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Toward optimal LES on unstructured meshes

By A. Haselbacher †, R.D. Moser ‡, G. Constantinescu AND K. Mahesh ¶

A new approach for determining the correlation data required by the optimal-LES proce-
dure of Langford and Moser (Optimal LES formulations for isotropic turbulence, J. Fluid

Mech., 398, 321–346, 1999) is presented. Based on Kolmogorov’s theory for isotropic tur-
bulence, the new approach leads to stencil coefficients in terms of integrated multi-point
correlations. The explicit dependence of the optimal-LES method on DNS data is thus
eliminated, and its applicability is extended to high Reynolds-number flows in com-
plex geometries. A preliminary verification of the new optimal-LES method for decaying
isotropic turbulence showed good results for decay rates.

1. Introduction and Motivation

Large-Eddy Simulation (LES) is a computational technique for turbulent flows in which
only large scales are resolved and the effect of the unresolved small scales is modeled.
The reduced resolution makes LES an attractive approach for the analysis of engineering
applications, in which the large scales often dominate momentum and heat transfer.

The separation of scales is commonly achieved through a filter operator. The lack of
an unambiguous separation of the resolved and modeled scales leads to many challenging
issues, including: the precise definition of the filter operator, the construction of accurate
numerical methods, and, for inhomogeneous flows, the formulation of subgrid-scale mod-
els and the presence of commutation errors. These issues often involve both numerical
and physical aspects and it can be difficult to isolate their effects with certainty and
generality.

In an effort to address these issues, Langford & Moser (1999) introduced the concept of
an “ideal LES” which is the best possible approximation, given that filtering incurs a loss
of information. The ideal LES, based on the conditional average, can be proved to yield
accurate large-scale one-time statistics and to minimize the error of large-scale short-time
dynamics. However, the conditional average defining the ideal LES is impractical to com-
pute because the condition is on the entire LES field. To reduce the computational cost
to a practical level, the conditional average is approximated using stochastic estimation,
see Adrian (1995), resulting in an approximation to the ideal LES called “optimal LES”.

The optimal-LES technique was applied to forced isotropic turbulence at Reλ = 164
by Langford & Moser (1999) and to turbulent channel flow at Reτ = 587 by Völker
(2000). In these computations, the correlations required by the stochastic-estimation
procedure were determined from Direct Numerical Simulation (DNS) data. This places
an undesirable restriction on optimal LES because DNS data is available only at relatively
low Reynolds numbers and for simple geometries.
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The goal of the present work is to extend the applicability of optimal LES to high-
Reynolds number flows and to complex geometries. To achieve this goal, we propose a new
approach in which the correlations required by the stochastic-estimation procedure are
computed from turbulence theory. This approach was demonstrated for a model equation
in one dimension by Balakrishnan & Moser (2001). More specifically, the present work
extends the optimal-LES method to formally infinitely high Reynolds numbers by using
results from Kolmogorov’s theory for isotropic turbulence. This article describes this
extension and presents results of a preliminary verification on unstructured grids.

The remainder of the article is structured as follows: Section 2 describes the finite-
volume optimal-LES approach and explains the determination of the stencil weights using
isotropic turbulence theory. The computational approach is outlined in section 3, which
includes a description of the implementation of the finite-volume optimal-LES method
on unstructured grids. Results are presented and discussed in section 4. Conclusions are
drawn in section 5.

2. Finite-volume optimal-LES formulation

The finite-volume optimal-LES formulation was originally developed by Langford (2000)
and is outlined in subsections 2.1 and 2.2. The current formulation is restricted to incom-
pressible flows. The new approach of obtaining the correlation data from Kolmogorov’s
theory of isotropic turbulence is described in subsection 2.3.

2.1. Theoretical formulation

For incompressible flow, the momentum equations can be expressed in integral form as

∆3 dwi

dt
+

∫

s

uius dx = −

∫

s

pni dx +

∫

s

ν
∂ui

∂xj
nj dx, (2.1)

where the cell-averaged velocity is defined by

wi =
1

∆3

∫

v

ui(x) dx, (2.2)

and us = uini is the velocity along the outward-directed unit normal vector with com-
ponents ni, the density has been absorbed into the pressure, ν is the kinematic viscosity,
and x = {x1, x2, x3}

t is the position vector. The volume of the integration region is
denoted by ∆3, so that ∆ may be interpreted as the cell width for uniform hexahedral
grids. The subscripts s and v indicate surface and volume integrals, respectively.

