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ABSTRACT
Jets in crossflow (JICFs), or transverse jets, are a canonical

flow where a jet of fluid is injected normal to a crossflow. The in-
teraction between the incoming flat-plate boundary layer and the
jet is dependent on the Reynolds number (Re = v jD/ν), based on
the average velocity (v jet ) at the jet exit and the diameter (D), as
well as the jet-to-crossflow ratio (R = v jet/u∞). Megerian et al.
(2007) performed experiments at Re = 2000 and collected vertical
velocity spectra along the upstream shear-layer. They observed that
the upstream shear-layer transitions from absolutely to convectively
unstable between R = 2 and R = 4. Using an unstructured, incom-
pressible, direct numerical simulation (DNS) solver, Iyer & Mahesh
(2016) performed simulations matching the experimental setup of
Megerian et al. (2007). Vertical velocity spectra taken along the up-
stream shear-layer from simulation show good agreement with ex-
periment, marking the first high-fidelity simulation able to fully cap-
ture the complex shear-layer instabilities in low speed jets in cross-
flow. Iyer & Mahesh (2016) proposed an analogy to counter-current
mixing along the leading edge shear-layer to explain the transition
from an absolute to convective instability. In addition, Iyer & Ma-
hesh (2016) performed dynamic mode decomposition (DMD) of the
velocity field, which reproduced the dominant frequencies obtained
from the upstream shear-layer spectra.

In the present work, the stability of JICFs is studied when
R = 2 and R = 4 using global linear stability analysis (GLSA) (i.e
Tri-Global linear stability analysis), where the baseflow is fully
three-dimensional. A variant of the implicitly restarted Arnoldi
method (IRAM) in conjunction with a time-stepper approach is im-
plemented to efficiently calculate the leading eigenvalues and their
associated eigenmodes. The Strouhal frequencies (St = f D/v jet ),
based on the peak velocity (v jet ) at the jet exit and the diameter
(D), from linear stability analysis are compared with experiments
(Megerian et al., 2007) and simulations (Iyer & Mahesh, 2016).
The eigenmodes are analyzed and show evidence that supports the
transition from an absolutely to convectively unstable flow. Addi-
tionally, the adjoint sensitivity of the upstream shear-layer is studied
for the case when R = 2. The location of the most sensitive areas is
shown to be localized to the upstream side of the jet nozzle near the
jet exit. The wavemaker for the upstream shear-layer is then calcu-
lated using the direct and adjoint eigenmodes for case R = 2. The
results further justify the absolutely unstable nature of the region
near the upstream side of the jet nozzle exit.

INTRODUCTION
A jet in crossflow (JICF) is a canonical flow where a wall-

normal jet of fluid interacts with an incoming crossflow. The flat-
plate boundary layer created by the crossflow interacts with the jet
to create a set of complex vortical structures. Shear-layer vortices
and the Kelvin-Helmholtz instability often form on the upstream

side of the jet path. Further downstream, a counter-rotating vortex
pair (CVP) dominates the jet cross section (Kamotani & Greber,
1972; Smith & Mungal, 1998). Horseshoe vortices are also formed
near the wall, just upstream of the jet exit (Krothapalli et al., 1990;
Kelso & Smits, 1995). These travel downstream as they begin to
tilt upward and form wake vortices during ’separation events’ (Fric
& Roshko, 1994) caused by the near-wall adverse pressure gradi-
ent. Wake vortices have long been studied in the literature (Kelso
et al., 1996; Eiff et al., 1995; McMahon et al., 1971; Moussa et al.,
1977). Transverse jets are found in many real-world engineering ap-
plications, such as: film cooling, vertical and/or short take-off and
landing (V/STOL) aircraft, thrust vectoring, and gas turbine dilution
jets. Reviews by Margason (1993), Karagozian (2010) and Mahesh
(2013) describe most of the research over the last seven decades.

Low-speed incompressible isodensity JICFs may be character-
ized by the following: the jet Reynolds number Re = v jetD/ν jet ,
based on the average jet exit velocity (v jet ), the jet diameter (D), and
the kinematic viscosity of the jet (ν jet ); the jet-to-crossflow velocity
ratio R = v jet/u∞. The jet-to-crossflow velocity ratio may also be
defined as R∗ = v jet,max/u∞, based on the maximum velocity at the
jet exit.

