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Abstract

Large-eddy simulation of an atomizing spray issuing from a gas-turbine injector is

performed. The filtered Navier-Stokes equations with dynamic subgrid scale model

are solved on unstructured grids to compute the swirling turbulent flow through

complex passages of the injector. The collocated grid, incompressible flow algorithm

on arbitrary shaped unstructured grids developed by Mahesh et al. (J. Comp. Phy.,

2004, 197, 215–240) is used in the present work. A Lagrangian point-particle for-

mulation with a stochastic model for droplet breakup is used for the liquid phase.

Following Kolmogorov’s concept of viewing solid particle-breakup as a discrete ran-

dom process, the droplet breakup is considered in the framework of uncorrelated

breakup events, independent of the initial droplet size. The size and number density

of the newly produced droplets is governed by the Fokker-Planck equation for the

evolution of the pdf of droplet radii. The parameters of the model are obtained

dynamically by relating them to the local Weber number and resolved scale tur-

bulence properties. A hybrid particle-parcel is used to represent the large number

of spray droplets. The predictive capability of the LES together with Lagrangian

droplet dynamics models to capture the droplet dispersion characteristics, size dis-

tributions, and the spray evolution is examined in detail by comparing it with the

spray patternation study for the gas-turbine injector. The present approach is com-

putationally efficient and captures the global features of the fragmentary process of

liquid atomization in complex configurations.

Key words: Sprays, LES, complex geometries, droplet breakup, stochastic models
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1 Introduction

Liquid spray atomization plays a crucial role in analyzing the combustion dynamics in many

propulsion related applications. This has led researchers to focus on modeling of droplet formation

in numerical investigations of chemically reacting flows with sprays. In the traditional approach for

spray computation, the Eulerian equations for gaseous phase are solved along with a Lagrangian

model for dropet transport with two-way coupling of mass, momentum, and energy exchange be-

tween the two phases [1]. The standard approach is to first perform spray patternation studies

for the injector used in combustion chambers and measure the size distributions at various cross-

sections from the injector. These distributions are then used as an input to a numerical simulation

which then computes the secondary atomization of the injected droplets. The secondary atom-

ization is typically modeled by standard deterministic breakup models based on Taylor Analogy

Breakup (TAB) [2], or wave [3] models. However, this requires performance of experimental tests

for any new injector design which can be very costly.

Development of numerical approaches for direct simulations of the primary atomization of a liquid

jet or sheet is necessary. However, such approaches also require significant computational effort.

Such numerical schemes capture the complex interactions and instabilities near the gas-liquid

interface, formation of ligaments and their disintegration into droplets. Considerable advances

have been made in this area [4–6]. The predictive capability of such schemes may be strongly

influenced by the grid resolutions used and capabilities for realistic injector geometries are still

under development.

Majority of spray systems in propulsion applications involve complex geometries and highly un-

steady, turbulent flows near the injector. The numerical models for spray calculations should be

able to accurately represent droplet deformation, breakup, collision/coalescence, and dispersion
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due to turbulence. Simulations involving comprehensive modeling of these phenomena are rare.

Engineering prediction of such flows relies predominantly on the Reynolds-averaged Navier-Stokes

equations (RANS) [7,8]. However, the large-eddy simulation (LES) technique has been convinc-

ingly shown to be superior to RANS in accurately predicting turbulent mixing in simple [9], and

realistic [10–12] combustor geometries. It was shown that LES captures the gas-phase flow physics

accurately in swirling, separated flows commonly observed in propulsion systems. Recently, Apte

et al. [13] have shown good predictive capability of LES in swirling, particle-laden coaxial com-

bustors. The particle-dispersion characteristics were well captured by the Eulerian-Lagrangian

formulation.