In the finite-volume optimal-LES method, the cell-averaging defined by (2.2) is re-
garded as the filtering operation. It is assumed that the filter width is in the inertial
range. In the following, wi and ui are referred to as filtered and unfiltered values, respec-
tively.

To evolve the filtered values, the fluxes of unfiltered variables appearing in (2.1) must
be expressed in terms of filtered values. Thus the flux is estimated in terms of a quadratic
expression of the filtered values,

∫

s

ui(x)us(x) dx =
∑

v

Lij(s, v)

∫

v

uj(x) dx

+
∑

v1,v2

Qijk(s, v1, v2)

∫

v1

uj(x
1) dx1

∫

v2

uk(x
2) dx2,

(2.3)
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where the functional dependences of the velocity components were added to indicate the
surfaces and volumes over which they are integrated.

Before addressing the determination of the estimation coefficients L and Q—which
may also be interpreted as stencil weights—we draw attention to the following point: in
contrast to conventional LES approaches, (2.1) is not space-filtered independently of the
numerical discretization, the fluxes are not cast in terms of filtered values, and we do not
explicitly define a subgrid-scale term. Instead, the optimal-LES method approximates
the combination of fluxes and subgrid effects in an optimal way. The reasoning is that
conventional finite-volume methods evaluate fluxes based on approximations derived from
Taylor-series expansions, and thus require the cells to be small compared to characteristic
length scales of the underlying functions. This requirement is violated in LES, so the
definition of subgrid effects depends on the order of the flux approximation.

2.2. Stencil-weights construction

To determine the unknown stencil weights L and Q, we take moments of (2.3) and
ensemble-average to obtain the system of equations,

I1
li(v

′, s) =
∑

v

Lij(s, v)I
2
lj(v

′, v) +
∑

v1,v2

Qijk(s, v1, v2)I
3
ljk(v

′, v1, v2) (2.4)

I4
lmi(v

′
1, v

′
2, s) =

∑

v

Lij(s, v)I
3
lmj(v

′
1, v

′
2, v) +

∑

v1,v2

Qijk(s, v1, v2)I
5
lmjk(v

′
1, v

′
2, v1, v2) (2.5)

where the integrated correlations I1 to I5 are given by,

I1
li(v

′, s) =

∫

v′

∫

s

〈ul(x
′)ui(x)us(x)〉 dx dx′ (2.6)

I2
lj(v

′, v) =

∫

v′

∫

v

〈ul(x
′)uj(x)〉 dx dx′ (2.7)

I3
ljk(v

′, v1, v2) =

∫

v′

∫

v1

∫

v2

〈ul(x
′)uj(x

1)uk(x
2)〉 dx2 dx1 dx′ (2.8)

I4
lmi(v

′
1, v

′
2, s) =

∫

v′
1

∫

v′
2

∫

s

〈ul(x
1′)um(x2′)ui(x)us(x)〉 dx dx2′ dx1′ (2.9)

I5
lmjk(v

′
1, v

′
2, v1, v2) =

∫

v′
1

∫

v′
2

∫

v1

∫

v2

〈ul(x
1′)um(x2′)uj(x

1)uk(x
2)〉 dx2 dx1 dx2′ dx1′ (2.10)

Thus, three correlation tensors are needed to determine the estimation coefficients,

Rij(r
1) = 〈ui(x)uj(x

1)〉, (2.11)

Tijk(r
1, r2) = 〈ui(x)uj(x

1)uk(x
2)〉, (2.12)

Fijkl(r
1, r2, r3) = 〈ui(x)uj(x

1)uk(x
2)ul(x

3)〉, (2.13)

where homogeneity was assumed in order to express the correlations in terms of separa-
tion vectors r

i = x − x
i.

2.3. Determination of correlations

To determine the correlations given by (2.11)-(2.13), the spatial separations are assumed
to be small enough to be in the Kolmogorov inertial range of isotropic turbulence at an
infinite Reynolds number. Thus the correlations are represented by isotropic tensors, and
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we use the expressions for the second- and third-order longitudinal structure functions,

S2(r
1) = 〈(u‖(x)− u‖(x

1))2〉 = C1ε
2/3(r1)2/3, (2.14)

S3(r
1) = 〈(u‖(x)− u‖(x

1))3〉 = −
4

5
εr1, (2.15)

where ri = ||ri|| is the magnitude of the separation vector, u‖ is the velocity component
in the direction of the separation vector, ε is the rate of dissipation of turbulence kinetic
energy, and C1 ≈ 2.0 is the Kolmogorov constant.

