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A bubble coalescence model is developed using an Euler–Lagrangian approach for unstructured grids. The
Eulerian carrier fluid is solved using large-eddy simulation (LES) and the Lagrangian particle motion is
solved with equations relating the turbulent motion of the carrier fluid to forces on each discrete bubble.
The collision process is deterministic; bubble–bubble collisions are assumed to be binary and are
modeled using a hard-sphere approach. A stochastic approach is used to model coalescence, with the
probability of coalescence being a function of the bubble–bubble interaction timescale and the time to
drain fluid between the colliding bubbles. The intention is to develop and validate the collision and coa-
lescence model, neglecting two-way coupling turbulent subgrid stress transport of bubbles and the mod-
ification of the subgrid stress by the bubbles. Coalescence in a bubbly, turbulent pipe flow in microgravity
is simulated with conditions similar to experiments by Colin et al. (Colin, C., Fabre, J., Dukler, A.E., 1991.
Gas–liquid flow at microgravity conditions – I. Dispersed bubble and slug flow. Int. J. Multiphase Flow 17
(4), 533–544.) and excellent agreement of bubble size distribution is obtained between simulation and
experiment. With increasing downstream distance, the number density of bubbles decreases due to coa-
lescence and the average probability of coalescence decreases slightly due to an increase in overall bubble
size.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Bubbly flows are important for a wide range of practical appli-
cations. For example, the formation and behavior of bubbles is crit-
ical in many heat transfer problems where liquid water contacting
a hot surface boils and the resulting vapor bubbles move heat away
from the hot surface through phase change of the liquid and buoy-
ancy-driven bubble motion. Bubbles are also frequently observed
in marine flows. The presence of bubbles drastically modifies the
speed of sound in the bubbly mixture, which has implications for
marine acoustic signatures and detection (Trevorrow et al.,
1994). The behavior of these flows depends on the size distribution
of the bubbles and void fraction profiles. The physical phenomena
observed in bubbly flows are rich and complex, and include bubble
surface deformation, growth and collapse, collisions with other
bubbles and surfaces, coalescence and breakup. The challenge is
to develop robust, yet efficient and practical, numerical models
of the complicated bubble physics to accurately predict these flows
in full-scale applications.

A large amount of work has been performed to develop numer-
ical approaches for simulating unsteady bubbly flow while
ll rights reserved.

h).
accounting for the effect of bubble coalescence (Olmos et al.,
2001; Sommerfeld et al., 2003; Chen et al., 2005; van den Hengel
et al., 2005; Darmana et al., 2006; Bokkers et al., 2006). Most work
uses either an Euler-Euler (two-fluid approach) or an Euler–
Lagrangian approach, where the dispersed phase is modeled by
Lagrangian particles. In the Euler-Euler approach, bubbles are not
tracked individually but treated as a continuum and various
closures for interaction of the bubble phase and the carrier phase
along with stochastic models for bubble–bubble collisions and coa-
lescence must be included. For example, the work of Olmos et al.
(2001) coupled an Euler–Euler approach along with population
balance equations to model the evolution of bubble size. A coales-
cence model by Prince and Blanch (1990) was used, with a k � �
turbulence model for the liquid phase. This coalescence model as-
sumes isotropic turbulence in its determination of bubble–bubble
collisions. Chen et al. (2005) performed Euler–Euler simulations
using a bubble population balance equations and compared a vari-
ety of bubble breakup and coalescence models. The carrier-phase
flow was also simulated with a k � � turbulence model.

An advantage of Euler–Lagrangian approaches is that the loca-
tions and velocities of each individual are explicitly known and
bubble–bubble collisions can be computed directly. Darmana
et al. (2006) developed a coalescence model using the film-drain-
age timescale by Prince and Blanch (1990) and the bubble–bubble
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interaction timescale by Sommerfeld et al. (2003). Bokkers et al.
(2006) performed Euler–Lagrangian simulations with a hard-
sphere collision model, assuming all collisions led to coalescence
(until a maximum bubble size was reached).

Additionally, there has been much work on bubble–bubble and
particle–particle collisions. Early simulations by Sangani and
Didwania (1993) performed inviscid simulations of bubbles rising
in a liquid, including binary bubble–bubble collisions and observed
aggregation of bubbles in planes transverse to gravity. Sundaram
and Collins (1997) performed Euler–Lagrangian simulations of
heavy point-particles suspended in isotropic turbulence and found
that particle inertia (parameterized by Stokes number St) affected
particle collision frequency and particle concentration. At low St,
the collision frequency increased with St due to increased particle
concentration in low-vorticity regions of the flow and an increase
in particle–particle relative velocity. The collision frequency con-
tinued to increase up to St � 4, then decreased due to de-correla-
tion of the particle–particle velocities. When solving particle
motion from LES of the carrier-phase equations, neglecting the
influence of subgrid scale fluctuations has been shown to affect
the preferential concentration of inertial particles (Fede and Simo-
nin, 2006; Pozorski and Apte, 2009), thus reducing the collision
frequency (Wang et al., 2009). This effect is pronounced for
particles of low Stokes numbers (Jin et al., 2010). Neglecting the
influence of subgrid scales is likely to affect bubble–bubble prefer-
ential concentration and collision frequency, though we ignore
them in this work. Our contribution is threefold: (i) propose a
point-particle coalescence model (ii) provide validation with
respect to the microgravity experiment of Colin et al. (1991) and
(iii) study details of the bubble–bubble collisions and coalescence
provided by our model.

The objective of this paper is to perform high Reynolds number
simulations of bubbly flow and account for bubble coalescence
without resorting to Reynolds-Averaged Navier–Stokes (RANS) tur-
bulence models or stochastic approximations for bubble–bubble
collisions. In flows with complex geometries, models of the colli-
sion and coalescence process assuming isotropy of the turbulence
(such as Prince and Blanch, 1990) will not be accurate in general,
due to the non-equilibrium influence of geometry on the turbu-
lence. An Euler–Lagrangian methodology is used, and bubble–bub-
ble collisions are computed directly using a hard-sphere approach.
The bubble coalescence model of Kamp et al. (2001) is extended to
unsteady flows where bubble–bubble collisions and the relative
velocity between colliding bubbles are computed directly.

