
Journal of Computational Physics 226 (2007) 1136–1151

www.elsevier.com/locate/jcp
A numerical method for DNS/LES of turbulent reacting flows

Jeff Doom, Yucheng Hou, Krishnan Mahesh *

Department of Aerospace Engineering and Mechanics, University of Minnesota, United States

Received 2 May 2006; received in revised form 24 April 2007; accepted 15 May 2007
Available online 22 June 2007
Abstract

A spatially non-dissipative, implicit numerical method to simulate turbulent reacting flows over a range of Mach num-
bers, is described. The compressible Navier–Stokes equations are rescaled so that the zero Mach number equations are
discretely recovered in the limit of zero Mach number. The dependent variables are co-located in space, and thermody-
namic variables are staggered from velocity in time. The algorithm discretely conserves kinetic energy in the incompress-
ible, inviscid, non-reacting limit. The chemical source terms are implicit in time to allow for stiff chemical mechanisms. The
algorithm is readily extended to complex chemical mechanisms. Numerical examples using both simple and complex chem-
ical mechanisms are presented.
� 2007 Published by Elsevier Inc.
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1. Introduction

The direct numerical simulation (DNS) and large-eddy simulation (LES) of turbulent reacting flows are
extremely challenging. Combustion involves a large number of chemical species, and associated chemical reac-
tions. Different chemical reactions possess different time-scales, and different reaction zone thicknesses. Tur-
bulence introduces its own range of length and time-scales. Furthermore the nonlinear nature of turbulence
means that errors at the smaller scales have the potential to corrupt the large scales of the solution. Turbulent
combustion can occur at very low Mach numbers (e.g. gas-turbine combustors at low pressures) or very high
Mach numbers (e.g. scramjets). Very low Mach numbers imply numerical stiffness because of a large difference
between the speed of sound and flow velocities, while very high Mach numbers result in shock waves, and their
attendant problems. Desirable requirements for an algorithm to perform DNS/LES of turbulent reacting
flows are therefore: (i) to handle high Reynolds numbers robustly and accurately, without the use of numerical
dissipation, (ii) to handle acoustic stiffness efficiently, (iii) to deal with chemical stiffness, and combustion-
induced large spatial gradients, and (iv) to deal with shock waves. This paper proposes an approach that deals
with requirements (i)–(iii).
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The proposed approach is an extension of the algorithm developed by Hou and Mahesh [1] for compress-
ible flows without chemical reaction. The Hou and Mahesh algorithm is co-located in space, symmetric in
both space and time, and hence non-dissipative. Motivated by the theoretical work of Thompson [2], and
similar to the non-dimensionalization used by Bijl and Wesseling [3], and Van der Heul et al. [4], the
Navier–Stokes equations are non-dimensionalized using an incompressible scaling for pressure, and the
energy equation is interpreted as an equation for the divergence of velocity. A pressure-correction approach
is used to constrain the divergence of the velocity field to satisfy the energy equation. The resulting system
of equations analytically projects acoustic waves out, in the limit of zero Mach number. The discrete equa-
tions are fully implicit, and are constrained to discretely conserve kinetic energy in the limit of incompress-
ible, inviscid flow. These features make the algorithm stable and accurate at high Reynolds numbers, and
efficient and accurate at very low Mach numbers. Hou and Mahesh [1] show results for one-dimensional
acoustic waves, a periodic shock tube, the incompressible Taylor problem, and inviscid isotropic turbulence
on very coarse grids.

Most DNS/LES of turbulent reacting flows appear to either use the compressible Navier–Stokes equations
with Pade spatial discretization, and explicit time-advancement (e.g. [5–9]), or the zero Mach number equa-
tions along with a pressure-projection approach (e.g. [10–13,15,16]). A second-order, staggered, implicit com-
pressible algorithm was proposed by Wall et al. [14]. However, the Pade schemes become unstable at high
Reynolds numbers; when explicit time-advancement is used, they require very small time-step at low Mach
numbers, and for stiff chemical mechanisms. The zero Mach number equations are very efficient at low Mach
numbers because they analytically project acoustic waves out; also along with implicit time-advancement they
can resolve chemical stiffness efficiently. However, due to the complete absence of acoustic effects, they are not
applicable to finite Mach number flows.

