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This paper presents a family of finite difference schemes for the first and second
derivatives of smooth functions. The schemes are Hermitian and symmetric and
may be considered a more general version of the standard compact (Pad´e) schemes
discussed by Lele. They are different from the standard Pad´e schemes, in that the first
and second derivatives are evaluated simultaneously. For the same stencil width, the
proposed schemes are two orders higher in accuracy, and have significantly better
spectral representation. Eigenvalue analysis, and numerical solutions of the one-
dimensional advection equation are used to demonstrate the numerical stability of
the schemes. The computational cost of computing both derivatives is assessed and
shown to be essentially the same as the standard Pad´e schemes. The proposed schemes
appear to be attractive alternatives to the standard Pad´e schemes for computations of
the Navier–Stokes equations.c© 1998 Academic Press

1. INTRODUCTION

Fluid flows in the transitional and turbulent regimes possess a wide range of length and
time scales. The numerical computation of these flows therefore requires numerical meth-
ods that can accurately represent the entire, or at least a significant portion, of this range of
scales. The length scales that are resolved by a computation are determined by the resolution;
the accuracy with which these scales are represented depends upon the numerical scheme.
Fourier analysis (see, e.g. [2]) describes both the range of scales present and the accuracy
with which they are computed (exactly for problems with periodic boundary conditions and
in a WKB sense for more general problems). Such analysis of finite difference schemes
(see, e.g. Fig. 1 in [1]) shows that the error in computing the first and second derivatives
can be quite large for the smaller scales. This small scale inaccuracy becomes increasingly
important as the energy in the small scales becomes increasingly comparable to that of the
large scales, i.e., as the spectrum becomes increasingly “flat.” This situation is commonly
encountered in computations, particularly large-eddy simulations, of high Reynolds number
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turbulence. As shown by Kravchenko and Moin [3] the inaccurate numerical representa-
tion of the small scales in these large-eddy simulations can result in the numerical error
overwhelming the contribution of the subgrid-scale model.

Finite difference schemes may be classified as “explicit” or “implicit.” Explicit schemes
express the nodal derivatives as an explicit weighted sum of the nodal values of the func-
tion, e.g., f ′

i = ( fi +1 − fi −1)/2h and f ′′
i = ( fi +1 − 2 fi + fi −1)/h2. Throughout this paper,

fi and f k
i denote the values of the function and itskth derivative respectively, at the node

x = xi , andhdenotes the uniform mesh spacing. By comparison, implicit (compact) schemes
equate a weighted sum of the nodal derivatives to a weighted sum of the function, e.g.,
f ′
i −1 + 4 f ′

i + f ′
i +1 = 3( fi +1 − fi −1)/hand f ′′

i −1 + 10 f ′′
i + f ′′

i +1 = 12( fi +1 − 2 fi + fi −1)/h2.
It is well known [1, 4, 6] that implicit schemes are significantly more accurate for the small
scales than explicit schemes with the same stencil width. This increase in accuracy is
achieved at the cost of inverting a banded (usually tridiagonal) matrix to obtain the nodal
derivatives. Since tridiagonal matrices can be inverted quite efficiently [7], the implicit
schemes are extremely attractive when explicit time advancement schemes are used. The
most popular of the implicit schemes (also called Pad´e schemes due to their derivation from
Padé approximants) appear to be the symmetric fourth and sixth order versions (see, e.g. [1]).
There have been several recent computations of transitional boundary layers [8–11], tur-
bulent flows [12–15], and flow-generated noise [16, 17] that have used the Pad´e schemes
to evaluate the spatial derivatives. The standard Pad´e schemes are symmetric and therefore
nondissipative; a nonsymmetric compact scheme was recently developed by Adams and
Shariff [18].

This paper presents a related family of finite difference schemes for the spatial derivatives
in the Navier–Stokes equations. The proposed schemes are more accurate than the standard
Padé schemes, while incurring essentially the same computational cost. They are based on
Hermite interpolation and may be considered a more general version of the standard Pad´e
schemes described in [1]. For the same stencil width as the Pad´e schemes, the proposed
schemes have higher order of accuracy and better spectral representation. This is achieved
by simultaneously solving for the first and second derivatives. When defined on a uniform
mesh,1 the schemes are of the form

a1 f ′
i −1 + a0 f ′

i + a2 f ′
i +1 + h(b1 f ′′

i −1 + b0 f ′′
i + b2 f ′′

i +1)

= 1

h
(c1 fi −2 + c2 fi −1 + c0 fi + c3 fi +1 + c4 fi +2). (1)

Note that the above expression differs from the standard Pad´e schemes, in that the left-
hand side contains a linear combination of the first and second derivatives. The stencil
and the coefficients are restricted to be symmetric in this paper. The resulting schemes are
therefore nondissipative. The width of the stencil is taken to be three on the left-hand side
and five on the right. This corresponds to the stencil width of the popular sixth-order Pad´e
scheme.

The motivation to formulate schemes that simultaneously evaluate both derivatives is
provided by the Navier–Stokes equations requiring both derivatives of most variables. Con-
sider for example the one-dimensional compressible equations in primitive form (extension

1 This paper develops the schemes on uniform meshes. It is assumed that computations with nonuniform grids
can define analytical mappings between the nonuniform grid and a corresponding uniform grid. The metrics of
the mapping may then be used to relate the derivatives on the uniform grid to those on the nonuniform grid.
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to multiple dimensions is straightforward). We have

∂ρ

∂t
+ u

∂ρ

∂x
= −ρ

∂u

∂x
; (2a)

ρ

(
∂u

∂t
+ u

∂u

∂x

)
= −RT

∂ρ
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(
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3
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(
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(
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)2
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∂
∂x

(
k

∂T
∂x

)
. (2c)

The variablesρ, u, andT denote the density, velocity, and temperature, respectively,
while R, µ, k, andCv denote the specific gas constant, dynamic viscosity, thermal conduc-
tivity, and specific heat at constant volume. Note that the viscous terms are expanded prior
to their evaluation. This is because direct evaluation of the second derivatives is signifi-
cantly more accurate at the small scales than two applications of a first derivative operator.
Equations (2a)–(2c) show that the following spatial derivatives need to be evaluated:

∂u

∂x
,
∂2u

∂x2
,
∂T

∂x
,
∂2T

∂x2
,
∂ρ

∂x
.

Thus, a scheme that simultaneously evaluates both derivatives would only be performing
one unnecessary evaluation(∂2ρ/∂x2).

Next, consider the conservative form of the equations. The viscous terms are evaluated
in their nonconservative form for the reasons given above. We have

∂ρ

∂t
+ ∂

∂x
(ρu) = 0; (3a)

∂
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Equations (3a)–(3c) require the following spatial derivatives to be obtained:

∂

∂x
(ρu),

∂

∂x
(ρu2),

∂p

∂x
,
∂u

∂x
,
∂2u

∂x2
,
∂T

∂x
,
∂2T

∂x2
,

∂

∂x
(Etu),

∂

∂x
(pu).