The paper is organized as follows: first, the details of the
numerical approach are described (Sections 2 and 3). The descrip-
tion of the collision (Section 4) and coalescence models (Section 5)
are then discussed. The coalescence model is validated through
comparison to experimental results of Colin et al. (1991). Details
of the simulation parameters are provided in Section 6. The results
of the carrier phase turbulent statistics, bubble size distribution
and collision details are then described in Sections 7 and 8. Physi-
cal details of the collision and coalescence process are then
discussed in Section 9.
2. Numerical method

A point-particle, one-way coupled Euler–Lagrangian method is
used to model the bubble convection and a hard-sphere model is
used for bubble collisions. For simplicity, finite-size effects of the
bubble on the surrounding flow are ignored. In this approach, the
bubbles are modeled as a dispersed phase, with individual bubbles
treated as point-particles governed by an equation for bubble mo-
tion, combined with a continuous carrier phase described by the
Navier–Stokes equations. Thus, for simplicity, hydrodynamic forces
on bubbles that are larger than the grid spacing (as occasionally
observed in the considered cases) are computed directly from the
forces obtained from the bubble center; no attempt is made to
correct for the finite size of the bubble. A finite-volume approach
(Mahesh et al., 2004) is used to solve the Navier–Stokes equations
for the carrier phase. The resolved velocity field is solved using LES,
with the subgrid stress modeled using the dynamic Smagorinsky
model proposed by Germano et al. (1991) and Lilly (1992) as de-
scribed in Mahesh et al. (2004). A constant density of the carrier
phase is assumed and the incompressible Navier–Stokes equations
are solved using a predictor–corrector approach. Also, the carrier
phase solver discretely conserves kinetic energy, ensuring robust-
ness at high Reynolds numbers. Each bubble is tracked individually
and characterized by its instantaneous position ðY!Þ, velocity ð~vÞ
and size (bubble radius R). This method has been developed to sim-
ulate large numbers of bubbles and previously applied to problems
without accounting for bubble–bubble collisions or coalescence
(Mattson and Mahesh, 2011).

The motion of each individual bubble is modeled by the equa-
tion (Johnson et al., 1966; Thomas et al., 1984; Auton et al.,
1988; Mattson and Mahesh, 2011)

d~v
dt
¼ �2~g þ 3

D~u
Dt
þ 3

4
CD

R
j~u�~v jð~u�~vÞ þ 2CLð~u�~vÞ � ~x: ð1Þ

The four terms on the right-hand side denote the (i) buoyancy,
(ii) fluid-acceleration, (iii) drag and (iv) lift terms, respectively, with
~g the gravitational vector, ~u the Eulerian fluid velocity and ~x the
fluid vorticity at the bubble location. For the microgravity simula-
tion described in this paper, the buoyancy term was set to zero.

The expression for the coefficient of bubble drag (CD), deter-
mined experimentally by Haberman and Morton (1953) as
function of bubble Reynolds number, is obtained from

CD ¼
24
Reb

1:0þ 0:197Re0:63
b þ 2:6� 10�4Re1:38

b

� �
; ð2Þ

where the bubble Reynolds number is defined as Reb ¼ 2Rj~u�~v j=mf ,
where mf is the fluid kinematic viscosity. For small bubbles in water,
the drag profile is similar to that of solid spheres (CD � 24/Reb), due
to the contamination by surfactants of the bubble surface.

Auton et al. (1988) showed that the constant lift coefficient of 1/
2 is appropriate in the inviscid limit and that in the added mass
and fluid acceleration forces the material derivative of the fluid
velocity is the appropriate term for the fluid acceleration. A con-
stant lift coefficient, CL, of 1/2 and a constant added-mass coeffi-
cient, CM, of 1/2 for a sphere are used (Auton, 1987; Batchelor,
1967). Although in the inviscid limit, a lift coefficient of 1/2 is
not controversial, at moderate Reynolds numbers the value of the
lift coefficient has not been conclusively determined. Sridhar and
Katz (1995) performed experiments at bubble Reynolds numbers
between 20 and 80 and found lift coefficients larger than the invis-
cid result which also depended on the local vorticity. Legendre and
Magnaudet (1998) performed numerical simulations of flow over a
sphere in weak shear Sr 6 1, with Sr defined as the velocity differ-
ence across the bubble divided by the relative velocity between the
bubble and the carrier fluid, and found lift coefficients that were
between 1 and 0.5 for Reb > 1, depending on local vorticity. The lift
coefficient approached 1/2 as the Reynolds number increased. The
bubble Reynolds number in this work is �100–1000 and the max-
imum shear parameter Srmax � 0.1 near the wall, so using a lift
coefficient of 1/2 is reasonable.

This approach can simulate flows with large numbers of bubbles
in complex geometries over a wide range of Reynolds numbers. Bub-
ble-wall interactions are treated as hard-sphere, inelastic collisions
and bubble–bubble interactions are computed as binary, hard-
sphere collisions. The following sections describe the collision and
coalescence models developed for the Euler–Lagrangian approach.
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3. Bubble time integration

The bubble position and velocity over time is determined by
integrating the bubble acceleration equation (Eq. (1)). This is done
with a hybrid explicit–implicit approach. The simulation is divided
into two different timescales: the Eulerian fluid timestep Dt and
the path integration timestep of the bubbles Dtbub, where
Dt = t2 � t1 and Dtbub = tk+1 � tk (see Fig. 1). The Eulerian fluid vari-
ables are known at t = t1 and t = t2 from the advancement of the Na-
vier–Stokes equations.

The Eulerian values in Eq. (1) must be evaluated at time t = tk

and at the bubble position ~x ¼ Y
!k on unstructured grids. A linear

interpolation approach was chosen for ease of implementation
for unstructured grids. Many higher-order interpolation schemes
(such as that used by Elghobashi and Truesdell (1992)), though
more accurate, are not straight-forward to implement for a general,
unstructured mesh. For complex geometries, highly skewed mesh
elements are unavoidable and a robust interpolation scheme is re-
quired. Apte et al. (2003) found first-order interpolation of the
Eulerian velocity field to be sufficient in resolving the particle
motions.

