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This paper presents the results from a one-way coupled, Euler-Lagrangian, direct numerical
simulation of bubbles injected into a turbulent boundary layer. The Reynolds number of the
turbulent boundary layer varies from 420 <Re,< 1800, and the bubble Reynolds number Re, ~ 1.
Simulation parameters were chosen to match the experiment of Sanders et al. [J. Fluid Mech. 552,
353 (2006)] investigating bubble-induced skin-friction drag reduction in a turbulent boundary layer,
although the Reynolds number of the simulation is lower than the experiment. After injection,
bubbles move away from the wall as they travel downstream with the flow. Mean bubble diffusion
is compared to Sanders et al. and the passive scalar diffusion results given by Poreh and Cermak
[Int. J. Heat Mass Transfer 7, 1083 (1964)]. The mean diffusion profiles in the Sanders experiment
and the simulation are comparable to the passive scalar results. Except very near the wall, the
profiles of bubble concentration are also found to be similar to passive scalar results. The forces on
a bubble were analyzed through budgets and the carrier-fluid acceleration was found to be the reason

for moving the bubbles away from the wall. © 2011 American Institute of Physics.

[doi:10.1063/1.3560382]

I. INTRODUCTION

The presence of bubbles in a turbulent boundary layer is
known to reduce skin-friction drag. Since the early study by
McCormick and Bhattacharyya,1 much work has been per-
formed to understand the persistence and mechanisms of
bubble-induced skin-friction drag reduction (BDR). A ca-
nonical configuration to study BDR for marine applications
involves the injection of air bubbles into a horizontal turbu-
lent channel or flat-plate boundary layer. As the bubbles
travel downstream, the bubbles in the near-wall region
modify the near-wall momentum transport, and therefore
drag. A comprehensive review of the earliest work has been
compiled by Merkle and Deutsch® and a review of recent
work on BDR and other forms of skin-friction drag reduction
has been published by Ceccio.” BDR is measured by the ratio
of skin-friction coefficient of the bubbly flow (Cy) to the
skin-friction coefficient without bubbles (C; ). The mecha-
nisms of BDR, although still not completely understood, are
thought to be due to the modification of the near-wall den-
sity, viscosity, and turbulent flow by the bubbles. Experi-
ments by Madavan, Deutsch, and Merkle* achieved values of
BDR up to ~80% and found that BDR increased with in-
creasing gas flow rates and decreasing free-stream flow rates.
BDR was found to persist for as much as 70 boundary-layer
thicknesses downstream of injection. Gabillet, Colin, and
Fabre® found that the injection of bubbles increased the tur-
bulent kinetic energy in the region of bubble injection and
the void fraction profiles were nearly self-similar. Recent
work by Jacob et al.® obtained BDR using small bubbles and
found that even for low bulk bubble concentrations (Ciyy
=0.001), modification of the turbulent flow by the bubbles
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was significant downstream of injection in the near-wall re-
gion. Sanders et al” performed experiments investigating
BDR in a high Reynolds number, spatially evolving turbulent
boundary layer on a large flat plate (L=12.9 m) in a plate-
on-top configuration and found that BDR, although effective
near the bubble injection location, lost its effectiveness far
downstream from injection.

At large distances downstream from injection, the
bubbles migrate away from the wall and drag reduction is
lost,’ making BDR inefficient for large-scale vessels. A re-
duction of the effectiveness of BDR downstream of injec-
tions was also seen by Madavan et al.! although BDR was
not completely lost due to the length of the test section.
Examination of the bubble void fraction downstream of in-
jection by Pal, Merkle, and Deutsch® found that the bubble
void fraction became more disperse with increasing distance,
indicating that the bubbles tended to move away from the
wall as they traveled downstream. This bubble migration
away from the wall has been found to be the cause for loss of
BDR.” Much of the work using direct numerical simulation
(DNS) to simulate this flow has focused on the mechanisms
of BDR.”"'? However, the mechanisms of bubble dispersion
away from the wall are not sufficiently understood.

Gabillet er al.” derived a model for bubble dispersion
using a turbulent boundary-layer profile, although the equa-
tions were laminar and assumed a fluid acceleration of zero.
Sanders' also used a similar approach but included a lami-
nar equation for the fluid acceleration in a turbulent bound-
ary layer. Although these models gave the correct qualitative
behavior of bubble diffusion away from the wall, accounting
for the turbulent fluctuations on the bubble dispersion is im-
portant and, to our knowledge, this subject has not been di-
rectly addressed.

We have developed a one-way coupled, Euler—
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Lagrangian approach and this paper presents the results from
simulations of bubbles injected into a spatially evolving tur-
bulent boundary layer, with a focus on the mechanisms of
bubble dispersion away from the wall. Simulation param-
eters were chosen to match the experiment of Sanders ef al’
although the Reynolds number of the simulation is lower
than the experiment. This paper is organized as follows.
First, a description of the one-way coupled Euler—
Lagrangian numerical approach is given (Sec. II). The
experiment of Sanders et al.) along with the turbulent
boundary-layer simulation, is described (Sec. IT A). Results
for bubble trajectories (Sec. III B), forces on the bubbles, and
force budgets are shown (Sec. III C), followed by a discus-
sion of the role of turbulence (Sec. III D) and also bubble
size (Sec. III E) on bubble migration away from the wall. A
comparison of the behavior of bubble concentration to that of
a passive scalar is included in Sec. III F.

