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This paper presents a family of finite difference schemes for the first and second
derivatives of smooth functions. The schemes are Hermitian and symmetric and
may be considered a more general version of the standard compaej fehdmes
discussed by Lele. They are different from the standaré Badémes, in that the first
and second derivatives are evaluated simultaneously. For the same stencil width, the
proposed schemes are two orders higher in accuracy, and have significantly better
spectral representation. Eigenvalue analysis, and numerical solutions of the one-
dimensional advection equation are used to demonstrate the numerical stability of
the schemes. The computational cost of computing both derivatives is assessed and
shownto be essentially the same as the standaelfehegimes. The proposed schemes
appear to be attractive alternatives to the standard Belttmes for computations of
the Navier—Stokes equationsg 1998 Academic Press

1. INTRODUCTION

Fluid flows in the transitional and turbulent regimes possess a wide range of length
time scales. The numerical computation of these flows therefore requires numerical n
ods that can accurately represent the entire, or at least a significant portion, of this ran
scales. The length scales that are resolved by a computation are determined by the reso
the accuracy with which these scales are represented depends upon the numerical sc
Fourier analysis (see, e.g. [2]) describes both the range of scales present and the act
with which they are computed (exactly for problems with periodic boundary conditions
in a WKB sense for more general problems). Such analysis of finite difference sche
(see, e.g. Fig. 1 in [1]) shows that the error in computing the first and second derivat
can be quite large for the smaller scales. This small scale inaccuracy becomes increa:
important as the energy in the small scales becomes increasingly comparable to that
large scales, i.e., as the spectrum becomes increasingly “flat.” This situation is comm
encountered in computations, particularly large-eddy simulations, of high Reynolds nur
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turbulence. As shown by Kravchenko and Moin [3] the inaccurate numerical represe
tion of the small scales in these large-eddy simulations can result in the numerical ¢
overwhelming the contribution of the subgrid-scale model.

Finite difference schemes may be classified as “explicit” or “implicit.” Explicit schem
express the nodal derivatives as an explicit weighted sum of the nodal values of the f
tion, e.g.,f{ = (fiy1 — fi1)/2h and " = (fi;1 — 21 + fi_1)/h2. Throughout this paper,
fi and fX denote the values of the function andktb derivative respectively, at the node
X = X;, andh denotes the uniform mesh spacing. By comparison, implicit (compact) schel
equate a weighted sum of the nodal derivatives to a weighted sum of the function,
fi_ +4f + £/, =3(fisa— fi_y/handf” , + 10" + £/, =12(fi 1 — 2f; + fi_1)/h?,
Itis well known [1, 4, 6] that implicit schemes are significantly more accurate for the sn
scales than explicit schemes with the same stencil width. This increase in accura
achieved at the cost of inverting a banded (usually tridiagonal) matrix to obtain the nc
derivatives. Since tridiagonal matrices can be inverted quite efficiently [7], the impli
schemes are extremely attractive when explicit time advancement schemes are uset
most popular of the implicit schemes (also calledéscliemes due to their derivation from
Pad approximants) appear to be the symmetric fourth and sixth order versions (see, e.g
There have been several recent computations of transitional boundary layers [8—11]
bulent flows [12-15], and flow-generated noise [16, 17] that have used tleesPaemes
to evaluate the spatial derivatives. The standare&aRalémes are symmetric and therefor
nondissipative; a nonsymmetric compact scheme was recently developed by Adam:
Shariff [18].

This paper presents a related family of finite difference schemes for the spatial deriva
in the Navier—Stokes equations. The proposed schemes are more accurate than the st
Pad schemes, while incurring essentially the same computational cost. They are bas
Hermite interpolation and may be considered a more general version of the standard
schemes described in [1]. For the same stencil width as the &&®mes, the proposed
schemes have higher order of accuracy and better spectral representation. This is acl
by simultaneously solving for the first and second derivatives. When defined on a unif
mesht the schemes are of the form

af  +aof +axf  +hbi i’ +bof”+baf"y)
1
= H(lei—2+02fi—l+cofi +cafipa +cafipo). 1)

Note that the above expression differs from the standare Beltémes, in that the left-
hand side contains a linear combination of the first and second derivatives. The st
and the coefficients are restricted to be symmetric in this paper. The resulting scheme
therefore nondissipative. The width of the stencil is taken to be three on the left-hand
and five on the right. This corresponds to the stencil width of the popular sixth-order P
scheme.

The motivation to formulate schemes that simultaneously evaluate both derivative
provided by the Navier—Stokes equations requiring both derivatives of most variables. (
sider for example the one-dimensional compressible equations in primitive form (exten

1 This paper develops the schemes on uniform meshes. It is assumed that computations with nonuniforrr
can define analytical mappings between the nonuniform grid and a corresponding uniform grid. The metri
the mapping may then be used to relate the derivatives on the uniform grid to those on the nonuniform grid.
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to multiple dimensions is straightforward). We have

8,0 3,0 au
—p— 2a
ot T Yax T T Pax (22)
au ou 4 92u  49udu dT
S = RTE Ry 2, O ZEBRO 2b
p(atJr 8x> ax Rp * 35 T 39xdT ax (2b)
ax (315%)

o7 0T au 4 /du\? 2T dk 2

%(k%)

The variablesp, u, and T denote the density, velocity, and temperature, respective
while R, u, k, andC, denote the specific gas constant, dynamic viscosity, thermal cond
tivity, and specific heat at constant volume. Note that the viscous terms are expanded
to their evaluation. This is because direct evaluation of the second derivatives is sig
cantly more accurate at the small scales than two applications of a first derivative oper
Equations (2a)—(2c) show that the following spatial derivatives need to be evaluated:

au 9%u AT 92T ap

ax’ ax2’ ax’ ax2’ ax’

Thus, a scheme that simultaneously evaluates both derivatives would only be perfori
one unnecessary evaluatititp/9x?).

Next, consider the conservative form of the equations. The viscous terms are evalt
in their nonconservative form for the reasons given above. We have

ap
T 0: 3
at+ ( u)=0; (3a)
op 4 92u  49udu dT
— (U + = Sy 2T 3b
(”“H (p”Hax 3" 9x2 T 3ox dT ox’ (3)

8Et+ a(Eu)—}— a( W —u 4 82u+48udM8T
at | ax. ax PY =Y\ 3152 T 35x dT ax

+il ou 2+k82—1—+% or 2 (3¢)
37\ ax ox2 " dT \ax )
Equations (3a)—(3c) require the following spatial derivatives to be obtained:

a(u) 8(u2) ap du 9% AT A*T a( ). | (u)
ax P ax PR 9 ax %2 ax axe ax P

As one might expect, the conservative formulation requires fewer simultaneous derive
evaluations. However, if the chain rule is invoked, then a formulation that evaluates |
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derivatives is still attractive. First evaluate (simultaneously)

9 32 PR LR
—(pu), — (pU), —(puU~), — (pu"),
ax(p ) ax2(p ) 8X(p ) 8X2(p )

%p 9 02 0 92

S (B, (B, (U,
The chain rule may then be used to obtairy/dx, 8%u/dx?, ap/dx, andd?p/ax>. The
equation of state and the chain rule then yi&lg/dx andd?T /dx2. In this manner, a total
of only 10 derivative evaluations are performed for the nine derivatives that are needed
increase in accuracy that is obtained by the simultaneous evaluation of derivatives wi
seen to make this additional derivative evaluation worthwhile.