Spatial gradients of the carrier-phase parameters at the control
volume centroids are obtained using a linear least-squares method.
The fluid velocity at the bubble location ~ujx¼Yk is interpolated from
the values at the control volume centroid by

~uðtkÞj
~x¼Y
!

k
¼ ~uðtkÞj~x cv

þ Y
!k �~xcv

� �
� ~r

h i
~uðtkÞj~xcv

ð3Þ

The spatial gradients @ui/@xj are determined at the control vol-
ume centroids using a least-squares approach. To obtain the con-
trol volume values of velocity required in Eq. (3) at time t = tk, a
linear time interpolation is performed using

uiðtkÞ
��
~xcv
¼ 1

Dt
ðtk � t1Þuiðt2Þj~xcv

þ ðt2 � tkÞuiðt1Þj~xcv

� �
: ð4Þ

It is assumed that time derivatives between t2 and t1 are con-
stant and that spatial gradients are constant within the control vol-
ume. The vorticity vector at any point inside a control volume is
then

~xjk
~x¼Y
!

k
¼ ~xj~x cv

¼ ~r�~ujk~xcv
: ð5Þ

The fluid material derivative at the bubble location at time t = tk

is is obtained from

Dui

Dt

����k
~x¼ Yk
�! ¼ @ui

@t
þ uj

@ui

@xj

� 	����k
~x¼ Yk
�!: ð6Þ

All values must be interpolated in time to t = tk and in space to
the bubble location~x ¼ Y

!k. The unsteady fluid-velocity term is ob-
tained from

@ui

@t

����k
~x¼ Yk
�! ¼ @ui

@t

����k
~xcv

þ Lk
j
@

@xj

@ui

@t

� 	����k
~xcv

; ð7Þ

where the distance vector L
!

is equal to the distance from the bub-
ble position to the centroid, L

!¼ Y
!�~xcv. Assuming that the spatial

gradients within a control volume are constant,
Fig. 1. Discretization of fluid timestep Dt and bubble timestep Dtbub from time t1 to
t2.
@ui

@xj

����k
~x¼ Yk
�! ¼ @ui

@xj

����k
~xcv

; ð8Þ

and the convective term can be written as

uj
@ui

@xj

� 	����k
~x¼ Yk
�! ¼ uj


 ���k
~x¼ Yk
�! @ui

@xj

� 	����k
~x cv

: ð9Þ

The bubble velocity at time t = tk+1 is integrated using the
Adams–Bashforth approach:

vkþ1
i ¼ vk

i þ Dtbub
3
2

dv i

dt

k

� 1
2

dv i

dt

k�1
 !

: ð10Þ

Once the bubble velocity has been integrated to t = tk+1, the bub-
ble position is integrated using the trapezoidal method:

Ykþ1
i ¼ Yk

i þ
Dtbub

2
vkþ1

i þ vk
i


 �
: ð11Þ

The bubble equations are advanced from k, k + 1, k + 2, etc. until
t = t2 is reached. Then the fluid equations are updated by Dt and the
bubble integration process begins anew.

4. Collision model

A collision model assuming binary, hard-sphere collisions (Allen
and Tildesley, 1988) is used. The timestep Dtbub is the timescale
the bubbles will be advanced if no collisions occur (see Fig. 1).
The time it takes for bubble m to collide with bubble n is defined
as tm,n. At the moment of collision, bubbles m and n are assumed
to be touching, with zero distance between them. For bubbles with
a constant radius and assuming constant bubble velocities be-
tween collisions, the equation for position at the moment of colli-
sion is

j~rm;nðt þ tm;nÞj ¼ j~rm;nðtÞ �~vm;ntm;nj ¼ Rm þ Rn; ð12Þ

where the relative position~r of bubble n from m is~rm;n ¼ Y
!

n � Y
!

m

and the relative velocity between the two bubbles m and n (in the
frame of reference of bubble m) is defined as ~vm;n ¼ ~vn �~vm:

Fig. 2 is a schematic of a binary collision between bubbles m and
n. The variable bm,n is defined by bm;n ¼~rm;n �~vm;n. Collision will
only occur between bubbles m and n if bm,n < 0, since if
~rm;n �~vm;n > 0, the bubbles are moving away from each other. The
collision angle hc is obtained from

hc ¼ cos�1 ~rm;n �~vm;n

j~rm;njj~vm;nj

� 

:

At the moment of collision, the two bubbles are touching and
therefore

j~rm;nj2 þ 2bm;ntm;n þ j~vm;nj2t2
m;n � ðRm þ RnÞ2 ¼ 0: ð13Þ

The time to collision is obtained from the smallest real solution
of Eq. (13) for tm,n. The integration of the bubble position over Dt is
performed as follows, starting from tk = t1:
Fig. 2. Schematic of parameters of collision between bubble m and bubble n.
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(a) Looping over all particles, find collision partners by deter-
mining the minimum tm,n for each bubble pair.

(b) Determine the minimum collision time tcol by finding the
minimum tm,n over all collision pairs.

if tcol < Dtbub
(c) Advance all bubbles by tcol and apply collision dynamics
to the collision pair.

(d) Update collision partners of the bubbles that have just
collided.
else

(c) Advance all bubbles by Dtbub.
if t > t2
Go back to (a).
else

Go back to (b).
This loop is performed until all bubbles have been integrated to

tk+1. The process is repeated until tk+1 = t2, after which the Eulerian
fluid equations are advanced and all bubble collision partners are
recalculated. Then the bubble position integration process begins
anew.
5. Coalescence model

When two bubbles collide, a thin liquid film is sandwiched be-
tween them. The energy of collision leads to deformation of the
bubble surface and the subsequent separation of the bubbles.
Surface tension effects drain the liquid film and coalescence occurs
if the bubbles have not separated before the film ruptures. The
likelihood of coalescence is a function of two timescales: the film
drainage timescale td and the bubble–bubble interaction timescale
ti (Chesters, 1991; Chesters and Hofman, 1982).

Kamp et al. (2001) derived a coalescence model with the
assumption of large Reynolds numbers and that bubble–bubble
collisions are driven by turbulent fluctuations (ignoring mean gra-
dients in the flow and buoyant effects). The turbulent flow and
bubble velocities were modeled using a RANS approach. However,
RANS methodologies are generally not accurate when simulating
separated flow or particle transport, due to regions of anisotropy
in the turbulent fluctuations and the fact that path lines integrated
on a mean field are inherently different than mean paths obtained
from instantaneous path lines. Additionally, the eddy viscosity
assumption itself can also be invalid (Muppidi and Mahesh,
2008). To predict particle or bubble transport, it is important to
have realistic velocity fields along particle/bubble trajectories.
With large-eddy simulation (LES), the large scales of the flow that
contain a majority of the kinetic energy are resolved which
increases the accuracy of the Lagrangian dispersion.