In the present work, LES together with a stochastic subgrid model for droplet atomization is

used for simulation of spray evolution in a real gas-turbine injector geometry. Modeling of the

complexities of the atomization process is based on a stochastic approach. Here, the details of

the ligament formation, liquid sheet/jet breakup in the near injector region are not computed in

detail, but their global features are modeled in a statistical sense. Following Kolmogorov’s concept

of viewing solid particle-breakup as a discrete random process [14], atomization of liquid drops at

high relative liquid-to-gas velocity is considered in the framework of uncorrelated breakup events,

independent of the initial droplet size. Gorokhovski and Saveliev [15] reformulated Kolmogorov’s

discrete model of breakup in the form of a differential Fokker-Planck equation for the pdf of droplet

radii. The probability to break each parent drop into a certain number of parts is assummed

independent of the parent-drop size. Using central limit theorem, it was pointed out that such a

general assumption leads to a log-normal distribution of particle size in the long-time limit. This

approach was further extended in the context of large-eddy simulations of the gas-phase by Apte

et al. [16] and validated for spray evolution in simplified Diesel engine configuration.

In this work, the stochastic breakup model is applied to simulate a spray evolution from a realistic
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pressure-swirl injector to evaluate the predictive capability of the model together with the LES

framework. As the first step, cold flow simulation with stochastic model for secondary atomization

is performed. This study thus isolates the problem of liquid atomization in pressure-swirl injectors

typically used in gas-turbine engines and serves as a systematic validation study for multiphysics,

reacting flow simulations in realistic combustors [12].

In subsequent sections, the mathematical formulations for the large-eddy simulation of the gaseous-

phase and subgrid modeling of the liquid phase are summarized. Next, the stochastic model for

liquid drop atomization is discussed together with a hybrid particle-parcel algorithm, based on

the original parcels approach proposed by O’Rourke and Bracco [17], for spray simulations. The

numerical approach is then applied to compute unsteady, swirling flows in a complex injector

geometry and the results are compared with available experimental data on spray patternation

studies.

2 Mathematical Formulation

The governing equations used for the gaseous and droplet phases are described briefly. The droplets

are treated as point-sources and influence the gas-phase only through momentum-exchange terms [13].

2.1 Gas-Phase Equations

The three-dimensional, incompressible, filtered Navier-Stokes equations are solved on unstructured

grids with arbitrary elements. These equations are written as

∂ui
∂t

+
∂uiuj
∂xj

= − ∂φ
∂xi

+
1

Reref

∂2ui
∂xjxj

− ∂qij
∂xj

+ Ṡi (1)
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where qij denotes the anisotropic part of the subgrid-scale stress tensor, uiuj − uiuj, and the

overbar indicates filtered variables. The dynamic Smagorinsky model is used for qij [18]. Equation

(1) is non-dimensionalized by the reference length, velocity, and density scales, Lref , Uref , ρref ,

respectively. The reference Reynolds number is defined as Reref = ρrefLrefUref/µref . The source-

term Ṡi in the momentum-equations represent the ‘two-way’ coupling between the gas and particle-

phases and is given by

Ṡi = −
∑
k

Gσ(x,xp)
ρkp
ρref

V k
p

dukpi
dt

(2)

where the subscript p stands for the droplet phase. The
∑
k is over all droplets in a computa-

tional control volume. The function Gσ is a conservative interpolation operator with the constraint∫
Vcv
Gσ(x,xp)dV = 1 [13], where Vcv is the volume of the grid cell and Vp

k is the volume of the kth

droplet.

2.2 Liquid-Phase Equations

Droplet dynamics are simulated using a Lagrangian point-particle model. It is assumed that (1) the

density of the droplets is much greater than that of the carrier fluid, (2) the droplets are dispersed,

(3) the droplets are much smaller than the LES filter width, (4) droplet deformation effects are

small, and (5) motion due to shear is negligible. Under these assumptions, the Lagrangian equations

governing the droplet motions become [19]

dxp
dt

= up;
dup
dt

=
1

τp
(ug,p − up) +

(
1− ρg

ρp

)
g (3)

where xp is the position of the droplet centroid, up denotes the droplet velocity, ug,p the gas-phase

velocities interpolated to the droplet location, ρp and ρg are the droplet and gas-phase densities,
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and g is the gravitational acceleration. The droplet relaxation time scale (τp) is given as [19]

τp =
ρpd

2
p

18µg

1

1 + aRebp
, (4)

where dp is the diameter and Rep = ρgdp|ug,p−up|/µg is the droplet Reynolds number. The above

correlation is valid for Rep ≤ 800. The constants a = 0.15, b = 0.687 yield the drag within 5%

from the standard drag curve.