As one might expect, the conservative formulation requires fewer simultaneous derivative
evaluations. However, if the chain rule is invoked, then a formulation that evaluates both
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derivatives is still attractive. First evaluate (simultaneously)

∂

∂x
(ρu),

∂2

∂x2
(ρu),

∂

∂x
(ρu2),

∂2

∂x2
(ρu2),

∂ρ

∂x
,

∂2ρ

∂x2
,

∂

∂x
(Etu),

∂2

∂x2
(Etu),

∂

∂x
(pu),

∂2

∂x2
(pu).

The chain rule may then be used to obtain∂u/∂x, ∂2u/∂x2, ∂p/∂x, and∂2 p/∂x2. The
equation of state and the chain rule then yield∂T/∂x and∂2T/∂x2. In this manner, a total
of only 10 derivative evaluations are performed for the nine derivatives that are needed. The
increase in accuracy that is obtained by the simultaneous evaluation of derivatives will be
seen to make this additional derivative evaluation worthwhile.

For the same stencil width, the standard Pad´e schemes are two orders higher in accuracy
and have better spectral representation than the corresponding symmetric, explicit schemes.
The implicit relation between the derivatives in the Pad´e schemes yields additional degrees
of freedom that allow higher accuracy to be achieved. It is therefore to be expected that
including the second derivatives in the implicit expression would further increase the degrees
of freedom and, thereby, the accuracy that can be obtained. Hermitian expressions involving
the function and its first and higher derivatives have been suggested in the literature (e.g.,
[4, Sections 2.4, 2.5]). Peyret and Taylor [19, Section 2.5.1] and Hirsch [20, Section 4.3]
discuss a symmetric version of Eq. (1) on a three-point stencil. However, the development
was not completed to a point where the resulting schemes could be used for solving partial
differential equations.

The objective of this paper is to develop this family of schemes and to assess their
potential for computations of the Navier–Stokes equations. The schemes will be referred
to as the “coupled-derivative,” or “C-D” schemes, to distinguish them from the standard
Padé schemes. The paper is organized as follows. Section 2 describes the interior schemes
that may be obtained from Eq. (1). Fourier analysis is than used in Section 3 to perform a
detailed comparison between the proposed schemes and the standard Pad´e schemes. The
restrictions imposed by numerical (Cauchy) stability are discussed in Section 4. Section 5
presents appropriate boundary closures for the interior scheme and evaluates the stability
of the complete scheme. The computational cost of the proposed schemes is evaluated in
Section 6 and compared to that of the standard Pad´e schemes.

2. THE INTERIOR SCHEME

The interior scheme is of the form given by Eq. (1). Simultaneous solving forf ′
i and f ′′

i

implies that the number of unknowns is equal to 2N. A total of 2N equations are therefore
needed to close the system. Equation (1) may be used to derive two linearly independent
equations at each node. This is done as follows. Both sides of Eq. (1) are first expanded in
a Taylor series. The resulting coefficients are then matched, such that Eq. (1) maintains a
certain order of accuracy. Note that Eq. (1) has 11 coefficients, of which one is arbitrary;
i.e., Eq. (1) may be divided through by one of the constants without loss of generality. A
convenient choice of the normalizing constant is either ofa0 or b0. It will be seen that the
equation obtained by settinga0 equal to 1 is linearly independent of the equation obtained
whenb0 is set equal to 1. The two equations may therefore be applied at each node, and
the resulting system of 2N equations solved for the nodal values of the first and second
derivative. The process of obtaining the two equations is outlined in Sections 2.1 and 2.2.
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TABLE I

Taylor Table for a0 = 1

LHS RHS

fi 0 c0

f ′
i 1 + 2a1 2(2c4 + c3)

f ′′
i b0 0

f ′′′
i 2h2(a1/2! + b2) 2h2(23c4 + c3)/3!

f i v
i 0 0

f v
i 2h4(a1/4! + b2/3!) 2h4(25c4 + c3)/5!

f vi
i 0 0

f vi i
i 2h6(a1/6! + b2/5!) 2h6(27c4 + c3)/7!

f vi i i
i 0 0

f ix
i 2h8(a1/8! + b2/7!) 2h8(29c4 + c3)/9!

2.1. First Equation(a0 = 1)

Consider first the case wherea0 = 1. The symmetry of the schemes requires thata1 = a2,

b1 = −b2, c1 = −c4, andc2 = −c3. Equation (1) therefore reduces to

a1 f ′
i −1 + f ′

i + a1 f ′
i +1 + h(−b2 f ′′

i −1 + b0 f ′′
i + b2 f ′′

i +1)

= 1

h
[c0 fi + c3( fi +1 − fi −1) + c4( fi +2 − fi −2)]. (4)

Expanding both sides of Eq. (4) in a Taylor series and collecting terms of the same order
yields Table I. Note that “LHS” and “RHS” denote the coefficients off k

i on the left- and
right-hand sides, respectively, of Eq. (4).

The Taylor table shows thatb0 = c0 = 0. This leaves four undetermined constants (a1, b2,

c3, andc4). Expressions for these constants may be obtained by matching the terms in
the Taylor table. Schemes of order ranging from two through eight may be obtained by
solving the resulting set of equations. The coefficients and the resulting orders are listed
below.

Second order. Matching terms up tof ′′
i yields

a1 = −1

2
+ c3 + 2c4, b2 arbitrary. (5a)

The resulting leading order error is equal to(3 − 12b2 − 4c3 + 4c4)h2 f ′′′
i /6.

Fourth order. Matching terms up tof i v
i yields

a1 = −1

2
+ c3 + 2c4, b2 = 1

12
[3 − 4(c3 − c4)]. (5b)

The resulting leading order error is given by(−15+ 16c3 + 92c4)h4 f v
i /360. Note that

c4 = 0, c3 = 3/4 yield the standard fourth-order Pad´e scheme for the first derivative.

Sixth order. Matching terms up tof vi
i yields

a1 = 7

16
− 15

4
c4, b2 = 1

16
(−1 + 36c4), c3 = 15

16
− 23

4
c4. (5c)
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The resulting leading order error is equal to(1/5040+ 3c4/140)h6 f vi i
i . Note thatc4 = 1/36

yields the standard sixth-order Pad´e scheme for the first derivative.

Eighth order. Matching terms up tof vi i i
i yields

a1 = 17

36
, b2 = − 1

12
, c3 = 107

108
, c4 = − 1

108
. (5d)

The error to leading order is equal to−h8 f i x
i /90720.

Table I shows thatb0 is equal to zero whena0 is set equal to one. The above expressions
may therefore be considered expressions for the nodal values of the first derivative. It also
implies that if, instead of settinga0 equal to one, we setb0 equal to one, we would obtain an
equation that would be linearly independent. The equation thus derived could be considered
an expression for the second derivative. This equation is obtained below.