2.3.1. Two-point second-order correlation

The two-point second-order correlation is given by the well-known expression

Rij(r
1) = u2

[
fδij +

1

2
rf ′

(
δij −

r1
i r

1
j

(r1)2

)]
, (2.16)

where u2 is the variance, f(r1) = 〈u||(x)u||(x + r
1)〉/u2 is the longitudinal correlation

coefficient, and δij is the Kronecker delta. The longitudinal correlation coefficient can be
determined from (2.14), which allows (2.16) to be rewritten as

Rij(r
1) = u2δij +

C1

6
ε2/3(r1)2/3

(
r1
i r

1
j

(r1)2
− 4δij

)
, (2.17)

and hence I2 can be computed.

2.3.2. Two-point third-order correlation

The most general isotropic third-order tensor which satisfies the continuity constraint
and is symmetric with respect to exchanging the i and j indices is given by

Tijk(0, r
1) = hδij

r1
k

r1
−

(
r1h′

2
+ h

)(
δik

r1
j

r1
+ δjk

r1
i

r1

)
+ (r1h′ − h)

r1
i r

1
j r

1
k

(r1)3
, (2.18)

where h(r1) = 〈u2
||(x)u||(x + r

1)〉/u3 is the longitudinal correlation coefficient. By con-
sidering the tensor

Bijk(r
1) =

〈(
ui(x

1)− ui(x)
) (

uj(x
1)− uj(x)

) (
uk(x

1)− uk(x)
)〉

(2.19)

= 2
(
Tijk(0, r

1) + Tikj(0, r
1) + Tjki(0, r

1)
)
, (2.20)

it can be shown that

S3(r
1) = Bijk(r

1)
r1
i r

1
j r

1
k

r1
= −12h(r1). (2.21)

Having expressed h(r1) in terms of the third-order longitudinal structure function, (2.15)
can be recast as

Tijk(0, r
1) =

ε

15

[
δijr

1
k −

3

2

(
δikr

1
j + δjkr

1
i

)]
, (2.22)

from which I1 can be computed.

2.3.3. Three-point third-order correlation

We have so far been unable to find or derive an expression for the three-point third-
order correlation. Fortunately, we can circumvent this issue by computing I3 directly
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from filtered data as

I3
ljk(v

′, v1, v2) =

〈∫

v′

ul(x
′) dx′

∫

v1

uj(x
1) dx1

∫

v2

uk(x
2) dx2

〉
(2.23)

=
〈
wl(x

′)wj(x
1)wk(x

2)
〉
. (2.24)

We thus propose to compute I3 dynamically during the calculation from cell-averaged
data. Note that this approach can in principle be applied to all pure volume integrals.

In (2.24) and all subsequent expressions involving averages of cell-averaged values, the
angled brackets denote a volume average.

2.3.4. Fourth-order correlations

The quasi-normal approximation is invoked to determine the fourth-order correlations.
The fourth-order correlations are thus expressed in terms of the second-order two-point
correlations as

Fijkl(r
1, r2, r3) = Rij(r

1)Rkl(r
3−r

2)+Rik(r
2)Rjl(r

3−r
1)+Ril(r

3)Rjk(r
2−r

1). (2.25)

Hence I4 and I5 can be determined from (2.25) and (2.17).

2.4. Scaling of integrated correlations

The integrated correlations depend on the geometric configuration of the volumes over
which they are integrated, and on the flow solution via u2 and ε. These dependencies
can be parameterized through a scaling. However, because of the existence of two length
scales, i.e., the filter width ∆ and the energy-containing length scale u3/ε, not all the
quantities are scaled consistently.

