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The influence of entropy fluctuations on the
interaction of turbulence with a shock wave
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Center for Turbulence Research, Stanford University, Stanford, CA 94305, USA

(Received 10 June 1996 and in revised form 14 October 1996)

Direct numerical simulation and inviscid linear analysis are used to study the in-
teraction of a normal shock wave with an isotropic turbulent field of vorticity and
entropy fluctuations. The role of the upstream entropy fluctuations is emphasized.
The upstream correlation between the vorticity and entropy fluctuations is shown
to strongly influence the evolution of the turbulence across the shock. Negative
upstream correlation between u′ and T ′ is seen to enhance the amplification of the
turbulence kinetic energy, vorticity and thermodynamic fluctuations across the shock
wave. Positive upstream correlation has a suppressing effect. An explanation based
on the relative effects of bulk compression and baroclinic torque is proposed, and a
scaling law is derived for the evolution of vorticity fluctuations across the shock. The
validity of Morkovin’s hypothesis across a shock wave is examined. Linear analysis
is used to suggest that shock-front oscillation would invalidate the relation between
urms and Trms, as expressed by the hypothesis.

1. Introduction
The interaction of shock waves with turbulent boundary layers has received con-

siderable attention over the past five decades. There have been several experimental
studies (Green 1970; Fernholz & Finley 1981; Settles & Dodson 1994; Dolling 1993)
of the flow in a compression corner, normal shock/boundary layer interaction and
more recently, the interaction of shock waves with three-dimensional boundary layers.
These experiments testify to the complex flow field associated with the interaction.
Incidence of the shock wave is shown to strongly affect both the mean flow, and
the turbulent fluctuations. The Reynolds stresses and temperature fluctuations in the
boundary layer are seen to amplify across the shock wave. Significant unsteadiness
of the shock wave is observed when the boundary layer separates. The motion of
the shock wave seems to be correlated with the upstream pressure fluctuations. Also,
high levels of wall- pressure fluctuations are observed in the vicinity of the shock.

The importance of bulk compression in the evolution of the turbulence across the
shock was noted by Bradshaw (1974), Dussauge & Gaviglio (1981) and Debieve,
Gouin & Gaviglio (1982). Anisotropy of the upstream turbulence was identified as
a significant factor by Jacquin, Blin & Geffroy (1991) and Mahesh, Lele & Moin
(1993). The role of upstream acoustic waves was studied by Mahesh et al. (1995). By
comparison, the role of entropy fluctuations in shock wave/boundary layer interaction
seems to be under-appreciated. For example, Smits & Muck (1987) suggest that the
primary mechanism of turbulence amplification in compression-corner flow is inviscid
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bulk compression. The adverse pressure gradient, concave streamline curvature, and
mean compression downstream of the corner are found to further enhance turbulence
levels. Also, unsteadiness of the shock front is identified as becoming important
across strong shocks.

No mention is made of the likely influence that upstream entropy fluctuations
would have on the evolution of the turbulence. Morkovin’s (1961) hypothesis,

ρ′

ρ
= −T

′

T
= (γ − 1)M2 u

′

U
, (1.1)

suggests that in addition to being correlated, the intensity of the vortical field and en-
tropy fluctuations in a constant-pressure boundary layer are of comparable magnitude.
Experimental data (Bradshaw 1977) support the above hypothesis. Also, measure-
ments (Fernholz & Finley 1981) show that ρrms/ρ in a constant-pressure boundary
layer can have values as high as 5%− 10%. This suggests that entropy fluctuations
might play an important role in the shock wave/boundary layer interaction.

Past analytical work (Morkovin 1960; Chang 1957; Cuadra 1968) has examined
the interaction of plane entropy waves with a shock. These studies emphasize the
pressure field that is produced through the interaction. Morkovin’s one-dimensional
analysis shows that the pressure fluctuations generated behind a detached shock
are quite intense, and may affect the transition of the boundary layer on the body.
Cuadra’s parametric study demonstrates that entropy fluctuations in shear flows can
generate noise levels comparable to those generated by vortical fluctuations. Rapid
distortion theory was used by Goldstein (1979) to examine the influence of upstream
entropy fluctuations on turbulence passing through a wind-tunnel contraction. His
analysis showed that the entropy fluctuations produced turbulence, whose magnitude
increased more rapidly with contraction ratio than that of the upstream imposed
turbulence. With the exception of Hesselink & Sturtevant’s (1988) experiments, it
appears that the interaction of a turbulent field of entropy fluctuations with a shock
wave has not been examined. Also, Hesselink & Sturtevant were interested in the
sonic boom problem. As a result, their study emphasized the evolution of the shock
front, and restricted the shock strength to Mach 1.1.

This paper studies the interaction of a normal shock with a turbulent field of
vorticity and entropy fluctuations. Direct numerical simulation (DNS) and inviscid
linear analysis are used for this purpose. The focus is on the influence of the upstream
entropy fluctuations. Shock waves of strength Mach 1.29 and Mach 1.8 are computed
using DNS, while the linear analysis considers a range of Mach numbers from 1 to
3. The paper is organized as follows. A description of the problem is provided in §2.
Some details of the DNS and linear analysis are also summarized. Section 3 discusses
the results and provides an explanation for the role of entropy fluctuations. Also, a
scaling law for the evolution of vorticity fluctuations across the shock is derived. The
paper is then concluded with a brief summary in §4.

2. Description of the problem
Direct numerical simulation and linear analysis are used to study the interaction

of a normal shock wave with turbulence. The turbulent velocity field upstream of the
shock wave is isotropic, and the mean flow is uniform. Also, the upstream turbulence
essentially comprises a vortical velocity field and entropic thermodynamic field. This
composition is exactly enforced within the linear analysis, and is only approximately
satisfied in the DNS. The upstream thermodynamic field in the DNS approximately
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Figure 1. Schematic of the numerical simulation.

satisfies the weak form of Morkovin’s hypothesis. The analysis considers two different
spectra for the upstream thermodynamic field: one that satisfies the strong form
of Morkovin’s hypothesis (axisymmetric), and the other that is isotropic. Note that
u′T ′ is negative if Morkovin’s hypothesis holds upstream of the shock wave. For the
isotropic upstream thermodynamic field, the analysis considers two possibilities: one
where u′T ′ is negative, and the other where it is positive.

Section 2.1 outlines the relevant details of the DNS. The inflow and outflow
boundary conditions are emphasized. A brief description of the linear analysis is then
provided in §2.2.

2.1. Details of the direct numerical simulation

A schematic of the computed flow is shown in figure 1. Note that the shock wave is
stationary in the mean. The governing equations are the unsteady three-dimensional
compressible Navier–Stokes equations in the following conservative, non-dimensional
form:

∂ρ

∂t
= − ∂

∂xi
(ρui), (2.1a)

∂

∂t
(ρui) = − ∂

∂xj
(ρuiuj + pδij) +

∂τij

∂xj
, (2.1b)

∂Et

∂t
= − ∂

∂xi
[(Et + p)ui]−

∂qi

∂xi
+

∂

∂xj
(uiτij). (2.1c)

The viscous stress tensor and heat flux vector are given by

τij =
µ

Re

(
∂ui

∂xj
+
∂uj

∂xi
− 2

3

∂uk

∂xk
δij

)
, (2.2a)

qi = − µ

RePr

∂T

∂xi
. (2.2b)

The variable Et denotes the total energy, defined as Et = p/(γ−1)+ρuiui/2. Note that
the mean sound speed, density and dynamic viscosity at the inflow of the domain are
used to non-dimensionalize velocity, density and viscosity respectively. The reference
lengthscale Lr is related to the other reference variables by Re = ρrcrLr/µr . The fluid
is assumed to be an ideal gas with 1.4 as the ratio of specific heats. The dynamic
viscosity is related to the temperature by a power law with 0.76 being the exponent,
and the Prandtl number is assigned a constant value of 0.7.