Il. NUMERICAL APPROACH

In the one-way coupled Euler-Lagrangian framework,
the bubbles are modeled as a dispersed phase, with indi-
vidual bubbles treated as point-particles governed by an
equation for bubble motion, combined with a continuous car-
rier phase described by the Navier—Stokes equations. To
solve the Navier—Stokes equations for the continuous phase,
a finite-volume approach for unstructured grids14 is used.
This algorithm assumes constant density of the carrier phase
and solves the incompressible Navier—Stokes equations us-
ing a predictor-corrector approach. This algorithm is dis-
cretely energy conserving to ensure robustness at high Rey-
nolds numbers. This method is able to simulate large
numbers of bubbles in complex flows. Each bubble is
tracked individually and is characterized by its instantaneous
position (Y), velocity (v), and size (bubble radius R).

Forces from the carrier fluid act upon the bubble and are
applied to the bubble’s center of mass. The bubble is as-
sumed to be much smaller than the length scales of motion in
the carrier phase and the bubbles are modeled as spherical
nuclei. Due to a bubble’s small size and assuming a dilute
concentration of bubbles, the bubbles exert a negligible force
on the carrier fluid or other bubbles. This is the one-way
coupling regime. The bubble acceleration is equal to the sum
of the forces on the bubble. These forces are the drag, lift,
fluid acceleration, buoyancy, and added-mass forces,ls_17
yielding

dv L. . s s

me=EF=FD+FL+FF+FB+FAM, (1)
with my, defined as the mass of the bubble and ¢ as the
bubble velocity.

The drag force F b is due to the viscous friction between
the bubble and the carrier fluid. In a shearing flow, the dis-
tortion of the local fluid vorticity due to a bubble moving
through a fluid produces the lift force F, . on the bubble. In an
accelerating flow, the bubble will also feel the acceleration of
the fluid around it and this force on the bubble is given by
F k- The buoyancy force F s 18 a body force due to gravity and
is proportional to the difference in density between the
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bubble and the surrounding fluid. The acceleration of a
bubble must also accelerate the surrounding fluid around it.
This “added-mass” force on the bubble is given by F AM-
These forces on the bubble are obtained by the following
equations:

Zo_ 1 L s
FD=§PfAbCD|u_U|("‘_U)’
F=mCy(ii—0) X &,

=m_’
F fDl

Fg = (my,—my)g,

i c (Dﬁ dﬁ)
AM =M Dt dt)’

where the carrier-phase velocity # is interpolated to the bub-

ble’s instantaneous position and Ay, is the area of a circle with

radius R, the bubble radius. The mass term m; is the equiva-

lent mass of a sphere with radius R and the density of the

carrier-phase fluid (py).

Johnson and Hsieh" performed Lagrangian simulations
of cavitating bubbles traveling around a blunt body and in-
cluded drag force using a drag coefficient determined by
Haberman and Morton'® and also the contribution of volume
change of the bubble over time to the added-mass force. In
this paper, the bubbles are assumed to be solid, massless
spheres and the volume-variation term is ignored. Thomas
et al.'® included contributions due to lift, with a constant lift
coefficient of 1/2. Auton, Hunt, and Prud’homme'” showed
that the constant lift coefficient of 1/2 is appropriate in the
inviscid limit and that in the added mass and fluid accelera-
tion forces the material derivative of the fluid velocity is the
appropriate term for the fluid acceleration.

A constant lift coefficient C; of 1/2 and a constant
added-mass coefficient Cy; of 1/2 for a sphere are used. '
Although in the inviscid limit, a lift coefficient of 1/2 is not
controversial, at moderate Reynolds numbers the value of the
lift coefficient has not been conclusively determined. Sridhar
and Katz®' performed experiments at bubble Reynolds num-
bers between 20 and 80 and found lift coefficients larger than
the inviscid result which also depended on the local vorticity.
Legendre and Magnaudet22 performed numerical simulations
of flow over a sphere in weak shear Sr= 1, with Sr being the
velocity difference across the bubble divided by the relative
velocity between the bubble and the carrier fluid, and found
lift coefficients that were between 1 and 0.5 for Re,>1,
depending on local vorticity. The lift coefficient approached
1/2 as the Reynolds number increased. The bubble Reynolds
number in this work is ~1 and the maximum shear param-
eter Sr~ 1, so using a lift coefficient of 1/2 is not unreason-
able. Also, the use of a constant lift coefficient makes factor-
ing out the turbulent contributions to the lift force much less
difficult.

The expression for the coefficient of bubble drag, deter-
mined experimentally by Haberman and Morton'® as func-
tion of bubble Reynolds number, is given by
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FIG. 1. Discretization of fluid timestep As and bubble timestep Aty from
time ¢, to t,.

2%
Cp= o —(10+0.197 Re}™+2.6 X 107 Rey™).  (2)
b

where the bubble Reynolds number is defined as Re,=2R|ii
—0|/v. For small bubbles in water, the drag profile is similar
to that of solid spheres (Cp~24/Re;) due to the contamina-
tion by surfactants of the bubble surface.