Based on the forms of the various approximations to the correlations, the following
scaled quantities are defined (dependencies and subscripts are suppressed for simplicity
of notation):

Ĩ1 =
I1

ε∆6
, (2.26)

Ĩ2 =
I2

u2∆6
, (2.27)

Ĩ3 =
I3

ε∆10
, (2.28)

Ĩ4 =
I4

u4∆8
, (2.29)

Ĩ5 =
I5

u4∆12
, (2.30)

L̃ =
Lu2

ε
, (2.31)

Q̃ = Q∆4. (2.32)

Then (2.4) and (2.5) can be rewritten as

Ĩ1
li(v

′, s) =
∑

v

L̃ij(s, v)Ĩ
2
lj(v

′, v)+
∑

v1,v2

Q̃ijk(s, v1, v2)Ĩ
3
ljk(v

′, v1, v2) (2.33)

Ĩ4
lmi(v

′
1, v

′
2, s) = λ2

∑

v

L̃ij(s, v)Ĩ
3
lmj(v

′
1, v

′
2, v)+

∑

v1,v2

Q̃ijk(s, v1, v2)Ĩ
5
lmjk(v

′
1, v

′
2, v1, v2)(2.34)
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where λ = ∆ε/u3, the ratio of the filter width to the large turbulence length scale, will
generally be small. In the limit λ→ 0, Q can be determined independently of L.

Furthermore, the integrated correlations depend on distances separating the surfaces
and volumes over which they are integrated. Let ρ be the radius of the smallest sphere
containing the volumes and surfaces over which the correlations are integrated and define
ρ̃ = ρ/∆. Then the integrals can be written in the following forms

Ĩ1 = Ĩ10ρ̃ (2.35)

Ĩ2 = Ĩ20 + (λρ̃)2/3Ĩ21 (2.36)

Ĩ3 = Ĩ30ρ̃ (2.37)

Ĩ4 = Ĩ40 + (λρ̃)2/3Ĩ41 + (λρ̃)4/3Ĩ42 (2.38)

Ĩ5 = Ĩ50 + (λρ̃)2/3Ĩ51 + (λρ̃)4/3Ĩ52. (2.39)

Given the expressions for Iαβ stated above, the expressions for Ĩαβ are easily deduced.

2.5. Estimation of kinetic energy and dissipation rate

Equations (2.17) and (2.22) depend on estimates of the turbulent kinetic energy and its
dissipation rate.

The turbulent kinetic energy is estimated from filtered data as

k ≈
1

2
〈wiwi〉. (2.40)

The justification for this approximation is that most of the energy is contained in the
large scales. The variance is deduced from u2 = 2k/3.

Two approaches to estimating the dissipation rate were investigated. The first approach
is based on the observation that Ĩ2 can be computed from

Ĩ2
lj(v

′, v) =
〈wl(x

′)wj(x)〉

u2
, (2.41)

which gives, on substitution into (2.36),

〈wl(x
′)wj(x)〉

u2
= Ĩ20

lj + (λρ̃)2/3Ĩ21
lj . (2.42)

Contracting and using the definitions of ρ̃ and λ leads to

ε =
1

ρ

(
〈wl(x

′)wl(x)〉 − u2Ĩ20
ll

Ĩ21
ll

)3/2

. (2.43)

Since ρ, Ĩ20, and Ĩ21 are specified by the geometric configuration of the cells over which
the integrals are evaluated, ε as given by (2.43) is a function only of the variance and
the two-point second-order correlation. The accuracy of (2.43) was evaluated a priori on
a 323 grid using a single filtered velocity field of a DNS of forced isotropic turbulence
at Reλ = 164. Figure 1 demonstrates that reasonably accurate approximations can be
obtained if r1/∆ > 3, keeping in mind that (2.43), based on the assumption of an infinite
Reynolds number, cannot be expected to reproduce the dissipation rate of the DNS
exactly. It is worth noting that (2.43) exhibits the correct dynamic behavior because it
can be shown that 〈wl(x

′)wl(x)〉 = u2Ĩ20
ll for uniform flow fields, and hence the dissipation

vanishes as required.
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Figure 1. Behavior of correlation coefficient and dissipation-rate estimate given by (2.43) with
non-dimensional separation distance r1/∆. : Dissipation rate from filtered DNS of forced
isotropic turbulence, : computed correlation coefficient 〈wl(x

′)wl(x)〉 /u
2, 4 : estimated dissi-

pation rate ε.

The second approach to estimating the dissipation rate is based on the relation

ε ∝
k3/2

`
, (2.44)

where ` is a length scale of the large-scale motion.

3. Computational approach

In the present work, the optimal-LES method was implemented in a compressible
unstructured-grid code based on the cell-centered finite-volume method. The unstruc-
tured code allows for grids composed of arbitrary combinations of tetrahedra, prisms,
pyramids, and hexahedra, but only uniform hexahedral grids are considered in this study.