Note that some of the above assumptions for the point-particle approach are not valid very close

to the injector. The droplets may undergo deformation [20], collision, and coalescence. However,

as a first step these effects are not considered and further investigations are needed to evaluate

their influence.

2.3 Stochastic Modeling of Droplet Breakup

As the physics of primary and secondary atomization are not well understood even in simple and

canonical flow configurations, a heuristic approach based on stochastic modeling is followed in

order to reduce the number of tuning parameters in an atomization model. A stochastic breakup

model capable of generating a broad range of droplet sizes at high Weber numbers has been

developed [6,15,16]. In this model, the characteristic radius of droplets is assumed to be a time-

dependent stochastic variable with a given initial size-distribution. For very large Weber numbers,

there is experimental evidence indicating the fractal nature of atomization process [21,22] wherein

large droplets can directly disintegrate into tiny droplets. The stochastic nature of this process is

modeled by the present approach. The breakup of parent drops into secondary droplets is viewed

as the temporal and spatial evolution of this distribution function around the parent-droplet size
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according to the Fokker-Planck (FP) differential equation

∂T (x, t)

∂t
+ ν(ξ)

∂T (x, t)

∂x
=

1

2
ν(ξ2)

∂2T (x, t)

∂x2
, (5)

where the breakup frequency (ν) and time (t) are introduced. The moments 〈ξ〉 =
∫ 0
−∞ξS(ξ)dξ

and 〈ξ2〉 =
∫ 0
−∞ξ

2S(ξ)dξ are the two parameters of the model that need closure. Here, T (x, t)

is the distribution function for x = ln(r), and r is the droplet radius. Breakup occurs when

t > tbu = 1/ν and r > rcr, the critical radius of the droplet. Following the arguments of scale

similarity analogous to the turbulence cascade behavior at large Reynolds numbers, Gorokhovski

and Saviliev [15] looked at the long-time behavior of the droplet breakup. They showed that the

initial delta-function for the logarithm of radius of the jth primary droplet evolves into a steady

state distribution that is a solution to the Fokker Planck equation [15,16]

Tj(x, t+ 1) =
1

2

1 + erf

x− xj − 〈ξ〉√
2〈ξ2〉

. (6)

This long time behavior of the distribution is characterized by the dominant mechanism of breakup.

Improvements to the model, wherein presence of a liquid core near the injector is taken into

account [23], have been proposed, however, in the present work an initial dirac-delta function is

assumed at the injector surface.

The value of the breakup frequency and the critical radius of breakup are obtained by the balance

between the aerodynamic and surface tension forces. The critical (or maximum stable) radius for

breakup is then given as rcr = Wecrσ/(ρgu
2
r,j) where |ur,j| is the relative velocity between the gas

and droplet, σ the surface tension coefficient, Wecr the critical Weber number, which is assumed

to be on the order of six over a wide range of Ohnesorge numbers. For highly turbulent flows,

however, the instantaneous value of Kolmogorov scale (η) is often less than the droplet size and

the entire spectrum of turbulent kinetic energy can contribute to the stretching and disintegration

8



of the droplet. In this case, the critical radius should be obtained as a balance between the capillary

forces and turbulent kinetic energy supplied to the liquid droplet. Accordingly, the relative droplet-

to-gas velocity is estimated from the mean viscous dissipation and Stokes time scale (τst) as

|u2
r,j| ≈ ετst [24]. Using this relative velocity, the critical radius of breakup becomes

rcr =

(
9

2

Wecrσνlam
ερ`

)1/3

, (7)

where νlam is the kinematic viscosity, ρ` is the liquid density, and ε is the viscous dissipation rate.