Assuming that the density of gas is much less than that
of water, the bubble mass m,, is much less than m; and the
sum of forces on a bubble is zero. After substituting the
above expressions for bubble forces into Eq. (1), the follow-
ing expression is obtained for the time derivative of the
bubble velocity:

div A Dii

—= -27 + 3—

d Dt
buoyancy —

3C
+ Z?Dlﬁ—ﬂ(zi—ﬁ) +2C (i -0) X & .

lift
drag (3)

The bubble position and velocity over time are determined
by integrating the bubble acceleration equation [Eq. (3)]. The
simulation is broken into two different timescales: the Eule-
rian fluid timestep At and the path integration timestep of the
bubbles At,,,, where At=t,—t, and At,,=t"—1* (see Fig.
1). The Eulerian fluid variables are known at r=¢, and r=t,
from the advancement of the Navier—Stokes equations,
which in a one-way coupled approach are integrated inde-
pendently of the bubble time advancement.

The Eulerian values in Eq. (3) must be evaluated at time
t=t* and at the bubble position = Y* on unstructured grids.
Spatial gradients of the carrier-phase parameters at the con-
trol volume centroids are obtained using a least-squares
method. The fluid velocity at the bubble location i|,_y« is
interpolated from the values at the control volume centroid
by

() eege= ()¢ + (V= 5) - VIa()]; . (4)

The spatial gradients du;/dx; are determined at the control
volume centroids by a least-squares approach. To obtain the
control volume values required in Eq. (4) at time r=£*, a
linear time interpolation of the fluid velocity is performed
using
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Injection location, Xinj

FIG. 2. Schematic of boundary layer and bubble paths. Dashed lines denote
the paths taken by individual bubbles and the solid line represents the
ensemble-averaged path of all bubbles.

)= 10 = 1) + (1= P ()] ©

The velocity at time r=¢*! is integrated using the Adams—
Bashforth approach,

3dvt 1 dv«k_1>
kel _  k i i
=vi Al o — - —— . 6
U; U; bub<2 dt 2 dt ( )
Once the bubble velocity has been integrated to r=*!, the
bubble position is integrated using the trapezoidal method,

k+1 k Atbub k+1 k

Y=Y+ > ;" +v;). (7)
The bubble equations are advanced from k,k+1,k+2, etc.
until 7=t, is reached. Then the fluid equations are advanced
and the bubble integration process begins anew.

Bubble-wall interactions are treated as hard-sphere, in-
elastic collisions and bubble-bubble interactions are ignored.
This approach can simulate flows with large numbers of
bubbles in complex geometries over a wide range of Rey-
nolds numbers.

A. Computational and physical parameters

Sanders et al.’ performed experiments investigating
BDR in a high Reynolds number, spatially evolving turbulent
boundary layer on a large flat plate (L=12.9 m). These ex-
periments were performed in the plate-on-top configuration,
where the buoyancy force is acting to push the bubbles to-
ward the wall. Figure 2 shows the typical bubble behavior in
this experiment. Bubble size distributions and bubble-to-fluid
area ratio were also measured at two downstream locations
(x=X,,X,). Increasing the air flow-rate of injection Q,
and/or reducing free-stream velocity U, increased BDR. For
cases with the lowest free-stream velocity, the bubbles coa-
lesced into a continuous layer of gas and drag reduction was
maintained far downstream. For all other free-stream speeds
and air-injection rates, the skin-friction drag was reduced
downstream (C¢/Cyo<<1) of the bubble injection location,
but increased with downstream distance and approached
single-phase levels (Cy/Cro—1). In these experiments, the
near-wall bubble concentration became more dilute with
downstream distance and eventually a bubble-free liquid
layer formed near the wall.
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TABLE I. Simulation parameters.

Case Ly/ Ly X Ly/ Ligg X L/ Lygg N, XN, XN,

Bubbly flow
Inflow generation

40X3.12X1.57
10X 3.12X1.57

1600 X 132X 256
100X 45X 64

For the low air-injection rate (Q,=0.05 m? s~!) and high
flow speed (U,>18 ms™') in the experiments of Sanders
et al.,’ the skin-friction reduction as compared to the single-
phase case was very small (Cy/Cy>0.95) for small dis-
tances downstream (x<<2 m) and approached single-phase
results further downstream. This experiment will now be de-
fined as case S1.

Due to the large Reynolds numbers in this turbulent
boundary layer (Re,>15000), providing sufficient reso-
lution of the turbulent flow with DNS is prohibitively expen-
sive. The Reynolds number of the boundary layer is reduced
(420<Rey<<1800) in simulations while matching the ratio
of mean bubble injection radius to boundary-layer size at
injection. For experiment S1, the mean bubble radius and
boundary-layer thickness were measured at downstream sta-
tion X;. The mean bubble diameter at x=X; was 230 um.
Assuming a constant bubble radius and using a power law to
estimate boundary-layer thickness, the ratio of bubble size to
boundary-layer thickness at injection is obtained (Ry/ &9 inj
~(.0064) and matched in the simulation. The Froude num-
ber based on the boundary-layer thickness at injection
(Fr=U,/\gy09nj) is 46. The distance between X; and X,
nondimensionalized by the boundary-layer thickness (8y9) at
injection, is 35.6. The outflow of the bubble simulation is
located at (x—X;;;)/ 699 ;nj=67. The bubble injection velocity
is zero in the streamwise and spanwise directions and the
wall-normal injection velocity v,/ U, is 0.55, as given in the
Sanders'® model of bubble diffusion in a turbulent boundary
layer.