3.1. Implementation of optimal-LES method on unstructured grids

The implementation of the optimal-LES method on unstructured grids consists of three
steps. The first step involves the construction of the stencils at each face. For stencils
of only two cells per face an explicit construction is not necessary, because these cells
can be obtained from the face-to-cell list used in the flux computation. If the stencils
are to contain n > 2 cells, an Octree-based approach, see, e.g., Knuth (1998), is used to
determine a set of candidate cells. The candidate cells are sorted by increasing distance
from the face centroid and the closest n cells are chosen. Furthermore, stencil shapes
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can be influenced depending on local cell topologies. For example, by considering the
scalar product of the face normal vector and the position vector between candidate cell
centroids and the face centroid, locally one-dimensional stencils may be constructed.

In the second step, the integrated correlations are evaluated using cubature. This
entails the evaluation of d-dimensional integrals of tensor functions of order p. Given the
restriction to hexahedral cells in the present work, the DCUHRE package of Berntsen et

al. (1991) is used for the cubature. The computational cost of evaluating the integrals can
be reduced by taking into account the symmetries of the tensors, as well as additional
symmetries which arise if two or more cells coincide. On non-deforming grids, the first
two steps can be completed in a preprocessing phase.

The third step concerns the actual determination of the stencil weights during a com-
putation. This involves the estimation of the turbulence kinetic energy and its dissipation
rate as described in subsection 2.5, after which the integrated correlations Ĩαβ are com-
puted from (2.35)-(2.39). The stencil weights follow by solving the linear system given
by (2.33) and (2.34), and using (2.31) and (2.32). The fluxes are then determined from
(2.3).

3.2. Numerical method

The Navier-Stokes equations are integrated in time using the classical fourth-order accu-
rate Runge-Kutta method. The viscous fluxes are computed using face-gradients calcu-
lated from a least-squares reconstruction. The optimal-LES approach is applied only to
the momentum equations; the continuity and energy equations are approximated with a
centered discretization.

Because we simulate the decay of incompressible isotropic turbulence using the com-
pressible Navier-Stokes equations, dilatation damping is employed to prevent density fluc-
tuations from contributing significantly to the turbulent kinetic energy. This is achieved
by modifying the viscosity multiplying the divergence in the stress tensor,

τij = 2µSij −
2

3
(µ+ µ∗)

∂uk

∂xk
δij , (3.1)

where µ is the dynamic viscosity, Sij is the strain tensor, and µ∗ is the additional viscosity
used to damp acoustic waves. A value of µ∗ = 10µ is used in this study.

4. Results and discussion

The decay of isotropic incompressible turbulence was chosen for the preliminary ver-
ification of the optimal-LES approach based on the theory of isotropic turbulence. The
calculation domain is a cube of edge length 2π discretized with 323 cells.

4.1. Illustration of stencil weights

It is instructive to briefly describe the stencils obtained using the finite-volume optimal-
LES approach. Using the abbreviations introduced by Langford (2000), namely

w̃2 =
1

2

[(
w+
)2

+
(
w−
)2]

and w2 = w+w−,

where the superscripts denote the cells as indicated in figure 2, an approximation of the
normal momentum flux can be expressed as
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Figure 2. Illustration of cell configuration for stencil of two hexahedral cells. The arrow
indicates the direction of the face-normal vector.

1

∆2

∫

s

u2
1 dx = 1.2674 w̃2

1 + 0.4750w2
1 + 0.4200

(
w̃2

2 + w̃2
3

)
− 0.0036

(
w2

2 + w2
3

)

− 0.1903
w+

1 − w−
1

∆
,

and an approximation of the tangential momentum flux is given by

1

∆2

∫

s

u2u1 dx = 1.9468

(
w+

1 + w−
1

2

)(
w+

2 + w−
2

2

)
− 0.0840

(
w−

1 w+
2 + w+

1 w−
2

)

− 0.0785
w+

2 − w−
2

∆
.

For comparison, note that the traditional finite-volume schemes used for LES compu-
tations would probably employ a purely-centered approximation given by, for example,

1

∆2

∫

s

u2
1 dx = 0.5000 w̃2

1 + 0.5000w2
1,

and

1

∆2

∫

s

u2u1 dx =

(
w+

1 + w−
1

2

)(
w+

2 + w−
2

2

)
.