The computational mesh is uniform in the directions transverse to the shock wave.
A non-uniform mesh is used in the streamwise direction, such that points are clustered
in the vicinity of the shock. The following analytical mapping is used for this purpose.
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Using the variable s to denote a uniform mesh from 0 to 1x, the non-uniform mesh
is given by

x

Lx
=

rs+
r − d

2b
ln

[
cosh b(s− 3c/2) cosh bc/2

cosh b(s− c/2) cosh 3bc/2

]
r +

r − d
2b

ln

[
cosh b(1− 3c/2) cosh bc/2

cosh b(1− c/2) cosh 3bc/2

] . (2.3)

Values of b, r, d and c used in the Mach 1.29 simulations are 12, 1.95, 0.04 and
0.281 respectively. The Mach 1.8 computation uses values of 12, 1.95, 0.02 and 0.283
respectively.

A combination of the sixth-order Padé scheme (Lele 1992) and the sixth-order ENO
scheme (Shu & Osher 1988, 1989) is used to compute spatial derivatives. The shock-
capturing scheme (ENO) uses the global Lax–Friedrichs flux splitting. The degeneracy
in the base form of the ENO scheme is removed (Shu 1990) by biasing the adaptive
choice of stencil towards central differences. Also, the shock-capturing scheme is
applied only in the streamwise (shock-normal) direction in the vicinity of the shock
wave. The sixth-order Padé scheme is therefore used to compute all spatial derivatives
except the streamwise inviscid fluxes around the shock: the ENO scheme is used to
compute those terms. Time advancement is performed using the compact-storage
third-order Runge–Kutta scheme (Wray 1986). Since the turbulence is statistically
homogeneous transverse to the shock wave, periodic boundary conditions are imposed
in those directions. Turbulent fluctuations are superposed onto the mean field at the
inflow boundary while non-reflecting boundary conditions are specified at the exit
through use of a ‘sponge’ zone. Details of the inflow and outflow boundary conditions
are provided below. The Mach 1.29 simulations are used for illustration; the same
procedure was followed for the Mach 1.8 computation.

2.1.1. Inflow turbulence

Since the flow upstream of the shock wave is supersonic, all the flow variables
are specified at the inflow boundary. Turbulent fluctuations in velocity, density
and pressure are superposed on the uniform mean flow. The turbulence upstream
of the shock wave is required to have an isotropic velocity field. When entropy
fluctuations are present, the upstream velocity–temperature correlation is required to
be similar to that found in adiabatic boundary layers, i.e. Ru′T ′ is required to be nearly
−1. The correlation between the velocity and temperature (entropy) fluctuations in
turbulent boundary layers is a consequence of the turbulent velocity field stirring the
mean temperature (entropy) gradients to produce temperature (entropy) fluctuations.
However, due to the absence of a mean temperature gradient upstream of the
shock in the computation, there is no mechanism to sustain a negative velocity–
temperature correlation. This may be anticipated from the independence of the
velocity and entropy fluctuations in the linear inviscid limit for uniform mean flow.
The following procedure is therefore used to generate the desired upstream turbulence
in the computations.

The turbulent fluctuations are obtained from a separate temporal simulation of
isotropic, decaying turbulence. The temporal simulation (which has periodic boundary
conditions in all three directions) is advanced in time until the flow field is well-

developed, i.e. the velocity derivative skewness Sα = (∂u′α/∂xα)
3/[(∂u′α/∂xα)

2]3/2 attains
(Tavoularis, Bennett & Corrsin 1978; Erlebacher et al. 1992) a value between −0.4
and −0.6. Typically, this happens after a time t ∼ λ/urms. Taylor’s hypothesis is
then invoked, and a single realization of the developed field is convected through
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the inflow plane of the spatial simulation. Details of this procedure are described
by Mahesh, Lele & Moin (1996). Note that Lee, Lele & Moin (1992) have shown
the validity of Taylor’s hypothesis in isotropic compressible turbulence for fluctuation
Mach number Mt = (q2)1/2/c, and turbulence intensity urms/U as high as 0.5 and 0.15
respectively. As shown in table 1, the turbulence at the inflow is within these limits.

The simulations with the shock wave compare two different cases at each Mach
number. The two cases differ in the nature of the turbulence upstream of the shock
wave. While the upstream turbulence in one case (case A) is composed of vortical
fluctuations, a combination of vorticity and entropy fluctuations is present in the
other (case B). The upstream entropy field in case B is required to approximately
satisfy the weak form of Morkovin’s hypothesis, i.e. (1.1) is satisfied in the r.m.s. sense.
Also, the inflow spectra and r.m.s. levels of velocity in both cases are required to
essentially be the same. The same temporal simulation is therefore used to generate
the inflow turbulence in the two cases.

This is done as follows. A temporal simulation of isotropic turbulence is first
conducted. The initial velocity field is solenoidal with energy spectrum E(k) ∼
k4e−2k2/k2

0 , and the initial thermodynamic fluctuations are set to zero. The simulation
is advanced in time until the velocity derivative skewness attains its developed value.
An instantaneous flow field is then taken. The thermodynamic fluctuations in this
field are nearly isentropic. To generate a realistic turbulent field of vorticity and
entropy fluctuations, the following procedure is carried out. The pressure fluctuations
in the stored flow field are set to zero while density fluctuations that satisfy ρ′/ρ =
(γ − 1)M2

spatu
′/Uspat are specified† (the subscript spat denotes spatial). This modified

field is then advanced in time. Statistics from the simulation are compared to a
parallel simulation, where the same field without the above modifications is advanced
for the same length of time.

As expected from Kovasznay’s (1955) modal decomposition, the entropy fluctua-
tions that are introduced do not significantly influence the evolution of the velocity
fluctuations. After a brief acoustic transient (t ∼ Mtλ/urms), the decay rate of
turbulence kinetic energy, and the velocity derivative skewness match those in the
simulation without entropy fluctuations. However as expected, the solution deviates
from Morkovin’s hypothesis as it evolves in time. To ensure that the weak formulation
of the hypothesis is approximately satisfied by the turbulence upstream of the shock,
an instantaneous realization is taken immediately after the acoustic transient, and
used to specify inflow turbulence in case B. A realization at exactly the same instant
of time is taken from the temporal simulation without entropy fluctuations and used
to specify inflow turbulence in case A.