In the present LES study, the viscous dissipation can be obtained dynamically form the resolved

scale energy flux. The breakup frequency is obtained following the analogy with expressions used

for aerodynamic breakup and utilizing the relative velocity (|ur,j|) from above

tbu = B

√
ρl
ρg

rj
|ur,j|

, (8)

where rj is the radius of parent drop and B =
√

1/3 [2,25].

If the breakup criterion (t > tbu and r > rcr) for a parent droplet is satisfied, secondary droplets

are sampled from the analytical solution (Eq. 6) corresponding to the breakup time-scale. The

parameters encountered in the FP equation (〈ξ〉 and 〈ξ2〉) are computed by relating them to the

local Weber number for the parent drop, thereby accounting for the capillary forces and turbulent

properties. Apte et al. [16] assumed that in the intermediate range of scales between the parent

drop element (large Weber number) and the maximum stable droplet (critical Weber number)

there exists no preferred length scale, following the fractal nature of atomizing spray [22]. This

closely resembles the inertial range of the energy cascade process in homogeneous turbulence at

high Reynolds numbers. Analogously, assuming u3
r,j/rj = u3

r,cr/rcr, one obtains

rcr
rj

=

(
Wecr
Wej

)3/5

=⇒ 〈lnα〉 ≡ 〈ξ〉 = Kln

(
Wecr
Wej

)
, (9)
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where ur,cr is the relative velocity at which disruptive forces are balanced by capillary forces

(similar to turbulent velocity scale of the smallest eddies) and the constant K is of order unity

(∼ 0.6). This gives expression for one of the parameters 〈ξ〉.

Furthermore, from the Einstein’s theory of Brownian motion, the diffusion coefficient in the Fokker-

Planck equation is known to be the energy of Brownian particles multiplied by their mobility. The

drift velocity is presented in the form of drag force times the mobility. The ratio of diffusion to

drift velocity is given by the ratio of energy to drag force. In the breakup process, the energy

in Einstein’s theory is associated with the disruptive energy while the force is associated with

the capillary force on the droplet. Normalized by the length scale of the parent drop, this ratio is

characterized by the Weber number. Considering the Fokker Planck equation (Eq. 5), the diffusion

to drift velocity ratio is scaled by −〈ξ2〉/〈ξ〉. Then it is assumed that

− 〈ξ〉
〈ξ2〉

≡ − 〈lnα〉〈
ln2α

〉 = We−1
j . (10)

This relationship gives the maximum dispersion of newly produced droplet sizes. Thus, both the

parameters in the Fokker Planck equation are obtained dynamically by computing the local value

of Wej, and knowing Wecr.

Once new droplets are created, the product droplet velocity is computed by adding a factor wbu to

the primary drop velocity. This additional velocity is randomly distributed in a plane normal to the

relative velocity vector between the gas-phase and parent drop, and the magnitude is determined

by the radius of the parent drop and the breakup frequency, |wbu| = rν. This modification of newly

formed droplets follows the physical picture of parent droplets being torn apart by aerodynamic

forces giving momentum to the newly formed droplets in the direction normal to the relative

velocity between the gas-phase and parent drops [2].
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As new droplets are formed, parent droplets are destroyed and Lagrangian tracking in the physical

space is continued till further breakup events. In the present work, the liquid spray is injected

at atmospheric pressure and temperatures. The rates of evaporation are very small and droplet

evaporation is neglected.