For the same stencil width, the standardé@acliemes are two orders higher in accurac
and have better spectral representation than the corresponding symmetric, explicit sch
The implicit relation between the derivatives in the @adhemes yields additional degree
of freedom that allow higher accuracy to be achieved. It is therefore to be expected
including the second derivatives in the implicit expression would further increase the deg
of freedom and, thereby, the accuracy that can be obtained. Hermitian expressions invc
the function and its first and higher derivatives have been suggested in the literature |
[4, Sections 2.4, 2.5]). Peyret and Taylor [19, Section 2.5.1] and Hirsch [20, Section
discuss a symmetric version of Eq. (1) on a three-point stencil. However, the developt
was not completed to a point where the resulting schemes could be used for solving p
differential equations.

The objective of this paper is to develop this family of schemes and to assess
potential for computations of the Navier—Stokes equations. The schemes will be refe
to as the “coupled-derivative,” or “C-D” schemes, to distinguish them from the stand
Pad schemes. The paper is organized as follows. Section 2 describes the interior sct
that may be obtained from Eqg. (1). Fourier analysis is than used in Section 3 to perfo
detailed comparison between the proposed schemes and the standastiRades. The
restrictions imposed by numerical (Cauchy) stability are discussed in Section 4. Secti
presents appropriate boundary closures for the interior scheme and evaluates the st
of the complete scheme. The computational cost of the proposed schemes is evalua
Section 6 and compared to that of the standarceRatiemes.

ap
ax’

(pw.

2. THE INTERIOR SCHEME

The interior scheme is of the form given by Eq. (1). Simultaneous solving/fand f;”
implies that the number of unknowns is equal t¢.2A total of 2N equations are therefore
needed to close the system. Equation (1) may be used to derive two linearly indeper
equations at each node. This is done as follows. Both sides of Eq. (1) are first expand
a Taylor series. The resulting coefficients are then matched, such that Eg. (1) mainta
certain order of accuracy. Note that Eq. (1) has 11 coefficients, of which one is arbitr
i.e., Eq. (1) may be divided through by one of the constants without loss of generalit)
convenient choice of the normalizing constant is eitheaipadr by. It will be seen that the
equation obtained by settirag equal to 1 is linearly independent of the equation obtaine
whenby is set equal to 1. The two equations may therefore be applied at each node
the resulting system ofl® equations solved for the nodal values of the first and seco
derivative. The process of obtaining the two equations is outlined in Sections 2.1 and 2
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TABLE |
Taylor Table for ag=1

LHS RHS
fi 0 Co
f 1+ 2 2(2c4 + c3)
i bo 0
2h?(ay /2! + by) 2h?(2%¢, + ¢3)/3!
0 0
2h*(ay /4! + b,/31) 2h*(2°c, + c3) /5!
AL 0 0
i 2h®(ay /6! + b,/5") 2h®%(27cy + G3) /7!
i|;iii 0 0
I 2h®(a,/8! + b,/ 7") 2h®(2°c, + c3)/9!

2.1. First Equation(ag = 1)
Consider first the case whesig= 1. The symmetry of the schemes requires tiat a,,
b; = —by, ¢; = —¢4, andc, = —c3. Equation (1) therefore reduces to

ay fi,_]_ + fi, +a fi/+;|_ + h(_bZ fi”—l + b0 fiN + b2 fi/_/,_j_)

= %[Co fi +ca(fiys — fio) +ca(fi2 — fi2)]. (4)
Expanding both sides of Eqg. (4) in a Taylor series and collecting terms of the same ©
yields Table I. Note that “LHS” and “RHS” denote the coefficientsfgfon the left- and
right-hand sides, respectively, of Eq. (4).

The Taylor table shows thbg = ¢y = 0. This leaves four undetermined constaais §,,
c3, andc,). Expressions for these constants may be obtained by matching the terrr
the Taylor table. Schemes of order ranging from two through eight may be obtainec
solving the resulting set of equations. The coefficients and the resulting orders are |
below.

Second order. Matching terms up td;” yields
1 .
a; = —5 + Cc3+ 2c4, by arbitrary (5a)

The resulting leading order error is equak®-— 12b, — 4c; + 4c4)h? £ /6.
Fourth order. Matching terms up tdii” yields

1 1
a; = —E + C3 + 2C4, b2 = 1—2[3 —4(c3 — C4)]. (5b)
The resulting leading order error is given by 15+ 16c3 + 92c4)h* f,"/360. Note that
¢4 = 0, c3 = 3/4 yield the standard fourth-order Ragcheme for the first derivative.
Sixth order. Matching terms up to‘i“i yields

1 15 23
, by = —(—14 36¢cy), = — — —Cy. 5
Cs, bo 16( + 36C4), C3 6 2 Ca (5¢)

7 15

= —
116 4
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The resulting leading order error is equal 15040+ 3c4/140)h fi"ii .Notethat, = 1/36
yields the standard sixth-order Rasicheme for the first derivative.

Eighth order. Matching terms up td;"'"" yields

7o 1 7 1
36 2 120 T 108 7 108

The error to leading order is equal+eh® f* /90720.

a = (5d)

Table | shows thaltg is equal to zero wheagy is set equal to one. The above expressior
may therefore be considered expressions for the nodal values of the first derivative. It
implies that if, instead of settingy equal to one, we sét equal to one, we would obtain an
equation that would be linearly independent. The equation thus derived could be consic
an expression for the second derivative. This equation is obtained below.

2.2. Second Equatiofby = 1)

Consider the case whebg = 1. Note that a tilde is used above the constants to indice
their difference from the constants obtained whgg- 1; e.g.,b; is replaced by;. Sym-
metry requires thdl; = by, € = €4, €, = €3, andd; = —4&,. Equation (1) therefore becomes

o f/ +8x(f,  — f_) +hbf+ 7 +b ")
= %[51( fio+ fizo) +Ca(fi_s + fiyn) + G f. (6)
Expanding both sides of the above equation in a Taylor series and collecting terms o
same order yields the Taylor Table II.