This paper therefore extends the Hou and Mahesh algorithm to include the effects of chemical reaction. The
resulting algorithm treats the chemical source terms implicitly, solves the species equations in a segregated
manner, which allows easy extension to multiple species and chemical reactions, and reduces to the zero Mach
number equations in the limit of very small Mach number. The paper is organized as follows. Section 2
describes the non-dimensional governing equations, and their behavior in the limit of very small Mach
number. The discrete scheme is described in Section 3. The positioning of variables, and details of the pres-
sure-correction approach are discussed. Section 4 presents some numerical examples. Results are shown for
a laminar premixed flame, laminar unstrained diffusion flame, reacting two-dimensional jets, and a turbulent
non-premixed flame. Both simple and complex chemical mechanisms are considered. A brief summary in Sec-
tion 5 concludes the paper.

2. Governing equations

The governing equations are the compressible, reacting Navier–Stokes equation for an ideal gas:
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where the superscript ‘d’ denotes the dimensional value. The variables q, p, Yk and ui denote the density, pres-
sure, mass fraction of species k and velocities, respectively. E ¼ cvT d þ ud

i ud
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is the viscous stress tensor. Dd

k , cp and Pr denote the diffusion coefficient

of the kth species, specific heat at constant pressure and the Prandtl number. For the source term, Qd
k is the

heat of reaction per unit mass and Qd
k _xd

k is the heat release due to combustion for the ‘kth’ species. _xk is the
mass reaction rate for the kth species. Ru is the universal gas constant and Wd is the mean molecular weight of
the mixture defined as: 1
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. The source term is modeled using the Arrhenius law in this paper.
The reacting governing equation are non-dimensionalized as follows. Let qr, Yr, L, and Tr denote the ref-

erence density, mass fraction, length and temperature, respectively. The reference velocity, dynamic viscosity
and pressure are denoted by ur, lr and pr, respectively. The ratio c ¼ cd
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Note that pressure is non-dimensionalized using an incompressible scaling. This non-dimensionalization is
motivated by Thompson [2], Bijl and Wesseling [3], Van der Heul et al. [4] and Hou and Mahesh [1]. There-
fore, the non-dimensional governing equations for reacting flows are:
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where Sck is the Schmidt number for the kth species. When the reference Mach number is zero, the non-dimen-
sional reacting governing equations reduce to
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Notice that the divergence of velocity equals the sum of the terms involving thermal conduction and heat re-
lease. If the density is constant and there is no heat release, the energy equation reduces to the incompressible
continuity equation. In the presence of heat release, the zero Mach number reacting equations [10] are ob-
tained. Most projection methods for the zero Mach number equations project the momentum qui to satisfy
the momentum equation. Here, the velocity is projected to satisfy the energy equation. The reaction source
term can be quite complicated for multiple species, and is discussed in more detail in Section 3.1.

3. Discretization

Density, pressure, and temperature are staggered in time from velocity by Hou and Mahesh [1]. The mass
fraction of species k are similarly staggered in time here. The thermodynamic variables and mass fraction of
species k are advanced in time from t þ 1

2
to t þ 3

2
, illustrated in Fig. 1. The variables are co-located in space, to

allow easy application to unstructured grids.
Integrating over the control volume and applying Gauss’s theorem yields the discrete governing equations.

The discrete continuity and species equations are
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where qcv denotes qi,j,k and Rfaces denotes summation over all the faces of the control volume. qfaces and vN

