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Direct numerical simulation of turbulent jets in crossflow
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Direct numerical simulations are used to study a round turbulent jet in a laminar crossflow.
The velocity ratio of the jet to that of the crossflow is 5.7 and the Reynolds number based on
the bulk jet velocity and the jet–exit diameter is 5000. The mean velocity and turbulent inten-
sities from the simulations are compared to data from the experiments by Su & Mungal(2004)
and good agreement is observed. A study of the jet cross–section at locations along the jet tra-
jectory explains the differences observed when the trajectories are defined differently – based
on the center streamline, the vorticity, and the scalar concentration. The counter–rotating
vortex pair is observed all along the length of the jet, though its spatial size is small close to
the jet–exit and increases away from it. A recent scaling law for jet trajectory by Muppidi &
Mahesh (2005) is used to predict the jet trajectory and shows a reasonable agreement.

I. Introduction

A jet in crossflow is defined as the flow field where a jet of fluid enters and interacts with a crossflowing
fluid. Important examples of jets in crossflow are fuel injectors, smokestacks, film cooling on turbine blades and
dilution holes in gas turbine combustors. Margason (1993) provides a comprehensive review of the past work
on this problem. The emphasis has been on the study of the velocity and vorticity fields (Kamotani & Greber
1972, Fearn & Weston 1974, Andreopoulos & Rodi 1985, Fric & Roshko 1994, Krothapalli et al. 1990, Kelso &
Smits 1995), study of the scalar field and mixing (Smith & Mungal 1998, Shan & Dimotakis 2000, Su & Mungal
2004) and attempts at modeling the flow field and jet trajectory (Broadwell & Breidenthal 1984, Karagozian
1986, Hasselbrink & Mungal 2001, Muppidi & Mahesh 2005).

Some of the recent work on jets in crossflow involves numerical simulations. Chochua et al. (2000) performed
RANS calculations and compared their results to experiments (UTRC). It was seen that though their simulations
predicted the mean velocities reasonably, their turbulent intensities showed significant differences from those of
the experiment. Yuan et al.(1999) performed LES of a round jet in crossflow and showed reasonable agreement
for mean velocities and turbulent intensities with experimental results of Sherif & Pletcher (1989). Schluter &
Schonfeld (2000) compared the results of their LES with experimental velocity profiles of Andreopoulos & Rodi
(1984) and scalar fields of Smith & Mungal (1998), and obtain reasonable agreement with the experiments.

The objective of this paper is to study the features of a round turbulent jet in crossflow using direct numerical
simulations. The simulations are performed at conditions corresponding to the experiment by Su & Mungal
(2004). This paper is organized as follows. Section II describes the problem and the relevant parameters.
Section III provides the details of the simulations. Results are provided in section IV: the comparison with Su
& Mungal’s (2004) experiments are presented in subsection A and the velocity field in the near–field is discussed
in subsection B. The evolution of the jet as it moves away from the jet–exit is studied in subsection C and a
method to predict jet trajectories is presented in subsection D. The paper ends with a short summary in section
V.
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Figure 1. Schematic of the problem.

II. Problem

Figure 1 shows a schematic of the problem, where a jet issues perpendicularly from a round pipe into the
crossflow. The crossflow is in the x–direction and the jet is in the y–direction. The origin is located at the center
of the jet exit as shown. u∞ is the crossflow free stream velocity. The velocity ratio is defined as r = uj/u∞,
where uj is the mean jet velocity obtained by averaging uj over the pipe cross–section.

Simulations are performed under the conditions pertaining to experiments by Su & Mungal (2004). The
velocity ratio (r), defined as above, is 5.7 and the Reynolds number of the flow, based on the bulk jet velocity
and the jet–exit diameter is 5000. In the experiment, the jet exits out of a round pipe (of length, about 70
d) into the crossflow. In the absence of any crossflow, fully developed pipe flow conditions are expected at the
jet–exit (Su & Mungal, section 2). Their experiment considered two cases – one where the jet–exit was flush
with the wall and another where the pipe protruded into the crossflow and away from the flow boundaries. The
simulations are confined to the case of the jet–exit flush with the wall of the crossflow, as seen in figure 1. The
crossflow is laminar and the 80% boundary layer thickness is δ80% = 1.32d at the location of the center of the
jet–exit, and in the absence of the jet.