Megerian et al. (2007) experimentally studied low-speed JICFs
at Reynolds numbers of 2000 and 3000 over a range of jet-to-
crossflow ratios (1 ≤ R ≤ 10). Vertical velocities were collected
at various probe points along the upstream shear-layer to compute
velocity spectra. They observed that this region transitions from ab-
solutely to convectively unstable between R = 2 and R = 4. Mege-
rian et al. (2007) showed that when R = 2 the upstream shear-
layer has a strong pure-tone mode at a single Strouhal number
(St = f D/v jet,max), based on the jet exit diameter (D) and the max-
imum velocity at the jet exit (v jet,max). This behavior is consis-
tent with an absolutely unstable flow, where an instability grows at
the point of origin and travels downstream. On the contrary, when
R = 4, Megerian et al. (2007) observed that instabilities associated
with the upstream shear-layer were not only weaker, but subhar-
monics formed further downstream. These observations are consis-
tent with a convectively unstable flow, where instabilities grow as
they travel downstream.

Davitian et al. (2010) further characterized the transition from
absolute to convective instability by examining the spatial devel-
opment of the fundamental and subharmonic modes that form fur-
ther downstream along the shear-layer. Additionally, Davitian et al.
(2010) examined the response of the upstream shear-layer to strong
sinusoidal forcing. They show clear evidence that for flush JICFs,
the near-field shear-layer becomes globally unstable when R∗ ≤ 3 at
Re = 2000. Furthermore, evidence is shown that suggests strong si-
nusoidal forcing applied to a globally unstable JICF can replace one
mode for another with little impact on the overall behavior. These
results build on the prior studies of M’Closkey et al. (2002), who
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suggested that strong sinusoidal forcing has little impact on the be-
havior of JICFs when compared to square-wave forcing. The results
by Davitian et al. (2010) and M’Closkey et al. (2002) highlight the
importance of understanding the stability transition of the upstream
shear-layer due to the effect it has on the overall controllability of
JICFs.

DNSs by Iyer & Mahesh (2016) match the same experimental
setup as Megerian et al. (2007) for R = 2,4 at Re = 2000. Good
agreement was shown between simulation and experiment for both
the time-averaged flow, as well as the vertical velocity spectra ob-
tained along the upstream shear-layer. Dynamic mode decompo-
sition (DMD) was shown to capture to complex flow dynamics at
the same Strouhal numbers obtained from vertical velocity spec-
tra. Iyer & Mahesh (2016) proposed an analogy to counter-current
mixing layers. They assumed the upstream shear-layer acted as a
counter-current shear-layer, and therefore characterized the stabil-
ity using the classic parallel flow analysis by Huerre & Monkewitz
(1985). A velocity ratio,

Q =
V1 −V2

V1 +V2
(1)

is defined, where V1 and V2 are the velocities for the two mixing
layers. Huerre & Monkewitz (1985) show that for Q > 1.315 a
mixing layer is absolutely unstable, and for Q < 1.315 it is convec-
tively unstable. Iyer & Mahesh (2016) show that in their simulations
Q = 1.44 when R = 2 and Q = 1.20 when R = 4. This is consis-
tent with the stability transition for JICFs in the literature, and may
suggest that the mechanism that drives stability for free shear-layers
may also govern the stability for more complex flows like JICFs.

The stability of JICFs have been studied using linear stabil-
ity analysis (LSA) by Bagheri et al. (2009). Their analysis marks
the first simulation-based Tri-Global LSA of a three-dimensional
flowfield assuming no homogeneous directions. Throughout the
present work, this type of analysis will be referred to as Global
LSA (GLSA). Bagheri et al. (2009) studied the stability of JICFs
at R∗ = 3 at Reδ ∗

0
= u∞δ ∗

0 /ν = 165, which is based on the dis-
placement thickness δ ∗

0 at the inlet of the crossflow. GLSA was
performed on a steady baseflow obtained using selective frequency
damping (SFD) (Åkervik et al., 2006). In their analysis, the jet noz-
zle was not included, and instead a parabolic velocity profile was
prescribed at the jet nozzle exit. The most unstable high-frequency
modes were found along the upstream shear-layer, whereas low-
frequency wake modes were found downstream. The frequency
of the upstream shear-layer was not far from the non-linear shed-
ding frequency; however, the wake mode frequency was far from
the non-linear wake frequency. It was suggested by Bagheri et al.
(2009) that the difference could be related to the differences be-
tween the SFD solution used in GLSA and the time-averaged solu-
tion.