Figures 2 and 3 present results from the temporal simulation used to generate
inflow turbulence in the Mach 1.29 simulations. Note that the solution at the end
of the temporal simulation is used to generate the turbulence upstream of the shock
wave. The initial temporal velocity field is chosen to have fluctuation Mach number
Mt = (q2)1/2/c = 0.22 and microscale Reynolds number Rλ = urmsλ/ν = 39.5. A
uniform mesh of 813 points is used on a domain of length 2π in all three directions.
The solution is advanced for time t = 1.58τt, where τt is a turbulence time scale
defined as the ratio of λ to urms at t = 0. As shown in figure 2, the velocity derivative
skewness has attained a value of −0.48 by this time. Also, Mt and Rλ have dropped to
0.16 and 22.8 respectively. Entropy fluctuations are then introduced, and the solution

† If these entropy fluctuations were specified at t = 0, Ru′T ′ would drop to very small levels by
the time the turbulence is well-developed.
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Figure 2. Temporal evolution of the velocity derivative skewness in the temporal decay of
isotropic turbulence: , without entropy fluctuations; , with entropy fluctuations.
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Figure 3. Temporal evolution of r.m.s values of terms in Morkovin’s hypothesis in the temporal
decay of isotropic turbulence: , ρrms/ρ; , Trms/T ; , [γ − 1]M2

spaturms/Uspat.

is advanced in time. At the end of the simulation, the skewness has reattained its
developed value (figure 2), and the weak form of the hypothesis is approximately
satisfied; ρrms/ρ, Trms/T and (γ − 1)M2

spaturms/Uspat have values of 0.043, 0.043 and
0.044 respectively. By comparison, prms/γp is 0.01. Also, Mt, Rλ and θrms/ωrms have
values of 0.14, 20.6 and 0.085 respectively (θrms and ωrms denote the r.m.s. dilatation
and vorticity respectively). The solution is therefore considered to be dominated
by vorticity and entropy fluctuations that approximately satisfy the weak form of
Morkovin’s hypothesis.

The solution at the end of the calculations shown in figures 2 and 3 is used
to specify inflow turbulence in the Mach 1.29 spatial simulations. The relevant
parameters of the inflow turbulence are listed in table 1. The fidelity of the temporal
simulations was checked by examining the energy spectra and two-point correlations
of the fluctuations. One-dimensional spectra of the velocity field show very good
agreement between the two cases, A and B. The spectra show about five decades of
drop-off, indicating adequate resolution. Also, two-point correlations of the velocity
and density field drop off to zero, indicating adequate size of computational domain.
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2.1.2. Outflow boundary conditions

Approximately non-reflecting boundary conditions are specified at the subsonic
outflow boundary. The boundary conditions comprise a ‘sponge layer’ in the stream-
wise direction, followed by a characteristics-based boundary condition (Poinsot & Lele
1992) at the outflow plane. Boundary conditions involving a sponge layer have been
used in the past in a variety of problems: e.g. Israeli & Orszag (1981), Givoli (1991),
Colonius, Moin & Lele (1995). The boundary conditions with a sponge were shown to
yield significantly better results than boundary conditions without the sponge layer.

The governing equations in the ‘sponge layer’ are modified, such that the solution in
the layer is gently damped to a reference solution. A term of the form −σ(U−U ref) is
added to the right-hand side of governing equations over the sponge layer alone. U ref

denotes the vector of reference variables towards which the solution in the sponge
layer is forced. It is obtained from the Rankine–Hugoniot equations for a laminar
shock. The coefficient σ(x) is a polynomial function; i.e.

σ(x) = As
(x− xs)n
(Lx − xs)n

(2.4)

where xs and Lx denote the start of the sponge and the length of the domain
respectively. Values of As, n and (Lx − xs)/Lx used in our simulations are 5, 3 and
0.14 respectively.

The outflow boundary conditions are evaluated below. The interaction of the Mach
1.29 shock with a plane vorticity–entropy wave (45◦ incidence angle) is computed. Lin-
ear analysis predicts that the incident wave would generate downstream-propagating
acoustic, vorticity and entropy waves behind the shock. The ability of the boundary
conditions to allow these waves to smoothly exit the domain is thus tested. The
mean flow parameters, domain length in the x-direction, and grid in the x-direction
are matched to those in the turbulent simulation. The wavenumber of the upstream
disturbance is set equal to the wavenumber at which the energy spectrum of the
upstream turbulence peaks. The r.m.s. level of the upstream disturbance is matched
to that of the upstream turbulence. The extent of the domain in y is set equal to one
wavelength of the upstream disturbance, and a grid of 231 by 16 points is used to
discretize the flow. The disturbance at the inflow boundary is given by the real part of
(A 1c–e) (see the Appendix) where the variables k, ψ1, Av and Ae are set equal to 5, 45◦,
0.05 and 0.05 respectively. The computation is initialized by a numerically computed
steady laminar shock. The disturbance is then introduced at the inflow boundary.
Statistics are gathered over each period of the inflow disturbance, after one domain
flow-through time has passed. The statistics from successive periods are compared to
check if initial transients persist. After a time U1t/Lx = 3.5, the transient effects are
found negligible and the statistics have converged.

To evaluate the outflow boundary conditions, the same flow is computed on a
domain twice as long behind the shock wave. 1100 points are used in the streamwise
direction. The resulting resolution is greater than that in the shorter domain. Statistics
from the two simulations are then compared to each other and to linear analysis.
Figure 4 shows the streamwise evolution of the averaged kinetic energy, vorticity and
density in the two computations. Only the ‘useful region’ (Lx − xs) of the shorter
domain is shown. Good agreement between the two computations is observed,
indicating that the non-reflecting nature of the sponge region is acceptable. Some

influence of the sponge region (maximum value about 3.5%) on the statistics of v′2

and ρ′2 is observed immediately upstream of the sponge.
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Figure 4. Spatial evolution of statistics from a computation of the interaction of a Mach 1.29
shock wave with a plane vorticity–entropy wave. Results from short and long domains are both
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2)/(q2
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2
1 ).

The subscript in denotes inflow.

The spatial evolution of the statistics is not compared to inviscid linear analysis
owing to significant viscous decay in the computation. However, the amplification of
statistics immediately across the shock wave is compared to analysis. The comparison

shows that the error (computed with respect to analysis) in u′2, v′2, ω′2 and ρ′2 is
0.8%, 1.6%, 0.8% and 0.5% respectively. Linear analysis shows that only waves
whose incidence angle is less than a critical incidence angle generate downstream-
propagating disturbances behind the shock. Evanescent waves are generated at
higher angles of incidence. In computing shock/turbulence interaction, the fraction
of incident waves that generate these downstream-propagating disturbances poses the
primary challenge to outflow boundary conditions. The performance of the outflow
boundary for the incidence angle of 45◦ suggests that the boundary conditions are
quite adequate for the turbulent simulations.

In evaluating the outflow boundary conditions, it was mentioned that the stream-
wise grid was the same as that used in the turbulent simulation. This streamwise
grid is chosen as follows. The shock-capturing scheme is used to compute the cor-
responding steady laminar shock, and the solution is evaluated. The ENO schemes
are known (Meadows, Caughy & Casper 1993; Woodward & Collela 1984; Roberts
1990; Lindquist & Giles 1991) to produce spurious entropy oscillations when applied
to slowly moving shock waves. In contrast to standard central differences, these
oscillations are bounded; they do not cause instability. The spurious oscillations in
density and temperature are typically the largest, those in velocity and pressure are
much smaller. To compute shock/turbulence interaction, we require that the ampli-
tude of these spurious oscillations be small compared to the physical fluctuations.
The amplitude of these spurious oscillations can be reduced by increasing the shock
speed relative to the mesh (Meadows et al. 1993), or by refining the mesh (for a
viscous computation). The shock is stationary in the mean in our computations.
The shock speed with respect to the grid is therefore determined entirely by the
upstream disturbances. We therefore use the shock-capturing scheme to compute the
corresponding laminar shock, and refine the mesh until the spurious oscillations are
acceptably small. For example, the mesh used in our Mach 1.29 computations yields
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spurious density oscillations that are 0.03% of the mean density behind the Mach 1.29
shock (the spurious oscillations in temperature, velocity and pressure are smaller).
Table 1 shows that the upstream intensity of density fluctuations in the turbulent
simulations is greater than 1.2%. The above level of spurious oscillations generated
by the shock-capturing scheme is therefore considered acceptable. This streamwise
grid is then used to perform the computations.