denotes the density and normal face velocity at each face. Note that Sk = qYk. The variables (Sk)faces denotes
the species at the face and Nj is the outward normal vector at the face. The variables V and Aface denote the
volume of the control volume and the area of the face. The discrete momentum equation is:
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Here, gi = qui denotes the momentum in the i direction and sij is the stress tensor. The discrete energy equation
is given by:
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The algorithm solves each equation separately. This allows one to add multiple species with relative ease,
which allows easy extension to complex chemistry. Note that the chemical source term is handled implicitly.
Details of the implicit procedure are described in Section 3.1. The algorithm is a pressure-correction method.
An important feature is that the face-normal velocities are projected to satisfy the constraint on the divergence
which is determined by the energy equation. At small Mach number, this feature ensures that the velocity field
is discretely divergence free. This is in contrast to most approaches that project the momentum which is con-
strained by the continuity equation. A predictor–corrector approach is used to solve the momentum and en-
ergy equation:
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2;k þ dp: ð24Þ
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Substituting Eq. (26) into the nonlinear term uiui converts kinetic energy into an equation for dp which is:
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Eq. (27) is then substituted into Eq. (23), and yields a discrete energy equation in terms of dp. Note that dp is
the difference between iterations, which implies that dp converges to zero at each time-step. This allows the
high order terms in Eq. (27) to be neglected. The implementation to solve the following discrete equations
are to initialize the outer loop:
qtþ3
2;0 ¼ qtþ1

2; utþ1;0
i ¼ ut

i; T tþ3
2;0 ¼ T tþ1

2; vtþ1;0
N ¼ vt

N ; S
tþ3

2;0

k ¼ S
tþ1

2
k : ð28Þ
The next procedure is to advance the continuity Eq. (20), then advance the species Eq. (21). Once the species is
advance, advance the momentum Eq. (22), then obtain v�N by interpolation. After obtaining v�N , the next step is
to solve the pressure-correction equation (23). Use the corrector steps to update pressure (24), momentum (25)
and the velocities (26), then check the convergence for the pressure, momentum, density, and species between
outer loop iterations.

3.1. Implicit source term

Consider a chemical system of N species reacting through M reactions denoted as [6]:
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Using the empirical Arrhenius law,
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Therefore, the source term is:
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The discrete form of Eq. (33) is:
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Substituting Eq. (34) into Eq. (21) for _xtþ1
k yields:
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Eq. (35) can be represented as
apStþ3
2

cv þ
X

nb

anbS
tþ3

2
nb ¼ RHS: ð36Þ
where nb are the neighbors of the cv. A parallel, algebraic multi-grid approach is used to solve the system of
algebraic equations. The structured grid interface of the Hypre library (Lawrence Livermore National Labo-
ratory 2003) is used. Three different examples of the implicit source term are described below. If N = 1, M = 1
and only forward reaction is assumed, this implies that
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Note that for a one-step premixed flame:
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which upon discretization yields:
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Eq. (40) is the source term used in Section 4.1. Consider a two-step reaction from Chen et al. [20] and Mah-
alingam et al. [18] given by:
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Note that A is the fuel, B is the oxidizer, I is the intermediate step, and P is the product. The source term for
species A is defined as:
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The discrete form is:
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This implicit source term is used in Section 4.4. Note that the other species are handled in a similar manner.
The final example is a nonlinear source term which is used in 4.2 and 4.3:
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where F is the fuel and O is the oxidizer. The discrete equation for the fuel species is:
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The nonlinear source term is linearized by only solving for term (1) and term (2) is from previous iterations.
The outer loop ensures that the nonlinear corrections converge to zero.

3.2. Zero Mach number limit

The governing equations analytically reduce to the zero Mach number equations, as shown in Section 2.
Since the dependent variables are spatially co-located, it appears that the pressure-projection step might result
in odd–even decoupling. It is well known that the incompressible equations require staggering, temporal dis-
sipation, or low order basis functions for pressure, to avoid odd–even decoupling. However, note that the
inner loop in the proposed algorithm uses nearest neighbors for the pressure equation; it therefore does not
suffer from odd–even decoupling. The tolerance assigned to the outer loop can in practice, be controlled to
obtain low Mach number solutions. However, a more reliable approach which explicitly introduces temporal
biasing is that proposed by [14], which is now used here.

Recall that the pressure gradient term in the momentum equation is defined as
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Temporal biasing can be introduced by computing the pressure gradient as
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Taylor expansion of the pressure at time level t þ 1
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i.e., the leading order term is first-order in time, for a given � in Eq. (49). Alternate biased formulations of the
pressure gradient can be used, but as the Taylor series expansion shows, using � of the order of Dt would be the
most time-accurate.