Peplinski et al. (2015) studied JICFs at low values of R in the
range between 1.5 and 1.6 using GLSA as well as global adjoint
sensitivity analysis (GASA). GASA provides valuable sensitivity
information about the flowfield through the use of the adjoint to
the linearized Navier-Stokes equations. Peplinski et al. (2015) pre-
scribe a super-exponential Gaussian function at the jet exit. Their
results show large streamwise separation between the direct and ad-
joint eigenmodes induced by the flow advection. Additionally, the
adjoint eigenmode is located on the jet exit boundary. This suggests
a large sensitivity to the jet exit boundary condition, and may point
to a necessary inclusion of the jet nozzle in this simulation.

The present work studies the stability of JICFs using GLSA for
R = 2,4 and GASA for R = 2 of the turbulent mean flow. The same
nozzle used in experiments by Megerian et al. (2007) is used in our

simulations. The nozzle is designed to provide a top-hat profile at
the jet exit. Performing GLSA, GASA, or even DNS, of JICF is
very computationally expensive. There are 80 million elements in
the grid used for the present work, which translates to an eigenvalue
problem with a dimension of 240 million. Therefore, a variation of
the Arnoldi iteration method (Arnoldi, 1951) is used to efficiently
calculate the direct and adjoint eigenvalue spectra and the associ-
ated eigenmodes. Once the direct (GLSA) and adjoint (GASA) so-
lutions are known, the wavemaker is computed for the upstream
shear-layer to highlight the regions that are most sensitive to local-
ized feedback. A brief discussion section provides conclusion to the
presented results.

NUMERICAL METHODOLOGY
The incompressible Navier-Stokes (N-S) equations may be

written as,

∂ui

∂ t
+

∂

∂x j
uiu j =− ∂ p

∂xi
+ν

∂ 2ui

∂x j∂x j

∂ui

∂xi
= 0,

(2)

where ν is the kinematic viscosity of the fluid. Equations 2 are
solved using an unstructured, finite-volume algorithm developed
by Mahesh et al. (2004). The algorithm has been validated for a
number of complex flows, including: a gas turbine combustor (Ma-
hesh et al., 2004), free jet entrainment (Babu & Mahesh, 2004), and
transverse jets (Muppidi & Mahesh, 2005, 2007, 2008; Sau & Ma-
hesh, 2007, 2008). The spatial discretization technique focuses on
conserving discrete energy, which by design ensures that the flux of
kinetic energy only has contributions from the boundary elements.
These properties of the numerical algorithm ensure high-fidelity
simulation of complex flows at high Reynolds numbers without
added numerical dissipation. Adams-Bashforth second-order time
integration is used to advance the predictor velocities through the
momentum equation. Next, the Poisson equation for pressure is
derived by taking the divergence of the momentum equation and
satisfying conservation of mass. The pressure field is then used to
project the velocity field to be divergence-free.

The N-S equations (eq. 2) can be linearized about a base state,

ui = ui (x,y,z)

p = p(x,y,z)
(3)

which varies arbitrarily in space. By decomposing the flowfield
into the known base state (ui) plus some O(ε) perturbation (ũi), and
neglecting the ε2 terms, we arrive at the linearized Navier-Stokes
(LNS) equations:

∂ ũi

∂ t
+

∂

∂x j
ũiu j +

∂

∂x j
uiũ j =− ∂ p̃

∂xi
+ν

∂ 2ũi

∂x j∂x j

∂ ũi

∂xi
= 0

(4)

If our interest is in the long-time behavior of ũi, then solutions to
the LNS (eq. 4) are of the form:

ũi (x,y,z, t) = ûi (x,y,z)eωt + c.c (5)

where ω and ûi can be complex. The real part (Re(ω)) is the
growth/damping rate and the imaginary part (Im(ω)) is the tem-
poral frequency of ûi. By substituting in the ansantz (eq. 5), the
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LNS equations (eq. 4) reduce to a linear eigenvalue problem, where
ω is the eigenvalue and ûi is the eigenmode.