2.1.3. Simulations performed

The relevant parameters of the numerical simulations are given in table 1. Note
that the values at the inflow are quoted. Essentially, the simulations consider the
interaction of low-Reynolds-number turbulence with shock waves of strengths equal
to Mach 1.29 and Mach 1.8. Note that one of the cases (free-stream Mach number
2.9, wedge angle 8◦) in the compression-corner experiments of Smits & Muck (1987)
yields a normal Mach number of 1.29 if one assumes that the entire flow is turned
across a single shock. Also, only one simulation (with upstream entropy fluctuations)
is performed for the Mach 1.8 shock. In §2.1 it was noted that the shock-capturing
scheme was only applied in the streamwise direction for the Mach 1.29 shock wave.
However, applying the shock-capturing scheme in only the streamwise direction set
up unstable oscillations for the Mach 1.8 shock. As a result, the shock-capturing
scheme was applied in all three directions in the immediate vicinity of the shock for
the Mach 1.8 shock wave.

2.2. Linear analysis

Details of the linear analysis are provided in the Appendix. Essentially, the lin-
earized Euler equations are used to study the interaction between the upstream
turbulence and the shock wave, which is modelled as a discontinuity. The up-
stream turbulence (being homogeneous) is represented as a superposition of Fourier
modes (plane waves), each of which independently interacts with the shock. The
analysis is therefore initiated by considering the interaction of a single plane wave
with the shock. Workers such as Ribner (1953, 1954) and Chang (1957) have
developed the procedure to obtain the disturbance field behind the shock and
the distortion of the shock front. Other references to work using linear analy-
sis are provided by Mahesh et al. (1995). This solution is then integrated over
all the incident waves to obtain a statistical description of the turbulence behind
the shock wave. The turbulence statistics thus obtained are functions of the dis-
tance behind the shock wave, the Mach number of the shock, and the incident
velocity and density spectra. In presenting results from the linear analysis, this
paper will occasionally refer to the variables Ar and φr . Essentially, Ar repre-
sents the amplitude of the upstream density field, and φr represents the sign of
the upstream velocity–temperature correlation. If φr = 0, u′T ′ is negative up-
stream of the shock wave; φr = 180◦ implies that u′T ′ is positive upstream of the
shock.

3. Results
Turbulence statistics in the simulation are computed by averaging over time and

the y- and z-directions. The ratios of mean velocity, temperature and pressure
across the shock wave are very nearly equal to their corresponding laminar values
(Mahesh et al. 1996). A small overshoot in pressure and temperature is observed
immediately downstream of the shock. The mean velocity exhibits a corresponding
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Case 1.29A Case 1.29B Case 1.8
M1 1.29 1.29 1.8
Rλ 19.1 19.1 19.5
Mt 0.14 0.14 0.18

(q2)1/2/U1 0.11 0.11 0.10
ρrms/ρ1 0.012 0.042 0.076

Trms/T1 0.0042 0.041 0.076
prms/γp1 0.011 0.010 0.018

u′T ′/urmsTrms −0.06 −0.84 −0.85
(Nx,Ny,Nz) (231, 81, 81) (231, 81, 81) (231, 81, 81)

Table 1. Parameters in the simulations performed.

undershoot, following which it remains practically constant. However, mean pressure
and temperature exhibit a small positive gradient behind the shock wave. The
presence of upstream entropy fluctuations has no noticeable effect on the mean flow
behind the shock. Entropy fluctuations do however influence the thickness of the
shock wave as inferred from the mean flow profiles. The ‘mean shock thickness’ is
larger in the presence of entropy fluctuations; i.e. the mean gradients in the vicinity
of the shock are smaller. Given that the ‘mean shock thickness’ reflects the amplitude
of shock oscillation, this indicates an increase in shock motion when the upstream
fluctuations satisfy Morkovin’s hypothesis.

The following sections present results for the evolution of the turbulence across
the shock. The results from the DNS and linear analysis are compared. In §3.1 the
evolution of the turbulence kinetic energy across the shock are discussed. The influence
of the shock on the vorticity fluctuations is considered in §3.2. This is followed in
§3.3 by a physical argument for the role of the upstream entropy fluctuations. In §3.4
a scaling for the amount of vorticity produced by the upstream entropy fluctuations
is derived. Then in §3.5 the evolution of the thermodynamic fluctuations and the
validity of Morkovin’s hypothesis across the shock are discussed.

3.1. Turbulence kinetic energy

The presence of upstream entropy fluctuations has a noticeable effect on the evolution
of turbulence kinetic energy across the shock wave. Figures 5 and 6 show the
streamwise evolution of turbulence kinetic energy in cases 1.29A and 1.29B. Note that

v′2 = w′2 behind the shock. The intermittency associated with shock oscillation is
seen to cause high fluctuation levels in the vicinity of the shock (Debieve & Lacharme
1986; Lee et al. 1992). The width of this intermittent region (denoted by δinter) nearly
equals the ‘mean shock thickness’. Using the mean velocity profile to determine its
value, k0δinter is approximately 0.3 and 0.4 in cases 1.29A and 1.29B respectively† .
We focus our attention on the evolution of kinetic energy outside this intermittent
region in the following paragraphs.

As shown in figure 6, kinetic energy levels behind the shock wave are noticeably
higher in case 1.29B. The streamwise component is affected more than the transverse

components. Comparison of the peak in the profile of u′2 (at k0x = 14) reveals

20% higher levels in case 1.29B. Comparison of v′2 at the same location shows

† The smallest mesh spacing is in the vicinity of the shock, and is equal to 0.02/k0 in both
simulations. Also, the shock-capturing scheme is applied over a width equal to 1.8/k0 on either side
of the mean shock.
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Figure 5. Turbulence kinetic energy from DNS of the Mach 1.29 shock wave. All the curves are

normalized by their value immediately upstream of the shock (k0x = 8.97): , u′2, case 1.29A;

, v′2, case 1.29A; • , u′2, case 1.29B; × , v′2, case 1.29B.
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Figure 6. Evolution of turbulence kinetic energy behind a Mach 1.29 shock wave as predicted by
linear analysis. All the curves are normalized by their value immediately upstream of the shock:

, u′2, without entropy fluctuations; , v′2, without entropy fluctuations; • , u′2, with

entropy fluctuations; × , v′2, with entropy fluctuations.

the level of enhancement to be a modest 7%. This enhancement in the presence
of entropy fluctuations is predicted by linear analysis. Note that quantitative com-
parison of turbulence kinetic energy between analysis and DNS is made difficult
by the viscous decay in the simulations. If the peak levels of kinetic energy be-
hind the shock wave are compared, the linear analysis predictions are seen to be

higher. As seen from figure 6, the amplification of u′2 as predicted by linear analysis
is 1.47 and 1.95 in the absence and presence of entropy fluctuations (that satisfy

Morkovin’s hypothesis) respectively. Corresponding values for v′2 are predicted to
be 1.22 and 1.32 respectively. Thus linear analysis predicts that the upstream en-

tropy fluctuations would enhance the amplification of u′2 by 33%, and that of v′2 by
about 8%.
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Figure 7. Turbulence kinetic energy from DNS of the Mach 1.8 shock wave. Both the curves are

normalized by their value immediately upstream of the shock. • , u′2; × , v′2.
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Figure 8. Evolution of turbulence kinetic energy behind a Mach 1.8 shock wave as predicted by
linear analysis. All the curves are normalized by their value immediately upstream of the shock:

, u′2, without entropy fluctuations; , v′2, without entropy fluctuations; • , u′2, with

entropy fluctuations; × , v′2, with entropy fluctuations.