A method for determining the probability of coalescence at the
moment of collision was developed using an Euler–Lagrangian
formulation. The probability of coalescence is determined stochas-
tically, as in Kamp et al. (2001), with the probability of coalescence
computed from a ratio of coalescence timescales. However, in the
Euler–Lagrangian approach, the bubble velocities are directly
determined from the instantaneous Eulerian flow field obtained
by LES and bubble–bubble collisions are computed for each bubble
as discrete, instantaneous events.
5.1. Conservation of kinetic energy

The basic idea behind the coalescence model is as follows
(please see Kamp et al. (2001) for more details). Consider two
spheres with radii Rm and Rn approaching each other along their
line of centers with velocities Um and Un. The velocities Um and
Un are obtained from the component of the bubble velocities along
the collision line-of-centers. The unit normal vector n̂m;n pointing
from bubble m to n is given by n̂m;n ¼~rm;n=j~rm;nj. The velocities
normal and tangential to the line of centers are then

Um ¼ vm;N ¼ ~vm � n̂m;n; ~vm;T ¼ ~vm � vm;Nn̂m;n

Un ¼ vn;N ¼ ~vn � n̂m;n; ~vn;T ¼ ~vn � vn;Nn̂m;n

For surfactant-free surfaces, the shear stress at the bubble sur-
face is zero, and a potential flow can be used to describe the flow
field, in the limit of large Reynolds numbers. The kinetic energy
due to the motion of the two spheres can then be expressed (Lamb,
1945) by

Ek ¼
1
2

LU2
m � 2MUmUn þ NU2

n

� �
; ð14Þ

with the coefficients L, M and N determined by

L ¼ 2
3
pqf R

3
m 1þ 3R3

mR3
n

l3f 3
1

þ 3R6
mR6

n

l3f 3
1 ðl� f2Þ3f 3

3

þ . . .

 !
; ð15Þ

M ¼ 2pqf
R3

mR3
n

l3 1þ R3
mR3

n

g3
1ðl� g2Þ

3 þ
R6

mR6
n

g3
1g3

3ðl� g2Þ
3ðl� g4Þ

3 þ . . .

 !
; ð16Þ

N ¼ 2
3
pqf R

3
n 1þ 3R3

mR3
n

l3g3
1

þ 3R6
mR6

n

l3g3
1ðl� g2Þ

3g3
3

þ . . .

 !
; ð17Þ

where

f1 ¼ l� R2
n=l; f 2 ¼ R2

m=f1; f 3 ¼ l� R2
n=ðl� f2Þ; f 4 ¼ R2

m=f3;

ð18Þ

g1 ¼ l� R2
m=l; g2 ¼ R2

n=g1; g3 ¼ l� R2
m=ðl� g2Þ; g4 ¼ R2

n=g3;

ð19Þ

and l ¼ jY!n � Y
!

mj.
It is clear from these expressions that as two particles approach

each other, their respective velocities will change to conserve the
total kinetic energy. As the two bubbles approach each other, the
coefficients L ? L0, M ? M0 and N ? N0 as l ? Rm + Rn. The terms
mm = L0 �M0 and mn = N0 �M0 are defined to obtain a composite
average velocity U0 = (mmUm + mnUn)/(mm + mn) and relative veloc-
ity V = Um � Un. The kinetic energy that is relevant to coalescence is
due to the energy associated with the relative velocity

ðEkÞcoalescence ¼ Cvm
pq f

6

� �
d3

eq
V
2

� 	2

; ð20Þ

where Cvm is an added mass coefficient defined as

Cvm ¼
12

pqf d
3
eq

L0N0 �M2
0

L0 � 2M0 þ N0
; ð21Þ

where deq is the ‘‘equivalent’’ diameter defined as

deq ¼
2dmdn

dm þ dn
; ð22Þ

where the bubble diameter is twice the bubble radius (e.g.
dm = 2Rm) for spherical bubbles.

5.2. Bubble coalescence timescales

A formulation for the ratio of the bubble coalescence timescales,
derived by Kamp et al. (2001) for finite collision Weber numbers, is

td

ti
¼ k1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3qf V

2
0deq

Cvmr

s
; ð23Þ
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where V0 is the bubble–bubble relative velocity at the moment of
collision. The experimentally determined coefficient k1 was found
to be equal to 2.5 when comparing to experimental results Duine-
veld (1994) of a single bubble coalescing with a free surface. The
theoretical coalescence probability of two bubbles traveling along
their line of centers is then obtained from

Pc ¼
0 if td > ti

1 if td 6 ti:

�
ð24Þ

In practice, the collisions will not always be along line of centers
and a smooth, semi-empirical function (Coulaloglou and Tavla-
rides, 1977) is used to describe the coalescence probability

Pc � exp � td

ti

� 	
: ð25Þ

Once a collision has been determined to occur, the coalescence
probability is calculated and a random number xran (uniformly dis-
tributed from [0–1]) is generated. Whether or not coalescence has
occurred for each collision is then obtained from

If ðxran < PcÞ ! coalescence occurs
Else ! coalescence does not occur:

The coalescence model is used only with respect to determining
the probability of coalescence; the bubble equation of motion and
the potential-flow relation for the coalescence model are de-cou-
pled. Viscous effects, though not explicitly accounted for in the
theoretical derivation, can in theory be obtained from the coeffi-
cient k1. As applied to the turbulent pipe problem, viscous effects
are likely to be small since the mean bubble Reynolds number
(determined by the relative bubble–bubble velocity V, bubble
diameter d and kinematic viscosity mf of the continuous phase) is
large (�750, see Fig. 16).

5.3. Bubble-wall collisions

The bubble-wall collisions are treated as frictionless, specular
collisions. The bubble velocity after collision is obtained from

~v ¼ ~v0 þ 2j~v0 � n̂jn̂; ð26Þ

where n̂ is the inward-pointing wall normal and ~v0 is the bubble
velocity before collision.

5.4. Bubble–bubble collision, no coalescence

If it has been determined that the bubbles will collide but not
coalesce, an instantaneous hard-sphere collision is assumed to
have occurred (assuming that ti is very small). With this assump-
tion, the normal velocity after collision becomes V = �V0 from con-
servation of kinetic energy. In the case of two bubbles moving
along line of centers in a potential flow, this velocity would in-
crease as the two bubbles move apart. However, we assume that
the external forces on the bubble due to the surrounding turbulent
flow has a greater affect on bubble motion than the change in the
effective coefficient of added mass. The bubble velocities immedi-
ately after collision are then

vm;N ¼ U0 �
N0 �M0

L0 � 2M0 þ N0
V0; vn;N ¼ U0 þ

L0 �M0

L0 � 2M0 þ N0
V0

and

~vm ¼ ~vm;T þ vm;Nn̂m;n; ~vn ¼ ~vn;T þ vn;Nn̂m;n:
5.5. Bubble–bubble collision, with coalescence

If the binary collision results in coalescence, the two bubbles
merge into one. Once this has been determined to happen, the
parameters of the resulting bubble must be determined. The
‘‘new’’ bubble is now defined with superscript ‘‘*.’’ The resulting
bubble radius is obtained from mass conservation to be

