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A fully conservative and efficient numerical algorithm is developed for fluid simu-
lations of radio-frequency plasma discharges. Results are presented in one and multi-
ple dimensions for a helium discharge. The algorithm produces accurate results even
on fairly coarse grids without the use of numerical dissipation. The proposed elec-
tron flux discretization is more accurate and efficient than two of the most commonly
used discretizations: low-order upwinding (M. S. Barnes, T. J. Colter, and M. E. Elta,
1987, J. Appl. Phys. 61, 81) and Scharfetter–Gummel (D. L. Scharfetter and H. K.
Gummel, 1969, IEEE Trans. Electron Devices ED-16, 64). c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

The development of numerical models to simulate processing plasmas has been ongoing
for over two decades, with the most rapid growth occurring during the past decade. Prior
to 1990, simulations were typically one dimensional, either with a fluid model or a particle
model of the plasma; since then, two- and three-dimensional models with detailed chemistry
have been developed [1]. Some examples of two-dimensional simulations can be found in
[2]–[7]; three-dimensional simulations are more rare, but [8]–[10] contain representative
calculations. Numerical tools are actually being used by industry as part of the design
process [1].

Our objective is to develop a robust, accurate method to simulate plasma discharges. We
have included conservative and nondissipative concepts from the numerical methods used
to solve the Navier–Stokes equations, which have been much more extensively studied.
Nitschke and Graves developed a one-dimensional fluid model for a helium glow discharge
[11]. They compared results from particle and fluid simulations for the same model system
based on helium. The rate coefficients for the collision terms in the fluid equations were
based on numerical integration of the collision cross sections with an assumed Maxwellian
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velocity distribution. They found that the two methods agree well for pressures greater than
or equal to 100 mTorr. Using their relatively simple fluid model, we sought an efficient
numerical method for the robust and rapid solution of the equations.

As with Nitschke and Graves [11], this paper examines a low-pressure, low-temperature,
glow discharge helium plasma with a very small ionization fraction (≈10−8). The plasma
is maintained in a capacitively coupled reactor; this type of reactor is frequently used for
materials processing purposes. As will be seen, even this one-dimensional problem poses
significant challenges: It has a wide range of time scales, steep unsteady gradients in charged
particle densities, and near-zero electron densities in the sheaths. These problems exist today,
and work continues to be published that presents one-dimensional, radio-frequency plasma
simulation methods [12].

Robustness is commonly introduced into the numerical solution of the plasma equations
by upwinding the spatial discretization, in particular, the discretization of the electron
flux. One method of upwinding the electron flux is described by Barnes et al. in [13].
This technique is used by Nitschke and Graves [11]. Another method used to alleviate the
stiffness due to the electron flux is discussed by Scharfetter and Gummel in [14].

As will be shown, low-order upwinding on coarse grids can provide results that are quite
far from the grid converged solution, almost a factor of two. Accuracy on coarse grids is
crucial for advancement into multiple dimensions, particularly when complex chemistries
are used. When large errors accrue due to the numerical method, modelers run the risk
of having the numerical errors exceed the errors from the approximations in the model.
Although Scharfetter–Gummel is reasonably accurate on coarse grids, it introduces another
approximation into the fluid model. Later, this additional approximation will be shown to
have nearly a 20% impact on the plasma density. Furthermore, the Scharfetter–Gummel
discretization leads to more expensive computations, which will also be shown.

The equations used are described in Section 2, and the approximations used in developing
the equations are explained. A conservative, time-accurate algorithm that provides rapid
solutions to the plasma fluid equations was developed; care was taken to ensure that the
algorithm is not numerically dissipative. This discretization of the governing equations is
described in Section 3. The derivation of the conservative discretization of the electron flux
and the solution it provides, and the results of alternative discretizations, are described in
Section 4. The validation against previously published simulations by Nitschke and Graves
[11] is also discussed in Section 4. The extension of the algorithm to multiple dimensions
and a sample two-dimensional result are presented.