Figures 7 and 8 show the evolution of turbulence kinetic energy across the Mach
1.8 shock wave. The amplification levels are noticeably higher than those across the
Mach 1.29 shock. Using values measured at k0x = 13.4 (the location behind the shock

where u′2 is maximum) u′2 and v′2 are seen to amplify by 2.25 and 1.61 respectively.
These levels are lower than predicted by linear analysis, where Morkovin’s hypothesis
is assumed to exactly hold upstream of the shock. The predicted (far-field) values
of kinetic energy amplification are 3.44 and 2.2 respectively. Linear analysis predicts

that the upstream entropy fluctuations would enhance the amplification of u′2 and v′2

by 110% and 40% respectively across a Mach 1.8 shock.
Note that u′T ′ is negative if Morkovin’s hypothesis is valid. Linear analysis

shows that the sign of the correlation between the upstream velocity and entropy
fields is of considerable importance. If the upstream correlation between u′ and
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T ′ is negative, then the upstream entropy fluctuations are seen to enhance kinetic
energy amplification. This is the trend seen in the DNS. However, if u′T ′ is positive
upstream of the shock, the amplification of kinetic energy is strongly suppressed.
Practical situations where this might occur include strongly cooled boundary layers,
and mixing layers where the mean velocity and density gradients are of opposite sign.
This influence of entropy fluctuations increases with increasing Mach number. Figures
9(a) and 9(b) show linear analysis predictions of kinetic energy amplification in the
far field of the shock wave. If Morkovin’s hypothesis is assumed to hold upstream,

the amplification of u′2 is predicted to be enhanced by more than 100% for Mach
numbers exceeding about 1.8. The primary reason for this increase in enhancement
with increasing Mach number is that (ρrms/ρ)/(qrms/U) increases with Mach number
if Morkovin’s hypothesis is satisfied upstream of the shock wave.

3.2. Vorticity fluctuations

All components of vorticity are affected by the upstream entropy fluctuations. As
shown in figure 10(a), the levels of vorticity fluctuations behind the shock wave are

higher in case 1.29B. The amplification of ω′2
2 is seen to increase by 8.7% when

entropy fluctuations are present upstream of the shock. This increase is qualitatively
predicted by linear analysis. The increase in amplification predicted by analysis is
much higher – about 19.4%. The primary reason for this difference between analysis
and DNS is believed to be the strict imposition of Morkovin’s hypothesis upstream
of the shock in the analysis. Owing to the absence of mean temperature gradients,
the upstream fluctuations in the simulation only approximately satisfy Morkovin’s
hypothesis (table 1). Support for this reasoning is provided by the fact that the
vorticity amplification in case 1.29A is within 6.3% of analysis while the deviation in
case 1.29B is about 16.2%.

Linear analysis predicts the transverse vorticity components to amplify across the
shock wave, and remain constant downstream. The streamwise vorticity component
is predicted to remain constant across and downstream of the shock. DNS shows that
the streamwise vorticity component does indeed remain constant across the shock.
However, it increases immediately downstream of the shock wave. In fact, the peak

level of ω′1
2 behind the shock wave in case 1.29B is about 7.1% greater than its

upstream value. Lee et al. (1992) noted for vortical upstream turbulence that this
behaviour is nonlinear in nature; it is caused by the stretching of vorticity fluctuations
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Figure 10. Streamwise evolution of vorticity fluctuations from DNS of (a) the Mach 1.29 shock
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by the fluctuating strain rate. In the presence of upstream entropy fluctuations, it
is likely that nonlinear baroclinic effects might provide an additional contribution.

This downstream rise in ω′1
2 is noticeably higher behind the Mach 1.8 shock. As

shown in figure 10(b), the peak level of ω′1
2 behind the Mach 1.8 shock is about twice

its upstream value. By comparison, Lee et al.’s results (in the absence of upstream

entropy fluctuations) show that ω′1
2 behind a Mach 2 shock is about 1.5 times its

upstream value. The inability to predict this rise in ω′1
2 behind the shock wave is

probably the most serious limitation of the linear analysis. Also, it is interesting to
note (figures 7 and 10(b)) that the vorticity fluctuations in the DNS approach isotropy
more rapidly than the velocity fluctuations. This is consistent with the notion that
the small scales would return to isotropy more rapidly than the larger scales. Linear
analysis is used to determine the influence of mean Mach number on the amplification
of the transverse vorticity fluctuations in figure 11. As observed with the turbulence
kinetic energy, negative upstream u′T ′ is seen to enhance the amplification of vorticity
fluctuations, while positive correlation is seen to suppress it.

3.3. A simple explanation

An explanation is provided here for the influence of entropy fluctuations on the
evolution of a turbulent flow across a shock wave. Note that Hayes’ (1957) results
(equation (30) in his paper) for the jump in vorticity across an unsteady shock wave
require the unsteady evolution of the shock front to be known accurately enough that
derivatives normal and tangent to the front may be obtained. This is quite difficult to
obtain from a computation where the shock wave is ‘captured’ in the Navier–Stokes
equations. It is therefore not possible to use Hayes’ results to interpret the DNS.
Consider the following idealization of the mean field associated with the shock:

U = U(x), p = p(x), ρ = ρ(x). (3.1)

Linearizing the Euler equations about the above mean flow yields the following
governing equations for the vorticity fluctuations (denoted by ω′):

ω′t +Uω′x = −ω′Ux −
ρ′y

ρ2
px +

p′y

ρ2
ρx. (3.2)
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Note that although irrotational acoustic fluctuations are generated at the shock,
their contribution to the downstream kinetic energy is not significant; linear analysis
(Mahesh et al. 1996) shows that vortical fluctuations account for about 99% of
the turbulence kinetic energy behind the shock wave. Equation (3.2) represents the
effects of bulk change on the evolution of vorticity fluctuations across the shock.
Linear effects due to shock distortion are absent. Also, the effects of shock curvature
(Hayes 1957) are ignored. As a result of these assumptions, the relations obtained are
expected to function more as scaling laws than predictive formulae.

If the incident disturbance comprises vorticity and entropy fluctuations, then p′ = 0
in the incident field and hence

ω′t +Uω′x = −ω′ Ux −
ρ′y

ρ2
px. (3.3)

The term −ω′Ux represents the effect of bulk compression. The drop in mean velocity
across the shock wave indicates that this term would enhance the incident vorticity
fluctuations. The incident entropy fluctuations produce vorticity at the shock wave
through the baroclinic term. The baroclinic contribution can enhance or oppose the
effect of bulk compression. The phase difference between the upstream vorticity and
entropy waves determines whether enhancement or opposition is observed.