III. Simulation details

A. Algorithm

The numerical scheme solves the incompressible Navier Stokes equations

∂ui

∂t
+

∂uiuj

∂xj

= −
∂p

∂xi

+ ν
∂2ui

∂xjxj

,
∂ui

∂xi

= 0 (1)

on unstructured grids. Here ui, p and ν denote the velocities, pressure and kinematic viscosity respectively.
The density of the fluid is assumed constant and is absorbed into the pressure. The numerical scheme has been
described by Mahesh et al. (2004) and will not be dealt with here in detail. The algorithm stores the Cartesian
velocities and the pressure at the centroids of the cells (control volumes) and the face normal velocities are stored
independently at the centroids of the faces. The scheme is a predictor–corrector formulation which emphasizes
discrete energy conservation on unstructured grids. This property makes the algorithm robust at high Reynolds
numbers without numerical dissipation. The predicted velocities at the control volume centroids are obtained
using the viscous and the non–linear terms of equation 1 which are then used to predict the face normal velocities
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Figure 2. (a) Validation of the crossflow. Comparison with analytical Blasius solution. ◦ : simulations, :
Analytical solution. (b), (c)& (d) Validation of the turbulent pipe flow. Comparison to data from Eggels et al.

(1994). : simulation, : Eggels et al.

on the faces. The predicted face normal velocity is projected so that continuity is discretely satisfied. This yields
a Poisson equation for pressure which is solved iteratively using a multigrid approach. The pressure field is used
to update the Cartesian control volume velocities. Implicit time–stepping is performed using a Crank–Nicholson
scheme. The algorithm has been validated for a variety of problems (see Mahesh et al. 2004) over a range of
Reynolds numbers.

B. Computational Domain and Boundary Conditions

The computational domain extends 32d × 64d × 64d in the axial, wall-normal and spanwise directions (x, y
and z) respectively. Preliminary computations showed that a domain of this size does not constrain the jet,
and the flow does not feel the effects of confinement by the boundary. A length of pipe 2d is included in the
computational domain in order to allow the fully developed turbulent pipe flowfield (at the inlet) to adjust to the
interaction between the jet and the crossflow. The crossflow inflow plane is located 4d upstream of the jet–exit.

The crossflow is modeled as a laminar flow past a flat plate (Schlichting 1968). In the absence of the jet,
the crossflow has a boundary layer thickness of δ80% = 1.32d at the center of the jet–exit. At the crossflow
inflow plane, the velocity field is specified, based on the analytical solution to the Blasius boundary layer, to
give the required δ at the jet–exit in the absence of the jet. In order to validate the crossflow, a simulation
of only the crossflow is performed on a domain without the pipe. The mesh used for the the validation was
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considerably coarser than the one used in the jet in crossflow DNS: the mesh edgelengths in the streamwise and
the spanwise directions were 5–10 times the corresponding ones in the current DNS. Figure 2(a) shows the results
of this validation. Streamwise velocity u is plotted, at all the points of the domain, as a function of the similarity
variable η. The symbols show the results from the simulation and are compared to the analytical Blasius solution
(shown in a solid line) for laminar flow past a flat plate. Note that the comparison shows a good agreement.

The jet in the experiment is turbulent and fully developed by the time the fluid exits the jet–exit. In order
to simulate such a jet, a separate computation is performed to simulate fully developed turbulent flow in a pipe.
This computation is performed at a Reynolds number, based on the pipe diameter and the mean axial velocity,
of 5000. Figures 2(b), (c) & (d) show the validation of the results of this simulation by comparing the radial
profiles of velocity and intensity to the results of Eggels et al. (1994). Mean axial velocity v is normalized with
the bulk velocity vb (figure 2(b)). The rms velocities in figure 2(c) are normalized with the friction velocity uτ ,
and the Reynolds shear stress in figure 2(d) is normalized by the shear stress at the wall. The profiles shown
in solid lines are from the present simulation and the square symbols denote the results of Eggels et al. (1994).
Note that a good agreement is obtained. The mesh used to compute the pipe flow is structured, and contained
256 × 96 × 128 points in the axial, radial and the azimuthal directions respectively. In terms of wall units, the
grid spacing is ∆x+ = 6.762, ∆r+ = 1.802, and in the azimuthal direction, the minimum and maximum spacings
are ∆θ+ = 0.0042 and 8.447 respectively. A time–dependent velocity field at a cross–section plane from the pipe
flow simulation is fed at the inflow plane of the pipe, as the boundary condition for the jet. In order to do this,
once the solution for the pipe flow simulation achieves a steady mean discharge, the instantaneous velocity field
(at the plane) over 80 time units (d/u∞) is stored. The boundary condition specification also involves an amount
of interpolation since the computational mesh on the cross–section plane of the turbulent pipe simulations is
different from the mesh on the inflow plane of the pipe in the jet in crossflow simulation. More details about the
mesh used on the inflow plane are provided in subsection C.

On the exit plane (x/d = 32), a zero–gradient boundary condition is used for the velocities. On the spanwise
boundaries (z/d = ± 32), the velocity field corresponding to the laminar crossflow is specified. Freestream
velocity boundary condition is specified on the top boundary (y/d = 64).