2. MODEL EQUATIONS

Generally speaking, processing plasmas are sustained by the highly energetic electrons
which collide with the background gas to generate ions and more electrons. Power is input
to the electrons in a capacitive discharge via the applied radio frequency voltage. Since
the characteristic frequency of the helium ions (ωi/2π =

√
e2ni/ε0mi/2π ≈ 3 MHz for

ni = 1015 m−3) is lower than the radio frequency (on the order of 10 MHz), the ion density
and velocity do not change appreciably during each period. In contrast, the characteristic
frequency of the electrons (ωe/2π =

√
e2ne/ε0me/2π ≈ 300 MHz for ne = 1015 m−3) is

much higher than the radio frequency. As a result, the electrons are subject to significant
changes in each period. On the whole, the plasma is electrically neutral, with thin sheaths
forming near the boundaries. These sheaths form because the lighter electrons quickly
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diffuse away, which creates a net positive charge and an electric field that acts to prevent
additional electrons from escaping and to accelerate the ions. Sheaths in a capacitive radio-
frequency discharge are extremely unsteady, and their maximum thickness is generally a
few tens of Debye lengths (λD =

√
ε0kB T0/e2n0 ≈ 0.5 mm for n0 = 1015 m−3 and T0 =

45,000 K) A more complete description of the physics of a plasma discharge may be found
in references [15] and [16].

The fluid equations for a plasma are derived from the Boltzmann equation for each
species by specifying the velocity distribution function and by taking velocity moments
of the Boltzmann equation. This yields conservation equations for the mass, momentum,
and energy of each species. The collisional terms are typically modeled by assuming a
Maxwellian velocity distribution function. Viscosity plays a negligible role, and its effect
is usually not included in the momentum equations. Maxwell’s equations are solved to
determine the electric and magnetic fields generated by the charged particles and their mo-
tion. In the absence of an externally imposed magnetic field, magnetic effects are generally
quite small, and the plasma is usually treated as electrostatic, where the electric field is the
gradient of a potential, �E = −∇	.

In this paper, three species are considered: the background gas (He), the ions (He+), and
the electrons. The background gas is assumed to be stagnant and at constant temperature and
pressure. Since the ion mass is very nearly the same as the mass of the background gas, the
ions are assumed to be in thermal equilibrium with the background, and no energy equation
is solved for the ions. Due to their lower mass, the electrons exchange kinetic energy very
poorly with the other particles, and their temperature can be significantly higher than the
other species. Thus, it is important to solve for the electron energy. A commonly used
simplification to the electron momentum equation is the “drift–diffusion approximation.”
The electron inertial terms, i.e., those in the material derivative, are neglected. This results
in a balance among the Lorentz force, the pressure gradient, and the drag from collisions
with the background gas which yields an algebraic expression for the electron flux.

Justification for the particular form of the fluid conservation equations used is provided
by [17]. Surendra and Dalvie [17] take velocity moments of a particle-in-cell Monte Carlo
collision calculation of a model plasma to determine the variation in space and time of
each term in the conservation equations. For sufficiently high pressures (i.e., high collision
frequency), they find that the inertial terms in the electron momentum equation are negligible
compared to the pressure gradient, Lorentz force, and collisional drag, except in the sheath
regions. For the ion momentum equation, the inertial terms, Lorentz force, and collisional
drag are all significant while the ion pressure gradient is essentially negligible. They also find
that at high enough pressures, the ion temperature is roughly equivalent to the background
gas temperature, except in the sheaths. The implication of the fluid model approximations
on accuracy in the sheath regions is not certain, but densities are generally low in the sheaths
(particularly for the electrons), so the impact is not expected to be large.

2.1. Governing Equations

The governing equations are taken from those used by Nitschke and Graves [11], and
they are nondimensionalized prior to solution. The plasma bulk is used to define refer-
ence values for the charged particle densities (n0) and the electron temperature (T0); for
the simulations discussed in this paper, these values are 1.0 × 1015 m−3 and 45,000 K.
The Debye length and plasma frequency of the electrons are used as reference length and
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time scales, respectively. The variables ne and ni denote the dimensionless electron and ion
number densities, respectively, and �vi and 3

2 neTe represent the dimensionless ion velocity
and the electron thermal energy density. The electron number density flux and thermal flux
are represented by � e and �qe. The density of the neutrals is denoted by N , and 	 and �E
denote the electric potential and electric field, respectively. Values for the constants Ea ,
σcx , ki0, kmt , and hiz can found in [11]. Although the pressureless form of the ion equations
used here can cause concentration effects, problems have not been observed. Simulations
performed with the ion pressure gradient were negligibly different from those without. The
nondimensional form of the equations, written for three dimensions, is presented below
along with the nondimensionalized parameters:

∂ne

∂t
+ ∇ · � e = p1nee−p2/Te (1)

� e = −p7[ne �E + ∇(neTe)] (2)
∂ni

∂t
+ ∇ · (ni �vi ) = p1nee−p2/Te (3)

∂�vi

∂t
+ �vi · ∇�vi = p3 �E − p4|�vi |�vi (4)

∂
(

3
2 neTe

)
∂t

+ ∇ · �qe = −� e · �E − p5nee−p2/Te − p6ne(Te − Tneut) (5)

�qe = 5

2
� eTe − p8neTe∇Te (6)

∇2	 = −(ni − ne) (7)

�E = −∇	 (8)

p1 = Nki02π/ωe p2 = Ea/kB T0

p3 = 4π2me/mi p4 = NσcxλDπ/2

p5 = hiz Nki02π/kB T0ωe p6 = 3me Nkmt 2π/mneutωe

p7 = 2πωe/kmt N p8 = 5p7/2.

2.2. Boundary Conditions

A characteristic analysis of the one-dimensional form of the governing equations was
performed to determine the number of boundary conditions required. For the electron equa-
tions, the analysis showed that boundary conditions should be specified on both sides of the
computational domain. The boundary conditions used in this paper are the same as those
used by Nitschke and Graves [11]; they are applied on both sides of the domain:

je = ∓p9ne

√
Te (− at x = 0, + at x = L) (9)

p9 = n0

4

√
8kB T0

πme
(1 − �)

qe = 5

2
jekB Te (at x = 0 and L). (10)

The boundary fluxes for the electron continuity equation (1) are assumed to correspond
to the one-way flux for particles with a Maxwellian velocity distribution. Reflection is
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accounted for with �; a value of 0.25 was used by Nitschke and Graves [11]. The thermal
flux at the boundaries is equated to the enthalpy flux. A boundary condition for the energy
equation (5) that is more consistent with the boundary condition for the continuity equa-
tion is to equate qe to the one-way flux of kinetic energy for a Maxwellian distribution,
4
3 × 3

2 kB T × je, or qe = 2 jekB Te. Our simulations showed little difference between the two
thermal boundary conditions; however, for consistency with Nitschke and Graves, the en-
thalpy flux boundary condition (10) is used in this paper. Secondary electron emission is
neglected.

Characteristic analysis of the ion equations indicates that no boundary conditions should
be specified. The characteristics point in the direction of vi , and, since E is generally directed
out of the plasma close to the walls, the positive ions always flow out of the computational
domain. Thus, no boundary conditions are specified for the ion equations. Nitschke and
Graves applied ∂ni/∂x = 0 on both boundaries, and set ∂vi/∂x = 0 on one boundary [11].
When these boundary conditions were used, small oscillations in the ion number density
were observed at both boundaries. When the boundary conditions were removed, so were
the oscillations. Results demonstrating this will be shown later.

The boundary conditions for the Poisson equation for 	 are a sinusoidal radio-frequency
voltage at x = 0 and ground at x = L . The amplitude of the voltage is 500 V, and the
frequency is 12 MHz. The spacing between the electrodes varied with the pressure of the
background gas and was between 4 and 12 cm. These conditions were chosen to correspond
with the calculations of Nitschke and Graves [11].

3. NUMERICAL METHOD

The dependent variables are discretized on a nonuniform, staggered grid. A staggered
grid was chosen because of the conservative properties it provides for the nonlinear fluid
equations [18]. Figure 1 illustrates the staggered positioning of variables. The equations
governing ne and neTe are quite stiff, and an implicit time advancement scheme is therefore
necessary. Furthermore, the accuracy and stability of the electron equations depend critically
on the discretization of the flux, je. The ion equations do not exhibit such stiffness, and an
explicit time advancement scheme is adequate. The spatial and temporal discretizations are
described in detail below.