Table Il shows thadi is required to be zero ly is equal to one. The resulting equatior
may therefore be considered an expression for the second derivative. We have five unk
constantsdy, &, &, &, andb,). These constants may be obtained by matching the term:
the above Taylor table and solving the resulting equations. Expressions of varying orde
obtained, depending upon the number of equations matched. At first glance, it appear
the order of accuracy obtained ranges from three through nine. By comparison, the ex
sions obtained whea, was equal to 1 ranged from second through eighth order. Howev

TABLE Il
Taylor Table for by =1

LHS RHS
f; 0 & + 261 + 26,

f/ 3o 0

£ h(2&, + 2b; + 1) 2h(22¢, + &,) /2!
f 0 0

fiv 2h3(8,/3! + by/2Y) 2h3(2%€; + 6,) /4!
fo 0 0

f 2h5(&,/5! + by /41) 2h3(25¢, + &,) /6!
i 0 0

f il 2h(8,/7! + b, /61) 2h7 (286, + &,)/8!
fix 0 0

fx 2h%(3,/9! + b, /8" 2h°(29¢, + &,)/10!
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note that the nodal second derivatives in Eq. (1) are premultiplidd Bguation (1) (and,
therefore, the terms in the Taylor table) needs to be divided throughtgonsider it an
expression for the second derivatives. This process will yield expressions for the se
derivative, ranging in order from two through eight. The values for the constants and
corresponding orders are given below.

Second order. Matching terms up td;” yields
~ L~ ~ 1 - L~
Co=—-2E +¢C), a= E(—1—2b1+4cl+cz). (7a)
The resulting leading order error (& — 8b; + 88, — &)h? fiv/12.

Fourth order. Matching terms up td,"” yields

~ ~ o ~ 3 . 5, =« 1 . &
= -2 = —— — b == _—. 7b
Co €1+C), & a +C1 + 8C2, 1= + C1 3 (7b)

The error to leading order is given by-3+ 288; + &)h*f*' /360. Note that€; =0,
€, =6/5 yield the standard fourth-order Rag¢heme for the second derivative.

Sixth order. Matching terms up td;*' yields

N8

L 1 9,
€, b= ~3 + 501- (7c)

ol ©

Co=—6+54C,, C=3-28, &=

The resulting error to leading order (%/20160+ 3&;/560)h f.'I . Note thatt; = 3/44
yields the standard sixth-order Rasicheme for the second derivative.

Eighth order. Matching terms up td"'"" yields

13 1 88 23 . 1
_ =~ = &=— 8 =_— = ——, 7
57 & 18 by 6 (7d)

The resulting leading order error-ish® fX /453600.

2.3. The Scheme

The interior scheme involves applying the equations derived in sections 2.1 and 2
each node. The resulting system di 2quations is then solved to obtaffi and f;”. Of
the various schemes obtained, two schemes are discussed in detail below. These &
sixth-order scheme witt; = €; = 0, and the eighth-order schemes. These schemes h
the same stencil width as the standard fourth- and sixth-ordex SatEmes. A detailed
comparison between these schemes and the standagdéteethes is therefore performed
The Appendix presents the schemes in matrix form for completeness.

Sixth-order C-D schemg@; = €, = 0).
’ i ! 4 4 15

! ! 4 " " 24
Of/i1 — f0) = h(Fy =81+ §10) = T-(fig = 2fi + fiya). (8b)
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Eighth-order C-D scheme.

107 fiio— fi_
51f{_y + 108/ + 51f/, +O(f’; — /p) = == (fisa— fi) — 22 (%)
138(f/,, — f/ ;) —h(18f , — 108f" + 18f/ )
fiio+ fi 352 702
=—%+T(fi+1+fifl)—Tfi~ (9b)
Standard fourth-order Pael
! ! ! 3
i +4f+ 1, = E(fi+l — fi—1). (10a)
" " " 12
3+ 108 + f/}y = T5(fia = 21 + fi1). (10b)
Standard sixth-order Paal
’ / / 7 f 2 — f',z
i +3f + 1, = %(fwl_ fi71)+urlT'. (11a)

3

W(fi_z —2fi + fi;2). (11b)

217 + 111" 4 21", = i—z(fi—l —2fi + fiq) +
The expressions for the first and second derivative are seen to be independent i
standard Pagl'schemes (Egs. (10a)—(11b)). Obtaining the first and second derivat
using the standard Padschemes therefore involves separately inverting two tridiag
nal matrices with band length dfl. By comparison, the first and second derivative
are coupled in the C-D schemes. The vector of unknowns is therefore of lehgth
[ fq, £ /£, f0, f7.1--]7. Note that for the same stencil width as the ®ad
schemes, the C-D schemes are two orders higher in accuracy. This is achieved at th
of inverting a matrix that has seven bands instead of three. However, although the |
width is increased from three to seven, the inversion yields both the first and sec
derivatives. A more systematic cost comparison with theePadiemes is performed in
Section 6.

3. FOURIER ANALYSIS OF THE DIFFERENCING ERROR

Fourier analysis, and the notion of the “modified wavenumber” provides a conven
means of quantifying the error associated with differencing schemes [2]. Consider the
function f; = €% on a periodic domain. Discretize the function on a domain of length 2
using a uniform mesh dfl points. The mesh spacing is therefore giverhby 27 /N. The
exact values of the first and second derivativef afreike** and —k2&**i . However, the
numerically computed derivatives will be of the forik/e** and—k"?€¥*i. The variables
k' andk”? are functions ok andh and are called the modified wavenumber for the fir:
and second derivative operator, respectively. The difference bekteeadk, andk”? and
k2, provides the differencing error. The modified wavenumbers for the coupled-deriva
schemes are derived and compared to the standarldehdimes in Sections 3.1 and 3.2.
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3.1. Modified wavenumber for the standard Basthemes

The modified wavenumbers for the standard d?adhemes are given by Lele [1] as
follows.

First derivative

Kh — asinkh+ b/2sin Xh
1+ 2xcoskh

; (12a)
wherea = 1/4, a = 3/2, andb = 0 for the fourth-order PadScheme. For the sixth-order
Pad schemey = 1/3,a = 14/9, andb = 1/9.