C. Computational Mesh

The computational mesh is unstructured and consists of approximately 11 million hexahedral elements. The
finest elements are found at the walls of the pipe and of the crossflow. The largest elements are found away from
the jet–exit and away from the wall. The mesh is constructed as follows. The inflow plane for the pipe (y/d
= –2) is first meshed. 128 elements are used in the azimuthal direction and 72 elements in the radial direction
(up to a depth of about 0.4d inwards from the wall). This part of the face mesh is structured. The rest of the
plane is meshed using unstructured elements of size (edge length) 0.005d. This face mesh is now swept in the
y–direction up until the jet–exit (y/d = 0). The mesh size in this direction is 0.02d. Note that the mesh in this
part of the domain is based on the mesh used to simulate the turbulent pipe flow specified at the inlet. The
wall of the crossflow is then meshed. The size of the mesh elements in the region around the jet–exit is allowed
to grow (with 128 azimuthal elements) linearly outward at a ratio of 1.05. This is done till the elements grow
to a size of 0.1d. The region of interest, roughly spanning 5d either side of the symmetry plane and up to 20d
downstream of the jet–exit, is meshed using unstructured elements of size 0.1–0.15d. The rest of the plane is
then meshed with elements that are allowed to grow large, away from the region of interest. Mesh elements of
around 1.0d are found at distances about 24d away from the symmetry plane and around 24d downstream of
the jet–exit. The mesh size variation is not allowed to be unreasonably high anywhere in or near the region of
interest. The mesh on the plane y/d = 0 is now swept in the y–direction. A boundary layer at the crossflow
wall allows fine elements near the wall (∆y = 0.01d) and the mesh size increases linearly away from it at a rate
of 1.05 till the mesh size is 0.1d. ∆y is kept constant until a height of y/d = 24. Past this plane (note that jet
exits the domain before crossing this plane), ∆y is allowed to grow linearly at a rate of 1.1. Figure 3(a) provides
a horizontal slice of the mesh. The fine elements in and around the jet–exit and in the vicinity of the symmetry
plane are noticeable. Since the mesh on the wall is swept in the vertical (y–axis) direction, a horizontal section
at any height above the jet–exit shows the same computational mesh as figure 3(a). Note that the complete
domain is not shown.

The details provided above (for the computational domain, mesh and the boundary conditions) are arrived at,
after a series of simulations at different computational parameters. For example, the simulation was performed
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Figure 3. (a) Horizontal slice of the computational mesh shows the elements in the region around the jet–exit and
on the symmetry plane where the profiles are compared. Shown is only a part of the domain. (b) Time–averaged
contours of velocity (v) on the symmetry plane. Also shown is a mean streamline. The white horizontal lines show
the stations at which the computational results are measured with that of the experiment (section IV subsection
A).

on domain sizes extending, in the x, y and z–directions respectively, 32d × 32d × 12d and 32d × 64d × 12d
before the present simulation where the domain is 32d × 64d × 64d, and which does not restrict/confine the jet.
The computational mesh used in the preliminary simulations contained 2.4 million elements, which was refined
to a mesh containing about 6 million elements and, later, 8 million elements, and the present mesh contains
about 11 million elements. Particular care was taken to prescribe the boundary conditions for the simulation
and especially for the jet at the jet inflow which is 2d upstream of the jet–exit. The preliminary simulations have
shown that this length of pipe is sufficient, at this velocity ratio, to let the jet develop naturally before issuing
into the crossflow. Such a conclusion was reached after using a pipe of length 10d and observing the velocity
profile of the fluid inside the pipe between the jet inflow plane and the jet–exit. As explained in section B the jet
inflow boundary conditions are prescribed that match validated results for a fully turbulent flow in a pipe, and
the computational mesh in the near–field of the jet–exit is determined based on the computational mesh used in
the turbulent pipe flow simulation.

IV. Results

The simulation was performed at a time step of 0.0025 non–dimensional time units (d/u∞). The computation
is begun with a ‘no–flow’ initial condition. The solution is allowed to evolve until about 80 time units by which
time the transients exit the computational domain. Statistics are then computed over 40 time units.

Contours of time–averaged velocity (v) on the symmetry plane are shown in figure 3(b). The jet fluid
decelerates, away from the jet–exit as observed in the figure. Also shown is a mean centerline streamline,
representing the path taken by the jet fluid as it interacts with the crossflow. Note that the jet is not symmetric
about the mean streamline. The jet appears thinner on the upstream side of the streamline and thicker on the
downstream side. This aspect is further discussed in subsection B.