FIG. 1. Storage locations of variables on the nonuniform, staggered grid; the ×’s are located halfway between
the �’s.
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3.1. Spatial Discretization

The discrete continuity equations and the electron energy equation were derived using the
finite volume method. Since the ion momentum equation (4) was not written in conservative
form, the discrete ion momentum equation was derived using second-order finite differences
on a nonuniform grid. Simulations were performed using the conservative form of the ion
momentum equation, and the results were in agreement. For consistency with Nitschke and
Graves [11], the primitive form is used throughout. The following semidiscretized equations
were used to advance the dependent variables.

Ion continuity:

dni,k

dt
= − 1

�xk

[(
ni,k + ni,k+1

2

)
vi,k+1/2 −

(
ni,k−1 + ni,k

2

)
vi,k−1/2

]
+ p1ne,ke−p2/Te,k .

(11)
Ion momentum:

dvi,k+1/2

dt
= − vi,k+1/2

�xk−1 + �xk

[
�xk−1

�xk
vi,k+3/2 −

(
�xk−1

�xk
− �xk

�xk−1

)
vi,k+1/2

− �xk

�xk−1
vi,k−1/2

]
+ p3 Ek+1/2 − p4

∣∣vi,k+1/2

∣∣vi,k+1/2. (12)

Electron continuity:

dne,k

dt
= − 1

�xk

(
je,k+1/2 − je,k−1/2

) + p1ne,ke−p2/Te,k . (13)

The discretization of je significantly impacts the robustness and accuracy of the solution
and is discussed in detail later.

Electron energy:

3

2

dneTe,k

dt
= − 1

�xk

(
qe,k+1/2 − qe,k−1/2

) − 1

2

(
je,k−1/2 Ek−1/2 + je,k+1/2 Ek+1/2

)
− p5ne,ke−p2/Te,k − p6ne,k(Te,k − Tneut)

(14)

qe,k+1/2 = 5

2
je,k+1/2Te,k+1/2 − p8

(
neTe,k+1 + neTe,k

2

)(
Te,k+1 − Te,k

δxk

)

Te,k+1/2 =
(

Te,k + Te,k+1

2

)
.

Poisson’s equation:

	k+1 − 	k

δxk
− 	k − 	k−1

δxk−1
= −�xk(ni,k − ne,k) (15)

Ek+1/2 = −	k+1 − 	k

δxk
. (16)

3.2. Discrete Boundary Conditions

At the boundaries, the domain is discretized as illustrated in Fig. 2. Since the electron den-
sity is not known at the edge, the electrons are assumed to obey the Boltzmann relation [15],
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FIG. 2. The discretization of the computational domain at the left edge; the discretization at the right edge is
similar. The storage of variables is the same as in Fig. 1.

and the electron density at the edge is given in nondimensional terms by

ne,1/2 = ne,1 exp

[(
	1/2 − 	1

)
Te,1

]
.

Thus, the electron flux at the left edge, for example, is

je,1/2 = −p9ne,1 exp

[(
	1/2 − 	1

)
Te,1

]√
Te,1. (17)

The ion flux at the wall is found by linearly extrapolating the ion density from the two
grid points nearest the wall and then multiplying by the velocity at the wall. Since the ion
momentum equation is evaluated at the wall, one-sided differences are taken for the spatial
derivatives. If the ion velocity at the wall points into the domain, it is set to zero.

An earlier discretization of the domain at the boundary resembled Fig. 2 except that an
additional node (�) was located at the “1/2.” This provided the electron number density
immediately at the edge for the flux boundary conditions, and it also gave the ion number
density and velocity at the same location so that the ion flux out of the domain could be
calculated directly. This earlier scheme provided the same results as the scheme described
in Fig. 2 but was more cumbersome to implement (particularly in multiple dimensions).

3.3. Temporal Discretization

A standard, fourth-order Runge–Kutta scheme was used to advance the ion equations;
implicit time advancement was used for the electrons. Both fully nonlinear and linearized
time advancement methods for the electron equations were considered. The implicit Euler,
trapezoidal, and second-order implicit Runge–Kutta methods were evaluated. The implicit
Euler method was found to perform adequately. The trapezoidal method was unsatisfactory
since oscillatory solutions were obtained unless very small time steps were used. The
implicit Runge–Kutta scheme offered the greatest accuracy.