2.4 Subgrid Scale Modeling

In LES of droplet-laden flows, the droplets are presumed to be subgrid, and the droplet-size is

smaller than the filter-width used. The gas-phase velocity field required in Eq. (3) is the total

(unfiltered) velocity, however, only the filtered velocity field is computed in Eqs. (1). The direct

effect of unresolved velocity fluctuations on droplet trajectories depends on the droplet relaxation

time-scale, and the subgrid kinetic energy. Considerable progress has been made in reconstructing

the unfiltered velocity field by modeling the subgrid scale effects on droplet dispersion. Bellan [26]

provides a good review on this topic in the context of spray modeling. Majority of the works

related to subgrid scale effects on droplet motion have been performed for dilute loadings, wherein

the droplets are either assumed smaller than the LES filter size or the Kolmogorov length scale.

For dense spray systems, droplet dispersion and droplet interactions with subgrid scale turbulence

are not well understood. In addition, In realistic configurations the droplet sizes very close to the

injector can be on the order of the grid size used for LES computations.

Recently, Pozorski and Apte [27] performed a systematic study of the direct effect of subgrid scale

velocity on particle motion for forced isotropic turbulence. It was shown that, in poorly resolved

regions, where the subgrid kinetic energy is more than 30%, the effect on droplet motion is more

pronounced. A stochastic model reconstructing the subgrid-scale velocity in a statistical sense was

developed [27]. However, in well resolved regions, where the amount of energy in the subgrid scales
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is small, this direct effect was not strong. In the present work, the direct effect of subgrid scale

velocity on the droplet motion is neglected. However, note that the droplets do feel the subgrid

scales through the subgrid model that affects the resolved velocity field. For well-resolved LES of

swirling, separated flows with the subgrid scale energy content much smaller than the resolved

scales, the direct effect was shown to be small [13].

3 Numerical Method

The computational approach is based on a co-located, finite-volume, energy-conserving numerical

scheme on unstructured grids [10] and solves the incompressible Navier-Stokes equations. The

velocity and pressure are stored at the centroids of the control volumes. The cell-centered velocities

are advanced in a predictor step such that the kinetic energy is conserved. The predicted velocities

are interpolated to the faces and then projected. Projection yields the pressure potential at the cell-

centers, and its gradient is used to correct the cell and face-normal velocities. A novel discretization

scheme for the pressure gradient was developed by Mahesh et al. [10] to provide robustness without

numerical dissipation on grids with rapidly varying elements. This algorithm was found to be

imperative to perform LES at high Reynolds numbers in realistic combustor geometries and is

essential for the present configuration. This formulation has been shown to provide very good

results for both simple and complex geometries [10–12].

In addition, for two-phase flows the particle centroids are tracked using the Lagrangian framework.

The particle equations are integrated using third-order Runge-Kutta schemes. Owing to the dis-

parities in the flowfield time-scale and the droplet relaxation time (τp) sub-cycling of the droplet

equations may become necessary. After obtaining the new droplet positions, the droplets are relo-

cated, droplets that cross interprocessor boundaries are duly transferred, boundary conditions on
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droplets crossing boundaries are applied, source terms in the gas-phase equation are computed,

and the computation is further advanced. Solving these Lagrangian equations thus requires ad-

dressing the following key issues: (i) efficient search for locations of droplets on an unstructured

grid, (ii) interpolation of gas-phase properties to the dropletlocation for arbitrarily shaped control

volumes, (iii) inter-processor droplet transfer. An efficient Lagrangian framework was developed

which allows tracking millions of droplet trajectories on unstructured grids [13,16].

Hybrid Droplet-Parcel Algorithm for Spray Computations: Performing spray breakup computations

using Lagrangian tracking of each individual droplet gives rise to a large number of droplets (≈ 20-

50 million) in localized regions very close to the injector. Simulating all droplet trajectories gives

severe load-imbalance due to presence of droplets on only a few processors. On the other hand,

correct representation of the fuel vapor distribution obtained from droplet evaporation is necessary

to capture the dynamics of spray flames. In their pioneering work, O’Rourke and Bracco [17]

used a ‘discrete-parcel model’ to represent the spray drops. A parcel or computational particle

represents a group of droplets, Npar, with similar characteristics (diameter, velocity, temperature).