A. Comparison to experiments

Note that figure 3(b) shows three horizontal lines on the symmetry plane corresponding to distances, from the
wall, of 0.1rd, 0.5rd and 1.0rd. Su & Mungal (2004) provide detailed experimental profiles of velocity and
turbulent intensities at these stations, as a function of the non–dimensionalized streamwise distance (x/rd).
Figure 4 shows profiles of v, v′v′, u′u′ and u′v′ from the simulation and are compared to the experimental
results. The solid lines in these plots are results from the present simulation while the symbols are the results
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Figure 4. Comparison of mean vertical velocity (v) and turbulent intensity (v′v′, u′u′ and u′v′) profiles with the
experimental results. Simulation, experiment. Profiles are at stations y = 0.1 rd, 0.5 rd and 1.0 rd.

from the experiment.
Plots of v, in figure 4(a), show that the peak vertical velocity is observed near the center of the jet–exit at

the closest station. Moving away from the wall, the location of peak v is observed downstream of the jet–exit.
This can be explained in terms of the jet trajectory, the jet bending in the direction of the crossflow. Also, the
value of the peak velocity decreases away from the wall as can be observed. Figure 4(b) shows profiles of v ′v′. At
y/rd = 0.1, v′v′ shows two peaks corresponding to the edges of the jet, at locations indicated by the leading and
the trailing edges of the jet–exit (x/d = ± 0.5). The two peaks appear to have the same value. At the second
station (y/rd = 0.5), the plot still shows two peaks, however, with different peak values. The upstream edge of
the jet shows a higher v′v′ than the downstream edge of the jet, suggesting a higher shear rate on the upstream
edge. The farthest station shows a single peak. It may be noticed that the peak v′v′ at the three stations is of
the same order and that no significant change in the peak value is observed moving away from the wall. Profiles
of u′u′ (figure 4(c)) also show a twin–peak close to the wall and a single–peak at the station farthest from the
wall. In addition, the peak u′u′ is observed to increase with the distance from the wall. Figure 4(d) shows the
profiles of u′v′ and it is seen that the profile changes sign between the peaks. The peak u′v′ value increases in
magnitude from y/rd = 0.1 to y/rd = 0.5 and decreases by y/rd = 1.0. Note that the magnitude of the peak u′v′

is slightly higher on the upstream edge of the jet than on the downstream edge. The profiles also suggest that
the width of the peaks increases moving away from the jet–exit. This is observed by noting that the gradient of
the profile (around the peak) at the closest station seems sharper than that seen at the other two stations. It
should be mentioned that all the profiles (as observed in the v profiles) show a shift of the location of the peak
in the downstream direction, away from the wall.

Though figure 4 shows a reasonable agreement between the simulation and the experiment, a few discrepancies
can be noticed. The peak vertical velocity v (figure 4(a)) from the experiment is higher than that observed in
the simulations, particularly at the first two stations. Similar differences can be seen with regards to the peaks
while comparing u′u′ in figure 4(c), and u′v′ in figure 4(d). While the v profile shows the greatest discrepancy
at the location closest to the jet–exit, the profiles for u′u′ and u′v′ show the greatest difference at the location
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Figure 5. Comparison of jet trajectory from the simulation ( ) to that from the experiment ( ). (a) scaled
using r, and (b) scaled using reff .

farthest from the jet–exit. Attempts to explain these differences follow.
Su & Mungal report that the bulk jet velocity (uj) in their experiment is 16.9 m/s and that the freestream

crossflow velocity (u∞) is 2.95 m/s, which gives a velocity ratio (r = uj/u∞) of 5.7. The velocity ratio in the
simulations, is also 5.7 based on the bulk jet velocity and the freestream crossflow velocity. The Reynolds number,
based on the bulk jet velocity and the jet–exit diameter, is 5000 and matches that in the experiment. Yet, as
mentioned above, a few differences are seen comparing the experimental results with that of the simulation.

One possible reason for the differences could be the difference in densities. The simulation assumes both the
jet fluid and the crossflow fluid to have the same density. In the experiment, the jet fluid (nitrogen) is seeded
with acetone vapor which gives the jet fluid, a 10 % higher density (ρj/ρ∞ = 1.1, Su & Mungal 2004). If the
velocity ratio (reff ) were to be defined based on the momentum :

reff
2 =

ρjuj
2

ρ∞u∞
2

=
ρj

ρ∞
r2, (2)

the flow parameters described in Su & Mungal (2004) provide a reff = 6.008. As a jet of fluid with a density
10% higher than that of the crossflow exits the jet–exit, it has a momentum that is 10% higher than a jet
with the same fluid density as that of the crossflow fluid. This higher momentum could lead to higher peak
velocities (v), sharper intensity gradients and a trajectory that penetrates deeper into the crossflow. It has
been previously noted (Muppidi & Mahesh 2005) that the flow field of a jet in crossflow is very sensitive to
the jet inflow at the jet–exit. This 10% momentum difference, hence, could be responsible for the discrepancies
observed. The differences seen in figure 4 seem consistent with the above explanation. Figure 5(a) compares the
experimentally observed jet trajectory to the trajectory extracted from the simulations. As predicted above, the
jet in the experiment penetrates deeper into the crossflow (as a result of having a higher momentum). It should
be mentioned here that the jet trajectory from the experiment is extracted using the local scalar maxima, and
the trajectory from the present computation is defined based on the streamline passing through the jet–exit on
the symmetry plane. It has been shown (Su & Mungal 2004, figure 19) that the trajectory defined based on
the center streamline penetrates deeper into the crossflow than the trajectory that is defined based on the local
scalar maxima. Figure 5(a) shows, however, that due to the difference in the densities, the trajectory based on
the center streamline penetrates less than the scalar maxima trajectory from the experiment.