2.2. Second Equation(b0 = 1)

Consider the case whereb0 = 1. Note that a tilde is used above the constants to indicate
their difference from the constants obtained whena0 = 1; e.g.,b1 is replaced bỹb1. Sym-
metry requires that̃b1 = b̃2, c̃1 = c̃4, c̃2 = c̃3, andã1 = −ã2. Equation (1) therefore becomes

ã0 f ′
i + ã2( f ′

i +1 − f ′
i −1) + h(b̃1 f ′′

i −1 + f ′′
i + b̃1 f ′′

i +1)

= 1

h
[c̃1( fi −2 + fi +2) + c̃2( fi −1 + fi +1) + c̃0 fi ]. (6)

Expanding both sides of the above equation in a Taylor series and collecting terms of the
same order yields the Taylor Table II.

Table II shows that̃a0 is required to be zero ifb0 is equal to one. The resulting equation
may therefore be considered an expression for the second derivative. We have five unknown
constants (̃c0, c̃1, c̃2, ã2, andb̃1). These constants may be obtained by matching the terms in
the above Taylor table and solving the resulting equations. Expressions of varying order are
obtained, depending upon the number of equations matched. At first glance, it appears that
the order of accuracy obtained ranges from three through nine. By comparison, the expres-
sions obtained whena0 was equal to 1 ranged from second through eighth order. However,

TABLE II

Taylor Table for b0 = 1

LHS RHS

fi 0 c̃0 + 2c̃1 + 2c̃2

f ′
i ã0 0

f ′′
i h(2ã2 + 2b̃1 + 1) 2h(22c̃1 + c̃2)/2!

f ′′′
i 0 0

f i v
i 2h3(ã2/3! + b̃1/2!) 2h3(24c̃1 + c̃2)/4!

f v
i 0 0

f vi
i 2h5(ã2/5! + b̃1/4!) 2h5(26c̃1 + c̃2)/6!

f vi i
i 0 0

f vi i i
i 2h7(ã2/7! + b̃1/6!) 2h7(28c̃1 + c̃2)/8!

f ix
i 0 0

f x
i 2h9(ã2/9! + b̃1/8!) 2h9(210c̃1 + c̃2)/10!
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note that the nodal second derivatives in Eq. (1) are premultiplied byh. Equation (1) (and,
therefore, the terms in the Taylor table) needs to be divided through byh to consider it an
expression for the second derivatives. This process will yield expressions for the second
derivative, ranging in order from two through eight. The values for the constants and the
corresponding orders are given below.

Second order. Matching terms up tof ′′
i yields

c̃0 = −2(c̃1 + c̃2), ã2 = 1

2
(−1 − 2b̃1 + 4c̃1 + c̃2). (7a)

The resulting leading order error is(2 − 8b̃1 + 8c̃1 − c̃2)h2 f i v
i /12.

Fourth order. Matching terms up tof i v
i yields

c̃0 = −2(c̃1 + c̃2), ã2 = −3

4
+ c̃1 + 5

8
c̃2, b̃1 = 1

4
+ c̃1 − c̃2

8
. (7b)

The error to leading order is given by(−3+ 28c̃1 + c̃2)h4 f vi
i /360. Note thatc̃1 = 0,

c̃2 = 6/5 yield the standard fourth-order Pad´e scheme for the second derivative.

Sixth order. Matching terms up tof vi
i yields

c̃0 = −6 + 54c̃1, c̃2 = 3 − 28c̃1, ã2 = 9

8
− 33

2
c̃1, b̃1 = −1

8
+ 9

2
c̃1. (7c)

The resulting error to leading order is(1/20160+ 3c̃1/560)h6 f vi i i
i . Note thatc̃1 = 3/44

yields the standard sixth-order Pad´e scheme for the second derivative.

Eighth order. Matching terms up tof vi i i
i yields

c̃0 = −13

2
, c̃1 = − 1

108
, c̃2 = 88

27
, ã2 = 23

18
, b̃1 = −1

6
. (7d)

The resulting leading order error is−h8 f x
i /453600.

2.3. The Scheme

The interior scheme involves applying the equations derived in sections 2.1 and 2.2 at
each node. The resulting system of 2N equations is then solved to obtainf ′

i and f ′′
i . Of

the various schemes obtained, two schemes are discussed in detail below. These are the
sixth-order scheme withc1 = c̃1 = 0, and the eighth-order schemes. These schemes have
the same stencil width as the standard fourth- and sixth-order Pad´e schemes. A detailed
comparison between these schemes and the standard Pad´e schemes is therefore performed.
The Appendix presents the schemes in matrix form for completeness.

Sixth-order C-D scheme(c1 = c̃1 = 0).

7 f ′
i −1 + 16 f ′

i + 7 f ′
i +1 + h( f ′′

i −1 − f ′′
i +1) = 15

h
( fi +1 − fi −1). (8a)

9( f ′
i +1 − f ′

i −1) − h( f ′′
i −1 − 8 f ′′

i + f ′′
i +1) = 24

h
( fi −1 − 2 fi + fi +1). (8b)
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Eighth-order C-D scheme.

51 f ′
i −1 + 108f ′

i + 51 f ′
i +1 + 9h( f ′′

i −1 − f ′′
i +1) = 107

h
( fi +1 − fi −1) − fi +2 − fi −2

h
. (9a)

138( f ′
i +1 − f ′

i −1) − h(18 f ′′
i −1 − 108f ′′

i + 18 f ′′
i +1)

= − fi +2 + fi −2

h
+ 352

h
( fi +1 + fi −1) − 702

h
fi . (9b)

Standard fourth-order Pad́e.

f ′
i −1 + 4 f ′

i + f ′
i +1 = 3

h
( fi +1 − fi −1). (10a)

f ′′
i −1 + 10 f ′′

i + f ′′
i +1 = 12

h2
( fi −1 − 2 fi + fi +1). (10b)

Standard sixth-order Pad́e.

f ′
i −1 + 3 f ′

i + f ′
i +1 = 7

3h
( fi +1 − fi −1) + fi +2 − fi −2

12h
. (11a)

2 f ′′
i −1 + 11 f ′′

i + 2 f ′′
i +1 = 12

h2
( fi −1 − 2 fi + fi +1) + 3

4h2
( fi −2 − 2 fi + fi +2). (11b)

The expressions for the first and second derivative are seen to be independent in the
standard Pad´e schemes (Eqs. (10a)–(11b)). Obtaining the first and second derivatives
using the standard Pad´e schemes therefore involves separately inverting two tridiago-
nal matrices with band length ofN. By comparison, the first and second derivatives
are coupled in the C-D schemes. The vector of unknowns is therefore of length 2N;
[· · · · f ′

i −1, f ′′
i −1, f ′

i , f ′′
i , f ′

i +1, f ′′
i +1 · · ·]T. Note that for the same stencil width as the Pad´e

schemes, the C-D schemes are two orders higher in accuracy. This is achieved at the cost
of inverting a matrix that has seven bands instead of three. However, although the band
width is increased from three to seven, the inversion yields both the first and second
derivatives. A more systematic cost comparison with the Pad´e schemes is performed in
Section 6.