A separate simulation is required to provide the neces-
sary inflow turbulence for the spatially evolving turbulent
boundary-layer simulation. The inflow-generation simulation
applies rescaling to the streamwise boundary conditions™ to
obtain turbulent boundary-layer flow in a reasonably sized
domain. A velocity plane from the inflow simulation is then
interpolated to the inflow plane of the bubbly flow simula-
tion. The domain lengths (L) and the number of control vol-
umes (N) in the x (streamwise), y (wall-normal), and z (span-
wise) directions are given in Table 1. The bulk Reynolds
number Re=U,L. /v is equal to 14000 with L.
= 899 inj/ 0.52. At the inflow of the inflow-generation simula-
tion, the Reynolds number based on the momentum thick-
ness (Rey) is 420, while at the inflow of the bubbly flow
domain, the Reynolds number Re,=600 and Re,=1800 at
the  outflow. The grid spacing is  uniform
in the streamwise and spanwise directions and nonuniform in
the wall-normal direction. For the bubbly flow domain,
Ay pin/ Lies=5.07X 107, with Ay?’. =0.31 and 13 control
volumes are within Ay* <10 at (x—Xjy;)/ S99 nj=45.4. For
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FIG. 3. Comparison of mean streamwise velocity to results from the Simens
et al. (Ref. 24) simulation. —, DNS, (Re,=1100); - -, DNS, (Re,=1551); [J,
Simens, (Re,=1100); A, Simens, (Re,=1551).

the inflow-generation domain, Ay,;,/L.s=1.96X 1073, with
Ay, .,=1.38 and six control volumes are within Ay*<10 at
(x=Xinj)/ 699 inj=—9.6.

The inflow-generation simulation was initialized
from a previous boundary layer simulation and run for
t*=tU,/L=420 units of time to ensure removal of all
transients, with a constant timestep of Ar*=0.08. Statistics
were taken from 420<<7*<<4400, and the velocity
inflow plane and additional statistics were sampled from
4400 <r*<8900. The bubbly flow simulation was initialized
from zero velocity and run for 1500 units of time to remove
all transients with Ar*=0.015. One hundred bubbles were
then injected every ten fluid timesteps at a random spanwise
location near the wall (yiy/ S99 0j=2 % 107°). The bubble
timestep Afy,, was equal to 1.5X 107, Fluid statistics and
bubble statistics were sampled from 1500<¢*<<2100 until
convergence was achieved.

lll. RESULTS
A. Carrier-phase turbulence

Results for the carrier-phase turbulent flow in the bubbly
flow simulation are given in Figs. 3 and 4. The results shown
are taken from two streamwise locations, one at Re,=1100
and another at Re,=1551. The wall-normal distance is non-
dimensionalized by the boundary-layer thickness dyg at each
streamwise location. The carrier flow shows a good agree-
ment with results from Simens ef al.>* for both the mean flow
and turbulence intensities.

B. Bubble trajectories

After injection, the bubbles tend to disperse and travel
away from the wall, as shown in the instantaneous snapshots
of bubble position in Fig. 5. Note that near the injection, the
bubbles are concentrated into filament-like structures that
break down with increasing downstream distance. Through
the force due to the fluid acceleration, bubbles are pushed
toward the centers of vortex cores. This preferential concen-
tration of bubbles in vortex cores has been observed in pre-
vious simulations of bubbles in homogeneous, isotropic
turbulence.” Near the wall in a turbulent boundary-layer
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FIG. 4. Comparison of turbulence intensities to results from the Simens et
al. (Ref. 24) simulation. (a) rms of the turbulence intensities vs wall-normal
distance for Rey=1100. (b) rms of the turbulence intensities vs wall-normal
distance for Re,=1551. —, u! ., DNS; - DNS; ----, u__, DNS;

+
" . Xx,rms? +_’ M)',rms’ Z,rms”
O, U > Simens; A, Uy 1 Simens; >, U7 e Simens.

flow, vortical structures that form the legs of hairpin struc-
tures are oriented in the streamwise direction.”® The tendency
of bubbles to form filament-like structures observed in
Fig. 5(c) is due to the attraction of the bubbles to the stream-
wise vortical structures. The bubbles tend to travel away
from the wall as they move downstream, as observed in
Sanders et al.’

An ensemble-average is obtained by a number average
performed over all bubbles. The ensemble-average is a func-
tion of the residence time of a bubble in the flow after injec-
tion (f,=t—t;,). In this paper, ensemble-averaged bubble
quantities are denoted by the subscript “e.” The ensemble-
average of f at time ¢, is given by

Simulation of bubble migration in a turbulent boundary layer
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N
1
«mmzﬁzﬂm, (8)

where (f(z,)). is sampled over N number of bubbles. Sam-
pling of quantities for the ensemble-average was performed
at discrete lengths of residence time after injection (i.e.,
t.=nAt, for n=1,2,3,...), where Ar,=120A¢. This time in-
terval Az, was chosen to obtain samples at a quick enough
rate to resolve bubble behavior but not so often as to become
unnecessarily expensive to compute.

Figure 6 shows the ensemble-averaged bubble trajectory,
with the tendency of the bubbles to travel away from the wall
clearly evident. Figure 7 plots the ensemble-averaged bubble
velocities as a function of ensemble-averaged streamwise po-
sition. The wall-normal velocity is positive (away from the
wall) and approaches a constant value with increasing down-
stream distance. As the bubbles travel downstream, the
streamwise velocity increases due to the bubbles accelerating
along with the fluid as they enter the higher-momentum flow
away from the wall. The ensemble-averaged fluctuations of
bubble position and velocity are plotted in Figs. 8 and 9.
Streamwise fluctuations are large as compared to wall-
normal position fluctuations due to the large velocity fluctua-
tions along the streamwise direction. The fluctuations in po-
sition increase with downstream distance due to dispersion.
The bubble velocity fluctuations increase to a maximum
value just downstream of injection then decrease and ap-
proach a constant value as the bubble travels downstream.