Consider for example the plane vorticity–entropy wave represented by (A 1c–e). It
is easily shown that

− ω′Ux −
ρ′y

ρ2
px ∼ Av UUx − Ae l

px
ρ
. (3.4)

Since Ux is negative and px is positive across a shock wave, the two sources of
vorticity are of the same sign if Ae and Av are of the same sign. They oppose each
other if Ae and Av are of opposite sign. Thus if u′ and T ′ are negatively correlated, the
entropy field enhances the amplification of fluctuating vorticity. On the other hand, a
positive correlation between u′ and T ′ suppresses the amplification of vorticity across
the shock wave.

Further insight is gained from a schematic illustration of this effect. Figure 12 shows
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Figure 12. A spherical element of fluid passing through a shock wave. The effects of bulk
compression and baroclinic vorticity production are shown. u′ and T ′ are negatively correlated
upstream of the shock wave.

a fluid element of circular cross-section passing through a shock wave. The geometric
centre of this element is denoted by CF , while CM denotes the centre of mass. The
disturbance field associated with the fluid element is that of a vorticity–entropy wave.
The element therefore exhibits solid-body rotation (with associated vorticity ω′) which
is assumed positive in the direction shown. Also, the density gradient associated with
the entropy wave causes the centre of mass to differ from the centre of force (the
geometric centre). Note that CM is below CF if the correlation between u′ and T ′

is negative. Bulk compression compresses the element in the streamwise direction
thereby enhancing the rotation. In addition, the shock wave exerts a pressure force
(associated with the adverse pressure gradient) that passes through CF . This pressure
force would exert a torque about the centre of mass. This torque manifests itself as
the baroclinic source of vorticity. Note that if CM is below CF the baroclinic rotation
is in the same direction as the rotation due to bulk compression. It is in the opposite
direction if CM is above CF (positive correlation between u′ and T ′). The upstream
correlation between u′ and T ′ thus determines the location of CM with respect to
CF , and thereby the relative sense of rotation that the baroclinic torque produces.

3.4. Scaling of the evolution of vorticity across a shock wave

Equation (3.3) is used to derive approximate expressions for the evolution of vorticity
fluctuations across the shock. The expressions are evaluated by comparing to the
linear analysis predictions. Equation (3.3) is rewritten as

Dt(Uω
′) = −

ρ′y

ρ2
Upx (3.5)

where Dt denotes the material derivative ∂/∂t + U∂/∂x. Using the relation px =
−ρUUx in the above equation yields

Dt(Uω
′) =

ρ′y

ρ
U2Ux =

ρ′y

3ρ
(U3)x. (3.6)
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Figure 13. (a) Unscaled and (b) scaled r.m.s. vorticity produced in the interaction of an entropy
wave with a shock wave. (M1 = 1.25), (M1 = 1.5), (M1 = 2), (M1 = 2.5).

The shock wave is approximated as a discontinuity. (U3)x is expressed as ∆(U3)δ(x),
where ∆(U3) represents the difference in U3 across the shock wave, and δ(x) denotes
the Dirac delta function. An approximate solution to the above equation is obtained
by setting ρ′y equal to its upstream value (see (A 1c–e)). Transforming coordinates to
x′ = x − Ut, τ = t and integrating yields the following expression for the change in
vorticity across the shock wave:

U2ω
′
2 −U1ω

′
1 ∼

ikl

3
Ae
U3

2 −U3
1

U1

, (3.7)

which yields

ω′2 ∼ rω′1 +
ikl

3
Ae U1

1− r3

r2
(3.8)

where r = U1/U2 is obtained from the Rankine–Hugoniot equations. Equation (3.8)
suggests that incident vorticity fluctuations amplify by an amount equal to the mean
density ratio. The vorticity produced by the incident entropy fluctuations is predicted
to scale as kAe sinψ1(1− r3)/r2.

These expressions are next compared to linear analysis. Figures 13(a) and 13(b)
show the levels of vorticity produced when an entropy wave interacts with a shock.
Mean Mach numbers from 1.25 to 2.5 are considered. Both unscaled and scaled
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Figure 14. The intensities of thermodynamic fluctuations (a) from DNS and (b) as predicted
by linear analysis, for case 1.29B. All variables are non- dimensionalized by the value of ρrms/ρ

immediately upstream of the shock wave (k0x = 8.97). , ρrms/ρ; , Trms/T , ,
(γ − 1)M2urms/U; , prms/γp.

values of r.m.s. vorticity behind the shock wave are plotted as a function of incidence
angle. The proposed scaling seems to yield reasonable collapse of the curves in the
propagating regime. The validity of the scaling for a turbulent field would depend
upon the fraction of incident waves in the propagating regime.

The interaction of a vorticity wave with a shock has been considered, and the
scaling compared to linear analysis (Mahesh et al. 1996). The scaling was less
satisfactory: unscaled values ranging from 1 to 6 were collapsed to vary from 0.5 to
1.4. The amplification of incident vorticity was very nearly equal to the mean density
ratio for incidence angles near zero; however, a systematic deviation was seen with
increasing incidence angle. This evolution of the vorticity waves is in agreement with
Jacquin, Cambon & Blin (1993) who observe large discrepancies at the higher Mach
numbers when the effect of shock distortion is not represented in the linear limit.

3.5. Thermodynamic fluctuations and Morkovin’s hypothesis

The thermodynamic fluctuations behind weak shock waves were noted by Lee, Lele
& Moin (1994) to be nearly isentropic. The thermodynamic field in case 1.29A
follows this trend, i.e. prms/γp, ρrms/ρ and Trms/(γ − 1)T are nearly equal over the
entire domain. However, upstream entropy fluctuations were not present in Lee et
al.’s computations. As might be expected, the downstream thermodynamic field is
not isentropic when upstream entropy fluctuations are present. Figure 14(a) shows
the streamwise evolution of the pressure, density and temperature fluctuations in
case 1.29B. The quantity (γ − 1)M2urms/U is also shown. This allows the weak
form of Morkovin’s hypothesis to be evaluated across the shock. The corresponding
predictions made by linear analysis are shown in figure 14(b).

Good qualitative agreement is observed between analysis and simulation. The
intensity of pressure fluctuations in the near field is seen to be comparable to that
of the density and temperature. However, the pressure fluctuations decay behind the
shock wave, causing their far-field intensity to be smaller. Considerable deviation
from Morkovin’s hypothesis is observed in the near field behind the shock. The extent
of deviation in the far field is seen to be smaller. The linear analysis predicts a larger
deviation from the hypothesis in the far field than the DNS. Owing to viscous decay,
the notion of far field is not as precise in the DNS as it is in the analysis. Linear
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analysis suggests (figure 14(b)) that the far-field values are attained at approximately
k0x = 17. If the weak form of Morkovin’s hypothesis is evaluated at this location in
the computation, it shows behaviour comparable to analysis. Interestingly however,
the validity of the hypothesis in the DNS is seen to increase with distance downstream
of this location. The exact cause of this trend is not known. Also, although the r.m.s
values of the terms in the hypothesis approach each other behind the shock in the
DNS, u′T ′/urmsTrms does not approach −1. It drops in magnitude across the shock,
and decreases further in magnitude downstream, e.g. the correlation coefficient at
k0x = 20 is −0.54.