3. FOURIER ANALYSIS OF THE DIFFERENCING ERROR

Fourier analysis, and the notion of the “modified wavenumber” provides a convenient
means of quantifying the error associated with differencing schemes [2]. Consider the test
function f j = eikxj on a periodic domain. Discretize the function on a domain of length 2π ,
using a uniform mesh ofN points. The mesh spacing is therefore given byh = 2π/N. The
exact values of the first and second derivative off areikeikxj and−k2eikxj . However, the
numerically computed derivatives will be of the form,ik ′eikxj and−k′′2eikxj . The variables
k′ andk′′2 are functions ofk andh and are called the modified wavenumber for the first
and second derivative operator, respectively. The difference betweenk′ andk, andk′′2 and
k2, provides the differencing error. The modified wavenumbers for the coupled-derivative
schemes are derived and compared to the standard Pad´e schemes in Sections 3.1 and 3.2.



          

340 KRISHNAN MAHESH

3.1. Modified wavenumber for the standard Padé schemes

The modified wavenumbers for the standard Pad´e schemes are given by Lele [1] as
follows.

First derivative,

k′h = a sinkh + b/2 sin 2kh

1 + 2α coskh
, (12a)

whereα = 1/4, a = 3/2, andb = 0 for the fourth-order Pad´e scheme. For the sixth-order
Padé scheme,α = 1/3, a = 14/9, andb = 1/9.

Second derivative,

k′′2h2 = 2a(1 − coskh) + b/2(1 − cos 2kh)

1 + 2α coskh
, (12b)

whereα = 1/10, a = 6/5, andb = 0 for the fourth-order Pad´e scheme. For the sixth-order
Padé scheme,α = 2/11, a = 12/11, andb = 3/11.

3.2. Modified Wavenumber for the C-D Schemes

The modified wavenumbers for the C-D schemes are given below. As seen in Sections 2.1
and 2.2, the sixth- and eighth-order schemes are members of the following two-equation
family of schemes:

f ′
i + a1( f ′

i +1 + f ′
i −1) + hb2( f ′′

i +1 − f ′′
i −1) = c3

h
( fi +1 − fi −1) + c4

h
( fi +2 − fi −2); (13a)

ã2( f ′
i +1 − f ′

i −1) + h(b̃1 f ′′
i −1 + f ′′

i + b̃1 f ′′
i +1) = c̃0

h
fi + c̃2

h
( fi +1 + fi −1) + c̃1

h
( fi +2 + fi −2).

(13b)

The constants in the above equations are as follows:
Sixth-order scheme,

c4 = 0, a1 = 7/16, b2 = −1/16, c3 = 15/16, c̃1 = 0,

c̃2 = 3, c̃0 = −6, ã2 = 9/8, b̃1 = −1/8.
(14)

Eighth-order scheme,

c4 = −1/108, a1 = 17/36, b2 = −1/12, c3 = 107/108, c̃1 = −1/108,

c̃2 = 88/27, c̃0 = −13/2, ã2 = 23/18, b̃1 = −1/6.
(15)

Equations (13a) and (13b) are used to obtain the modified wavenumbers as follows. Consider
the function,fi = eikxi on a periodic domain. Using the relations,f ′

i ±1 = f ′
i e±ikh and f ′′

i ±1 =
f ′′
i e±ikh, Eqs. (13a) and (13b) become

f ′
i (1 + 2a1 coskh) + f ′′

i (i 2hb2 sinkh) = i
2 fi
h

(c3 sinkh + c4 sin 2kh); (16a)

f ′
i (i 2ã2 sinkh) + f ′′

i (h + 2hb̃1 coskh) = fi
h

(c̃0 + 2c̃2 coskh + 2c̃1 cos 2kh). (16b)
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Equations (16a) and (16b) may be solved forf ′
i and f ′′

i . The resulting expressions are of
the formik ′ fi and−k′′2 fi , where the modified wavenumbers (after some rearrangement)
are given by the following expressions:

k′h = 2 sinkh
c3 + 2c4b̃1 − c̃0b2 + 2(c3b̃1 + c4 − b2c̃2) coskh + 2(c4b̃1 − b2c̃1) cos 2kh

1 + 2a1b̃1 + 2ã2b2 + 2(b̃1 + a1) coskh + 2(a1b̃1 − ã2b2) cos 2kh
.

(17a)

k′′2h2 = − c̃0 + 2a1c̃2 + 2ã2c3 + 2(c̃2 + a1c̃0 + 2ã2c4) coskh

1 + 2a1b̃1 + 2ã2b2 + 2(b̃1 + a1) coskh + 2(a1b̃1 − ã2b2) cos 2kh

− 2(c̃1 + a1c̃2 + ã2c3) cos 2kh + 4(a1c̃1 − ã2c4) coskhcos 2kh

1 + 2a1b̃1 + 2ã2b2 + 2(b̃1 + a1) coskh + 2(a1b̃1 − ã2b2) cos 2kh
. (17b)

3.3. Evaluation of the First Derivative

The modified wavenumbers for the first derivative are shown in Fig. 1. The C-D schemes
are seen to follow the exact solution more closely than the standard Pad´e schemes. Recall
that the sixth-order C-D scheme has the same stencil width as the fourth-order Pad´e, while
the eighth-order C-D scheme has the same stencil width as the sixth-order Pad´e. In spite of
its smaller stencil, the sixth-order C-D scheme is seen to have lower error than the sixth-
order Pad´e. A more quantitative comparison of the schemes is provided in Table III. The
fractional error in the first derivative may be defined as

ε = |k′h − kh|
kh

. (18)

Figure 1 shows that the error increases askh increases. A measure of the accuracy or
“resolving ability” of the schemes is therefore provided by specifying a maximum value for
ε and estimating the fraction of the entire range of wavenumbers for which this requirement
is met. This quantity is termed the “resolving efficiency” by Lele [1] and is a function of

FIG. 1. The modified wavenumber for the first derivative. The C-D schemes are compared to the standard
Padé schemes: —– (exact); ---- (C-D: eighth order);········ (C-D: sixth order); —-— (sixth-order Pad´e); —·—
(fourth-order Pad´e).
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TABLE III

A Comparison of the Resolving Efficiency

of the C-D Schemes to the Pad´e Schemes

ε = 0.1 ε = 0.01 ε = 0.001

Padé 4 0.59 0.35 0.20
Padé 6 0.70 0.50 0.35
C-D 6 0.75 0.58 0.42
C-D 8 0.81 0.66 0.53

the specified tolerance on the error. Table III compares the resolving efficiency of the C-D
schemes to the standard Pad´e schemes. The C-D schemes are seen to be noticeably more
accurate. In fact, of the different compact schemes considered by Lele, the only scheme
that outperforms the eighth-order C-D scheme is the pentadiagonal tenth-order scheme
(designated “i” by Lele). The pentadiagonal scheme, however, has a stencil of five points
on the left-hand side and 7 on the right.