C. Budgets of bubble acceleration

The mean acceleration (dv/dt), can be integrated to ob-
tain the mean velocity (7). and integrated once again to give
the mean position <)7>e, so understanding the forces on the
bubble provides insight that can be used to predict bubble
dispersion. The drag, lift, fluid acceleration, and buoyancy

10

8 -
x/Lref

FIG. 5. Instantaneous bubble position with only a part of the domain shown (5 <x<15). (a) Bubble position in streamwise and wall-normal coordinates with
ensemble-averaged position (Y,). vs (Y.). shown by the black line. (b) Close-up view of (a) along with bubble velocity vectors (v,,v,). (c) Bubble position

in streamwise and spanwise coordinates.
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FIG. 6. Ensemble-averaged bubble trajectory and evolution of boundary-
layer thickness along with bubble concentration profiles. Bubble concentra-
tion C is plotted Vs y/ Ly at X/ Ly=10, 15, 20, and 25. - -, 8yo; —, (¥}). Vs
(Yoo A C.

terms in Eq. (3) can be ensemble-averaged to obtain a budget
of mean bubble acceleration. The equation for ensemble-
averaged bubble acceleration is

div Dii 3Cp

i\ o (3PEY  (3Ch o o

i (-28).+\ 3, ) 2 g i-ol-0) )
+{Q2C (i = T) X &),. 9)

Budgets of mean bubble acceleration as a function of dis-
tance downstream of injection for bubbles in the turbulent
boundary layer are shown in Figs. 10 and 11. Note that for
the streamwise accelerations, the drag and lift contributions
accelerate the bubble in the downstream direction while the
fluid acceleration tends to slow the bubbles, except for a
short period near injection where the fluid acceleration is
positive. The drag acceleration is positive, therefore the dif-
ference in velocity in the streamwise direction (u,).—(v,)e 18
greater than zero. The ensemble-averaged bubble accelera-
tion is always positive and approaches zero for large dis-
tances downstream of injection.

Figure 11 plots the budgets of the ensemble-averaged
accelerations in the wall-normal direction. From Fig. 11(a), it
is clear the drag and fluid accelerations have the largest mag-
nitudes. In the drag acceleration, the difference in velocity in
the wall-normal direction (u,).—(v,). is less than zero, there-
fore the bubbles (in an ensemble-averaged sense) have a
larger wall-normal velocity than the Eulerian fluid. Figure
11(b) plots the bubble acceleration in the wall-normal direc-
tion, with the drag and fluid acceleration terms summed to-

1 0.016
(v=)e g 0014 (vy)e
Ue Ue
0.012
0.6
0.01
0.4
0.008
o2r 0.006
% 10 20 30 0-004
(Y;,;)e / Lref
FIG. 7. Ensemble-averaged bubble and carrier-fluid velocities. —, (v,)e;
- = o B (e - o-, ().

Phys. Fluids 23, 045107 (2011)

20 0.5

AVl
(3. of

ref

FIG. 8. Ensemble-averaged position fluctuations. —, (¥ ¥)e; - -, (Y, ¥})e;
- <Y;Y;>c'

gether. The total sum of fluid and drag accelerations pushes
the bubbles away from the wall. In Fig. 11(b), the bubble
acceleration depends on distance from the injection location.
Far downstream of injection, the lift acceleration and the
sum of the fluid and drag acceleration are constant. The total
bubble acceleration approaches zero. Near injection, the
bubble acceleration terms vary with distance from injection
location. The total acceleration is positive near injection and
decreases with downstream distance, approaching zero for
large downstream distances.

The ensemble-averaged terms of Eq. (9) can be broken
down into constituents of ensemble-averaged mean and fluc-
tuating terms. For incompressible flow, the divergence of the
fluid velocity is zero. It can be easily shown that when the
carrier-phase velocity is broken into its mean and fluctuating
terms, u;=(u;).+u;, the divergence of the mean and fluctuat-
ing terms are also zero.

Starting with the equation for the drag acceleration,

3C
L pli-ola=0)) . (10)

<A)D>c = 4 .

the drag expression can be approximated by using only the
first-order term for the drag coefficient, Cp ~24/Rey, since
Re,~ 1. This results in a simplification of the drag accelera-
tion to

9y
AD,FF(”;‘—UJ- (11)

If the bubble radius is constant, taking the ensemble-average
of the above expression results in

0.06 0.0025
0.002 (4 o
AN S e C AN
vz - 0.0015 U?
L,
s o001 (% 2u>e
0.0005 ¢
of 0
-0.0005
-0.02F
0 -0.001
FIG. 9. Ensemble-averaged velocity fluctuations. —, (v;v))e; - -, (v,v))e

oo (U]
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FIG. 10. Ensemble-averaged bubble acceleration budget in the streamwise
(x) direction. - -, 3(Du,/Dt); [, Drag,; -- --, Lift,; —, Total,.
> 9v
<AD>e,appmx = P((u»e - <Ui>e) ’ (12)

where only the mean quantities of velocity remain. Figure 12
plots the comparison of the results of Eq. (12) to the mea-
sured ensemble-averaged acceleration in the y-direction.
Good agreement between the approximate equation and mea-
sured quantities is obtained.