Second derivative

2a(1 — coskh) + b/2(1 — cos Xh)

//2h2 —
k 1+ 20 coskh ’

(12b)

wherea = 1/10, a = 6/5, andb = 0 for the fourth-order PadScheme. For the sixth-order
Pad schemeg = 2/11, a = 12/11, andb = 3/11.
3.2. Modified Wavenumber for the C-D Schemes

The modified wavenumbers for the C-D schemes are given below. As seen in Section
and 2.2, the sixth- and eighth-order schemes are members of the following two-equi
family of schemes:

C C
o aa(f g+ )+ hbe(fy — 7 = P (fa— i)+ T (e — i) (133)

5 ’ / T ” "oy ” & c ¢
a(f = L) +hbd 2+ 7+ b fl ) = FO fi + Fz(fi+1+ fi_) + Fl(fi+2+ fi_2).
(13b)
The constants in the above equations are as follows:
Sixth-order scheme
=0 a= 7/16, bz = —1/16, C3 = 15/16, 61 =0, (14)
& =3 &=-6, 4 =9/8 b, =-1/8
Eighth-order scheme
¢, =-—1/108 & =17/36, b, =-1/12, c3=107/108 ¢&; = —1/108 (15)

&, = 88/27, & = —13/2, &, =23/18 b,=-1/6.
Equations (18) and (1®) are used to obtain the modified wavenumbers as follows. Consic
the function,f; = €% onaperiodic domain. Using the relatiorig,; = f/e*'"andf/,, =
f/etkh Egs. (1) and (13) become
2f;
f/(1+ 2a; coskh) + f"(i2hb, sinkh) = i TI(C:.; sinkh + ¢4 sin Zh); (16a)

~ f;
f/ (28, sinkh) + f;"(h + 2hby coskh) = (& + 26, coskh +- 26; cos h).  (16b)
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Equations (16) and (1) may be solved forf,’ and f;”. The resulting expressions are of
the formik’ f; and—k"? f;, where the modified wavenumbers (after some rearrangeme
are given by the following expressions:

C3 + 2C4E)1 — Cobo + 2(C361 + ¢4 — byCy) coskh + 2(C4E)1 — b,E;) cos kXh

k'h = 2sinkh - - - - -
1+ 2a;by + 285b, + 2(by + a;) coskh + 2(a;b; — &,b,) cos Xh
(17a)
K'2h2 — _ Co + 218, + 28,63 + 2(E, + a16p + 2a,¢4) coskh
1 + 23.151 + 285b, + 2(51 + a;) coskh + 2(3.151 — ayby) cos Xh
2(&; + a1 &, + 8c3) cos Xh + 4(a;€; — a,¢4) coskhcos Xh (17b)

14 2ayD; + 2485, + 2(b; + a;) coskh + 2(a;b; — &5b,) cos Xh’

3.3. Evaluation of the First Derivative

The modified wavenumbers for the first derivative are shown in Fig. 1. The C-D sche
are seen to follow the exact solution more closely than the standasddehdmes. Recall
that the sixth-order C-D scheme has the same stencil width as the fourth-oréenPdd”
the eighth-order C-D scheme has the same stencil width as the sixth-oré@etriPggite of
its smaller stencil, the sixth-order C-D scheme is seen to have lower error than the s
order Pad. A more quantitative comparison of the schemes is provided in Table lll. T
fractional error in the first derivative may be defined as

Ik'h — kh|

= 18
€ h (18)
Figure 1 shows that the error increasekhsncreases. A measure of the accuracy c
“resolving ability” of the schemes is therefore provided by specifying a maximum value
€ and estimating the fraction of the entire range of wavenumbers for which this requiren
is met. This quantity is termed the “resolving efficiency” by Lele [1] and is a function

k'h

kh

FIG. 1. The modified wavenumber for the first derivative. The C-D schemes are compared to the stan
Padf schemes: — (exact); ---- (C-D: eighth order);--- (C-D: sixth order); —-— (sixth-order Pajll ——
(fourth-order Pad).
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TABLE IlI
A Comparison of the Resolving Efficiency
of the C-D Schemes to the PaglSchemes

e=01 € =0.01 € = 0.001
Pad 4 0.59 0.35 0.20
Pac 6 0.70 0.50 0.35
C-D6 0.75 0.58 0.42
C-D8 0.81 0.66 0.53

the specified tolerance on the error. Table Ill compares the resolving efficiency of the |
schemes to the standard Basthemes. The C-D schemes are seen to be noticeably i
accurate. In fact, of the different compact schemes considered by Lele, the only sct
that outperforms the eighth-order C-D scheme is the pentadiagonal tenth-order sclt
(designated “i” by Lele). The pentadiagonal scheme, however, has a stencil of five pc
on the left-hand side and 7 on the right.

The modified wavenumber may be used to determine the error as a function of
resolution. Consider the case whére 1; i.e., we have one wave of wavelengtk- 27 .
The mesh spacind@ is given byh=27/N =A/N; kh is therefore equal t&./N, the
reciprocal of the number of points per wavelength. The percentage error in the first derivz
may be computed as a function of the resolution, uging- 27 /N and erro=100k’h —
kh|/kh. Figure 2 compares the C-D schemes to the standamifddmes. Note that all the
schemes show 100% error for the two-delta waves (two points per wave). This is bec
the symmetry of the schemes fordél to zero for two-delta waves. The C-D schemes ar
seen to have noticeably smaller error than the standard Sawmes. Further indication
of this is provided in Fig. 3, where the ratio of the error between the C-D schemes anc
Pad schemes is shown. Table IV documents the percentage error in the first derivativ
resolutions of 4 and 8 points per wave. The C-D schemes are seen to represent eve
delta waves with an accuracy of 0.4% and 0.06%, respectively.

Error

10-10 4

10-12 T
1 10’ 10

Points per wave

FIG. 2. The percentage error in the first derivative as a function of the resolution. The C-D schemes
compared to the standard Resthemes: — (C-D: eighth order); ---- (C-D: sixth order);--- (sixth-order Padj;
—-— (fourth-order Pad)}.
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Error ratio

Points per wave

FIG. 3. The ratio of the error in the first derivative between the C-D schemes and the standastRaches
as a function of the resolution: — (C-D 8/Ra@lj; ---- (C-D 6/Pad4);-------- (C-D 6/Pad’6).

3.4. Evaluation of Second Derivative

Modified wavenumbers for the second derivative are shown in Fig. 4. The C-D sche
are seen to be noticeably more accurate at the higher wavenumbers. Nététih&r the
C-D schemes is greater than the exact solution for certain wavenumbers. Interestingly,
element discretizations [5] exhibit similar properties. This is in contrast to the standard F
schemes, whose modified wavenumber is always less than the exact solution. Howeve
aspect of the C-D schemes does not impact the accuracy. As shown in Figs. 5 and ¢
C-D schemes are more accurate than theeRatiemes with the same stencil width.