Two examples are used to illustrate the low Mach number behavior of the algorithm. The first example is
the non-reacting Taylor problem discussed in more detail in Hou and Mahesh [1], while the second example
corresponds to a synthetic premixed flame for which an analytical solution is obtained: i.e.
T ¼ sin xþ 2; Y ¼ sin xþ 2; u ¼ sin xþ 2; p ¼ 4

3
cos x� sin x; q ¼ 1=T ; _x ¼ � cos x� sin x:

ð50Þ

For the Taylor problem, Dt was set to 0.001 and for the reacting case Dt was 0.0001. Fig. 2a show the var-

iation of acoustic CFL, and number of outer loop iterations with Mr, respectively. Mr varies from 10�2 to 10�5

for the Taylor problem, and from 10�3 to 10�6 for the reacting case. Solutions were also obtained for Mr equal
to zero, but are not shown due to the use of logarithmic axes. Here, � was chosen to be 0.05. Note that the
acoustic CFL varies inversely with Mr; i.e. low Mach numbers can be computed at fixed time-step. Also, note
that the number of outer loop iterations at low Mach number is only twice that at finite Mach number, and
remains constant at very low Mach numbers.

4. Results

The algorithm is applied to a one-dimensional steady laminar premixed flame in Section 4.1 and an
unsteady laminar diffusion flame in Section 4.2. These two examples illustrate the ability to handle large heat
release at low Mach number. Section 4.3 considers a steady two-dimensional laminar reacting jet flame with
large heat release at low Mach number. Section 4.4 considers three-dimensional numerical simulations of
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Fig. 2. Variation of (a) acoustic CFL and (b) number of outer loop iterations with Mr. Taylor h, Reacting n.
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turbulent non-premixed flames with finite rate chemistry. This problem illustrates application to turbulence
and finite Mach number. The examples involving simple chemistry, assume that the mean molecular weight
is constant. The final example in Section 4.5 illustrates application to complex chemistry for H2–O2 combus-
tion using a 9 species, 19 reaction mechanism from Mueller et al. [21].

4.1. Laminar premixed flame

An irreversible, one-step, laminar premixed flame is considered as an example of a low Mach number react-
ing flow. The reaction is given by R! P where R is the reactant and P is the product. The reaction source
term is that proposed by Echekki and Ferziger [17]. It approximates the Arrhenius source term, and is useful
for validation, in that it permits analytical solution. The reaction model is defined as:
a

Fig. 3.
solutio
a = 0.5
_x ¼
0 for H < Hc;

bðb� 1ÞðH� 1Þ otherwise:



ð51Þ
The corresponding analytical solution is given by:
H ¼
1� b�1
� �

expðxÞ for x 6 0;

1� b�1 exp½ð1� bÞx� for x P 0:

(
ð52Þ
Generally, b is the order of 10 for hydrocarbon combustion [17].
Fig. 3a shows computed results for a premixed flame where b = 10, a = 0.8, and the inflow Mach number is

equal to 0.01. The Echekki and Ferziger source term is used. The inflow velocity is set equal to the flame speed,
and the solution is initialized using a hyperbolic tangent profile for the temperature distribution. The inlet
boundary condition for temperature, density, species and velocity are set to one. Zero derivative boundary
conditions are specified at the outflow. Boundary conditions based on characteristic analysis are not specified,
due the simplicity of the solution at the boundaries, and the use of ‘sponge’ boundary conditions at both
inflow and outflow boundaries to absorb acoustic waves that are generated by the initial transient. A cooling
term, �r(U � Uref) is added to the right hand side of the governing equations over the sponge zone, whose
length is 10% of the domain. Here U and Uref denote the vector of conservative variables and the ‘reference’
solution, respectively. The coefficient r is a polynomial function defined as:
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(a) Comparison of computed temperature to analytical solution for a laminar premixed flame. h analytic solution, —— numerical
n. Sc = Re = Pr = 1, b = 10, a = 0.8, Mr = 0.01, (b) spatial order of accuracy. h Algorithm, —— second-order, Sc = Re = Pr = 1,
, b = 2, Mr = 0.01.
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rðxÞ ¼ As
ðx� xsÞn

ðLx � xsÞn
; ð53Þ
where xs and Lx denotes the start of the sponge and the length of the domain. n and As are equal to three.
After a brief transient, the solution settles into a steady state which is shown in Fig. 3a. The computed and
analytical solutions seem to agree well.