The ensemble-averaged fluid acceleration can be ex-
panded to obtain
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FIG. 11. Ensemble-averaged bubble acceleration budget in the wall-normal
() direction. (a) Normal view showing all terms individually. - -, Drag,;
—ee 3(Du),./Dt); 0, Lifty; - -+, =2g; —, Total,. (b) Zoomed-in view with the
drag and fluid acceleration terms summed together. ----, [Drag,
+3(Du_v/Dt)]; O, Lifty; - -+, —2g; —, Total,.
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FIG. 12. Comparison of drag acceleration in the wall-normal direction for
the approximate equation and measured result.

ﬁ<ui>e d '

(7<ui>e+3<uj>e P +3g<uiuj>e. (13)

<AF,i>e =3

J J

The contributions of the unsteady, mean, and fluctuating
terms in the fluid acceleration term are shown in Fig. 13. The
largest terms are the unsteady term u,)./dt, which is posi-
tive, and the mean gradient term (u;). d{u,)./dx;, although
the fluctuating term also has a significant contribution. For
the mean gradient, the (u,). du,)./ dx contribution is the larg-
est and negative since u,)./dx is negative due to boundary-
layer growth.
The lift acceleration is

(AL)e = 2CL (i1 = 0) X @),

and can also be factored into mean and fluctuating terms. By
applying the vector triple product, the ensemble-averaged lift
equation becomes

Hu;) u Hu,)
A N ={u. _.Le+ u{_L —u. e
< L,l>e <]>e (?xi ]&xi . <]>e aX]
,ou; Huj)e ,ou;
{u =) —wp -
J (9xj e (?xi / (?xi e
Hu, u;
+(vj)eﬁ+ vi— (14)

J
0—'.x]‘ e

Taking the above equation, the last four terms are similar
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FIG. 13. Budget of fluid acceleration in the y-direction.
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FIG. 14. Budget of lift acceleration in the y-direction.

with respect to the first four, except for having a sign change
and a substitution of the bubble velocity for the fluid veloc-
ity. These terms can be grouped together to see more easily
the total contribution to the lift acceleration. The equation of
the summed terms is now grouped into four terms,

Hu;) u; u,
A S o= {ud. — (v _.Le_i_ u{_L _ I
< L,z>e (< ]>e <]>e) axi J axi . J axi R
- VT - - ~N /
L1 L2
a<ui>e (914, &M’

+ (e —(Upe)— — .
(o= up "0 (w7 ) e
L—Y—JL =

L3 L4 (15)

Figure 14 plots the summed contributions of each similar
term to the total lift acceleration. The two largest terms are
LI and L2, with L3 and L4 being negligible. The sum of
L1-L4 is given by the solid black line, and an independently
measured ensemble-average of the lift acceleration is given
by open symbols. Even though there is some discrepancy in
the lift acceleration budget to the total ensemble-averaged
value of lift, it is clear that the terms L1 and L2 are the
dominant contributors and Eq. (14) can be reduced to

_ j’e 1 7% ZNTjre
<AL,i>e,approx = <uj>f5 x; A\ Y x; [ o B <vj>e x;
u;
_ U/_L (16)

J ’
ox il e

Through factoring out the mean and fluctuating terms in the
ensemble-averaged accelerations and comparing budgets, the
full equations can be reduced from their full form. For small
Rey,, using only mean contributions to calculate the mean
drag acceleration is appropriate. In the fluid acceleration
term, the unsteady and mean convection terms are largest,
although the fluctuating term is not negligible. The equation
for lift can be simplified from the original eight terms to four.
If the mean and fluctuating terms in the bubble acceleration
equations can be modeled, the mean diffusion of the bubbles
away from the wall can be determined over a range of Rey-
nolds numbers.
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FIG. 15. Bubble trajectory in the laminar boundary layer.

D. Role of turbulence: Bubbles in a laminar boundary
layer

Turbulence significantly affects bubble dispersion in a
turbulent boundary layer. Without turbulence there is a lack
of intermittency of the forces on the bubbles and no migra-
tion of bubbles away from the wall. To demonstrate this, a
simulation with bubbles injected into a laminar boundary
layer was performed. The outer scales were matched be-
tween the turbulent and laminar simulations at the injection
location, with Re=14 000 and R/ g9 ;,j=0.0064. The bubble
radius was kept constant throughout the simulation. A simu-
lation domain of L,/L.=40, L,/L.=3.12, and L./L.y
=1.57 was used, with N,=400, N),:45, and N,=64. The grid
was uniform in the streamwise and spanwise directions, but
nonuniform in the wall-normal direction with the smallest
wall-normal spacing near the wall. The simulation was ini-
tialized with the Blasius solution”’ and then advanced until
the velocity field was converged. Good agreement between
velocity field and Blasius solution was obtained.

In this laminar flow, the forces on the bubble are greatly
simplified as compared to turbulent flow, with no fluctuating
terms in the bubble acceleration equations. The bubble is
injected with a positive wall-normal velocity and travels
slightly into the boundary layer (Fig. 15). The bubble pen-
etrates only a small distance into the boundary layer due to
drag and then travels toward the wall, opposite of what is
seen in the turbulent case. Because the size of the bubble is
on the same scale as the penetration distance, the simulation
was allowed to continue to run without any particle-wall
boundary conditions (such as bubble-wall collisions) until
the bubble center reached the wall.