The modified wavenumber may be used to determine the error as a function of the
resolution. Consider the case wherek = 1; i.e., we have one wave of wavelengthλ = 2π .
The mesh spacingh is given by h = 2π/N = λ/N; kh is therefore equal toλ/N, the
reciprocal of the number of points per wavelength. The percentage error in the first derivative
may be computed as a function of the resolution, usingkh= 2π/N and error= 100|k′h −
kh|/kh. Figure 2 compares the C-D schemes to the standard Pad´e schemes. Note that all the
schemes show 100% error for the two-delta waves (two points per wave). This is because
the symmetry of the schemes forcesk′h to zero for two-delta waves. The C-D schemes are
seen to have noticeably smaller error than the standard Pad´e schemes. Further indication
of this is provided in Fig. 3, where the ratio of the error between the C-D schemes and the
Padé schemes is shown. Table IV documents the percentage error in the first derivative for
resolutions of 4 and 8 points per wave. The C-D schemes are seen to represent even four
delta waves with an accuracy of 0.4% and 0.06%, respectively.

FIG. 2. The percentage error in the first derivative as a function of the resolution. The C-D schemes are
compared to the standard Pad´e schemes: —– (C-D: eighth order); ---- (C-D: sixth order);········ (sixth-order Pad´e);
—-— (fourth-order Pad´e).
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FIG. 3. The ratio of the error in the first derivative between the C-D schemes and the standard Pad´e schemes
as a function of the resolution: —– (C-D 8/Pad´e 6); ---- (C-D 6/Pad´e 4);········ (C-D 6/Padé 6).

3.4. Evaluation of Second Derivative

Modified wavenumbers for the second derivative are shown in Fig. 4. The C-D schemes
are seen to be noticeably more accurate at the higher wavenumbers. Note thatk′′2h2 for the
C-D schemes is greater than the exact solution for certain wavenumbers. Interestingly, finite
element discretizations [5] exhibit similar properties. This is in contrast to the standard Pad´e
schemes, whose modified wavenumber is always less than the exact solution. However, this
aspect of the C-D schemes does not impact the accuracy. As shown in Figs. 5 and 6, the
C-D schemes are more accurate than the Pad´e schemes with the same stencil width.

Similar to the first derivative, a resolving efficiency may be defined for the second deriva-
tive, as the fraction of the wavenumber range for which the error,

ε = |k′′2h2 − k2h2|
k2h2

, (19)

is less than a specified tolerance. The resolving efficiency is tabulated in Table V. Note that
the requirement thatε be less than 0.1 is met over the entire range of wavenumbers. The
second derivative computed using the sixth-order C-D scheme is slightly more accurate
than the sixth-order Pad´e scheme, while the eighth-order C-D scheme is noticeably more
accurate than the standard Pad´e schemes. Table VI shows the percentage error in the second

TABLE IV

The Percentage Error in the First Derivative as a

Function of the Number of Points per Wave (N)

N = 4 N = 8

Padé 4 4.51% 2.3 × 10−1%
Padé 6 0.97% 1.2 × 10−2%
C-D 6 0.36% 3.1 × 10−3%
C-D 8 0.06% 1.1 × 10−4%

Note. The C-D schemes are compared to the standard Pad´e
schemes.
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FIG. 4. The modified wavenumber for the second derivative. The C-D schemes are compared to the standard
Padé schemes: —– (Exact); ---- (C-D: eighth order);········ (C-D: sixth order); —-— (sixth-order Pad´e); —·—
(fourth-order Pad´e).

FIG. 5. The percentage error in the second derivative as a function of the resolution. The C-D schemes are
compared to the standard Pad´e schemes: —– (C-D: eighth order); ---- (C-D: sixth order);········ (sixth-order Pad´e);
—-— (fourth-order Pad´e).

FIG. 6. The ratio of the error in the second derivative between the C-D schemes and the standard Pad´e schemes
as a function of the resolution: —– (C-D 8/Pad´e 6); ---- (C-D 6/Pad´e 6);········ (C-D 6/Padé 4).
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TABLE V

Comparison of Resolving Efficiency of the C-D

Schemes to the Pad´e Schemes

ε = 0.1 ε = 0.01 ε = 0.001

Padé 4 0.68 0.39 0.22
Padé 6 0.80 0.55 0.38
C-D 6 1.00 0.57 0.39
C-D 8 1.00 0.67 0.50

derivative as a function of the resolution. As was observed for the first derivative, the sixth-
and eighth-order C-D schemes represent even four-delta waves to an accuracy of about
0.4% and 0.1%, respectively.

4. STABILITY LIMITS OF INTERIOR SCHEME

This section outlines the restrictions imposed by Cauchy stability on the time step when
the C-D schemes are used with Runge–Kutta time advancement. The model advection and
diffusion equations are solved.

Consider the one-dimensional advection equation on a periodic domain:

∂u

∂t
+ c

∂u

∂x
= 0. (20)

The above equation is solved by the method of lines. Letu = û eikx. Spatial discretization
leads to a set of ODEs of the form

dû

dt
= −i

c

h
k′hû. (21)

The above equation is of the form dy/dt = λy. It is easily shown that numerical stability
requires that

c1t

h
≤ (λi 1t)max

(k′h)max
, (22)

TABLE VI

The Percentage Error in the Second Derivative as a

Function of the Number of Points per Wave (N)

N = 4 N = 8

Padé 4 2.73% 1.6 × 10−1%
Padé 6 0.52% 7.41× 10−3%
C-D 6 0.44% 6.16× 10−3%
C-D 8 0.09% 2.84× 10−4%

Note. The C-D schemes are compared to the standard Pad´e
schemes.



                 

346 KRISHNAN MAHESH

TABLE VII

The Maximum CFL Number Allowed

by Numerical Stability

RK2 RK3 RK4

Padé 4 0 1.0 1.645
Padé 6 0 0.871 1.433
C-D 6 0 0.815 1.341
C-D 8 0 0.759 1.249
Fourier 0 0.551 0.907

where(k′h)maxdenotes the maximum value of the modified wavenumber for the first deriva-
tive, and(λi 1t)max denotes the upper bound imposed by numerical stability when the ODE
dy/dt = i λi y is numerically integrated.(λi 1t)max has values of 0,

√
3, and 2.85 when

the standard second-, third-, and fourth-order Runge–Kutta schemes [21] are used for time
advancement. Table VII lists the corresponding bounds on the CFL number. As expected,
the improved accuracy at the higher wavenumbers reduces the maximum allowable CFL
number. Similarly, upper bounds onν1t/h2 can be obtained when the one-dimensional
diffusion equation,

∂u

∂t
= ν

∂2u

∂x2
, (23)

is numerically solved on a periodic spatial domain. Table VIII lists the obtained bounds
when the C-D schemes are used with Runge–Kutta time advancement. The accuracy of the
C-D schemes for the two-delta waves(kh = π) results in the viscous restriction on the time
step being nearly the same as that for a Fourier spectral method.

5. BOUNDARY SCHEMES

Consider a spatial domain that is discretized by usingN points (including those at the
boundaries). Equations (8a)–(9b) show that the sixth-order scheme can be applied from
j = 2 to N − 1, while the eighth-order scheme can be applied fromj = 3 to N − 2. For
problems with periodic boundary conditions, the periodicity of the solution may be used
to apply the same equations at the boundary nodes (see the Appendix). However, for non-
periodic problems, additional expressions are needed at the boundary nodes to close the
system.