A reasonable approach to compare the experimental and computed results is to use reff to scale the results
instead of r. Such a scaling would account for the density ratio of the jet and the crossflow fluids. Jet trajectories
scaled using reff are shown in figure 5(b). reff = 5.7 for the simulation and reff = 6.008 for the experiment, a
difference of about 6.7 %. It is observed that rescaling the trajectories brings them considerable closer to each
other. At an x location 15d downstream of the jet–exit, the difference between the trajectories scaled with rd is
about 6.5 % while scaling the trajectories using reffd reduces the difference to 2.8%.
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Figure 6. Comparison of mean vertical velocity (v) and turbulent intensity (v′v′, u′u′ and u′v′) profiles with the
experimental results. simulation, experiment. Plots normalized using reff .

The velocity and intensity profiles (figure 4) can be similarly re-scaled using reff and these profiles are
shown in figure 6. As earlier, the lines show results from the simulations and the symbols show results from the
experiment. The profiles correspond to the locations y/reffd = 0.1, 0.5 and 1.0, and the mean velocity and the
intensities are scaled with reff . The velocity (v) profiles in figure 6(a) show a good agreement, even for the peak
v values at the first two locations (as compared to figure 4(a)). The peak velocity on the farthest station (y/reff d
= 1.0), however, shows a slight difference. The profile from the simulation is observed to be higher than that
obtained from the experiment. Profiles of v′v′ (figure 6(b)) also show a good agreement with the experiment at
all the three y/reff locations. Comparison of profiles of u′u′ ((figure 6(c)) show a slight difference in the peak
values at the leading edge of the jet at the first two locations. Good agreement is obtained at y/reff = 1.0d.
Note that this profile, when scaled using r, in figure 4(c) showed the most difference between the simulation and
the experiment. Figure 6(d) shows a comparison of u′v′. At the first two stations, a very good agreement is
observed, while the profiles at the farthest station show a difference. The experimental peaks appear to occur
slightly more downstream of the jet–exit than seen in the profiles obtained from the computation. Overall, for
all the quantities compared and at all the locations, the agreement presented is quite reasonable, particularly,
when seen in the context of the sharp gradients that the profiles possess (e.g. v′v′ and u′v′ at y/reffd = 0.1).

The comparisons shown above (figures 4, 5 and 6) can be summarized as follows :

• Velocity and intensity profiles show significant differences when plotted on axes scaled using r. Experimental
velocity and intensity peaks are higher than those computed. This suggests that the velocity ratio r does
not completely scale the flow field.

• Jet trajectories,plotted on axes scaled with rd show the experimental trajectory to penetrate deeper into
the crossflow than that from the simulation. When plotted on axes scaled using reff d, the trajectories
show a better collapse.

• Re-scaling the profiles with reff brings the profiles significantly closer. This suggests that a velocity ratio
reff based on the momentum (and which accounts for the density ratio) is more applicable than r to scale
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Figure 7. (a)Instantaneous contours of spanwise velocity (w) on the symmetry plane. (b)Instantaneous contours
of velocity (u) on the end-on plane (x/d = 0).

the flow field.

B. Velocity Field

Figure 7(a) shows the instantaneous contours of spanwise velocity (w) on the symmetry plane. Note the small
scales of motion seen inside the pipe and close to the jet–exit. Note that the crossflow fluid upstream of and
above the jet shows zero spanwise velocity (w) and that the crossflow fluid downstream of the jet–exit shows
a small velocity. The extent of the jet on the symmetry plane is, thus, well represented by these contours and
provide an idea of the jet–width on the symmetry plane. Also shown is an instantaneous streamline on the
symmetry plane passing through the center of the jet–exit. It may be observed that the jet is wider downstream
of this streamline (positive x side of the centerline) as compared to the upstream side. This asymmetry has been
noted by Su & Mungal (2004, figure 8) and they cite the reason to be due to the ‘jet fluid that is stripped away
from the developing region of the jet by the crossflow and is deposited in the wake region’. This suggests that the
jet fluid seen downstream of the streamline exits the jet–exit lying on the periphery (of the jet) and not on the
symmetry plane. Also note that the crossflow fluid has a higher momentum upstream side of the jet (negative
x side of the jet centerline) as compared to the downstream side (the ‘wake’ region) of the jet. This difference
in momentum could also aid in accentuating the above seen asymmetry in the jet width. Such an asymmetry is
also observed in figure 3(b) where the time–averaged velocity contours are shown. Instantaneous contours of the
streamwise velocity (u) on the end–on plane (x/d = 0) are shown on figure 7(b). The direction of the crossflow
fluid, in this figure, is into the plane of the paper. Small scale flow features are clearly seen inside the pipe
and near the jet–exit as the jet fluid exits into the crossflow. The three–dimensionality of the flow field is also
apparent. Outside this interaction region (past about 5 to 8 diameters away from the jet–exit), the crossflow
fluid appears relatively quiescent. The contours show the crossflow boundary layer thickness to reduce, close to
the jet–exit. This is due to the acceleration of the crossflow fluid as it flows past (around) the jet.