Fig. 3b shows results from a grid-convergence study. The time-step is fixed at dt = 0.001, and the grid size is
equal to 32, 64, and 128. Note that second-order accuracy is obtained. The computation cost is as follows. For
Nx = 128, 10 outer loop iterations, one continuity equation iteration, five iterations for each momentum equa-
tion, one iteration for species and three iterations for the pressure-correction equation are required. The cor-
responding residual for the outer loop is 10�8 and 10�15 for the inner loop.

4.2. Laminar diffusion flame

A one-dimensional, unstrained diffusion flame with one-step chemistry is computed. This problem applies
the algorithm to a high Damkohler number (defined as the ratio of flow time scale to chemical time scale,
Da = 50 · 106) chemical mechanism and very low Mach number. The chemistry model is a one-step reaction
defined as
mFY F þ mOY O ! mPY P; ð54Þ

where YF, YO and YP are the mass fractions of the fuel, oxidizer and products. The computed solution is com-
pared to an asymptotic solution developed by Cuenot and Poinsot [5]. Their analysis is applicable to diffusion
flames with variable density, non-uniform Lewis number, and finite rate chemistry. Cuenot and Poinsot stud-
ied unsteady unstrained, steady strained and unsteady strained H2–O2 flames. Case 2 from their paper
corresponds to an unsteady, unstrained flame, and was chosen for comparison. Table 1 lists the conditions
for case 2.

Note that LeF and LeO denote the Lewis number for fuel and oxidizer. TF,0 and TO,0 are the initial tem-
peratures of the fuel and oxidizer. U is the equivalence ratio which is defined as
U ¼ s
Y F;0

Y O;0

¼ mOW O

mFW F

Y F;0

Y O;0

; ð55Þ
where s is the stoichiometric ratio. The equivalence ratio is used to determine if the mixture is rich (U > 1), lean
(U < 1) or stoichiometric (U = 1). mF and mO denote the stoichiometric coefficients of the species. A is the pre-
exponential factor and Ta is the activation temperature. The Arrhenius reaction rate is defined by Cuenot and
Poinsot as
_xk ¼ �mkW kA
qY F

W F

� �mF qY O

W O

� �mO

exp � T a

T

� �
: ð56Þ
Fig. 4 is a comparison of the computed solution to the asymptotic solution from Cuenot and Poinsot.
The asymptotic solution was used to initialize the temperature, fuel mass fraction, and oxidizer mass frac-
tion. The initial velocity profile was calculated from the energy equation. The initial pressure remains uni-
form in the flame and the initial density is obtained from temperature. Initially the reaction rate is zero
because the asymptotic solution assumes infinitely fast chemistry. However, the simulation involves (fast)
finite rate chemistry. Therefore, the reaction rate rapidly recovers in the simulation (Cuenot and Poinsot).
The inlet boundary condition for temperature, density, and mass fraction of fuel are set to one. Mass
fraction of oxidizer and velocity are set to zero. Zero derivative boundary conditions are specified at the
1
ndition

LeF TF,0 (K) LeO TO,0 (K) U mF mO A Ta (K) Q/cp (K) Re

1 300 1 300 8 2 1 108 3600 6000 10,000
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Fig. 4. Comparison of asymptotic solution to numerical solution for a laminar diffusion flame. (a) Mass fraction of oxidizer and (b)
temperature profile at a non-dimensional time of 64. h asymptotic solution, —— numerical solution, Mr = 0.001, Sck = 1, Pr = 1.
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outflow. The initial time was set at ct/L = 20 and the solution was advanced to a time of ct/L = 64. Again,
the ‘sponge’ boundary conditions were used at both inflow and outflow boundaries to absorb acoustic
waves generated by the initial transient. The sponge zone is 10% of the domain. Also, the flow Mach num-
ber is 0.001 and the grid used 512 points. Reasonable agreement between computed and asymptotic solu-
tion is obtained.