As seen in Fig. 16, the forces on the bubble are constant
throughout the bubble path, except very near injection where
a large drag force quickly damps out the initial injection
velocity of the bubble. This happens very quickly with re-
spect to the other scales in the flow and is not shown in Fig.
16 or the other figures of laminar flow. The lift force and
fluid acceleration in the wall-normal direction are both zero
and the drag exactly counterbalances the buoyancy force.
The bubble has reached its terminal velocity according to the
equation
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FIG. 16. Bubble acceleration budget in the wall-normal (y) direction for the

laminar boundary-layer simulation. [, Drag}.; >, -2g; —, Total),.
dU‘, 3 CD
—=_2g4+——|i-0|(u,-v,), (17)
dt §T4R | [ty =0y

and since the terms on the right hand side balance each other
at steady state and Cp~24/Re,

9v

2g=F(uy—vy), (18)
and the bubble has a constant velocity in the wall-normal
direction of v),/UE=—3.1 X 107, since u),ZO near the wall.

When comparing the turbulent and laminar boundary-
layer (LBL) simulations, there are large differences in the
overall behavior of the bubbles. The mean trajectory of the
LBL shows bubbles traveling toward the wall, while the tur-
bulent boundary layer shows the bubbles dispersing away
from the wall as they travel downstream. The influence of
the injection velocity is weak in both simulations, as the drag
force quickly damps out the initial injection velocity. At this
Reynolds number, the injection velocity of the bubbles can
be ruled out as a mechanism for bubble dispersion away
from the wall.

The dispersion of bubbles away from the wall is directly
dependent on the turbulence. In the LBL, the fluid accelera-
tion in the wall-normal direction is zero, and the bubbles
travel toward the wall due to buoyancy. In the turbulent
boundary layer (TBL), the fluid acceleration is large and
pushes the bubbles away from the wall. In comparing the
TBL and LBL simulations, it is evident that the turbulent
fluid acceleration is the mechanism for bubble diffusion.

E. Effect of bubble size

To determine the effect of bubble size, a simulation with
three bubble sizes (R=R,,R,,R;) was performed, with R,
equal to the mean bubble radius in Sanders et al.,7 and R,
and R; equal to R, * 0y.,, Where oy, is the experimental
standard deviation of bubble size measured at x=X;. All
other conditions were the same as the previous turbulent
bubble simulation. The change in size is on the order of R,,
with R,/ 6,,j=0.0037, R,/ §,;=0.0064, and R3/ 6,,j=0.0092.

The trajectories of the bubbles are shown in Fig. 17. The
bubbles with the largest size penetrate farther into the turbu-
lent boundary layer than smaller bubbles due to an increased

(Yw>e /Lref

FIG. 17. Bubble trajectories for three differently sized bubbles in a
turbulent boundary layer. - -, R/ 4,j=0.0037; —, R/ 8493,j=0.0064; -- -,
R/ ls‘)‘),inj:O'O()gz-

wall-normal velocity after injection. The mechanism for the
enhanced movement away from the wall for larger bubbles is
found by looking at the acceleration budget in the wall-
normal direction. From the approximate drag equation [Eq.
(12))], the drag acceleration is inversely proportional to R?
and the larger bubbles initially have a reduced drag force and
are less likely to follow the fluid flow. This leads to an in-
creased relative velocity, which increases the lift and drag
accelerations overall [Figs. 18(a) and 18(c)]. The fluid accel-
eration also increases for larger bubbles due to an increase in
the unsteady velocity contribution [Fig. 18(b)]. The larger
bubbles are moving upward into higher-momentum flow
more quickly than smaller bubbles, therefore o(u,)./dt is in-
creased. Altogether, this leads to an ensemble-average path
that is farther away from the wall for larger bubbles than
smaller bubbles.

F. Comparison to a passive scalar

Poreh and Cermak”® investigated the diffusion of a pas-
sive scalar by injecting ammonia gas into a turbulent bound-
ary layer of air and then measuring the scalar concentration
downstream of injection. As the gas traveled downstream
with the flow, the mean concentration of ammonia decreased
near the wall. Except very near the wall, this behavior is
similar to what is seen for bubbles injected into a turbulent
boundary layer, even though the bubbles are not passive
scalars.

Poreh and Cermak®® defined two length scales, &,, and
\, with &, based on the local boundary-layer thickness and A
being the wall-normal position where the time-averaged con-
centration was equal to one half of the maximum concentra-
tion at that streamwise location, C(\)=1/2C,,.. The passive
scalar data were found to behave differently in four zones
that are defined as a function of (x—Xjy;)/ &,,. The initial zone
is near injection, (x—Xj)/J,,=2. In this region, the
physics of injection is likely to affect the diffusion behavior.
The intermediate zone is defined as the region between
2=(x—Xiyj)/ 8,y =18, the transition zone is defined as the
region of 18=(x—Xj,)/&,, =60, and the final zone where
(-x_Xinj)/ 5av> 18.

Figure 19 shows the behavior of N\/dyy versus
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FIG. 18. Bubble acceleration in the wall-normal direction for three differ-
ently sized bubbles in a turbulent boundary layer with (a) plotting the drag
acceleration, (b) the fluid acceleration, and (c) the lift acceleration. - -,
R/ 899 jj=0.0037; —, R/ 849 jj=0.0064; - - -, R/ S99,=0.0092.