As mentioned earlier, the inflow condition at the pipe entrance is a time–dependent velocity field from the
computation of a fully developed turbulent flow in a pipe. The length of pipe included in the domain allows the
jet to develop naturally prior to exiting into the crossflow. Figure 8(a) shows the velocity (v) profiles on the
symmetry plane across the pipe diameter at different stations parallel to the wall (x–z plane). Shown are the
profiles at y/d = –2, –1, 0, 1, 2, and 3. Note that the first three profiles shown (y/d = –2, –1 and 0) do not
differ much from each other. This would suggest that the length of pipe used in the computations is sufficient
to model the problem. The differences, though small, between the profile at the pipe inlet and the profile at the
jet–exit, suggest the necessity of including some length of pipe in the computational domain. This aspect has
been earlier mentioned by Yuan & Street (1999) and Muppidi & Mahesh (2005). The profiles in figure 8(a) show
that moving away from the jet–exit, as might be expected, the peak velocity decreases and the peak shifts to
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Figure 8. Profiles of velocity(v) and turbulent intensity (v′v′) across the jet diameter at different stations parallel
to the wall : y/d = –2, –1, 0, 1, 2 and 3.

the right. The jet decelerates as it interacts with the crossflow, and the momentum of the crossflow forces the
jet to move to the right, hence shifting the location of the peak velocity. profiles of turbulent intensity (v ′v′)
are presented in figure 8(b). At the inflow of the pipe, the profile shows two peaks of almost equal value and is
symmetric about the origin. As the jet fluid gets closer to the jet–exit, the profile begins to lose the symmetry.
Both the peaks are shifted to the right, and the peak on the right side (downstream edge) has a value higher
than that of the peak on the left side (upstream edge) of the origin. Once the fluid exits the jet and interacts
with the crossflow, there is a significant increase in the turbulent intensity as is clearly seen. Also noticeable is
the shift of the locations of the peak intensity in the direction of the crossflow.

C. Evolution of the jet

x

y

s

n

z

θ

Figure 9. Schematic of the axes used to show the evolution of the jet along the trajectory. θ is the angle by which
the x–y axes are rotated about the z–axis to obtain the s–n axes system.

It is well known that as a jet issues into the crossflow, not only does it deflect in the direction of the crossflow,
but also forms a pair of counter–rotating vortices. The counter–rotating vortex pair (CVP) has been considered
to be a dominant feature of this flow and has been observed to persist far downstream (Keffer & Baines 1963,
Pratte & Baines 1967, Kelso et al. 1996). It is convenient to study the evolution of the jet in a coordinate system
that is aligned with the jet. A schematic of this coordinate system is presented in figure 9. At any point along
the centerline of the jet (defined by the mean jet trajectory) a new coordinate system s–n is obtained by rotating
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the x–y axes about the z–axis. The angle of rotation is θ. Very close to the jet–exit, θ ∼ 90◦. In the far–field,
when the jet is horizontal, θ ∼ 0 and the s–n axes are the same as the x–y axes. The z–coordinate is the same
in both the coordinate systems. On the s–n plane, note that s is the coordinate along the jet centerline, and
n is the coordinate normal to the centerline. By a simple coordinate transformation, the velocity field can be
expressed in terms of us, un and w, along the s,n,z–axes. Figure 11 shows the jet on planes perpendicular to
the jet at different s locations. The in–plane coordinates are z and n. Shown are the contours of out–of–plane
velocity (us) along with a few in–plane streamlines. The origin on these planes indicates the location where the
jet centerline crosses the plane. The plots are at locations s = d, 4d, 7d, 10d, 13d and 15d. At these locations, θ
is, respectively, 89.75◦, 81.44◦, 62.26◦, 40.71◦, 30.3◦ and 24.49◦.

The cross–section of the jet changes along the jet trajectory. Close to the jet–exit (s = d, figure 11a), the jet
has a circular cross–section, and the highest velocity is seen in the middle of the jet cross–section, around the
centerline. Away from the jet–exit, the jet cross–section begins to flatten at the trailing edge (figures 11b and
c) giving the jet a ‘kidney–shaped’ structure, and even further away (figures 11d–f), velocity contours show the
trailing edge to move closer to the leading edge. The higher velocity contours, away from the jet–exit, are seen
on the edges of the jet cross–section and the fluid in the middle appears to have a relatively lower velocity.