The implicit Runge–Kutta method is described below; it was adapted from the second-
order scheme given by Zhong [19]. Some of the implicit Runge–Kutta methods discussed
by Zhong are based on the Rosenbrock linearized methods in [20]. An ordinary differential
equation dy/dt = f (t, y) is discretized with the second-order implicit Runge–Kutta method
as yn+1 = yn + ω1δy1 + ω2δy2, where ω1 = ω2 = 0.5 and δy1 and δy2 are computed as

δy1 = δt f (tn + α1δt, yn + a11δy1)

δy2 = δt f (tn + α2δt, yn + a21δy1 + a22δy2),

with a11 = 1 − √
2/2, a21 = √

2 − 1, a22 = 1 − √
2/2, α1 = a11, and α2 = a21 + a22. The
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time advancement can be linearized, yielding the equations for δy1 and δy2,

δy1 = δt

[
f (tn, yn) + a11

∂ f

∂y

∣∣∣∣
tn ,yn

δy1

]

δy2 = δt

[
f (tn + α2δt, yn + a21δy1) + a22

∂ f

∂y

∣∣∣∣
tn+α2δt,yn+a21δy1

δy2

]
,

with a11 = 1 − √
2/2, a21 = √

2 − 1, a22 = 1 − √
2/2, and α2 = a21.

Some of the terms in the ion density and velocity equations depend on the electron
density or energy either explicitly (the ionization source term) or implicity (the electric
field). To simplify the ion time advancement, the ion equations used the values of electron
density and energy and the electric field at the beginning of the time step, and the ions were
advanced explicitly to the next time level needed for the implicit solution of the electrons.
For example, for the simulations using implicit Euler, the ions were advanced from time
tn to tn+1 using nn

e , T n
e , and En . With the ions now given at tn+1, the electrons were

implicitly advanced to tn+1. The electron and ion equations were fully coupled using the
explicit/implicit advancement described in [19], and the results were equivalent to within
the accuracy of the iterative solution of the implicit electron equations.

A Newton–Raphson iterative technique was used to solve the nonlinear equations result-
ing from the fully implicit formulations. Strictly speaking, the Jacobian for this system is
nearly a full matrix, since both the electron continuity and energy equations involve the
electric field, which is a function of the net charge density throughout the domain. Thus,
for example, when starting from time level n and solving the nonlinear equations for the
electron variables at time level n + 1, the equations for nn+1

e,k and neT n+1
e,k are functions of

nn+1
e,1 , nn+1

e,2 , . . . , nn+1
e,N−1, nn+1

e,N . However, close examination of the Jacobian matrix reveals
that the submatrices which are more than one block off the main diagonal have terms that
are much smaller in magnitude than the submatrices on the main diagonal and those imme-
diately adjacent to it. This indicates that, in the iterative solution of the system of equations,
blocks not adjacent to the main diagonal have little impact on the solution at subitera-
tions. Thus, the full Jacobian can be approximated by a block tri-diagonal Jacobian. The
results obtained with the reduced Jacobian are virtually the same as the results with the full
Jacobian, and the time savings is significant (O(N ) operations to invert the Jacobian matrix
versus O(N 2) with an iterative solver).

The integration time step is chosen so that the radio-frequency period is adequately
resolved; this is the basic physical limit. With approximately 200 steps per period, which
is generally what is required to achieve time step independence for the base case presented
here, the CFL’s for the ions are usually very low on a coarse 20-point grid, O(0.01), which
indicates that ion convection is not limiting. The only real numerical limitation on the
stability of the system is in the implicit advancement of the electron equations, ironically.
Although the advancement is implicit, the root must be found to a very nonlinear system
of equations, which is not always an easy task, much less guaranteed to be successful
[21]. Robustness can be added to the root finding by using a modified Newton method;
see [21] and [22]. But the computational overhead generally exceeds the time saved by
using larger time steps. A more effective way to add robustness to the root finding is
to advance equations for ln ne and ln neTe, which can be derived by dividing Eqs. (13)
and (14) by ne,k and neTe,k , respectively; the root is then sought in terms of ln ne and
ln neTe.
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The electrons can also be advanced in time with a linearized implicit algorithm. As before,
the Euler method is more stable than the linearized trapezoidal method. The second-order
linearized implicit Runge–Kutta scheme seems to offer the same stability as the linearized
Euler, but with higher order accuracy. While cheaper per time step than the fully nonlinear
formulation, the linearized algorithms require a smaller time step for accuracy. Further
discussion of the merits of fully implicit versus linearized implicit time advancement when
applied to a highly nonlinear ordinary differential equation can be found in Appendix A.