4.3. Laminar 2D jet flame

A steady two-dimensional reacting laminar jet flame from Poinsot and Veynante [6] is considered. This
problem illustrates the ability to handle large heat release and nearly incompressible flow for a one-step dif-
fusion flame with a Damkohler number of 50 · 106. From Poinsot and Veynante [6], if one assumes constant
mass flow rate (qu = constant), v = w = 0 and qD = constant, then the mixture fraction f satisfies:
qFuf
of
ox
¼ qFDF

o2f
ox2

:

Note that f is defined as
f ¼ �2
UY F � Y O

Uþ 1

� �
þ U� 1

Uþ 1
; ð57Þ
where U is the equivalence ratio. A similarity solution is obtained:
fðx; yÞ ¼ 1

2
ffiffiffiffiffiffiffiffi
pax
p exp � y2

4ax

� �
; ð58Þ
where a ¼ DF

uF
. This solution assumes infinitely fast chemistry. Since the Damkohler number in the computed

solution is high (fast chemistry), the simulation results should show reasonable agreement with the similarity
solution.

The initial conditions for temperature, mass fuel fraction and mass oxidizer fraction are the similarity
solution. The non-dimensional pressure is set to zero and from the equation of state yields the density pro-
file. The inlet boundary condition for temperature, density, species and velocity are set to the similarity solu-
tion. Zero derivative boundary conditions are specified at the outflow. In the y-direction, the boundary
conditions are set to a constant. Since the mass flow rate is constant, this yields the u velocity profile. Again,
sponge boundary condition are used and a steady state solution is obtained after the initial transient.
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Fig. 5. (a) Contour plot of temperature for a jet flame. (b) Center line profile of the mixture fraction f. h asymptotic solution from Poinsot
and Veynante [5], —— numerical solution. Mr = 0.01, Re = 500, Sck = Pr = 1.
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Fig. 5a shows the temperature contours of the simulation. Fig. 5b compares the similarity solution to the
simulation results where the Mach number is 0.01 and the grid is 128 by 128. Note that reasonable agree-
ment is obtained.

4.4. Turbulent non-premixed flame with one-step chemistry

A one-step diffusion flame interacting with isotropic turbulence is considered. The purpose of this calcu-
lation is to evaluate turbulence interacting with a diffusion flame at finite Mach number. The simulations are
compared to Mahalingam et al. [18] and Chen et al. [19]. The simulation uses a cubic domain with inflow
and outflow boundary condition in the x-direction (same as Section 4.2) and periodic boundary condition in
the y and z direction. The grid uses 64 by 64 by 64 points and the Mach number is 0.1. The initial condition
and parameters for the simulation are given in Table 2. From Table 2, lt is the turbulent integral length
scale and L is the length of the computational domain. dfl is the laminar flame thickness and Rek is the ini-
tial Taylor Reynolds number. g is the Kolmogorov scale and Da is the initial global Damkohler number
defined as:
Table
Param

Rek

50
Da ¼ lt

u0

1

dfl

Z
dfl

_xT dx
� �

: ð59Þ
The initial turbulence field is a three-dimensional turbulent flow where the kinetic energy spectrum is defined
as
EðkÞ ¼ C0

u2
0

k0

k
k0

� �4

exp �2
k
k0

� �2
" #

; ð60Þ
where k is the wave number, k0 is the wavenumber at which E(k) is maximum, and u0 is the rms velocity.
2
eters for turbulence

L
lt

lt

dfl

g
dfl

Da

6 2 0.2 1
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The initial diffusion flame is obtained by asymptotic solution (Cuenot and Poinsot [5]); Table 3 shows the
relevant parameters. From Table 3, zst is defined as zst ¼ 1

1þU where U is the equivalance ratio. mA and mB are the
stoichiometric coefficients. A is the pre-exponential factor. The diffusion flame is advanced in time to remove
any acoustic transients. After the initial transients are removed, the initial turbulent velocity field is superim-
posed on the diffusion flame. The solution is advanced from 0 to 2.0 eddy turnover times and analyzed at each
0.1 eddy turnover time. Local extinction is observed to occur in the reaction rate. Holes occur in the reaction
zones where pure mixing exists and the hole location corresponds to a high rate of scalar dissipation rate as
predicted by laminar flamelet theory. This is shown in Figs. 6 and 7a. Fig. 7b is a contour plot of temperature
showing the entire computational domain. Fig. 8 shows two-dimensional mass concentration distribution of
fuel mass fraction and oxidizer mass fraction where good agreement is obtained with Chen et al. [19] (Fig. 2a
in their paper). The lower bound on the species is the location of the flame and the upper bound is influenced
by extinction. The distribution between the lower and upper bounds is the turbulence-induced mixing (Mah-
alingam et al. [18] and Chen et al. [19]).
Table 3
Parameters for diffusion flame

zst b a mA mB A (m3 mol�1 s�1)