R� ¼ R3
m þ R3

n

� �1=3
: ð27Þ

The total momentum is conserved from before and after coales-
cence. The bubble and the surrounding fluid around a bubble have
momentum that is proportional to the bubble volume and velocity.
Assuming that the momentum when the two bubbles are far apart
is equal to the momentum when the two bubbles coalesce, the
expression for the new bubble velocity is

~v� ¼
~vmR3

m þ~vnR3
n

ðR�Þ3
: ð28Þ

Similarly, the bubble position is weighted by each bubble’s vol-
ume at the moment of coalescence to obtain

Y
!� ¼ Y

!
mR3

m þ Y
!

nR3
n

ðR�Þ3
: ð29Þ

After these terms have been updated, the collision list is up-
dated and the simulation advances as normal.
6. Model validation

Colin et al. (1991) performed experiments of bubble coales-
cence in a turbulent pipe flow in both normal and microgravity
ð~g � 0Þ conditions. The microgravity experiments were performed
on an aircraft that flew a parabolic trajectory to obtain micrograv-
ity conditions for �20–30 s for each experiment. The experimental
setup composed of a long plexiglass tube, with a 4 cm diameter
and length of 317 cm, broken into five sections. The central part
of the pipe was L1 = 200 cm = 50D long, with visualizing test sec-
tions on both ends of the central section. The visualizing test sec-
tions were each L2 = 40.5 cm = 10.25D long. Void fraction probes
were located near the ends of the pipe. Gas was injected and mixed
with the fluid phase through a Venturi mixer at the inflow section.
For low gas flow-rates and high fluid velocities, dispersed bubbles
with a diameter on the order of a few millimeters were observed.
As the bubbles traveled downstream, the bubbles grew larger
due to coalescence. The void fraction of the microgravity experi-
ment was 4.6% based on the empirical relation determined by Colin
et al. (1991) of UG = 1.2Um, where the gas velocity UG = UGS/� and �
is the average void fraction and UGS is the superficial gas flow rate.
The bulk Reynolds number, based on the mixture velocity, Um = UG-

S + ULS, pipe diameter D and liquid viscosity mf, was 32,000. The
Reynolds number based on the viscous scale velocity us(Res � D
us/mf) is equal to 1750 in the microgravity experiment. Our simula-
tion was performed at conditions similar to the Colin et al. (1991)
experiment with a superficial gas flow rate (UGS) of 0.05 m/s and a
bulk liquid flow speed (ULS) of 0.85 m/s in microgravity.

The simulation parameters were chosen to be similar to exper-
imental conditions by matching the inflow size distribution of bub-
bles, average void fraction and domain length. The simulation
domain consists of a pipe with diameter D and length L = 81D, sim-
ilar in length and Reynolds number as the Colin et al. (1991) exper-
iment, whose length from the beginning of the first measurement
section to the end of the last measurement section is 2L2 + L1 �
70D. Bubbles were injected at the inflow plane, traveling down-
stream with the flow until exiting at the outflow plane. The simu-
lation inflow corresponds with the inflow of the first visualization
section in the experiment and the simulation outflow extends 11D
beyond the outflow of the outflow experimental visualization
section.
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Fig. 3. (a) Cross-sectional mesh of turbulent pipe. (b) Time-averaged, streamwise, carrier fluid velocity as a function of distance from the wall, as compared to experiment. —,
LES; h, Lawn (1971).

Table 1
Simulation and experimental (Colin et al., 1991) parameters.

Case L Res ~g � �d (inflow) �d (outflow)

Colin et al. (1991) 70D 1750 0 0.046 0.062D 0.136D
LES 81D 1920 0 0.046 0.062D 0.146D
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However, since the Colin et al. (1991) experiment did not pro-
vide details of the turbulent flow, a simulation of turbulent pipe
flow with Res = 1920 was performed to validate mean flow and
turbulent statistics with the experiment by Lawn (1971). In the
simulation, Uref = 2us and a body force (j) of jD=ðqf u

2
sÞ ¼ 4 was ap-

plied to counterbalance the shear stress as the wall of the
Res = 1920 pipe flow. Periodic boundary conditions were applied
in the streamwise direction for the carrier fluid. The bubbles feel
the effect of j through the inclusion of the Dui/Dt term of Eq. (1)
and therefore the body force does not need to be otherwise ac-
counted for.

An unstructured mesh with 12.5 � 106 control volumes was
used. The cross-sectional area of the pipe was discretized using
an unstructured hexahedral mesh, with the circumference of the
pipe discretized into 128 nodes (see Fig. 3a). In wall units, the azi-
muthal mesh spacing DDh+/2 = 47, where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ zz

p
is the radial

and h is the azimuthal coordinate. Near the wall, a boundary layer
with a minimum wall-normal spacing of Dr/D = 0.002611 was used
and a boundary-layer mesh was grown for 34 rows from the pipe
wall with a growth factor of 1.05. The minimum wall-normal spac-
ing in wall units is 2.5. The cross-sectional mesh was extruded
downstream with a uniform mesh in the streamwise direction.
The grid spacing in the streamwise distance in wall units is
Dx+ � Dxus/mf = 75.0. The minimum wall-normal spacing Drþmin is
about twice that of the LES simulation with van-Driest wall-damp-
ing performed by Rudman and Blackburn (1999), though the azi-
muthal and streamwise mesh spacings are equal. A constant
timestep of Dt+ = Dt us/D = 5 � 10�5 was used. The timestep is
smaller than that used in the DNS of turbulent pipe (Res = 360)
by Eggels et al. (1994). The bubble timestep is Dtb = Dt/100, as
determined a posteriori though trial and error to obtain numerical
stability.

The bubbles were injected in a random position within the in-
ner 0.8D of the pipe cross-section, located at a streamwise distance
of x/D = 0.01, and are injected with a constant volume-flux _V. The
bubble velocity is initialized to the local fluid velocity. The volume-
flux of NDT bubbles over timescale DT is obtained from

_VDT ¼
4p

3DT

XNDT

i¼1

R3
i : ð30Þ
The timescale DT can be broken into n equal parts of the carrier-
fluid timestep Dt (i.e. DT = nDt). In these simulations, n was chosen
to be 240 so that _VDT � _V. The bubble radius Rmean is the mean
bubble radius of the inflow size distribution. The number of bub-
bles with size Rmean that it takes to obtain the volume-flux rate is

Nmean ¼
3
4

_VDT

pR3
mean

: ð31Þ

The probability of a bubble being injected into the flow during
timestep Dt is obtained from

Pinj ¼min 1;
Nmean

n

� 	
� exp � 4p

3Dt _V

XNinj

i¼1

R3
i

 !
; ð32Þ

where 0 6 Pinj 6 1. Bubbles are injected until the probability Pinj is
greater than that of a random number xran, with Ninj incremented
with every bubble injected during timestep Dt. The random number
xran is generated for each bubble injection and has a uniform distri-
bution between 0 and 1.