At s = d, streamlines show a significant entrainment of the crossflow fluid by the jet. This entrainment
appears to influence (entrain) crossflow fluid that is as far as 3d away from the jet center. At the trailing edge
of the jet, the streamlines show the presence of a vortex pair, restricted to a small spatial region. When s =
4d, the streamlines do not show any entrainment of the crossflow fluid, and roughly resemble the flow past a
circular obstacle. The counter–rotating vortex pair (CVP) is clearly seen and seems to extend across the jet.
In general, moving away from the jet–exit, the size of the CVP appears to increase. However, the jet appears
slightly displaced from the CVP, particularly when s > 4d. The velocity contours indicate the jet to be above
(+’ve n side) the CVP. This explains why the trajectory of a jet defined as the center streamline penetrates
deeper into the crossflow than a trajectory defined based on the vorticity (Fearn & Weston 1974). Imagine the
jet to carry a passive scalar. Due to the CVP being below the origin, and because the leading edge of the the
jet is close to the origin, it might be guessed that comparatively more fluid containing the scalar would be seen
below the origin (‘-’ve n side) than above the origin. As mentioned earlier, the origin represents the point where
the center streamline crosses the z–n plane. Hence, a trajectory based on the scalar centerline would penetrate
less into the crossflow than the center streamline. Note that moving away from the jet–exit, the size of the jet
cross–section and that of the CVP increases, which would suggest that the difference between the two trajectories
increases with the distance from the jet–exit.

Figures 11(d)–(f) also show the horseshoe vortex close to the wall. These horseshoe vortices are formed
upstream of the jet, similar to the ones formed around an obstacle in a boundary layer flow. They wrap around
the jet and extend far into the downstream. The horseshoe vortices have been studied in detail, notably by
Krothapalli et al. (1990) for a square jet in crossflow and by Kelso & Smits (1995) for a round jet in crossflow.
Note that since the planes are not perpendicular to the wall, figures 11(d)–(f) do not show the true profile of the
horseshoe vortex.

D. Jet trajectory

The trajectory of the jet has been the subject of considerable investigation. Models for jet trajectories have been
suggested by Broadwell & Breidenthal (1984), Karagozian (1986), Hasselbrink & Mungal (2001) and Muppidi
& Mahesh (2005). Broadwell & Breidenthal consider the jet–exit as a point source of momentum and, using
similarity theory, conclude that the global length scale in this problem is ‘rd’. The trajectory is scaled as

y

rd
= A

( x

rd

)B

(3)

where A and B are constants. Pratte & Baines (1967) obtain A = 2.05 and B = 0.28 from their experimental
results. Margason (1993) provides a list of experimental values for A and B. Various experimental results in
the literature provide a scatter in the value for these constants, 1.2 < A < 2.6 and 0.28 < B < 0.34. Muppidi &
Mahesh (2005) show, by plotting trajectories from a few experiments on rd axes, that this rd scaling does not
completely collapse trajectories and hence results in a considerable scatter (Muppidi & Mahesh (2005), figure
1). One reason for this lack of collapse is that the near–field of the jet-exit and jet trajectory depend not only
on the velocity ratio r but also on the velocity profiles of the jet and of the crossflow. By performing controlled
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simulations at two velocity ratios, two velocity profiles for the jet and by varying the crossflow boundary layer
thickness, it was shown that rd scaling is insufficient to scale the trajectories (Muppidi & Mahesh (2005), figures
7 & 8). A scaling law was proposed which would take the velocity profile parameters into account, to scale the
trajectory.

The jet trajectory was explained in terms of the competing inertias of the jet and of the crossflow. A near
field parameter ‘h’ was defined as the height until which the jet remained vertical. Under the hypothesis that
at h, the inertia of the jet was comparable to the pressure gradient applied by the crossflow on the jet (and
hence to the momentum flux of the crossflow), the analytical equation relating h to the different parameters was
presented as

∫ h

0

d

{

ucf

u∞

}2

dy = Cmr2π
d2

j

4
, (4)

where h appears as the integral limit on the left hand side, ucf is the crossflow velocity (and a function of y),
and dj is effective diameter of the jet defined as

ρj

∫

A

u2
j dA =

πd2
j

4
ρjuj

2 (5)

where uj on the left hand side is a function of the spatial coordinate (x, z in the present problem) and uj is the
mean jet velocity. Note that dj allows the jet velocity profile to be parameterized. It was shown that equation
4 displayed the dependence of h on r and the jet and crossflow velocity profiles that was consistent with the
observed results of the simulations. An analytical method to estimate h was presented by approximating the
crossflow velocity ucf as a piece–wise linear function of y :

h

d
=

{

3

4
πCmr2

δ2d2
j

d4

}
1

3

, when h ≤ δ, and

h

d
=

2

3

δ

d
+

π

4
Cmr2

d2
j

d2
, when h ≥ δ. (6)

and a scaling law

y

rd
= A′

( x

rd

)B
(

h

d

)C

(7)

was proposed, where C is 0.15 and A′ and B are constants. Since equation 7 contains h, effects of velocity profiles
of the jet and the crossflow, along with r, on the jet trajectory are taken into account. Figure 15 in Muppidi
& Mahesh (2005) shows that scaling jet trajectories using equation 7 reduces the scatter significantly, thereby
supporting the use of h to account for the effect of the jet and crossflow velocity profiles on the jet–trajectory.
The scope of that study (Muppidi & Mahesh 2005) was confined to scaling the trajectories from the different
simulations using h. A way to predict jet trajectories using h is now presented.