0.5 8 0.8 1 1 1012

Fig. 6. (a) Scalar dissipation rate v and (b) reaction rate _x. at z = 4 for turbulent diffusion flame. Notice that scalar dissipation is high
where the reaction rate is low. Mr = 0.1, Re = 935, Sck = Pr = 1.

Fig. 7. (a) Iso-surface plot of the reaction rate for turbulent diffusion flame. (b) Contour plot of temperature showing entire computational
domain. Mr = 0.1, Re = 935, Sck = Pr = 1.
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Fig. 8. Scatter plot of (a) fuel mass fraction and (b) oxidizer mass fraction from DNS of one-step, turbulent diffusion flame. Mr = 0.1,
Re = 935, Sck = Pr = 1.
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4.5. Modeling complex chemistry

This section illustrates application of the algorithm to complex chemistry. Combustion of H2 and O2 is con-
sidered, using a 9 species and 19 reaction mechanism [21]. Fig. 9 illustrates the ability of the implicit procedure
described in Section 3 to handle chemical stiffness. A perfectly-stirred reactor problem is considered, the time-
step is varied, and the results are compared to Chemkin [22] for accuracy. The implicit treatment of the chem-
ical source terms allows the time-step to be five orders of magnitude higher (1.0e�3) than that possible using
explicit Euler time-advancement (1.0e�8). The maximum error of the implicit solution (computed using Y HO2

)
compared to the explicit solution was around 5%, for dt = 1.0e�3. For dt = 0.0001, the percent error was
around 0.01%. The ability to simulate turbulent flames involving complex chemistry is shown in Fig. 10, which
shows an instantaneous realization of major and minor species from a simulation of a turbulent diffusion
flame using the Mueller et al. mechanism.
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Fig. 9. (a) Comparison of a major species and temperature between Chemkin and present algorithm for a well-stirred reactor. ([T] ——
Algorithm, h Chemkin and ½Y H2

� in kelvin ––– Algorithm, $ Chemkin) (b) Illustration of the effect of time-step by comparing the explicit
Euler (dt = 1.0e�8) to present implicit source term (dt = 0.001 and dt = 0.0001). ––– implicit dt = 1.0e�3, —-— implicit dt = 1.0d � 4
� � �� � � explicit dt = 1.0d � 8.
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Fig. 10. Contour plots of (a) H2O and (b) HO2 from simulations of a turbulent diffusion flame using the Mueller et al. mechanism.
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5. Summary

This paper presents a non-dissipative, implicit, robust algorithm for direct numerical and large-eddy sim-
ulation of compressible reacting flows. The method co-locates variables in space and time to allow easy exten-
sion to unstructured grids. The Navier–Stokes equations are non-dimensionalized using an incompressible
scaling for pressure. From this scaling, the incompressible equations are recovered in the limit of zero Mach
number and constant density. When the density varies, the zero Mach number equations for reacting flow are
obtained. The discrete governing equations are discretely energy-conserving in the incompressible constant
density limit [1]. The pressure, temperature, species and density are staggered in time from the velocity. This
allows the algorithm to be symmetric in time. The face-normal velocity is obtained by projecting it to satisfy
the energy equation. A pressure-projection approach is used. The energy equation therefore becomes an equa-
tion for the pressure-correction. The algorithm uses central differences in time and space and is second-order
accurate. The species equations are implicit, and are solved separately to allow for easy extension to complex
chemistry. Results are shown for premixed, diffusion flames and turbulent non-premixed flames. The numer-
ical examples show the ability to handle chemical reaction in the limit of zero Mach number reacting flows and
finite Mach number flows. The proposed method has attractive features for direct numerical and large-eddy
simulation of compressible reacting flows.
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