The experimental (Colin et al., 1991) and simulation parameters
are provided in Table 1. The mean bubble diameters ð�dÞ were
obtained from integration of the bubble size PDF at the inflow
and outflow regions. The inflow size distribution in the simulation
was taken directly from inflow distribution of the Colin et al.
(1991) experiment. The bubble size at injection is sampled from
the inflow size distribution using the rejection method. Once the
bubbles are injected, coalescence is not allowed to occur until
the bubbles reach a downstream distance of x/D = 10. This allows
the bubbles to equilibrate in the flow after injection.

The length of the transitional inflow region (where coalescence
is turned off while collisions are allowed) of Lx = 10D was obtained
through visual inspection of collision data for a separate simulation
that was run with exactly the same numerical parameters as the
simulation with coalescence, though coalescence was turned off.
It was verified that the number of collisions Nc, probability of coa-
lescence Pc (at moment of collision) and radial location of collision
Rc were not changing with streamwise position by Lx = 10D, so it is
assumed that the bubbles have achieved a position/velocity
equilibrium within this region.

7. Results

7.1. Single-phase turbulence

Results for the carrier-phase turbulent flow in the bubbly-flow
simulation are given in Fig. 3b and Fig. 4. Streamwise fluctuations
are given by the variable u0x and the wall-normal fluctuations are
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Fig. 5. Inflow and outflow bins for measurement of bubble properties. The length of
the inflow/outflow bins is L2 = 10D. The distance between the inflow and outflow
bins is L1. The total distance to the end of the last measurement section is
2L2 + L1 = 70D.

Fig. 6. Streamwise bins for measurement of bubble properties. Each bin
(i = 1,2,3, . . .) samples data from bubbles that reside within its streamwise domain
(xi � Dxi/2 6 x 6 xi + Dxi/2).
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given by u0r . The data was averaged in the streamwise and the azi-
muthal directions. Single-phase statistics were averaged over 2.8
flow-through timescales (based on a mean velocity of Ubulk/
(2us) = 11.2 and a domain length of 81D).

The simulation over-predicts the streamwise mean velocity,
due to a lack of resolution near the wall. In a wall-bounded flow,
the shear stress at the wall directly determines the mass flow rate
for a given mean pressure gradient. Since the shear is under-re-
solved, the mass-flux though the pipe is increased to balance the
reduced wall shear. This leads to over-predicting the mean stream-
wise velocity <ux> and u0x;rms. Without near-wall models for LES, the
over-prediction of <ux> and u0x; rms prediction is expected, though
good agreement for the turbulence intensities is obtained for
u0x;rms and u0r;rms away from the wall and u0xu0r in general when com-
pared to results from Lawn (1971). No grid convergence studies
have been performed. The simulation is of similar resolution of
Rudman and Blackburn (1999), though our LES is performed with-
out a wall-model. Due to the large Reynolds numbers (Res = 1920)
and large streamwise distance (L/D = 81), extreme computational
resources would be required to completely resolve the flow, which
is beyond the scope of this paper.

Even though the mean velocities are over-predicted near the
pipe center, the turbulence intensities (which are mainly responsi-
ble for bubble–bubble collisions) are reasonable except very near
the wall (where little collisions occur). With an over-prediction
of the mean streamwise velocity, we expect the bubbles to be car-
ried downstream more quickly than as observed in experiment,
which will affect the streamwise dependence of the collision
parameters. However, we do not expect the qualitative behavior
to change due to the over-prediction of the mean velocity, which
we deduce from the agreement of size-distribution between our
simulation and experiment.
7.2. Effect of coalescence

In the simulation, bubble size distributions were obtained as a
function of streamwise distance. The size distributions were aver-
aged over 3.9 flow-through timescales. The simulation domain was
broken into 15 discrete, equally-sized sections in the streamwise
direction, with a Dxbin = 10D. The first measurement bin begins
from the inflow plane (x = 0D) and ends at x/D = 10. Corresponding
with the experimental location (outflow measurement), the last
measurement section samples bubble data from 60 6 x/D 6 70.
The inflow and outflow measurement sections are visualized in
Fig. 5. Besides the inflow and outflow locations, measurement bins
extended from the inflow plane to the outflow plane in the simu-
lation, with a Dxi = Dxbin = 10D (see Fig. 6).

Fig. 7 plots the bubble size distribution of the LES simulation,
along with the Colin et al. (1991) zero-g experiment at the inflow
and outflow. Downstream of injection, the bubbles travel down-
stream with the flow and collide and coalesce with one another,
causing the size distribution to shift towards larger sizes. The size
distribution between the experiment and simulation show excel-
lent agreement. Due to coalescence, the number density of the
bubbles decreases as the bubbles travel downstream. This is ob-
served in Fig. 8, which plots instantaneous position of bubbles in
the pipe flow, both near and far downstream of bubble injection.
Far downstream, much larger bubbles are observed than near
injection and the overall number of bubbles has decreased.

8. Collision details

The evolution of the bubble size distribution depends on the
nature of the bubble–bubble collisions. Bubble collision parame-
ters such as relative velocity and bubble size determine the prob-
ability of coalescence. This section describes statistics of the
bubble–bubble collision process. Mean quantities of collisions
(such as PcðxÞ; td=tiðxÞ, etc., represented by �f ðxÞ) are obtained by
integrating over the PDF of f:

�f j ¼
Z 1

�1
f PDFðf Þ df ; ð33Þ
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Fig. 8. Instantaneous position of bubbles in turbulent pipe flow, with coalescence.
Bubbles are proportional to actual size. Flow is from left to right. View is looking
through the pipe, perpendicular to the pipe flow, with the top and bottom
boundaries of each figure at r/D = 0.5. (a) Near inflow (4 6 x/D 6 6). (b) Near outflow
(68 6 x/D 6 70).
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Fig. 7. Comparison of probability distribution function of bubble size from simulation to Colin et al. (1991) experiment. (a) Inflow distribution is sampled over 0 6 x/D 6 10
and (b) outflow distribution is sampled over 60 6 x/D 6 70. Solid lines represent simulation results and bars represent results from Colin et al. (1991).
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where the quantities f are sampled for bubbles located within the
streamwise bin j between xj � Dxbin/2 6 x 6 xj + Dxbin/2.