The most obvious difference is that the optimal-LES stencils are not consistent. As
stated in subsection 2.1, the requirement of consistency does not apply to LES because
the cells are not small compared to the characteristic length scales of the turbulence.
Furthermore, consistency is irrelevant because the stencil weights include the model term.
The diffusive contribution to the fluxes is due to the linear term in (2.3). Langford (2000)
discussed finite-volume optimal-LES stencils in detail.

4.2. Simulation of decaying isotropic turbulence

Before we turn to a presentation and discussion of the results, two issues merit special
attention. The first issue concerns the dynamic computation of Ĩ3 using (2.24). We have
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Figure 3. Behavior of normalized turbulent kinetic energy with normalized time. : Op-
timal-LES result, : decay-law exponent n = 1.3, : decay-law exponent n = 1.4,

: decay-law exponent n = 1.5.

thus far been unable to evaluate Ĩ3 accurately using spatial averaging; it was not possible
to discern a non-zero entry pattern reliably. The present results have therefore been
obtained by setting Ĩ3 = 0. We will revisit the dynamic computation of Ĩ3 in the future.

The second issue is the estimation of the dissipation rate. The use of (2.43) leads to
rapid growth of turbulent kinetic energy after an initial period of decay. Although the
dissipation rate increased in conjunction with the growth of kinetic energy, the increase
appeared to be too slow to prevent blow-up. Hence it seems that the coupling of the
dissipation rate given by (2.43) to the turbulent kinetic energy is too weak. To proceed
with the preliminary investigation, we have thus used (2.44) with a constant of propor-
tionality C = 10 and ` = 2π. A constant length scale is obviously a crude approximation
to the growth of the integral length scale as the turbulence decays, but sufficient for
this preliminary investigation. The large value of the coefficient is a consequence of the
definition of `.

The decay of the normalized turbulence kinetic energy and its dissipation rate is de-
picted in figures 3 and 4, in which the abscissae are given by the physical time normalized
by the eddy-turnover time at t = 0. For comparison, the decay rates given by the re-
spective analytical decay laws are indicated. It can be seen that the decay rates of both
quantities are close to the typical values of the decay-law exponents after an initial ad-
justment period. The decay rate of the dissipation rate exhibits a gradual change toward
the end of the simulation, which we attribute to the choice of a constant length scale.

The three-dimensional energy spectrum at tε0/k0 = 5.6 is depicted in figure 5. The
pronounced roll-off at high wavenumbers is unexplained at present. Separate investiga-
tions have established that the roll-off is not influenced by the physical viscosity or the
additional viscosity coefficient used for dilatation damping.
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Figure 4. Behavior of normalized dissipation rate with normalized time. : Optimal-LES
result, : decay-law exponent n = 2.3, : decay-law exponent n = 2.4, :
decay-law exponent n = 2.5.

5. Conclusions and further work

A new method of determining the correlations required by the optimal-LES approach
has been presented. The new approach is based on Kolmogorov’s theory for isotropic
turbulence and leads to stencil coefficients which are determined from integrated multi-
point correlations. By using this approach, the explicit dependence of the optimal-LES
method on DNS data is eliminated and the applicability is extended to high-Reynolds-
number flows in complex geometries.

The new optimal-LES method was implemented in an unstructured finite-volume code.
A preliminary verification for decaying isotropic turbulence gave satisfactory results
for decay rates of the turbulence kinetic energy and its dissipation rate. The three-
dimensional energy spectrum indicates that further work is required.

Further work will include the following:

• An investigation of the reasons for the pronounced roll-off in the three-dimensional
energy spectrum at high wavenumbers.
• An analysis of (2.43) using DNS data.
• An investigation into averaging techniques which allow a robust and accurate dy-

namic determination of Ĩ3.
• An extension of the evaluation of the integrated correlation to arbitrary unstructured

grids including tetrahedral, prismatic, and pyramidal cells.
• An analysis of the accuracy of the isotropic approximations in inhomogeneous flows.
• An extension of the finite-volume optimal-LES approach to compressible flows, for

which an approximation of the mass flux and correlations involving the pressure and
temperature are required.
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Figure 5. Three-dimensional energy spectrum at tε0/k0 = 5.6. : Optimal-LES result,

: k−5/3.
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