Similar to the first derivative, a resolving efficiency may be defined for the second der
tive, as the fraction of the wavenumber range for which the error,

B |k//2h2 _ k2h2|

khz (19)

is less than a specified tolerance. The resolving efficiency is tabulated in Table V. Note
the requirement that be less than 0.1 is met over the entire range of wavenumbers. -
second derivative computed using the sixth-order C-D scheme is slightly more acct
than the sixth-order Padscheme, while the eighth-order C-D scheme is noticeably mc
accurate than the standard Badhemes. Table VI shows the percentage error in the sec

TABLE IV
The Percentage Error in the First Derivative as a
Function of the Number of Points per Wave ()

N =4 N=38
Pad 4 4.51% 2B x 10%
Pad 6 0.97% 12 x 102%
C-D6 0.36% 31 x 10°%
C-D8 0.06% 11 x 10%%

Note The C-D schemes are compared to the standare Pad”
schemes.
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kh

FIG. 4. The modified wavenumber for the second derivative. The C-D schemes are compared to the sta
Pad schemes: — (Exact); ---- (C-D: eighth order);--- (C-D: sixth order); —-— (sixth-order P&}’ ——
(fourth-order Padl.

Error

1072 .
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Points per wave

FIG. 5. The percentage error in the second derivative as a function of the resolution. The C-D scheme
compared to the standard Resthemes: — (C-D: eighth order); ---- (C-D: sixth order);--- (sixth-order Pad};
—-— (fourth-order Pad)}.

10°

Error ratio

0 10 20 30
Points per wave

FIG.6. Theratio ofthe errorinthe second derivative between the C-D schemes and the standachBatEs
as a function of the resolution: — (C-D 8/Relj; ---- (C-D 6/Pad6);----- (C-D 6/Pad ' 4).
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TABLE V
Comparison of Resolving Efficiency of the C-D
Schemes to the Pagl Schemes

e=01 € =001 € =0.001
Pad 4 0.68 0.39 0.22
Pac 6 0.80 0.55 0.38
C-D6 1.00 0.57 0.39
C-D8 1.00 0.67 0.50

derivative as a function of the resolution. As was observed for the first derivative, the si
and eighth-order C-D schemes represent even four-delta waves to an accuracy of
0.4% and 0.1%, respectively.

4. STABILITY LIMITS OF INTERIOR SCHEME

This section outlines the restrictions imposed by Cauchy stability on the time step w
the C-D schemes are used with Runge—Kutta time advancement. The model advectio
diffusion equations are solved.

Consider the one-dimensional advection equation on a periodic domain:

au au
—+c—=0. 20
ot + aX (20)
The above equation is solved by the method of lines.u:etl €<*. Spatial discretization
leads to a set of ODEs of the form

dd c
— = —i—kha. 21
at h (21)
The above equation is of the forny it = Ay. It is easily shown that numerical stability
requires that
CAt (Ai A)max

—— =

- 22
h = (Khmae (22)
TABLE VI

The Percentage Error in the Second Derivative as a
Function of the Number of Points per Wave ()

N =4 N=38
Pad 4 2.73% 16 x 101%
Pad 6 0.52% 741 x 103%
C-D6 0.44% 616 x 10%%
cC-D8 0.09% 284 x 104%

Note The C-D schemes are compared to the standareé Pad”
schemes.
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TABLE VII
The Maximum CFL Number Allowed
by Numerical Stability

RK2 RK3 RK4
Pad 4 0 1.0 1.645
Pad 6 0 0.871 1.433
C-D6 0 0.815 1.341
C-D8 0 0.759 1.249
Fourier 0 0.551 0.907

where(k’h)maxdenotes the maximum value of the modified wavenumber for the first deri
tive, and(A; At)max denotes the upper bound imposed by numerical stability when the Ol
dy/dt = iy is numerically integratedi; At)max has values of 0,/3, and 2.85 when
the standard second-, third-, and fourth-order Runge—Kutta schemes [21] are used fol
advancement. Table VIl lists the corresponding bounds on the CFL number. As expe
the improved accuracy at the higher wavenumbers reduces the maximum allowable
number. Similarly, upper bounds amt/h? can be obtained when the one-dimensionz
diffusion equation,

au d%u

e

ot X2
is numerically solved on a periodic spatial domain. Table VIII lists the obtained bour
when the C-D schemes are used with Runge—Kutta time advancement. The accuracy
C-D schemes for the two-delta wavdgd = ) results in the viscous restriction on the time
step being nearly the same as that for a Fourier spectral method.

(23)

5. BOUNDARY SCHEMES

Consider a spatial domain that is discretized by ugihgoints (including those at the
boundaries). Equations g8-(9%) show that the sixth-order scheme can be applied fro
j =2 to N —1, while the eighth-order scheme can be applied fjom3 to N — 2. For
problems with periodic boundary conditions, the periodicity of the solution may be u:
to apply the same equations at the boundary nodes (see the Appendix). However, for
periodic problems, additional expressions are needed at the boundary nodes to clos
system.

TABLE VIII
The Maximum v At/h? Allowed by
Numerical Stability

RK2 RK3 RK4
Pad 4 0.333 0.417 0.483
Pad 6 0.292 0.365 0.423
C-D6 0.208 0.260 0.302
C-D8 0.205 0.256 0.297

Fourier 0.203 0.253 0.294
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Considerj = 1. The following general expression may be written foand f;":

1
afi +af,+hbof+bif))= H(Cl f1+cafa+c3fas+cafa). (24)

The corresponding equation pt= N would be given by:

1
aofy +aify_ s —hbofl + by f{_ 1)—_E(C1fN +Cyfyor+C3fy_a+Cafnoz). (25)

The width of the stencil on the left-hand side of the above equation is restricted to t
This ensures that the number of bands in the left-hand side matrix is still seven. As
done for the interior scheme, the constants in Eq. (24) may be obtained by expandin
terms in a Taylor's series and matching expressions of the same order. Recall that we
two independent equations at each node. For the interior schemes, we sdoy et
equal to 0 ifay was equal to 1 and vice versa. This yielded the two independent eq
tions. As seen from Tables | and I, this relationship betwagand by for the interior
schemes is a natural consequence of their symmetry. However, for the boundary sch
it turns out that settingg to 1 does not imply thab is zero and vice versa. The equatior
obtained wherag =1, is the same as that obtained whgy=1. The following proce-
dure is therefore used to obtain two independent equations. When matching the terr
the Taylor table(ag, bp) is first set equal to (1, 0). This yields the first equation. Nex
(ap, bp) is setequal to (0, 1). This yields the second equation. These expressions are de
below.

Taylor’s series expansion of Equation (24) yields Table IX. There are eight undetermi
constantsin Eq. (1). Note that if either of the constraiagsby) = (1, 0) or (0, 1) isimposed
and the terms in the Taylor table matched, the maximum order that can be obtained is
The following family of schemes is obtained by matching the the terms in Table I1X
different orders. Consider first the case whaye- 1 andbg = 0. The resulting expressions
may be considered expressions for the first derivative.