Instead of averaging over the entire size distribution, mean sta-
tistics �f ðx; dm; dnÞ can also be obtained as a function of bubble
diameter dm, dn and streamwise distance x by

�f ðx;dm;dnÞ ¼
1

Ncðx;dm;dnÞ
XN cðx;dm ;dnÞ

i¼1

fiðx;dm; dnÞ; ð34Þ

where Nc(x,dm,dn) is the total number of collisions at x with bubble
diameters dm and dn. �f ðx;dm;dnÞ is discretized into streamwise mea-
surement bins and equally-sized bins for dm and dn. The bin size is
determined from the maximum measured bubble diameter dmax in
the streamwise bins by Ddm = Ddn = dmax/10 for a total of 10 � 10
bins for each streamwise bin for �f ðx;dm;dnÞ. Since there is no statis-
tical difference between dm and dn, �f ðx;dm; dnÞ is enforced to be
symmetric about dm = dn. Statistics are obtained from four stream-
wise locations. For smoothness of mean quantities, samples that
are larger than Reeq = 8000, td/ti = 10 and Vo = 15 are discarded from
calculations of �f ðx; dm;dnÞ as outliers from visual inspection of their
respective PDFs. Also, mean values of �f ðx; dm;dnÞ are not shown if
obtained from less than 125 collisions from from bins over stream-
wise distances 0 6 x/D 6 10, 10 6 x/D 6 20 and 20 6 x/D 6 30,
while mean values are not shown if less than 25 collisions are used
to obtain statistics from 45 6 x/D 6 55. The ‘‘blanking’’ criteria of
collisions was determined by visual inspection of the plots. We at-
tempted to strike a balance between statistic convergence and run-
time, and chose our blanking criteria so that the curves looked
smooth and regular as possible. For much of the domain, 125
collisions per bin was reasonable, but as the number of collisions
decreased with downstream distance (see Fig. 9a) and the blanking
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criteria was reduced in order to view collision statistics without
requiring extreme computational run-times.

Due to coalescence, the number of collisions Nc(x) decreases
rapidly with increasing distance as the number density of bub-
bles decreases (Fig. 9a). Fig. 10 plots the number of collisions
observed as a function of streamwise distance and bubble size.
The maximum number of collisions (for each streamwise bin)
are observed for bubbles that are sized near the maximum of
the PDF (d). With increasing downstream distance, Nc becomes
more diffuse in (dm,dn) as the bubble size distribution also wid-
ens. The reduction of Nc(x) makes obtaining converged statistics
difficult far downstream (x/D > 45). As the size distribution in-
creases due to coalescence, the location for maximum Nc(x,dm,dn)
moves to higher values of (dm,dn). The movement of the peak of
Nc(x,dm,dn) is consistent with the evolution of the size distribu-
tion, where larger bubbles are becoming more likely downstream
due to coalescence and are also therefore more likely to collide
with another bubble.
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Fig. 13. Ratio of coalescence timescales td=tiðx;dm;dnÞ vs. dm, dn for (a) 0
The mean probability of coalescence PcðxÞ is plotted in Fig. 9b as
a function of streamwise distance. The mean probability increases
slightly near the inflow, then decreases with downstream distance.
The value of Pc ¼ 0 from 0 6 x/D 6 10 since coalescence is turned
off in this region. The overall probability decreases from �30% near
the inflow to �25% near the outflow. We do not have a physical
explanation for the slight increase of Pc observed near the outflow.
The most likely reason is a lack of statistical convergence due to the
low number of collisions observed near the outflow, though the ef-
fect is not significant. The bubbles that collide far downstream are
less likely to coalesce than bubbles that collide near the inflow.
Fig. 11 plots the mean probability of coalescence Pcðx; dm; dnÞ as a
function of x, dm and dn. A value of zero for Fig. 11a is due to
coalescence not turned on in from 0 6 x/D 6 10. Large bubbles
are less likely to coalesce than small bubbles. The mean probability
of coalescence is �0.5 for small bubbles, and approaches 0.2 for
large bubbles. With increasing downstream distance, Pc increases
for constant bubble diameters (dm,dn).
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The mean ratio of fluid drainage timescale to interaction time-
scale ðtd=tiðxÞÞ slightly decreases then increases with downstream
distance (see Fig. 12a), which correlates with the decrease of prob-
ability of coalescence P cðxÞ with increasing downstream distance.
Fig. 12b plots the PDF of td/ti, and the PDFs of td/ti are similar for the
four streamwise locations shown. Small bubbles have smallest
td=tiðx; dm; dnÞ, increasing with bubble size (at constant x) (see
Fig. 13). With increasing downstream distance, td=tiðx; dm; dnÞ
decreases (for (dm,dn) held constant).

The mean relative velocity VoðxÞ decreases with increasing
downstream distance (Fig. 14a). Fig. 14b plots the evolution of
the relative velocity PDF as a function of streamwise distance, with
the distribution becoming more concentrated about the mode with
increasing downstream distance. The mean relative velocity at col-
lision Voðx; dm; dnÞ is less for small bubbles as compared to large
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Fig. 15. Relative velocity of collision Voðx; dm; dnÞ vs. dm, dn for (a) 0 6
bubbles (Fig. 15). For a constant (dm,dn), Voðx; dm; dnÞ decreases
with downstream distance. For constant x;Voðx; dm; dnÞ increases
with increasing (dm,dn).

The average collision Reynolds number Re eqðxÞ is plotted in
Fig. 16a as a function of streamwise distance. ReeqðxÞ is �1000 near
the inflow, and increases with downstream distance. The PDF of
Reeq as a function of streamwise distance is given in Fig. 16b, with
Reeq � 750 the most probable value, though the PDF shifts towards
larger values of collision Reynolds number with increasing stream-
wise distance. Mean collision Reynolds number Reeqðx; dm; dnÞ
increases with increasing bubble size (dm,dn) (Fig. 17). Small bub-
bles have the smallest Reeqðx; dm; dnÞ for a given x. As downstream
distance increases, the collision Reynolds number increases for
constant bubble diameter. The results show that viscous effects
on collision are small (large Reeq).
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Fig. 17. Collision Reynolds number Re eqðx; dm; dnÞ vs. dm, dn for (a) 0 6 x/D 6 10, (b) 10 6 x/D 6 20, (c) 20 6 x/D 6 30, (d) 45 6 x/D 6 55.
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The average bubble size increases with downstream distance, as
shown in Fig. 18a. Recall that deq = (2dmdn)/(dm + dn). As the overall
bubble size increase, so does deq. Also, the PDF of deq (Fig. 18b) be-
comes more weighted to larger bubbles as downstream distance
increases due to coalescence. The mean collision Weber number
WeeqðxÞ is �3 (Fig. 19a), with the mean value slightly decreasing

then increasing with downstream distance. In Fig. 19b, the PDFs
of Weeq(x) at four different streamwise locations are similar, with
low Weber numbers being the most probable.

