are used on either side of the contact discontinuity. The average
pressure calculated from these left and right values will obviously
not be the actual average pressure and this leads to an oscillation
in pressure. A remedy to overcome this issue is given in [7].
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Figure 4. Instantaneous void fraction contours.

Cavitating Flow over a Circular Cylinder
A cavitating flow past a 2D circular cylinder is simulated.

An ambient void fraction of α0= 0.01 and ambient tempera-
ture of 300 K is assumed. The Reynolds number of the flow
is (ReD = ρ0U0D

µ0
) 200, where D is the diameter of the cylinder.

Numerical simulations have been performed for three cases per-
taining to cavitation numbers (σ = p∞−pv

0.5ρ0u2
0
) of 2.0, 1.0 and 0.7

corresponding to the simulations carried out in [8]. The cavi-
tation numbers are varied by varying the inlet velocity keeping
all other quantities constant. The domain is discretized using a
C-grid. The near wall spacing in the radial and circumferential
directions are 0.01 D. The length of the domain is 20 D in the
upstream, top and bottom and 30 D in the downstream directions
in order to capture the wake behind the cylinder. Free stream
boundary conditions are applied at the inlet and zero gradient
conditions are applied in the outlet, top and bottom boundaries.
Non-reflecting sponge boundary conditions are applied at all the
free stream boundaries to prevent any reflection of acoustic waves
from the boundary into the domain.

Figure 4 shows the instantaneous void fraction contours for
all three cases. σ = 2.0 corresponds to a non cavitating case since
the pressure never falls below vapor pressure and hence there is
no vapor, while σ = 1.0 and 0.7 correspond to cavitating cases.
Although the mean pressure for σ = 1.0 does not fall below vapor
pressure, the unsteady pressure falls below vapor pressure and
hence a vapor cavity is formed periodically in the wake of the
cylinder. For σ = 0.7, the mean pressure in the wake is less than
the vapor pressure and hence a vapor cavity is present in the wake
at all times.

As discussed above, a conservative scheme can cause spuri-
ous oscillations in pressure across a contact discontinuity. Hence
it is important to verify if the error in pressure across a contact
discontinuity is small. Figure 5 shows void fraction and pressure
plotted against the horizontal distance on a generator line which
cuts through a vapor cloud in the σ = 1.0 case. It is very clear that

Figure 5. Pressure and void fraction variation across a contact discon-
tinuity.

there are two phase channge processes, one from liquid to vapor
marked as 1 and the other from vapor to liquid marked as 2. The
first phase change from liquid to vapor is cavitation and there is
no large pressure change associated with this phenomenon.The
second phase change is the condensation of vapor into liquid.
This is the cavity collapse that results in a shock which involves
a large pressure gradient. Both phase change processes are free
of pressure oscillations. Hence the error across a contact discon-
tinuity due to the conservative scheme is small. The temperature
rise across the shock is 2% of the free stream temperature.

Figure 6 shows the unsteady characteristics of the flow in the
form of lift and drag history for all three cases. Since σ = 2.0 is
non cavitating, the lift and drag profiles are perfect sinusoids as
in a single phase flow, the CL curve yielding the Strouhal number
corresponding to vortex shedding St = 0.19. The lift and drag
profiles of the cavitating cases are significantly affected by cavi-
tation. The profile for σ = 1.0 still remains periodic in time, but
the Strouhal number corresponding to vortex shedding is reduced
to 0.16 which agrees well with [8]. The peaks in the middle of
a cycle are due to the fact that the shock wave created due to va-
por collapse impinges on the surface. For σ = 0.7, the profiles
are no longer periodic because of a low frequency phenomenon
occurring at a Strouhal number of approximately 0.03. This low
frequency phenomenon is associated with the behaviour of the
vapor cavity in the wake [8]. The Strouhal number correspond-
ing to vortex shedding is approximately 0.13.

Figure 7 shows the dynamics of the cavity formation and col-
lapse for σ = 1.0. This figure shows void fraction contours, pres-
sure contours and the corresponding instant in the load cycle for
various instants of time. In the figure, (a) shows the impending
collapse of the vapor cavity as it gets thinner in the middle. (b)
shows the subsequent collapse of the cavity leading to two sep-
arate smaller regions of vapor marked as Cav 1 and Cav 2. This
collapse causes a shock wave (Shk 1) that propagates outwards.
By this time, the separated cavity (Cav 2) also collapses leading
to another shock wave (Shk 2) as shown in (c). (d) shows the
fully formed vapor cavity on the top half of the cylinder and this
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Figure 6. Variation of lift coefficient (CL) and drag coefficient (CD) with time.

Figure 7. Illustration of vapor cloud collapse and shock formation for σ = 1.0.

entire cycle repeats itself.

Figure 8 shows the dynamics of the cavity formation and col-
lapse for σ = 0.7. Void fraction contours, pressure contours and
their corresponding instant in the load cycle are shown for various
instants of time. In the figure, (a) shows the fully formed cavity
and the corresponding pressure contour shows shocks from the

previous cycle propagating outwards. In (b), the cavity (Cav 1)
gets elongated and the rear end of Cav 1 collapses in (c) giving
rise to a shock (Shk 1). By this time, the vapor region in the bot-
tom half grows and merges with Cav 1 leading to much bigger
cavity which fills the entire wake before the entire cycle repeats
again.
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Figure 8. Illustration of vapor cloud collapse and shock formation for σ = 0.7.

CONCLUSIONS
A numerical method has been developed to simulate multi-

component and cavitating flows using homogeneous equilibrium
method. The mixture of water and vapor is described as a com-
pressible fluid using a mixture equation of state. A characteris-
tic filter based shock capturing method has been developed for a
mixture of fluids and is applied in a predictor corrector method to
limit the dissipation to the vicinity of shocks and contact discon-
tinuities. The method has been validated by simulating one di-
mensional shock tube problems and two dimensional cavitating
flow over a circular cylinder. The cavitating flow over a cylin-
der leads to vapor cavity formation which on subsequent collapse
emits shock waves. Cavitation also results in a change in the vor-
tex shedding frequency.
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