5.1. First Equation(ag = 1, bp = 0)
Expressions for the coefficients and the corresponding orders are given below.

Third order. Matching terms up td;” yields

1
Ci=—-3+C3+8Cs, C=3—-2c3—9Cs, a3 =2—6¢Cy, b1=—§+03+6C4. (26a)

TABLE IX
Taylor Table Obtained for the Boundary Schemes

LHS RHS
f1 0 CL+C+C+Cs
f] -+ a C2 + 203+ 3Cs
fy h(a; + o + by) h(c, + 2%c; + Fcy) /2!
£/ h?(a; /2! + by) h2(c, + 23¢c; + 3%¢,) /3!
fiv h3(a,/3! + by /2!) h3(c, + 2%c; + 3%cy) /4!
fp h*(a,/4! + by /3!) h*(c, + 25¢; + 3°¢4) /5!

fy' h®(a1/5! + by /41) h%(c, + 2°Cs + 3°¢,) /6!
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The leading order error is thef/24+ c3/12+c4)h3 fli“. Note thattz; = 1/2, ¢, = Oyields
the standard one-sided third-order Batheme for the first derivative.

Fourth order. Matching terms up td; yields

7 1
Cl=—§—4C4, Co =4+ 15¢,, C3=—§—12C4, ay=2-6c,, b =-1-6cs.
(26b)

The error to leading order is given tgy-1/60 + c4/5)h* 7. Note thatc, = —1/6 yields
the standard one-sided fourth-order Eadheme for the first derivative.

Fifth order. Matching terms up td}’ yields
3 3
CL=—F, C=— C3=—=, C=——= alzé, bl:_i' (260)
The error to leading order is equalhdf;' /120.

5.2. Second Equatiofay = 0, by = 1)

Similar expressions are obtained whan=0 andby=1. These expressions may be
considered relations for the second derivative. The order of the expressions will a
range from three to five. However, due to the second derivatives being multipliechy
corresponding order of the second derivatives ranges from two to four. The values o
constants are given below.

Second order. Matching terms up td;” yields
Ci=6+C+8Cs, C=-6—2c3—9c4, a5 =-6-—6C,, by =2+cC3+6¢C,. (27&)

The error to leading order is given I6y-1/4 + c3/12+ c4)h? f1v.
Third order. Matching terms up td;'” yields

Ci=9-4c,, C=-12+15c,, c3=3-12¢c4, a3y =—-6-6C4, by =5—6¢4.
(27b)

The error to leading order is equal 8/60 + c4/5)h®f’. Note thatc, = —1 yields the
standard one-sided third-order Rastheme for the second derivative.

Fourth order. Matching terms up td}” yields
€1 =34/3, ¢, =-83/4, ¢3=10, ¢4 =-7/12, & =-5/2, by =17/2. (27c)

The resulting leading order error is given b23h* fl”i /60.

5.3. Numerical Stability

The interior schemes outlined in Section 2.3 are combined with the boundary sche
of Sections 5.1 and 5.2 to close the system of equations for the first and second deriva
Note that the sixth-order interior scheme may be applied fjog2 to j =N — 1 and,
therefore, only needs the boundary expressiornjs=al andN. The eighth-order interior
scheme uses a five-point stencil on the right-hand side. It therefore can only be ap
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from j =3 to N — 2. In this paper, if the eighth-order scheme is used in the interior, t
system of equations is closed by applying the sixth-order scheine-atandN — 1, and
the boundary expressions jpt= 1 andN. These expressions are derived below.

Note that the formal order of accuracy of the boundary schemes is less than the inte
This is due to the negative influence of high order (wide stencil) boundary closures or
stability of the overall scheme. Past work has shown that high order boundary closure:
result in numerical instability in hyperbolic problems. For example, Carpentak [22]
compute solutions to the one-dimensional advection equation and show that the stau
fourth-order Pad'scheme (Eqg. (10a)) is asymptotically unstable when the one-sided fou
order expression

1
f£+3f/=%(—17f1+9f2+9f3— f4) (28)
is used at the boundary nodes. The third-order boundary expression,

1
fl+2f;= - (-5fi+4f + fy) (29)

is shown to be stable.

The combination of the boundary and interior schemes is numerically integrated to |
times, and the solution is examined for boundedness (asymptotic stability). Also, the c
putational grid is refined while keeping the CFL number fixed, and convergence of
solution established (Lax stability). Details of this evaluation are provided below. Consi
the one-dimensional advection equation,

ou du
. 30
ot + X (30)
Equation (30) is numerically solved over the domaih < x < 1, subject to the following
initial and boundary conditions,

u(x,0) =sin2rx, u(=1,t) =sin2r(-1-1). (31)
Note that the exact solution to the above equation is given by
Uexact(X, ) = sin2r(x —t). (32)

Auniform mesh is used for spatial discretization. The number of grid points (including
boundaries) is set equal to 26, 51, or 101. The solution is then integrated tota-tifr3.
Note that the solution travels one wavelength in one time unit and travels the length o
domain in two time units. Thé&, error, \/1/N Zz\':l(uj — Uexacd?, is then examined for
boundedness.

Several combinations of the boundary closures, and the interior scheme were examin
the following discussion, the notatioa,[b — c—a, b] is used to denote these combinations
¢ denotes the order of the interior scheme, whindb denote the order of the expression:
for the first and second derivative jat= 1 andN. For example, the notation [3-36— 3, 3]
implies that the sixth-order scheme (Egs. (8a), (8b)) is used in the interior, and the tt
order equations (26a) and (27b) are used at the boundary nodes. Notectha,ifit is
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logyo(Ls Error)

Time

FIG. 7. lllustration of the asymptotic instability of the sixth-order C-D scheme with (4, 3) closure at t
boundaries. The lines correspond t€BL number of 1.33 while the symbols correspond t6FL number of
0.1: —,e (N = 26); -, x (N = 51); ——, + (N = 101).

implied that the eighth-order scheme is applied frpm 3 to N — 2, and the sixth-order
scheme is applied §t=2 andN — 1.