TABLE VIII

The Maximum ν∆t/h2 Allowed by

Numerical Stability

RK2 RK3 RK4

Padé 4 0.333 0.417 0.483
Padé 6 0.292 0.365 0.423
C-D 6 0.208 0.260 0.302
C-D 8 0.205 0.256 0.297
Fourier 0.203 0.253 0.294
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Considerj = 1. The following general expression may be written forf ′
1 and f ′′

1 :

a0 f ′
1 + a1 f ′

2 + h(b0 f ′′
1 + b1 f ′′

2 ) = 1

h
(c1 f1 + c2 f2 + c3 f3 + c4 f4). (24)

The corresponding equation atj = N would be given by:

a0 f ′
N + a1 f ′

N−1 − h(b0 f ′′
N + b1 f ′′

N−1) = −1

h
(c1 fN + c2 fN−1 + c3 fN−2 + c4 fN−3). (25)

The width of the stencil on the left-hand side of the above equation is restricted to two.
This ensures that the number of bands in the left-hand side matrix is still seven. As was
done for the interior scheme, the constants in Eq. (24) may be obtained by expanding the
terms in a Taylor’s series and matching expressions of the same order. Recall that we need
two independent equations at each node. For the interior schemes, we saw thatb0 was
equal to 0 ifa0 was equal to 1 and vice versa. This yielded the two independent equa-
tions. As seen from Tables I and II, this relationship betweena0 andb0 for the interior
schemes is a natural consequence of their symmetry. However, for the boundary schemes
it turns out that settinga0 to 1 does not imply thatb0 is zero and vice versa. The equation
obtained whena0 = 1, is the same as that obtained whenb0 = 1. The following proce-
dure is therefore used to obtain two independent equations. When matching the terms in
the Taylor table,(a0, b0) is first set equal to (1, 0). This yields the first equation. Next,
(a0, b0) is set equal to (0, 1). This yields the second equation. These expressions are derived
below.

Taylor’s series expansion of Equation (24) yields Table IX. There are eight undetermined
constants in Eq. (1). Note that if either of the constraints(a0, b0) = (1, 0) or (0, 1) is imposed
and the terms in the Taylor table matched, the maximum order that can be obtained is five.
The following family of schemes is obtained by matching the the terms in Table IX to
different orders. Consider first the case wherea0 = 1 andb0 = 0. The resulting expressions
may be considered expressions for the first derivative.

5.1. First Equation(a0 = 1, b0 = 0)

Expressions for the coefficients and the corresponding orders are given below.

Third order. Matching terms up tof ′′′
i yields

c1 = −3+ c3 + 8c4, c2 = 3− 2c3 − 9c4, a1 = 2− 6c4, b1 = −1

2
+ c3 + 6c4. (26a)

TABLE IX

Taylor Table Obtained for the Boundary Schemes

LHS RHS

f1 0 c1 + c2 + c3 + c4

f ′
1 a0 + a1 c2 + 2c3 + 3c4

f ′′
1 h(a1 + b0 + b1) h(c2 + 22c3 + 32c4)/2!

f ′′′
1 h2(a1/2! + b1) h2(c2 + 23c3 + 33c4)/3!

f i v
1 h3(a1/3! + b1/2!) h3(c2 + 24c3 + 34c4)/4!
f v
1 h4(a1/4! + b1/3!) h4(c2 + 25c3 + 35c4)/5!

f vi
1 h5(a1/5! + b1/4!) h5(c2 + 26c3 + 36c4)/6!
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The leading order error is then(1/24+c3/12+c4)h3 f i v
1 . Note thatc3 = 1/2, c4 = 0 yields

the standard one-sided third-order Pad´e scheme for the first derivative.

Fourth order. Matching terms up tof i v
i yields

c1 = −7

2
− 4c4, c2 = 4 + 15c4, c3 = −1

2
− 12c4, a1 = 2 − 6c4, b1 = −1 − 6c4.

(26b)

The error to leading order is given by(−1/60 + c4/5)h4 f v
1 . Note thatc4 = −1/6 yields

the standard one-sided fourth-order Pad´e scheme for the first derivative.

Fifth order. Matching terms up tof v
i yields

c1 = −23

6
, c2 = 21

4
, c3 = −3

2
, c4 = 1

12
, a1 = 3

2
, b1 = −3

2
. (26c)

The error to leading order is equal toh5 f vi
1 /120.

5.2. Second Equation(a0 = 0, b0 = 1)

Similar expressions are obtained whena0 = 0 andb0 = 1. These expressions may be
considered relations for the second derivative. The order of the expressions will again
range from three to five. However, due to the second derivatives being multiplied byh, the
corresponding order of the second derivatives ranges from two to four. The values of the
constants are given below.

Second order. Matching terms up tof ′′′
i yields

c1 = 6+ c3 + 8c4, c2 = −6− 2c3 − 9c4, a1 = −6− 6c4, b1 = 2+ c3 + 6c4. (27a)

The error to leading order is given by(−1/4 + c3/12+ c4)h2 f i v
1 .

Third order. Matching terms up tof i v
i yields

c1 = 9− 4c4, c2 = −12+ 15c4, c3 = 3− 12c4, a1 = −6− 6c4, b1 = 5− 6c4.

(27b)

The error to leading order is equal to(7/60 + c4/5)h3 f v
1 . Note thatc4 = −1 yields the

standard one-sided third-order Pad´e scheme for the second derivative.

Fourth order. Matching terms up tof v
i yields

c1 = 34/3, c2 = −83/4, c3 = 10, c4 = −7/12, a1 = −5/2, b1 = 17/2. (27c)

The resulting leading order error is given by−23h4 f vi
1 /60.

5.3. Numerical Stability

The interior schemes outlined in Section 2.3 are combined with the boundary schemes
of Sections 5.1 and 5.2 to close the system of equations for the first and second derivatives.
Note that the sixth-order interior scheme may be applied fromj = 2 to j = N − 1 and,
therefore, only needs the boundary expressions atj = 1 andN. The eighth-order interior
scheme uses a five-point stencil on the right-hand side. It therefore can only be applied
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from j = 3 to N − 2. In this paper, if the eighth-order scheme is used in the interior, the
system of equations is closed by applying the sixth-order scheme atj = 2 andN − 1, and
the boundary expressions atj = 1 andN. These expressions are derived below.