To arrive at the adjoint LNS (ALNS) equations we define the
same Lagrangian identity as Hill (1995):

∂ ũ†
i

∂ t
+

∂

∂x j
ũ†

i u j − ũ†
j

∂

∂xi
u j =−∂ p̃†

∂xi
−ν

∂ 2ũ†
i

∂x j∂x j

∂ ũ†
i

∂xi
= 0

(6)

The ALNS equations are integrated backwards in time and provide
sensitivity information for the corresponding LNS equations. By
applying the same ansantz (eq. 5), the ALNS reduce to an eigen-
value problem that can be solved using the same numerical tech-
niques as the direct problem. Additionally, the eigenvalues for the
direct and adjoint problems coincide with each other. Therefore
each direct eigenmode has a corresponding adjoint eigenmode that
provides sensitivity information.

The adjoint velocity field defines the sensitivity of the associ-
ated direct mode to an unsteady point force aligned with the adjoint
velocity vector. This provides valuable sensitivity information in
regards to the underlying flow physics and points to locations in the
domain that are sensitive to control.

When performing GLSA and GASA, the rank of the eigen-
value problem can be O(106 − 108). Solving eigenvalue problems
of this size often prohibits the use of direct methods. In the present
work, we use an extension of the Arnoldi iteration method (Arnoldi,
1951) called the Implicitly Restarted Arnoldi Method (IRAM). This
method is matrix-free, which, in conjunction with a time-stepper ap-
proach, only requires the solution of an LNS time integrator to solve
for the leading eigenvalues.

A turbulent mean flow can be used as the base state for GLSA
and GASA. This choice of base state is a solution to the Reynolds-
averaged N-S equations. Therefore, a non-linear Reynolds stress
term is effectively added to the LNS and ALNS equations when the
baseflow equations are subtracted. A mode-dependent Reynolds
stress term is therefore present in the associated eigenvalue prob-
lems. A scale-separation argument first introduced by Crighton &
Gaster (1976), and more recently by Jordan & Colonius (2013), can
be used to justify when the mode-dependent Reynolds stress term
can be assumed negligible. Only for the eigenmodes of interest,
which are typically large-scale and low frequency when compared
to turbulent scales, must the Reynolds stress term be shown neg-
ligible. For highly turbulent flows there can be multiple orders of
magnitude separating the length (η) and time (tη ) scales of turbulent
motions with the length (L) and time (tL) scales for the motions of
interest. The Kolmogorov scales, as seen in Pope (2000) determine
the scale-separation as follows:

L/η = Re3/4 (7)

tL/tη = Re1/2 (8)

If the scale-separation argument holds, performing GLSA and
GASA with a turbulent mean flow can provide valuable physical
insight with respect to stability and sensitivity.

RESULTS
Figure 1 shows the computational setup. The inflow bound-

ary condition is a laminar Blasius boundary layer profile. The grid
is shown in Figure 1b-d and is identical to the grid used by Iyer
& Mahesh (2016). Additionally, the boundary layer profiles used
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Figure 1. Shown is the computational domain for the jet in cross-
flow (a). The origin is located at the center of the jet nozzle exit. The
nozzle shape is modeled by a 5th-order polynomial and matches the
nozzle used in experiments by Megerian et al. (2007). Uniform flow
is prescribed at the jet inflow, whereas a Blasius boundary layer is
prescribed at the leftmost inflow boundary condition. Three cross-
sectional views of the computational grid that show detailed views
of the symmetry plane (a), jet exit (b), as well as the jet nozzle (c).
This grid is composed of 80 million elements.

in the present work are the same as those used by Iyer & Mahesh
(2016). The profiles have been shown to be in good agreement with
experiments at x/D =−5.5. The jet nozzle shape is modeled by the
same 5th-order polynomial used in experiments (Megerian et al.,
2007) and is included in all simulations. Including the nozzle has
been shown (Iyer & Mahesh, 2016) to play a crucial role in the setup
of the mean flow near the jet exit, which effects the stability char-
acteristics of the flow. The jet exit diameter (D) is 3.81 mm and the
average velocity at the jet exit (v jet ) is 8 m s−1. Additional simula-
tion details are outlined in Table 1; they match the conditions used
in experiments and computations by Megerian et al. (2007) and Iyer
& Mahesh (2016), respectively.