The numerical evaluations show that the stability is essentially dictated by the first del
tive expression at the boundary. Schemes involving fourth- and fifth-order expression
the first derivative, i.e., the schemes [4+-%6 — 4, 4], [4,3—6—4, 3],[4,2— 6 — 4, 2],
[5,4—6-5,4],[5,3—6-5, 3],[5, 2— 6 — 5, 2] were found to be asymptotically
unstable. Figure 7 illustrates the observed instability when the{46 4 4, 4] scheme, i.e.
fourth-order boundary closure, along with a sixth-order interior scheme is used. Note
theL erroris bounded at theFL number of 1.33 (the upper limit for stability of the interior
scheme; see Table VII). However, the error is seen to grow exponentially at a s@feller
number of 0.1. This behavior is similar to that observed by Carpeni@t [22] when the
standard fourth-order Padcheme (Eg. (10a)) is used along with a fourth-order bounds
closure (Eq. (28)). It is a result of the spatial discretization yielding a positive eigenva
that lies within the stability envelope of the Runge—Kutta scheme&C&tianumber of 1.33.

Similar tests showed that combinations of the third-order expression for the first derive
(Eq. (26a)) with second-, third-, and fourth-order expressions for the second derivative,
the schemes [3,2 c— 3, 2], [3,3—c— 3, 3], [3, 4— c — 3, 4] were stable for the sixth-
and eighth-order interior schemes. Figure 8 illustrates the stability of the{3% 3 3, 3]
scheme.

5.4. Eigenvalue Analysis

Section 5.3 used numerical solutions of the advection equation to identify the bounc
closures that yielded stable solutions at long times. An eigenvalue analysis is conduct
this section to confirm that these boundary closures do, indeed, yield asymptotically s
solutions. Consider the advection equation,

au au _

— +c— =0, 33
atJr X (33)
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log19(L2 Error)
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FIG. 8. lllustration of the asymptotic stability of the sixth-order C-D scheme with third-order closure at t
boundaries. The lines correspond t€BL number of 1.33 while the symbols correspond t6FL number of
0.1: —,e (N = 26); ---, x (N = 51); ——, + (N = 101).

subject to the inflow boundary conditiom(0, t) = 0.2 Discretizeu on a uniform grid ofN
points (including the boundaries). The inflow condition implies thgt) = 0. Equation
(33) is therefore solved far;, wherej varies from 2 toN. Spatial discretization yields a
set of ODEs of the form

duj ¢

— = —Mj fy, 34

dt h jk Tk ( )
where ] andk vary from 2 toN. M is aN — 1 by N — 1 matrix and is defined such that
uj =—MjkUx. The eigenvalues oM determine the asymptotic stability of the systen

of ODEs. The requirement that the eigenvaluedvbthave negative real parts ensure:
asymptotic stability. The matrikl is obtained as follows. First, the condition = 0; the
boundary expressions, and the interior scheme are used to elimipatedu] from the
system of equations for the nodal derivatives. The resulting system of equations is
rearranged as follows. Recall that we use two independent equations refatingu’ at
each node. It is easily seen that these two equations may be expressed in the form

1
AU’ + hBU” = ﬁRlu’ (35a)
/ 4 1
Cu + hDu"” = HRZU' (35b)

Note that the above system of equations is applied at the njogesto N. u” may be
eliminated from the above system of equations to obtain an expression ralatogi.
Premultiplying Egs. (35a) and (35b) By andD~%, respectively, and subtracting yields

=

B 'A-D'COU = =(B'Ry — D 'Ry)u, (36)

h
2 This simple inflow condition is adequate to determine the inherent stability of the system. A more ger

inflow condition,u(0, t) = g(t), would simply yield a forcing term on the right-hand side of Eq. (34). The stabilit
of the system would still be governed by the eigenvaludd of
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Imaginary part

-0.3 -0.2 -0.1 [¢]

Real part

FIG. 9. Eigenvalues obtained when the (3, 3) closure is used along with the sixth-order interior sche
o (N =26); x (N =51);+ (N = 101).

implying that
f = —%(B‘lA -D'C) ' (B'R, — D 'Ry)f. (37)
Comparison to the relatiaufj = —Mij U yields the expression fovi:
M= B"'A-D'C)'(B'R,—D'Ry). (38)

The stability of the (3, 2), (3, 3), and (3, 4) boundary closures (Sections 5.1, 5.2) \
tested for both sixth- and eighth-order interior schemes. The number of pbimss set
equalto 26,51, or 101. The matricksB, C, D, Ry, andR, were specified, and Eq. (38) was
used to (numerically) obtaiM . An eigenvalue solver from the IMSL library was then use
to obtain the eigenvalues bf. All three boundary closures were found to yield eigenvalue
with negative real parts. Figures 9 and 10 illustrate the eigenvalues obtained wher
(3, 3) closure was used with the sixth- and eighth-order interior schemes, respectively

p= 1
&
A
% 01 H +
g
& 1
g
R
24
-3 y T
-0.3 -0.2 -0.1
Real part

FIG. 10. Eigenvalues obtained when the (3, 3) closure is used along with the eighth order interior sche
o (N = 26); x (N =51); + (N = 101).
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5.5. The Stable Boundary Closures

The stable boundary closures are summarized below. The following expressions are
atj = 1. Equation (25) may be used to obtain the corresponding expressipasiit Also,
note that lower order boundary schemes reduce the formal order of the overall scher
one greater than that of the boundary [13].

(3, 4) boundary closureThe third-order expression for the first derivative is combine
with a fourth-order expression for the second derivative:

h 3
£ +2f)— —f) = ~(f,— fp), (39a)
2 h
5 , 17.\ 1/34_ 83 7

(3, 3) boundary closureThe third-order expression for the first derivative is combine
with a third-order expression for the second derivative:

h 3
fi+2f,— S 1) = —(f2— 1), (40a)

2 h

/ " 4 3
—6f;+N(f{ +5%) = 31— 4T + o) (40b)

(3, 2) boundary closureThe third-order expression for the first derivative is combine
with a second-order expression for the second derivative:

I !’ h " 3
f1+2f2—§fz =ﬁ(f2— f1), (41a)

6
—6f,+h(f/+2f)) = H(fl_ f2). (41Db)

The matrix form of the schemes obtained with the (3, 3) closure is provided in the Apper
for completeness.

6. COST COMPARISON

The computational cost of the C-D schemes is compared to that of the standard
schemes in this section. The standarddPadhiemes and the C-D schemes are both of the fol

AF = B, (42)

wheref = [... fi_y, fi, fiz1,...]T andA andB are constant matrices that depend o
the scheme. For the standard Pasthemes, the vectdris of length N and is either
equal to [.. f/_,, f/, f.q, .. ] or [... f7,, £, 7, ...]T. Also, the matrixA is tridi-
agonal with a bandlength dfi. For the C-D scheme$,is of length N and is equal to
[...fq £7q, f, f7 £/ 0, £, ...]". The matrixA now has seven bands (see the Ap

pendix), each of length equal to\2
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TABLE X
The Operation Count per Node to Compute the
First and Second Derivatives

RHS LUsolve Total
Padc 4 1+1,2+2 3+2,3+2 16
Pad 6 2+3,3+4 3+2,3+2 22
C-D6 3+3 14+ 12 32
c-D8 3+7 14412 36

Note The entries are of the form, “number of multiples
adds/subtracts.” The comma in the Pahtries separates the
cost for the first and second derivatives.