(x=Xipj)/ 8,y for the results of Poreh and Cermak.”® Also in-
cluded in this figure are diffusion profiles of temperature by
Wieghardt,29 bubbles in a turbulent boundary layer by
Sanders et al.,7 and the DNS data of bubble diffusion. The
diffusion length scale N\ increases as the scalar and bubbles
move downstream. The near-wall concentration of passive
scalar and bubbles decreases with downstream distance. For
a passive scalar in the intermediate zone, N/ Jy follows a
power law as a function of (x—X;,)/&,. In the transition
zone, N/ 89 approaches 0.64, the value of N/ dyg in the final
zone.

In the intermediate zone, Poreh and Cermak® found that

Phys. Fluids 23, 045107 (2011)
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FIG. 19. Diffusion of a passive scalar and bubbles in a turbulent boundary
layer.

the wall-normal concentration profiles scaled with \. Figure
20 plots y/\ versus concentration for the DNS and passive
scalar results at different streamwise locations in the inter-
mediate zone. The bubble data that are nearest injection do
not collapse onto the same curve, but the results that are
further downstream collapse to a curve very similar to that of
the passive scalar results. However, very near the wall the
bubble concentration approaches zero while the passive sca-
lar concentration reaches a maximum value. In the transition
zone, the scaling of wall-normal distance changes from A,
the scaling of the intermediate zone, to dyg, the scaling of the
final zone. Figure 21(a) plots y/\ versus concentration for
the DNS and passive scalar results at different streamwise
locations in the transition zone. The bubble data collapse on
a curve very similar to that of the passive scalar results,
except very near the wall where the bubble concentration
approaches zero. When scaled with &y [Fig. 21(b)], the
bubble data begin to collapse, with the most downstream
results most closely resembling the behavior of a passive
scalar in the final zone.

IV. CONCLUSIONS

E)(pe:riments4’7’8 have shown that in high Reynolds num-
ber, spatially evolving turbulent boundary layers, mi-
crobubbles tend to migrate away from the wall as they travel
downstream of injection and the skin-friction drag coefficient
approaches that of a single-phase turbulent boundary layer.
Simulations of bubbles injected into a spatially evolving tur-
bulent boundary layer were performed using a one-way
coupled Euler—Lagrangian approach, with parameters of the
simulation chosen to reproduce the low gas-flux, high flow-
speed case in the experiments of Sanders et al’ Although the
Reynolds number of the simulations was lower than the ex-
periment, the bubbles moved away from the wall, which is
consistent with the experimental results. In simulations
where bubbles were injected into a laminar boundary layer,
the bubbles traveled toward the wall, the opposite of what is
found in the turbulent simulations and in the experiments of
Sanders et al.”
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tions for the movement of bubbles away from the wall. -
In this bubbly turbulent boundary-layer flow, the behav- 0 [ e g el o o fEE
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lar, except very near the wall where the bubble concentration
approaches zero. Bubble concentration profiles collapsed
when normalizing results with length scales (such as
boundary-layer thickness g9 and concentration height A) that
also collapsed passive scalar profiles in Poreh and Cermak.*®
For passive scalars in flows with moderate to large Reynolds
numbers and large Schmidt numbers, the transport by the
local fluid drives the diffusion. For bubble diffusion, the fluid
acceleration is the dominant mechanism. The importance of
the fluid transport in the diffusion of bubble and passive
scalars explains the similar behavior of bubbles and a passive
scalar in a turbulent boundary layer.

In the experiment of Sanders et al.,7 the bubble sizes are
not monodisperse but have a distribution of sizes. For sim-
plicity, a uniform bubble size equal to the mean was used in
the simulation. To account for differences in bubble size,
simulations with three different bubble sizes were performed.
This range of bubble sizes accounts for 86% of the bubble
sizes in the experiment of Sanders et al.” This simulation
showed that the ensemble-averaged path of all bubble sizes
moved away from the wall with increasing downstream dis-
tance. The larger bubbles (R/8y;,j=0.0092) have an

C/Cmax

FIG. 21. Concentration profiles for a passive scalar and bubbles in the
transition zone of a turbulent boundary layer. (a) shows the results for scal-
ing using N, with the inset figure plotting a near-wall close-up view.
x/L=(17.5,22.5,27.5,32.5,37.5)=(00, ¢ ,>>,<,x). —, Poreh and
Cermak (Ref. 28) intermediate zone. (b) shows scaling with &, with
the inset figure plotting a near-wall close-up view. x/L.
=(17.5,22.5,27.5,32.5,37.5)=(1, ¢ ,>>,<],x). —, Poreh and Cermak
(Ref. 28) final zone.

ensemble-averaged path that is farther away from the wall
than smaller bubbles (R/ 8y ;,;=0.0037,0.0064).

As local void fraction increases, two-way coupling ef-
fects are likely to become important. The two-way coupling
effect of the bubbles on the turbulent flow has been demon-
strated in Jacob et al.® In this experiment, the shear stress at
the wall and the Reynolds stress near the wall have been
reduced downstream of injection as compared to the single-
phase experiment due to the presence of the bubbles. Al-
though the near-wall turbulence has been modified, the pro-
files of the turbulent statistics of the fluid flow qualitatively
resemble single-phase turbulent profiles near the wall and
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approach the values of single-phase turbulence away from
the wall. Therefore, it is likely that the fluid acceleration will
still be the mechanism for bubble dispersion away from the
wall.
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