Note that the formal order of accuracy of the boundary schemes is less than the interior.
This is due to the negative influence of high order (wide stencil) boundary closures on the
stability of the overall scheme. Past work has shown that high order boundary closures can
result in numerical instability in hyperbolic problems. For example, Carpenteret al. [22]
compute solutions to the one-dimensional advection equation and show that the standard
fourth-order Pad´e scheme (Eq. (10a)) is asymptotically unstable when the one-sided fourth-
order expression

f ′
1 + 3 f ′

2 = 1

6h
(−17 f1 + 9 f2 + 9 f3 − f4) (28)

is used at the boundary nodes. The third-order boundary expression,

f ′
1 + 2 f ′

2 = 1

2h
(−5 f1 + 4 f2 + f3) (29)

is shown to be stable.
The combination of the boundary and interior schemes is numerically integrated to long

times, and the solution is examined for boundedness (asymptotic stability). Also, the com-
putational grid is refined while keeping the CFL number fixed, and convergence of the
solution established (Lax stability). Details of this evaluation are provided below. Consider
the one-dimensional advection equation,

∂u

∂t
+ ∂u

∂x
= 0. (30)

Equation (30) is numerically solved over the domain−1 ≤ x ≤ 1, subject to the following
initial and boundary conditions,

u(x, 0) = sin 2πx, u(−1, t) = sin 2π(−1 − t). (31)

Note that the exact solution to the above equation is given by

uexact(x, t) = sin 2π(x − t). (32)

A uniform mesh is used for spatial discretization. The number of grid points (including the
boundaries) is set equal to 26, 51, or 101. The solution is then integrated to a timet = 100.
Note that the solution travels one wavelength in one time unit and travels the length of the
domain in two time units. TheL2 error,

√
1/N

∑N
j =1(u j − uexact)2, is then examined for

boundedness.
Several combinations of the boundary closures, and the interior scheme were examined. In

the following discussion, the notation [a, b−c−a, b] is used to denote these combinations;
c denotes the order of the interior scheme, whilea andb denote the order of the expressions
for the first and second derivative atj = 1 andN. For example, the notation [3, 3−6−3, 3]
implies that the sixth-order scheme (Eqs. (8a), (8b)) is used in the interior, and the third-
order equations (26a) and (27b) are used at the boundary nodes. Note that ifc= 8, it is
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FIG. 7. Illustration of the asymptotic instability of the sixth-order C-D scheme with (4, 3) closure at the
boundaries. The lines correspond to aCFL number of 1.33 while the symbols correspond to aCFL number of
0.1: —–,• (N = 26); ----,× (N = 51); —·—, + (N = 101).

implied that the eighth-order scheme is applied fromj = 3 to N − 2, and the sixth-order
scheme is applied atj = 2 andN − 1.

The numerical evaluations show that the stability is essentially dictated by the first deriva-
tive expression at the boundary. Schemes involving fourth- and fifth-order expressions for
the first derivative, i.e., the schemes [4, 4− 6 − 4, 4], [4, 3− 6 − 4, 3], [4, 2− 6 − 4, 2],
[5, 4 − 6 − 5, 4], [5, 3− 6 − 5, 3], [5, 2− 6 − 5, 2] were found to be asymptotically
unstable. Figure 7 illustrates the observed instability when the [4, 4− 6− 4, 4] scheme, i.e.
fourth-order boundary closure, along with a sixth-order interior scheme is used. Note that
theL2 error is bounded at theCFLnumber of 1.33 (the upper limit for stability of the interior
scheme; see Table VII). However, the error is seen to grow exponentially at a smallerCFL
number of 0.1. This behavior is similar to that observed by Carpenteret al. [22] when the
standard fourth-order Pad´e scheme (Eq. (10a)) is used along with a fourth-order boundary
closure (Eq. (28)). It is a result of the spatial discretization yielding a positive eigenvalue
that lies within the stability envelope of the Runge–Kutta scheme at aCFL number of 1.33.

Similar tests showed that combinations of the third-order expression for the first derivative
(Eq. (26a)) with second-, third-, and fourth-order expressions for the second derivative, i.e.,
the schemes [3, 2− c − 3, 2], [3, 3− c − 3, 3], [3, 4− c − 3, 4] were stable for the sixth-
and eighth-order interior schemes. Figure 8 illustrates the stability of the [3, 3− 6 − 3, 3]
scheme.

5.4. Eigenvalue Analysis

Section 5.3 used numerical solutions of the advection equation to identify the boundary
closures that yielded stable solutions at long times. An eigenvalue analysis is conducted in
this section to confirm that these boundary closures do, indeed, yield asymptotically stable
solutions. Consider the advection equation,

∂u

∂t
+ c

∂u

∂x
= 0, (33)
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FIG. 8. Illustration of the asymptotic stability of the sixth-order C-D scheme with third-order closure at the
boundaries. The lines correspond to aCFL number of 1.33 while the symbols correspond to aCFL number of
0.1: —–,• (N = 26); ----,× (N = 51); —·—, + (N = 101).

subject to the inflow boundary condition,u(0, t) = 0.2 Discretizeu on a uniform grid ofN
points (including the boundaries). The inflow condition implies thatu1(t) = 0. Equation
(33) is therefore solved foru j , where j varies from 2 toN. Spatial discretization yields a
set of ODEs of the form

du j

dt
= c

h
M jk fk, (34)

where j andk vary from 2 toN. M is a N − 1 by N − 1 matrix and is defined such that
u′

j = −M jkuk. The eigenvalues ofM determine the asymptotic stability of the system
of ODEs. The requirement that the eigenvalues ofM have negative real parts ensures
asymptotic stability. The matrixM is obtained as follows. First, the conditionu1 = 0; the
boundary expressions, and the interior scheme are used to eliminateu′

1 andu′′
1 from the

system of equations for the nodal derivatives. The resulting system of equations is then
rearranged as follows. Recall that we use two independent equations relatingu′

j andu′′
j at

each node. It is easily seen that these two equations may be expressed in the form

Au′ + hBu′′ = 1

h
R1u, (35a)

Cu′ + hDu′′ = 1

h
R2u. (35b)

Note that the above system of equations is applied at the nodesj = 2 to N. u′′ may be
eliminated from the above system of equations to obtain an expression relatingu′ to u.
Premultiplying Eqs. (35a) and (35b) byB−1 andD−1, respectively, and subtracting yields

(B−1A − D−1C)u′ = 1

h

(
B−1R1 − D−1R2

)
u, (36)

2 This simple inflow condition is adequate to determine the inherent stability of the system. A more general
inflow condition,u(0, t) = g(t), would simply yield a forcing term on the right-hand side of Eq. (34). The stability
of the system would still be governed by the eigenvalues ofM .
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FIG. 9. Eigenvalues obtained when the (3, 3) closure is used along with the sixth-order interior scheme:
• (N = 26);× (N = 51);+ (N = 101).

implying that

f ′ = −1

h
(B−1A − D−1C)−1

(
B−1R1 − D−1R2

)
f. (37)

Comparison to the relationu′
j = −M jkuk yields the expression forM :

M = (B−1A − D−1C)−1
(
B−1R1 − D−1R2

)
. (38)

The stability of the (3, 2), (3, 3), and (3, 4) boundary closures (Sections 5.1, 5.2) was
tested for both sixth- and eighth-order interior schemes. The number of pointsN was set
equal to 26, 51, or 101. The matricesA, B, C, D, R1, andR2 were specified, and Eq. (38) was
used to (numerically) obtainM . An eigenvalue solver from the IMSL library was then used
to obtain the eigenvalues ofM . All three boundary closures were found to yield eigenvalues
with negative real parts. Figures 9 and 10 illustrate the eigenvalues obtained when the
(3, 3) closure was used with the sixth- and eighth-order interior schemes, respectively.