The scale-separation argument provides the following results
for JICFs:

L/η = Re3/4 ≈ 300 (9)

tL/tη = Re1/2 ≈ 45 (10)

This shows that one or more orders of magnitude separate the time
and length scales of turbulent motions and the motions of interest.
Therefore, turbulent mean flow solutions are a valid baseflow choice
and are used as the baseflows in GLSA for the present work.

Figure 2 shows the results from GLSA for cases R= 2 (R2) and
R = 4 (R4). The eigenvalues have been non-dimensionalized by
2πv jet,max/D so that the growth rate is Re(ω)D/(2πv jet,max) and
the Strouhal number is Im(ω)D/(2πv jet,max). The vertical dash-
dotted lines in the Figure 2 highlight the Strouhal numbers recov-
ered from DNS by Iyer & Mahesh (2016), and show good agree-
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Table 1. Simulation parameters R and R∗ are jet-to-crossflow ra-
tios based on the average jet exit velocity and the peak jet exit ve-
locity, respectively. Jet to crossflow ratios (R) of 2 and 4 are stud-
ied at a Reynolds number of 2000, based on the average velocity
(v jet ) at the jet exit and the jet exit diameter (D). Also shown is an
alternative jet to crossflow ratio (R∗), based on the jet exit peak ve-
locity (v jet,max). The momentum thickness of the laminar crossflow
boundary layer is described at the jet exit when the jet is turned off.

Case R R∗ Re θbl/D

R2 2 2.44 2000 0.1215

R4 4 4.72 2000 0.1718

ment with the upstream shear-layer eigenmodes (circled in Figure
2). Additionally, the associated eigenmodes are shown in Figure 3
(R2) and Figure 4 (R4), and show good agreement with the DMD
modes by Iyer & Mahesh (2016).

For case R2, Figure 3 shows that there are two main groups of
eigenmodes; the shear-layer mode and the wake modes. The up-
stream shear-layer mode originates near the jet exit and oscillates
at a frequency very close the what is observed in DNS and experi-
ments. This eigenmode extends downstream beyond the collapse of
the potential core. Therefore the eigenmode is growing as it travels
downstream but also growing at the point of origin. This behavior
near the jet exit is characteristic of an absolutely unstable flow. The
group of downstream wake modes highlight the connection between
the near-wall motions and the jet wake.

The Reynolds stresses present in the turbulent mean flow show
up in GLSA as stationary eigenmodes (i.e. non-oscillatory). This
is because the Reynolds stresses act as a steady forcing term in the
LNS equations. Therefore, the stationary eigenmodes are not rele-
vant to the present work and are not included.

For case R4, Figure 4 shows the two groups of eigenmodes,
consisting of the downstream and upstream shear-layers. Two of the
high-frequency downstream shear-layer eigenmodes are the most
unstable and therefore play an important role in the stability. These
high-frequency modes span a range of frequencies and interact with
the upstream shear-layer after the collapse of the potential core.
This may explain why there are different frequencies present along
upstream shear-layer in DNS and experiment when R = 4. Ad-
ditionally, the upstream shear-layer mode oscillates at a Strouhal
number that is in very good agreement with experiments and DNS.
When compared to case R2, the upstream shear-layer mode for R4
originates further away from the jet exit. This behavior near the
origin the of shear-layer mode is consistent with a convective insta-
bility where the instability travels downstream, but does not grow at
the point of origin.

GASA has been performed for case R2 for the leading instabil-
ity (i.e. upstream shear-layer). Figure 5 shows the leading adjoint
eigenmode with an associated eigenvalue ω = 0.050± i0.61, which
coincides with the leading direct eigenmode. Therefore, this adjoint
eigenmode provides sensitivity information about the direct mode.
Looking at Figure 5 shows that the adjoint eigenmode is localized
near the inside the jet nozzle on the upstream side. This implies
that the direct upstream shear-layer eigenmode is most sensitive to
forcing at this location.