Typically, the number of computational parcels tracked influences the spray statistics predicted

by a simulation.

The original work of O’Rourke and co-workers [2,17] inject parcels from the injector, resulting in

much fewer number of tracked computational particles. In this work, the parcels model is further

extended to a hybrid particle-parcel scheme [16]. The basic idea behind the hybrid-approach is

as follows. At every time step, droplets of the size of the spray nozzle are injected based on the

fuel mass flow rate. New droplets added to the computational domain are pure drops (Npar = 1).

These drops are tracked by Lagrangian particle tracking and undergo breakup according to the

stochastic model creating new droplets of smaller size. As the local droplet number density exceeds

a prescribed threshold, all droplets in that control volume are collected and grouped into bins
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corresponding to their size. The droplets in bins are then used to form a parcel by conserving

mass. Other properties of the parcel are obtained by mass-weighted averaging from individual

droplets in the bin. The number of parcels created would depend on the number of bins and the

threshold value used to sample them. A parcel thus created then undergoes breakup according to

the above stochastic sub-grid model, however, does not create new parcels. On the other hand,

Npar is increased and the diameter is decreased by mass-conservation.

This strategy effectively reduces the total number of computational particles in the domain. Re-

gions of low number densities are captured by individual droplet trajectories, giving a more accu-

rate spray representation.

4 Computational Details

Figure 1 shows a schematic of the computational domain used for the spray patternation study

of a realistic Pratt and Whitney injector. The experimental data set [28,29] was obtained by

mounting the actual injector in a cylindrical plenum through which gas with prescribed mass-

flow rate was injected. Figure (1b) shows a cut through the symmetry plane (Z/Lref = 0) of the

computational domain along with the mesh and boundary conditions used. For this case, 3.2M

grid points are used with high resolution near the injector. The grid elements are a combination

of tetrahedra, prisms, wedges, and hexahedra to represent complex geometric passages inside the

injector. Grid refinement study for LES of single phase flow has been performed for different cases

in complex configurations [10,11]. The grid resolution for the present case was decided based on

these validation studies.

Air from the inlet plenum goes through the central core, guide, and outer swirlers to create highly

unsteady multiple swirling jets. The domain decomposition is based on the optimal performance
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of the Eulerian gas-phase solver on 96 processors. Brankovic et al. [28] provide details of the

experimental measurement techniques and inflow conditions for a lower pressure drop across the

fuel nozzle. The inflow conditions in the present study are appropriately scaled to a higher pressure

drop providing the air mass flow rate of 0.02687 kg/s. The flow Reynolds number based on the

inlet conditions is 14, 960. A uniform mean inflow velocity was specified at the inlet without

any turbulent fluctuations. In the present case, the downstream cylindrical plenum is open to

atmosphere. The air jet coming out of the nozzle thus entrains air from the surrounding. Entrained

flow along the surface of the downstream plenum was modeled as a radially inward velocity along

the entire plenum surface. The experimental data profiles at different cross-sections were integrated

at each station to obtain the total flow rate at those locations. Knowing the net inflow rate,

the entrained mass at each of the entrainment boundaries was estimated and assigned to the

calculation. This modeling approach for entrained flow is subject to experimental verification,

however, was shown to have little impact on the predicted flowfield [28]. No-slip conditions are

specified on the wall. Convective boundary conditions are applied at the exit section by conserving

the global mass flow rate through the computational domain. and experimentally measured radial

entrainment rate is applied on the cylindrical surface of the computational domain downstream

of the injector.

Liquid fuel is injected through the filmer surface which forms an annular ring near the outer

swirler. In the symmetry plane this is indicated by two points on the edge of the annular ring.