FIG. 10. Eigenvalues obtained when the (3, 3) closure is used along with the eighth order interior scheme:
• (N = 26);× (N = 51);+ (N = 101).
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5.5. The Stable Boundary Closures

The stable boundary closures are summarized below. The following expressions are used
at j = 1. Equation (25) may be used to obtain the corresponding expressions atj = N. Also,
note that lower order boundary schemes reduce the formal order of the overall scheme to
one greater than that of the boundary [13].

(3, 4) boundary closure.The third-order expression for the first derivative is combined
with a fourth-order expression for the second derivative:

f ′
1 + 2 f ′

2 − h

2
f ′′
2 = 3

h
( f2 − f1), (39a)

−5

2
f ′
2 + h

(
f ′′
1 + 17

2
f ′′
2

)
= 1

h

(
34

3
f1 − 83

4
f2 + 10 f3 − 7

12
f4

)
. (39b)

(3, 3) boundary closure.The third-order expression for the first derivative is combined
with a third-order expression for the second derivative:

f ′
1 + 2 f ′

2 − h

2
f ′′
2 = 3

h
( f2 − f1), (40a)

−6 f ′
2 + h( f ′′

1 + 5 f ′′
2 ) = 3

h
(3 f1 − 4 f2 + f3). (40b)

(3, 2) boundary closure.The third-order expression for the first derivative is combined
with a second-order expression for the second derivative:

f ′
1 + 2 f ′

2 − h

2
f ′′
2 = 3

h
( f2 − f1), (41a)

−6 f ′
2 + h( f ′′

1 + 2 f ′′
2 ) = 6

h
( f1 − f2). (41b)

The matrix form of the schemes obtained with the (3, 3) closure is provided in the Appendix
for completeness.

6. COST COMPARISON

The computational cost of the C-D schemes is compared to that of the standard Pad´e
schemes in this section. The standard Pad´e schemes and the C-D schemes are both of the form

Af̃ = Bf, (42)

where f = [. . . fi −1, fi , fi +1, . . .]T and A and B are constant matrices that depend on
the scheme. For the standard Pad´e schemes, the vectorf̃ is of length N and is either
equal to [. . . f ′

i −1, f ′
i , f ′

i +1, . . .]
T or [. . . f ′′

i −1, f ′′
i , f ′′

i +1 . . .]T. Also, the matrixA is tridi-
agonal with a bandlength ofN. For the C-D schemes,f̃ is of length 2N and is equal to
[. . . f ′

i −1, f ′′
i −1, f ′

i , f ′′
i , f ′

i +1, f ′′
i +1, . . .]

T. The matrixA now has seven bands (see the Ap-
pendix), each of length equal to 2N.
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TABLE X

The Operation Count per Node to Compute the

First and Second Derivatives

RHS LUsolve Total

Padé 4 1+ 1, 2 + 2 3+ 2, 3 + 2 16
Padé 6 2+ 3, 3 + 4 3+ 2, 3 + 2 22
C-D 6 3+ 3 14+ 12 32
C-D 8 3+ 7 14+ 12 36

Note. The entries are of the form, “number of multiples+
adds/subtracts.” The comma in the Pad´e entries separates the
cost for the first and second derivatives.

At first glance, it might appear as if the C-D schemes would be significantly more
expensive. However, this is not the case. Although the matrix bandwidth and the solution
vector length of the C-D schemes is twice that of the standard schemes, a single evaluation
yields both first and second derivatives. When the cost of computing both derivatives is
estimated, the C-D schemes are seen to incur essentially the same cost as the standard
Padé schemes. This is illustrated below. In using schemes of the form given by Eq. (42), the
common practice is to performLU decomposition of the matrixA only once and store theL
andU matrices. Computation of the derivatives therefore involves computing the right-hand
side (Bf ), followed by forward and back substitution. The operation count associated with
computing the right-hand side and solving the resulting system of equations is tabulated in
Table X. When the cost of computing both derivatives is estimated, the C-D schemes are
seen to involve at most factor of 2 more operations. As shown below, this increase in the
number of operations is not very significant.

A cost evaluation was performed on a CRAY C90, using LAPACK routines for theLU
decomposition and the solution of theLU decomposed system. The LAPACK routines took
advantage of the banded structure of the coefficient matrix. The functionf = sin(x) was
discretized using a uniform mesh of 128 points on a domain of length equal to 2π . Individual
routines computed the right-hand side, generated andLU decomposed the matrixA, and
solved the system of equations. Each of these procedures was performed 1000 times, and
the result was averaged to determine the cost per evaluation. The cost in microseconds
is listed in Table XI. The C-D schemes are seen to incur essentially the same cost as the
standard Pad´e schemes when the cost of computing both derivatives is considered.

TABLE XI

The Time in Microseconds to Compute Both First

and Second Derivatives on a Mesh of 128 Points

LU decomposition RHS LUsolve

Padé 4 1575 3.6 462
Padé 6 1577 5.2 462
C-D 6 1620 2.6 404
C-D 8 1840 3.8 416

Note. All computations use LAPACK routines for banded ma-
trices on a CRAY C90 in vector mode.
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This evaluation suggests that an increase in cost, if any, with the C-D schemes is not
likely to be significant; their primary cost is in computing the second derivative, even if it
is not needed.

7. CONCLUSION

A family of finite difference schemes for the first and second derivatives of smooth
functions were derived. The schemes are Hermitian and symmetric and may be considered
an extension of the standard Pad´e schemes described in [1]. They are different from the
standard Pad´e schemes in that the first and second derivatives are simultaneously evaluated.
Fourier analysis was used to compare the proposed schemes to the standard Pad´e schemes.
For the same stencil width the proposed schemes were shown to be two orders higher in
accuracy and have significantly better spectral representation. Numerical solutions to the
one-dimensional advection equation and eigenvalue analysis were used to demonstrate the
numerical stability of the schemes. The computational cost of the proposed schemes was
assessed, and the cost of computing both derivatives was shown to be essentially the same
as the standard Pad´e schemes.

Considering that the Navier–Stokes equations require both first and second derivatives
of most flow variables, the proposed schemes appear to be attractive alternatives to the
standard Pad´e schemes for computations of the Navier–Stokes equations.

APPENDIX

The schemes are presented in matrix form below. Both periodic and nonperiodic bound-
aries are considered.

Sixth-Order Scheme: Periodic

The sixth-order scheme on a periodic domain is given by

Eighth-Order Scheme: Periodic

The eighth-order scheme on a periodic domain is given by
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Sixth-Order Scheme:(3, 3)Boundary Closure

The domain is nonperiodic. The sixth-order interior scheme is used at the nodesj = 2
to N − 1, and the third-order boundary expressions (Eqs. (40a), (40b)) are used atj = 1
andN. The resulting scheme is given by

Eighth-Order Scheme:(3, 3)Boundary Closure

The domain is nonperiodic. The eighth-order interior scheme is used at the nodesj = 3
to N − 2. The sixth-order interior scheme is used atj = 2 andN − 1, and the third-order
boundary expressions (Eqs. (40a), (40b)) are used atj = 1 andN. The resulting scheme is
given by
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The expressions provided in Section 5.5 may be used to obtain the matrices corresponding
to the (3, 2) and (3, 4) boundary closures.
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