The wavemaker associated with the upstream shear-layer can
be computed by correlating the direct and adjoint eigenmodes. Fig-
ure 6 shows the wavemaker which defines the region that is most
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Figure 2. GLSA eigenvalue spectrum for JICF at a Reynolds num-
ber of 2000 for case R2 (a) and R4 (b). The growth rates and
Strouhal numbers are normalized appropriately. Vertical velocity
spectra from Iyer & Mahesh (2016) are shown (dash-dotted lines)
for comparison. Note that St2 = 1.3 is not shown in (a) as it would
obscure the low frequency results. The eigenvalues with positive
growth rates are unstable.

sensitive to localized feedback. It is clear that two lobes make up
the wavemaker; one on the upstream side of the shear-layer and one
on the downstream side that extends into the jet nozzle. Perturba-
tions to the base state that travel through the wavemaker are subject
to localized feedback. Therefore, perturbing just inside jet nozzle
on the upstream side, or the boundary layer just upstream of the jet
exit, could cause localized feedback to amplify the direct upstream
shear-layer eigenmode (Figure 3a). Additionally, the location of the
wavemaker confirms the absolutely unstable nature of the flow in
the vicinity of the jet exit because the wavemaker is located at the
origin of the direct upstream shear-layer eigenmode.

CONCLUSIONS
Performing GLSA of low-speed JICFs, using turbulent mean

flows as the base states, has been shown to produce upstream shear-
layer eigenmodes that oscillate at frequencies close to those ob-
served in experiments (Megerian et al., 2007) and simulations (Iyer
& Mahesh, 2016) for R values of 2 and 4. Additional unstable eigen-
modes have been shown that occupy the wake for R = 2 that domi-
nate far downstream. Also, for case R4, the downstream shear-layer
modes have been shown to be more unstable than upstream shear-
layer modes and span a range of frequencies. The transition from

session.paper



(a) ω = 0.049± i0.62

(b) ω = 0.0075± i0.27

(c) ω = 0.0026± i0.21

(d) ω = 0.0042± i0.15

(e) ω = 0.0058± i0.13

Figure 3. Real part of the eigenmodes for case R2 are shown with
positive and negative isocontours of ũ and v contours of the base
state in the background. Mode (a) corresponds to the most unstable
and highest frequency upstream shear-layer mode. Modes (b-e) are
lower frequency and originate near the downstream shear-layer and
travel far downstream. Modes (d) and (e) also show a connection
between near-wall motions and motions in the jet wake. Note that
the zero-frequency modes are not shown.

absolute to convective instability observed in simulations and ex-
periments have been further justified through the use of GLSA.

GASA analysis for case R2 has been shown to coincide with
the GLSA spectrum. This allows the conclusion that the upstream
shear-layer eigenmode is sensitive to forcing along the upstream
side of the jet nozzle close to the jet exit. Furthermore, the compu-
tation of the wavemaker shows that the upstream shear-layer direct
mode is subject to localized feedback near its point of origin. This
further justifies the conclusion that in the vicinity of the jet exit, case
R2 behaves as an absolutely unstable flow.

(a) ω = 0.017± i2.3 (b) ω = 0.0010± i2.4

(c) ω = 0.015± i2.2 (d) ω =−0.00077± i2.5

(e) ω = 0.0084± i1.9 (f) ω = 0.0036± i2.0

(g) ω = 0.00029± i1.8 (h) ω = 0.011± i0.75

Figure 4. Real part of the eigenmodes for case R4 are shown with
positive and negative isocontours of ũ and v contours of the base
state in the background. Modes (a-g) correspond to the higher fre-
quency downstream shear-layer modes. Mode (h) is associated with
the upstream shear-layer.

Figure 5. Real part of the adjoint eigenmode for case R2 is shown
with positive and negative isocontours of ũ and v contours of the
base state int he background. The eigenmode has an associated non-
dimensional eigenvalue ω = 0.050± i0.61, which coincides with
the direct eigenmode and provides sensitivity information
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Figure 6. The wavemaker associated with the upstream shear-
layer direct and adjoint eigenmodes. This highlights the most sen-
sitive regions to localized feedback.
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