A similar trend is observed in the Mach 1.8 computation. Morkovin’s hypothesis
is evaluated across the Mach 1.8 shock wave in figures 15(a) and 15(b) respectively.
The far-field values in the analysis are attained at about k0x = 15. Both analysis
and DNS show considerable deviation from the hypothesis at this location. However,
the intensities of the density and temperature fluctuations decay behind the shock
wave in the DNS, resulting in increased validity of the hypothesis behind the shock.
Interestingly, although ρrms/ρ, Trms/T and (γ − 1)M2urms/U approach each other
behind the shock, the intensity of the pressure fluctuations is not negligible. As seen
in figure 15(a), prms/γp is nearly of the same magnitude as Trms/T at about k0x = 40.
Also, u′T ′/urmsTrms does not approach −1. Its value at k0x = 20 is −0.22.

Linear analysis is used to examine the influence of mean Mach number on the
validity of Morkovin’s hypothesis across the shock wave. The incident fluctuations
are constrained to satisfy the strict form of the hypothesis. The fluctuations in the far
field are then examined to see if the hypothesis holds in the r.m.s. sense. The results
(figure 16) show that the first part of the hypothesis, i.e. ρrms/ρ = Trms/T , is still a
good approximation behind the shock wave (especially if M1 is less than about 2).
However, the part of the hypothesis that relates T ′ to u′ exhibits large deviation with
Mach number. This behaviour is explained below.

The equation ρ′/ρ = −T ′/T is obtained by setting p′ to zero in the linearized
equation of state. It amounts to neglecting the acoustic mode in comparison to
the entropy mode. As seen from (A1d), it holds exactly for the upstream turbu-
lence. Upon interaction with the shock, the incident fields of vorticity and entropy
fluctuations generate acoustic waves. The generation of acoustic waves is however
accompanied by amplification of the incident entropy fluctuations. Also, a fraction of
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Figure 16. Evaluation of Morkovin’s hypothesis in the far field of the shock wave using linear
analysis. All the curves are non-dimensionalized by the upstream value of urms/U. , ρrms/ρ;
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the acoustic waves decays behind the shock. As a result, the acoustic contribution to
the thermodynamic fluctuations in the far field is significant only at the larger Mach
numbers. The first part of the weak form of Morkovin’s hypothesis is therefore a
good approximation behind shock waves of moderate strength.

The relation
T ′

T
= −(γ − 1)M2 u

′

U
(3.9)

is obtained by assuming that stagnation temperature fluctuations are small in the
linear limit. Denote the stagnation temperature by T0,

T0 = T + T ′ +
(U + u′)2 + v′2 + w′2

2Cp
, (3.10)

where Cp denotes the specific heat at constant pressure. Linearizing the above
equation yields the following expression for fluctuations in stagnation temperature:
T ′0 = T ′ +Uu′/Cp. Setting T ′0 to zero and rearranging yields (3.9).

In the linear limit, fluctuations in stagnation temperature obey the relation,
DT ′0/Dt = ∂p′/∂t behind the shock wave (D/Dt denotes the material derivative based
on the mean velocity). Decomposing the temperature field into acoustic and entropic
components, and the velocity into acoustic and vortical components allows decompo-
sition of T ′0 into T ′0ent and T ′0acous such that DT ′0ent/Dt = 0 and DT ′0acous/Dt = ∂p′/∂t.
Next, the Rankine–Hugoniot equations may be used to show that (3.9) cannot be
valid behind a shock wave if it is assumed to hold upstream of the shock. The energy
equation requires the stagnation temperature to be constant across the shock in a
frame of reference that moves at the instantaneous speed of the shock wave, i.e.

T 1 +T ′1 +
(U1 + u′1 − ξt)

2 + v′1
2 + w′1

2

2Cp
= T 2 +T ′2 +

(U2 + u′2 − ξt)
2 + v′2

2 + w′2
2

2Cp
. (3.11)

Linearizing the above equation and constraining the incident fluctuations to satisfy
(3.9) yields

T ′2 +
U2u

′
2

Cp
= − ξt

Cp
(U1 −U2), (3.12)

i.e. the fluctuations of stagnation temperature are not zero immediately behind the
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Figure 17. Decomposition of stagnation temperature fluctuations using linear analysis. All the
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shock wave. Dividing through by T 2 and rearranging, we get

T ′2

T 2

+ (γ − 1)M2
2

u′2
U2

= −(γ − 1)M2

(
U1

U2

− 1

)
ξt

a2

. (3.13)

Thus, applicability of Morkovin’s hypothesis immediately behind the shock wave
requires that

(γ − 1)M2

(
U1

U2

− 1

)
ξt

a2

∼ 0. (3.14)

The r.m.s. values of the near-field (k0x = 10) stagnation temperature are plotted
in figure 17 as a function of the mean Mach number. The plotted values are
seen to be comparable to the terms in Morkovin’s hypothesis (figure 16). The
hypothesis is therefore invalid immediately behind the shock wave. The above
argument is next extended to show why the hypothesis does not hold in the far field.
Decomposition of the stagnation temperature fluctuations into vorticity–entropy and
acoustic components shows that both near- and far-field values of the stagnation
temperature fluctuations are dominated by the vorticity–entropy component. As
shown in figure 17, the vorticity–entropy component is nearly equal to the total level
in the far field, while its contribution to the near-field level is greater than 80%
over the range of Mach numbers shown. Figure 17 and (3.13) therefore show that
appreciable levels of stagnation temperature fluctuations are generated immediately
behind the shock wave due to oscillation of the shock front. Most of these fluctuations
arise from vorticity–entropy fluctuations, which convect downstream to generate an
appreciable level of stagnation temperature fluctuations in the far field of the shock
wave. This leads to inapplicability of Morkovin’s hypothesis in the far field.

4. Summary
Direct numerical simulation and inviscid linear analysis were used to study the

interaction of a normal shock wave with an isotropic turbulent field of vorticity
and entropy fluctuations. Shock waves of strength Mach 1.29 and Mach 1.8 were
computed using DNS, while the linear analysis considered a range of Mach numbers
from 1 to 3. Our objective was to study the role of the upstream entropy fluctuations
in the evolution of the turbulent flow across the shock.
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The upstream entropy fluctuations were shown to significantly affect shock/turbu-
lence interaction. The magnitude of the entropy fluctuations, and the sign of the
upstream velocity–temperature correlation were both seen to be important. Higher
levels of kinetic energy and vorticity amplification were observed across the shock
when u′ and T ′ were negatively correlated upstream of the shock. Positive correlation
had the opposite effect. An explanation was provided to explain these trends. The
evolution of fluctuating vorticity across the shock wave was noted to have two impor-
tant contributions: bulk compression of incident vorticity and baroclinic production
of vorticity through the incident entropy fluctuations. The upstream correlation be-
tween vorticity and entropy fluctuations was shown to determine whether these two
sources of vorticity enhance or oppose each other, thereby determining kinetic energy
levels behind the shock wave. A scaling was then proposed for the evolution of
vorticity across the shock wave. Since Morkovin’s hypothesis is known to apply in
adiabatic turbulent boundary layers, the results suggest that the entropy fluctuations
in the boundary layer would play a very significant role in the interaction between
the boundary layer and a shock wave.