The ratio of the liquid to air mass flow rates at the inlet is fixed at 0.648. The liquid film at

the filmer surface is approximated by injecting uniform size large drops of the size of the annular

ring thickness. These drops are convected downstream by the swirling air and undergo breakup

according to the stochastic model. The velocity of each droplet is specified based on the velocity

of the liquid film. A large number of droplets are created in the vicinity of the injector due to

breakup. The location of droplet injection around the annular ring is chosen using uniform random
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distribution. This discrete representation of the film near the injector surface may not represent

the physics of ligament formation and film breakup. However, the statistical nature of droplet

formation further away from the injector is of interest in the present study and is well captured

by the stochastic model together with LES of the air flow.

With the hybrid approach, the total number of computational particles tracked at stationary state

is around 3.5M and includes around 150, 000 parcels. Together these represent aproximately 13M

droplets. The computations were performed on the IBM cluster at the San Diego Supercomputing

center.

5 Results and Discussion

Figures 2a,b show the instantaneous snapshots of the axial velocity contours in the Z/Lref = 0

symmetry plane and in cross-section X/Lref = 1.1. Figures 2c,d show the corresponding snapshots

for spray droplets (white dots). The swirling air jet from the core swirler enters the dump region

and forms a recirculation zone. Jets from guide and outer swirlers interact with the core flow.

The swirling air jets entering the sudden expansion region create radially spreading conical jets

with a large recirculation region just downstream of the injector. A complex vortex break down

phenomenon is observed and its accurate prediction is necessary to correctly represent the injector

flow. The swirl strength decays further away from the injector due to viscous dissipation. The

scatter plot of the spray droplets show dense spray regimes close to the injector which become

dilute further away. The parent droplets are injected at the edge of the annular ring. These droplets

are carried by the swirling flow and form a conical spray. The concentration of the spray droplets is

high on the edge of the recirculation region. The strong relative motion between the large inertial

droplets near the injector and the fluid flow leads to breakup and generation of smaller droplets.
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The droplets spread radially outward and swirl around the injector axis as they move downstream.

Figures 3a,b compare the LES predictions to the available experimental data of radial variations of

mean axial and swirl velocity at different axial locations. The numerical results are azimuthally av-

eraged. The predictions from our simulation are in close agreement with the experimental data [29].

The size and evolution of the recirculation region is well captured as indicated by the axial ve-

locity predictions. The swirl strength decays downstream of the injector. Small disagreement at

X/Lref = 2.1 is partly related to the coarse grid resolution used away from the injector. It should

be noted that the amount of swirl generator by the injectors determines the size of the recircula-

tion zone. Good agreement of the axial and swirl velocities indicate that LES with dynamic sgs

model can capture the vortex break-down phenomenon accurately in complex geometries. Also

shown are the corresponding predictions using the standard k − ε model on the present grid. The

unsteady RANS solutions are in agreement with the LES and experimental data very close to

the injector, however, degrade rapidly further away, showing limitations of the turbulence model.

RANS predictions of the flow through the same injector at different conditions [28] show similar

trends. Improved predictions using advanced RANS models can be obtained, however, the superi-

ority of LES is clearly demonstrated. Any artificial dissipation or inaccurate numerics gives faster

decay of the swirl velocities and incorrect size of the recirculation region, further emphasizing the

importance of non-dissipative numerical schemes for LES.

Figures 4a,b compare the radial variation of liquid mass-flowrates using LES and the stochastic

model to the experimental data at two different cross-sections. The flow rates are presented as the

ratio of the effective to the integrated flow rate. The effective flow rate is defined as the flow rate

the patternator would record if the fuel flux was uniform at the local value. This normalization

inherently carries the ratio of the total cross-sectional area to the area of the local patternator

holes. The LES results are generally in good agreement with the experiments. Average droplet
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sizes at two axial location from the injector wall have been measured using the Malvern line of

sight technique [29]. The Sauter mean diameters averaged over the cross-section at these two axial

locations are predicted within 5% of the experimental values.

Figures 5a,b compare the mass-based size-distribution function compared with the experimental

data at two different cross-sections from the injector. It is observed that the predicted distribution

functions agree with experimental observations for large-size droplets. However, the simulations

predict larger mass of small size droplets compared with the experimental data. This is attributed

to the lack of collision/coalescence models in the present simulation. Also, small size droplets can

easily evaporate even at low temperatures and the present simulations do not consider this effect.