The mean collision angle hc(x) remains constant throughout the
domain, with hc ¼ 2:33 (in radians, see Fig. 20a), which is 135	

from the line-of-centers of the colliding bubbles. Fig. 20b plots
the PDF of hc, and the PDFs are similar for the four streamwise loca-
tions shown. The mode of the collision angle hc is equal to the
mean collision angle hc.

The mean radial location of collision, RcðxÞ, is obtained from the
radial component (distance from the center of the pipe) of the
point where the colliding bubbles m and n are touching. In
Fig. 21a, RcðxÞ decreases with increasing downstream distance,
with collisions far downstream occuring more towards the center
of the pipe. The PDF of Rc for four streamwise locations is shown
in Fig. 21b. Since the collisions are turbulence driven, the most
likely location for collision is near the wall, where turbulent fluctu-
ations are largest. Turbulent fluctuations are lowest in the center of
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the pipe, hence collisions near the center are not as likely to occur.
With increasing downstream distance, the PDFs of Rc become more
weighted to the center of the pipe.
9. Discussion

A one-way coupled Euler–Lagrangian methodology is used to
simulate bubbly flow including the effect of coalescence, and bub-
ble–bubble collisions are computed directly using a hard-sphere
approach. A stochastic bubble coalescence model is developed,
with the probability of coalescence determined from an expression
of coalescence timescales derived by Kamp et al. (2001) for the Eu-
ler–Lagrangian approach, in which collisions and the relative
velocity between colliding bubbles are computed directly.

Excellent agreement was obtained for the bubble size distribu-
tion between the Colin et al. (1991) experiment and numerical
simulations including coalescence. Coalescence increases the mean
size of the bubbles and also increases the prevalence of large bub-
bles in the flow. Bubble size increases through the merging of
smaller bubbles, decreasing the number density of bubbles. Far
downstream from injection, the total number of bubbles is greatly
decreased which also decreases the overall number of collisions.
The mean probability of coalescence PcðxÞ was found to decrease
slightly with increasing downstream distance which can be attrib-
uted to an increase in bubble size due to coalescence.

There is a large range of bubble sizes, thus fluid-dynamic effects
can reduce the effective collision rate (impact efficiency smaller
than unity) and influence the hydrodynamics forces on the bub-
bles. Turbulence has been shown to increase collision efficiency
for heavy particles of very different or nearly equal size and vary
as a function of turbulent dissipation rates (Wang et al., 2008).
There exist models which allow consideration of impact efficiency
(Ho and Sommerfeld, 2002, Wang et al. (2005)), although these ef-
fects are not accounted for in this approach. Additionally, it is clear
that the largest bubbles have a diameter of �0.35D (see Fig. 7),
which is much larger than the largest grid spacing (Dx = 0.079D).
Therefore, the point-particle assumption is violated. The smallest
bubbles are �0.01D, which is larger than the smallest wall-normal
spacing (Dr = 0.002611D) and smaller than the largest grid spacing.
The bubble shape is also likely to differ from the assumed spherical
shape, since the mean Weber number (based on bubble radius R,
bubble relative velocity j~u�~vj and surface tension coefficient r)
is � 7 (averaged over all bubbles). The bubble shape has been
shown to influence the drag and lift coefficients (Loth, 2008) which
will influence instantaneous bubble behavior. In a point-particle
approach, these affects cannot be directly accounted for; a full
DNS including the bubble surfaces must be performed.

The direct effect of the subgrid stress (SGS) on the bubble trans-
port has not been included. However, the particles do feel effects of
the subgrid scales through the SGS model of the resolved flow. The
direct effect of SGS is determined by the SGS time scales and en-
ergy content, and are small when the SGS time scale is large com-
pared to bubble relaxation time and when the flow is nearly
resolved. Others (Wang et al., 2009; Jin et al., 2010) have shown
that the collision details are more sensitive to SGS than other
first-order statistics (e.g. mean bubble path). Even without explic-
itly accounting for the effects of the SGS, the overall size distribu-
tion (Fig. 7) agrees quite well with experiment. This implies that
the resolved unsteady flow was sufficient in reproducing the most
important aspects of the flow, with respect to bubble collisions and
coalescence.

The probability of coalescence is determined by an expression
that is evaluated at the moment of collision and based on the ratio
of fluid drainage and bubble-interaction timescales, where Pc =
exp (�td/ti). With an increase in the ratio of these timescales, the
probability of coalescence decreases. There are a number of factors
that influence the ratio of the coalescence timescales. Recall the
expression (Eq. (23))

td

ti
/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3qf V

2
od eq

Cvmr

s
:

The only parameters that vary from collision-to-collision are Vo,
deq and Cvm. From inspection of the equation for Pc it is evident that
Pc decreases with downstream distance due to an increase in the
ratio of coalescence timescales. Due to coalescence, deq increases
as a function of deq = (2dmdn)/(dm + dn). The coalescence timescale
td=ti /

ffiffiffiffiffiffiffi
deq

p
, thus an increase in bubble diameter will also increase

td/ti, reducing the probability of coalescence at the moment of col-
lision. Physically, this can be understood since it will take longer
for surface tension to drain the fluid from between small bubbles
than large bubbles. The coalescence timescale td=ti /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=Cvm

p
, thus

as the ratio of bubble diameters dm/dn departs from 1, the value of
Cvm decreases. This increases the timescale td/ti, reducing the prob-
ability of coalescence at the moment of collision. The effect can be
seen in Fig. 11, where the probability of coalescence Pcðx; dm; dnÞ
increases for bubbles with large ratios of relative bubble sizes.
The relative velocity Vo / td/di, therefore as VoðxÞ decreases with
downstream distance, the effect is to reduce the probability of
coalescence.

With increasing downstream distance, the radial location of
bubble–bubble collision RcðxÞ increases. This is due to the finite
size of the large bubbles, who are not able be as near the wall as
small bubbles. The velocity scales near the center of the pipe are
much larger than that near the wall. Thus, bubbles colliding near
the center of the pipe will also have a smaller relative velocity Vo

since their velocities are more correlated. However, for a given
streamwise location, the relative velocity is shown to increase with
increasing bubble size (Fig. 15). Also, the drag coefficient of the
large bubble will decrease (since Reb increases) and the large bub-
ble is less likely to follow the local flow than smaller bubbles. Other
small bubbles in the nearby vicinity are likely to be more corre-
lated to the flow (through a larger drag coefficient), thus small
bubbles colliding will have a smaller relative velocity and are more
likely to coalesce.
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