The validity of Morkovin’s hypothesis behind a shock was examined. Linear
analysis indicates that neglecting the acoustic mode is a good approximation in
the far field of shock waves of moderate strength (M1 < 2). The part of the
hypothesis relating u′ and T ′ was predicted to be invalid. Non-negligible oscillation
of the shock front was shown to be responsible. The thermodynamic fluctuations in
the simulations followed linear analysis predictions immediately behind the shock.
Interestingly however, the terms in the weak form of the hypothesis approached each
other as the solution decayed behind the shock. Despite this trend, the pressure
fluctuations in the DNS were not negligible in the far field. Also, u′T ′ did not
approach −1. Its value in the far field was about −0.54 and −0.22 for the Mach 1.29
and Mach 1.8 shock waves.
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Grant 88-NA-322 and Contract F49620-92-J-0128 with Dr Leonidas Sakell as the
technical monitor. The authors would also like to express their gratitude to NAS and
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Appendix
The linear analysis is summarized below. The interaction of a single vorticity–

entropy wave with a shock is first considered in §A.1. The analysis is then extended
in §A.2 to describe the evolution of the turbulent field across the shock.

A.1. Interaction of a shock with a plane vorticity–entropy wave

The two-dimensional interaction of a shock wave with a plane vorticity–entropy wave
is schematically illustrated in figure 18. Note that the shock wave is stationary in
the mean. The variables U, p, ρ, T and M denote the mean velocity, pressure, density,
temperature and Mach number respectively and subscripts 1 and 2 denote the
upstream and downstream states. The flow upstream of the shock wave is perturbed
by the weak disturbance field of the incident vorticity–entropy wave which is assumed
to be a plane wave that makes angle ψ1 with the x-axis. The variables u′, v′, p′, ρ′

and T ′ represent the fluctuating velocities, pressure, density and temperature. The
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Figure 18. Schematic of the interaction of a vorticity–entropy wave with a shock wave.

incident field has the following form:

u′1
U1

= lAv eik(mx+ly−U1mt),
v′1
U1

= −mAv eik(mx+ly−U1mt), (A 1a,b)

ρ′1
ρ1

= Ae eik(mx+ly−U1mt),
T ′1

T 1

= −ρ
′
1

ρ1

, p′1 = 0, (A 1c–e)

where m = cosψ1 and l = sinψ1. The shock wave deforms in response to the incident
disturbance; the displacement is denoted by x = ξ(y, t).

Details of the analysis may be found in Mahesh et al. (1996). The solution
obtained is summarized below. The solution behind the shock wave is a superposition
of vortical, acoustic and entropic components. It has the following dimensionless
form:

1

Av

u′2
U1

= F̃ eĩkxeik(ly−mU1t) + G̃ eik(mrx+ly−mU1t), (A 2a)

1

Av

v′2
U1

= H̃ eĩkxeik(ly−mU1t) + Ĩ eik(mrx+ly−mU1t), (A 2b)

1

Av

p′2
p2

= K̃ eĩkxeik(ly−mU1t), (A 2c)

1

Av

ρ′2
ρ2

=
K̃

γ
eĩkxeik(ly−mU1t) + Q̃ eik(mrx+ly−mU1t), (A 2d)

1

Av

T ′2

T 2

=
γ − 1

γ
K̃ eĩkxeik(ly−mU1t) − Q̃ eik(mrx+ly−mU1t). (A 2e)

The boundary conditions across the shock wave yield the following expressions for
the velocity and slope of the shock front:

1

Av

ξt

U1

= L̃ eik (ly−mU1t),
1

Av
ξy = − l

m
L̃ eik (ly−mU1t). (A 3)
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Figure 19. Coordinate system used in the interaction of isotropic turbulence with a shock wave.

The variable r denotes the mean density ratio ρ2/ρ1 across the shock wave; k̃(M1, ψ1)
represents the streamwise wavenumber of the acoustic component behind the shock
wave. It is real in the propagating regime and complex in the decaying regime. The

coefficients F̃ , H̃ and K̃ are associated with the acoustic component. The vortical

component is represented by G̃ and Ĩ while Q̃ represents the entropy component. The

coefficients F̃ , H̃ , K̃ ,G̃, Ĩ and Q̃ are functions of M1, ψ1 and the amplitude ratio (Ar)
and phase difference (φr) between the vorticity and entropy waves, i.e. Are

iφr = Ae/Av .
Expressions for the coefficients are given in Mahesh et al. (1996).

A.2. Interaction of a shock wave with an isotropic turbulent field

As suggested by Morkovin’s hypothesis, the upstream turbulence is represented as
a random three-dimensional field of vorticity–entropy waves. The turbulent velocity
field is assumed to be isotropic. The incident turbulent field is represented as a
superposition of plane vorticity–entropy waves (Fourier modes) in three dimensions.
Each of these waves would interact independently with the shock wave under linear
analysis. For a given upstream spectrum, the interaction of each wave with the
shock wave is predicted. The solution is integrated over all incident waves to obtain
turbulence statistics behind the shock.

The three-dimensional problem is related to the two-dimensional analysis of the
preceding section as follows. Consider an incident plane wave in three dimensions.
As shown in figure 19, the wavenumber vector of the wave lies in a plane that makes
angle φ with the y-axis. In this plane, which we call the (x, xr)-plane, the wave
makes angle ψ1 with the x-axis. It is readily seen that the (x, xr)-plane is identical
to the plane of interaction in the two-dimensional problem. The solenoidal nature
of the incident velocity field requires the velocity vector of the wave to be normal
to the wavenumber vector. The velocity field may therefore be expressed as a sum
of two components: one normal to the wavenumber vector in the (x, xr)-plane and
the other normal to the (x, xr)-plane (the φ-direction). It is intuitively clear that the
φ-component of velocity would pass unchanged through the shock wave. As a result,
the three-dimensional problem may be solved using results of the two-dimensional
analysis in the (x, xr)-plane.
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Results from §A.1 are used to obtain expressions for the energy spectra behind
the shock wave. The spectra depend upon the upstream three-dimensional energy
spectrum, E(k). This paper assumes the following form for E(k):

E(k) ∼
(
k

k0

)4

e−2(k/k0)2

. (A 4)

The results also depend upon the upstream density spectrum. The quantity Ae/Av
may be represented as Are

iφr , where Ar and φr are both functions of the wavenum-
ber vector. Appropriate functional dependencies may be assumed depending upon
the flow being considered. This paper presents results for φr = 0 and π, i.e. the
density field is either perfectly correlated or perfectly anti-correlated with the ve-
locity field, Also, two forms of the upstream density spectrum are considered. One
case assumes the density field to be isotropic with the same three-dimensional spec-
trum as the velocity field, i.e. Ar is assumed constant. For this case it is easily
shown that

Ar =
√

2
(ρ′1

2)1/2/ρ1

(q2
1)1/2/U1

. (A 5)

The second case assumes that the density field satisfies Morkovin’s hypothesis at
every wavenumber. If the velocity fluctuations are isotropic, it is easily seen that the
resulting density field is axisymmetric, i.e.

Ar = (γ − 1)M2 sinψ1. (A 6)

The spectra are then numerically integrated to obtain the turbulence statistics behind
the shock. Further details are provided by Mahesh et al. (1996).
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