As mentioned previously, values of A found in the literature demonstrate a large scatter in the range of
1.2–2.6. An important reason ascribed to this scatter is the different definitions used to define the jet trajectory
(Hasselbrink & Mungal 2001). Despite a complete consistency in this definition (the trajectory is defined as the
center streamline on the symmetry plane), Muppidi & Mahesh (2005) obtain values of A ranging between 1.45
and 2.39 (see 1). B had a comparatively small range, 0.32 < B < 0.34. A comparison of equations 3 and 7
shows that the constant A from the first equation is now substituted by the term A′(h/d)C in the second. Table
1 provides the values of A, h and A′ from the nine simulations reported in Muppidi & Mahesh (2005). It maybe
observed that the spread of A′ is less than that seen in A, and more significantly, a majority of values for A′ seem
to lie around 1.8. An average value for A′ obtained from table 1 is 1.85. In order to use equation 7 to predict
the jet trajectory, an estimate for h is required. Using equation 6 and the parameters for the current simulation
(δ = 1.32d, dj = 1.05d, r = 5.7 ), the estimated value for h is 2.29d. Since h is defined as the height up to
which the trajectory is vertical, this value can also be extracted as the y coordinate of the trajectory at a small
distance downstream of the jet–exit. The value of h thus extracted (as the y coordinate at x = 0.05 d) from
the trajectory provides h = 2.62 d, a difference of about 11%. Approximating the crossflow velocity profile with
the piece–wise linear function might be a reason for this discrepancy. Thus, having computed h, and taking the
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h A A′

1 0.608268 2.0215 2.1780

2 0.528857 1.75505 1.9310

3 0.323492 1.58726 1.8800

4 0.255544 1.45267 1.7826

5 2.573220 2.13378 1.8517

6 2.375180 1.99401 1.7513

7 1.844540 2.00177 1.8261

8 1.764860 1.86196 1.7099

9 3.145660 2.39052 2.0129

Table 1. Values of near–field scaling parameter h, and the constants A and A′, from the simulations in Muppidi &
Mahesh (2005).
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Figure 10. Jet trajectory predicted using equation 7 ( ) compared to the jet trajectory obtained from the
simulation ( ).

value of A′ as 1.85, the jet trajectory can be predicted. Figure 10 shows the predicted trajectory along with the
trajectory obtained from the simulations. Note that the agreement is reasonable. Even as far away as 4rd (about
23 diameters downstream of the jet–exit) downstream of the jet–exit, the difference between the predicted and
the actual trajectories is about 9%, which appears reasonable.

V. Summary

Direct numerical simulations of a round turbulent jet in crossflow are performed. The conditions are the
same as the experiments of Su & Mungal (2004). Velocity and turbulent intensity profiles from the simulation
are compared to those from the experiments. It is seen that the profiles, when scaled with the velocity ratio r
do not completely agree. The cause of the discrepancy is shown to be the jet–to–crossflow density ratio in the
experiments, and this factor explains the differences seen. The profiles are re–scaled with the ‘effective velocity
ratio’ reff and it is shown that such re–scaling brings the profiles and the jet–trajectory from the simulations
closer to the experimental results and the agreement observed is good. The different stages seen as the jet evolves
from one of a circular cross–section in the near–field to a ‘kidney–shaped’ structure in the far field are presented.
The evolution of the CVP along the length of the jet is also studied. The CVP forms very close to the jet–exit
on the downstream edge of the jet. Moving away from the jet–exit, the CVP appears to increase in size. A

13 of 15

American Institute of Aeronautics and Astronautics Paper 2005-1115



study of this evolution also explains why a jet trajectory based on the center streamline penetrates deeper than
one defined based on either the vorticity or the scalar concentration. The jet trajectory is predicted using the
scaling law proposed by Muppidi & Mahesh (2005) and the prediction is shown to be satisfactory. Scaling and
predicting jet trajectories in this manner aids in accounting for different jet and crossflow velocity profiles that
the existing rd scaling cannot.
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Figure 11. Evolution of the jet at different points along the jet centerline. Shown are contours of out–of–plane
velocity and on planes normal to the jet. The location of the jet is (a) s = d, (b) s = 4d, (c) s = 7d, (d) s = 10d, (e)
s = 13d and (f) s = 15d.
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