In addition, the initial droplet size at the injector nozzle is assumed to be a constant, whereas it

may vary depending on the local conditions governing primary atomization. Models taking into

account the presence of a liquid core near the injector can be incorporated to better capture

the recirculation regions. A dirac-delta function was used to inject large drops from the injector

surface and a better representation of these initial conditions can improve the predictions [23].

Further improvements to the model can also be obtained by modeling the primary breakup regime

very close to the injector. An investigation with inclusion of collision models as well as using a

size distribution at the inlet should be performed in order to investigate uncertainties in model

predictions. However, the overall predictions of the LES methodology together with a simple

stochastic breakup model of liquid atomization are in good agreement with experiments. The

dispersion of droplets in an unsteady turbulent flow is well represented when the flowfield is

computed using LES.

18



6 Summary and Conclusions

A large-eddy simulation of an atomizing spray issuing from a gas-turbine injector is performed cor-

responding to the spray patternation study of an injector used in a Pratt and Whitney combustor.

The filtered Navier-Stokes equations with dynamic subgrid scale models are solved on unstruc-

tured grids to compute the swirling turbulent flow through complex passages of the injector. A

Lagrangian point-particle formulation with stochastic models for droplet breakup is used for the

liquid phase. The atomization process is viewed as a discrete random process with uncorrelated

breakup events, independent of the initial droplet size. The size and number density of the newly

produced droplets is governed by the Fokker-Planck equation for the evolution of the pdf of droplet

radii. The parameters of the model are obtained dynamically by relating them to the local We-

ber number and resolved scale turbulence properties. It is assumed that for large Weber numbers

there exists no preferred length scale in the intermediate range of scales between the parent drop

element and the maximum stable droplet, following the fractal nature of atomizing spray [21,22].

A hybrid particle-parcel approach is used to represent the large number of spray droplets. The

swirling, separated regions of the flow in this complex configuration are well predicted by the LES.

The droplet mass fluxes and size distributions predicted are within the experimental uncertainties

further away from the injector. The present approach, however, overpredicts the number density

of small size droplets which can be attributed to the lack of coalescence modeling. In addition, the

primary breakup regime very close to the injector was not simulated. Models taking into account

the presence of a liquid core near the injector [23] can be incorporated to better capture the recir-

culation regions. However, with present stochastic approach the droplet dispersion characteristics

are well captured. The global features of the fragmentary process of liquid atomization resulting

in a conical spray are well represented by the present LES in realistic injector geometry. This

stochastic modeling approach has been used to perform full scale simulations of turbulent spray
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combustion in a real Pratt and Whitney combustion chamber [12]
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Fig. 1. The computational domain: (a) schematic of entire region, (b) unstructured grid near the injector

in the symmetry plane.

Fig. 2. Instantaneous snapshots of near-injector axial velocity field and spray droplets: (a) axial velocity

in Z/Lref = 0, (b) axial velocity in X/Lref = 1.1, (c) spray droplets in Z/Lref = 0, and (d) spray droplets

in X/Lref = 1.1. Also shown is the color scale for normalized axial velocity.
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Fig. 3. Radial variation of normalized mean axial and swirl velocity at different axial locations, ◦ experi-

mental data [29], LES, RANS: (a,d) X/Lref = 0.4, (b,e) X/Lref = 1.1, (c,f) X/Lref = 2.1.
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Fig. 4. Comparison of radial variation of normalized liquid axial mass flux at two axial locations, ◦

◦ experimental error bar [29], LES: (a) X/Lref = 1.1, (b) X/Lref = 2.1.
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Fig. 5. Comparison of normalized droplet mass-distribution at different axial locations, ◦ experiments [29],

LES: (a) X/Lref = 1.1, (b) X/Lref = 2.1.
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