At first glance, it might appear as if the C-D schemes would be significantly mc
expensive. However, this is not the case. Although the matrix bandwidth and the solL
vector length of the C-D schemes is twice that of the standard schemes, a single evalt
yields both first and second derivatives. When the cost of computing both derivative
estimated, the C-D schemes are seen to incur essentially the same cost as the st
Pad schemes. This is illustrated below. In using schemes of the form given by Eq. (42)
common practice is to perforinU decomposition of the matrik only once and store the
andU matrices. Computation of the derivatives therefore involves computing the right-h:
side @Bf), followed by forward and back substitution. The operation count associated v
computing the right-hand side and solving the resulting system of equations is tabulat
Table X. When the cost of computing both derivatives is estimated, the C-D scheme:
seen to involve at most factor of 2 more operations. As shown below, this increase ir
number of operations is not very significant.

A cost evaluation was performed on a CRAY C90, using LAPACK routines fot the
decomposition and the solution of thé&) decomposed system. The LAPACK routines tool
advantage of the banded structure of the coefficient matrix. The funétiersin(x) was
discretized using a uniform mesh of 128 points on a domain of length equal tndvidual
routines computed the right-hand side, generatedlanhdlecomposed the matrik, and
solved the system of equations. Each of these procedures was performed 1000 time
the result was averaged to determine the cost per evaluation. The cost in microsec
is listed in Table XI. The C-D schemes are seen to incur essentially the same cost a
standard Paglschemes when the cost of computing both derivatives is considered.

TABLE XI
The Time in Microseconds to Compute Both First
and Second Derivatives on a Mesh of 128 Points

LU decomposition RHS LUsolve
Pac 4 1575 3.6 462
Pacd 6 1577 5.2 462
C-D6 1620 2.6 404
C-D8 1840 3.8 416

Note All computations use LAPACK routines for banded ma-
trices on a CRAY C90 in vector mode.
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This evaluation suggests that an increase in cost, if any, with the C-D schemes i
likely to be significant; their primary cost is in computing the second derivative, even i
is not needed.

7. CONCLUSION

A family of finite difference schemes for the first and second derivatives of smo
functions were derived. The schemes are Hermitian and symmetric and may be consi
an extension of the standard Rasthemes described in [1]. They are different from th
standard PaglSchemes in that the first and second derivatives are simultaneously evalu
Fourier analysis was used to compare the proposed schemes to the standacheatts.
For the same stencil width the proposed schemes were shown to be two orders higt
accuracy and have significantly better spectral representation. Numerical solutions t
one-dimensional advection equation and eigenvalue analysis were used to demonstre
numerical stability of the schemes. The computational cost of the proposed scheme:
assessed, and the cost of computing both derivatives was shown to be essentially the
as the standard Padtchemes.

Considering that the Navier—Stokes equations require both first and second deriva
of most flow variables, the proposed schemes appear to be attractive alternatives t
standard Paalschemes for computations of the Navier—Stokes equations.

APPENDIX

The schemes are presented in matrix form below. Both periodic and nonperiodic bo
aries are considered.

Sixth-Order Scheme: Periodic

The sixth-order scheme on a periodic domain is given by

[16 © 7T —h 0 7 R A [ 15(f-1n)
0 8h 9 —-h 0 -9 -k v 24(fn=-2f1+f2)
0o 7 h 16 0 7 —h 1 2 1(fia—ficn)
-9  -—h 0 8h 9 —h 0 I k| 24(fic1—=2fi+fit1)
7 —h 0 7 h 16 0 I 15(fi—fn-1)
L 9 -k 0 -9  —h 0 8h 1 | s ] | 24(fv—1—-2fn+F1) ]

Eighth-Order Scheme: Periodic

The eighth-order scheme on a periodic domain is given by
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| 138

[ 108 o 51 —9h
0 108k 138  —18h
0 51 oh
—138  —18h
51  —9h
—18h 0

h | =(figo+fi2)+352(fixr+fi-1)—T02f;
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0
0
108 0 51 —9h
0 108h 138 —18h
0 51 9h
—138 -—18h

107(fo— fn)—(fa—fn-1)

~(fatfv-1)+352(f2+fn)-702f,

107(fig1~fim1)—(fiz2—fi-2)

107(fi—fn—1)=(fo—fn-2)

| —(fo+fn—2)+352(fi+fn-1)-TO2fN |

Sixth-Order Schemé3, 3) Boundary Closure

51

—138

0

108

0

on 1 [ #7]
—18h i
£l
"
4] f}v’
108h | Fi

The domain is nonperiodic. The sixth-order interior scheme is used at the pedé&s
to N — 1, and the third-order boundary expressions (Egs. (40a), (40b)) are uged &t
andN. The resulting scheme is given by

2 —h/2
-6 5h 0
7 b 6 0

- r f{ 9
£
7 -h 5
9 -h 0 i
2 K21 ol s
-6 —5h 0 —h f}'\/{

Eighth-Order Schemd3, 3) Boundary Closure

The domain is nonperiodic. The eighth-order interior scheme is used at the pedas
to N — 2. The sixth-order interior scheme is used at 2 andN — 1, and the third-order
boundary expressions (Egs. (40a), (40b)) are usg¢d=afl andN. The resulting scheme is

given by

[

3(f2—f1)
9f1-12f2+3f3

15(fig1—fi-1)
24(fic1=2fi+fir1)

3(fn—fn-1)

| ~9/N+12fN1—3fN -2 |
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1 o 2 —h/2 f
0 -6 5h 0 I
7 16 0 7 —-h f3
9 —h 0 8h 9 L 0 7
0 51 9h 108 0 51 —9h £l
—-138 -18h 0 108k 138 —18h O i
0 7 A 16 o T -—h floos
-9 =-h 0 8 9 —h o,
o 2 h/2 1 0 e
| -6 —5h 0 -] | g |
[ 3(f2—f1) ]
9f1—-12f2+43fs
15(f3~f1)

24(fi—-2f2+1fa)

107(fig1—fim1)—(fira—fi=2)
—(fig2+tfic2)+352(fiq1+fim1)—T025;

=

15(fn—fn—-2)
24(fy—2-2fn1tfN)
3(fn—FNn-1)
B —9fn+12fN1-3fN-2 |

The expressions provided in Section 5.5 may be used to obtain the matrices correspo
to the (3, 2) and (3, 4) boundary closures.
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