The equations were advanced in time until the relative change in the maximum ion
density from one period to the next was less than 10−5. No acceleration was used to speed
the evolution to steady state. Typically, 500 periods were needed to reach steady state when
starting with a uniform profile for the densities and zero velocity for the ions.

4. RESULTS

The stiff nature of the electron equations makes even one-dimensional simulations chal-
lenging. The spatial and temporal variation in ne and neTe depend on the exact conditions
imposed, but the electron densities within the sheaths can change by dozens of orders of
magnitude over the course of a radio-frequency period. The ion density and velocity are
much better behaved, and they generally change by no more than an order of magnitude
throughout the domain during a period.

4.1. Resolution of Numerical Methods

In this section, the consistency and accuracy of the various methods for discretizing the
electron flux will be shown. Also, the results of the different time advancement methods will
be discussed. All the computations are run at the same condition as Case I in reference [11]:
helium gas at 250 mTorr and 300 K, applied radio-frequency voltage of 500 V at 12 MHz,
and a gap spacing of 4 cm.

4.1.1. Standard, Central-Difference Flux

The most straightforward discretization of je using central differences is as follows:

je,k+1/2 = −p7

[(
ne,k + ne,k+1

2

)
Ek+1/2 + neTe,k+1 − neTe,k

δxk

]
. (18)

While this is a natural approach, it requires very fine grids to capture the wide spatial
variations in ne and neTe. Even with a tanh-stretched grid, about 400 grid points are required.
At this resolution, the minimum grid spacing (at the edges of the domain) is about 3% of a
Debye length, and the maximum (in the center of the domain) is nearly half a Debye length.
Using fewer grid points results in unphysical negative values for ne or neTe in the sheath
regions (where these two variables become extremely small), which makes the computation
unstable.

Simulation results using 400 points on a stretched grid and 250 time steps per radio-
frequency period (T) with the fully implicit second-order Runge–Kutta method are shown
in Fig. 3. This computation required approximately 2.5 h to run for 500 periods on a Silicon
Graphics Iris Indigo 2 workstation (195 MHz processor). Calculations with a refined grid
(800 points) and with a refined time step (500 steps per period) are also shown in Fig. 3.
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FIG. 3. The period-averaged profiles of: (a) electron density, (b) electron energy density, (c) ion density,
and (d) ion velocity. Three different simulations at the conditions of Case I in reference [11] were performed to
establish convergence with respect to grid and time step: 800 points, δt = 0.004 T (—); 400 points, δt = 0.004 T
(−−); 400 points, δt = 0.002 T (−·).

The change in the peak plasma density due to the change in grid or time step is less than
a percent. The result with 400 points and δt = 0.004 T will be referred to as the “exact”
result. The solution at these conditions will be used as a benchmark to evaluate the other
discretizations discussed below. The drastic variation of the electron density during the
radio-frequency period is shown in Fig. 4.

The need for approximately 400 grid points and the runtime of over 2 h make three-
dimensional solutions of this type of problem impractical with this discretization. Assuming
that roughly 100 grid points would be needed for the other two dimensions means that a
three-dimensional calculation would take 10,000 times longer, or almost three years, on
the same computer, assuming (optimistically) that the computation time would still depend
linearly on the number of grid points.

4.1.2. Upwinded Flux

Upwind biasing the spatial discretization of the electron flux (and sometimes the ion flux)
is used almost universally to circumvent the stability problems posed by steep gradients
at the sheath edges and very low electron densities (see, for example, Barnes et al. [13],
Sommerer and Kushner [23], Gogolides et al. [24], Kushner et al. [8], and Colella et al. [25]).
However, some simulations have been published with a nondissipative discretization for the
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FIG. 4. The variation in the instantaneous electron number density at four different times in the radio-frequency
period for the “exact” solution shown in Fig. 3: t = 0.5 T (—), t = 0.625 T (- · -), t = 0.75 T (- - -), and t = 0.875 T
(· · ·).

electron and ion equations. Huppert et al. [26] used Gauss–Lobatto–Legendre polynomials
as the basis functions for the finite elements in their spatial discretization and found that
upwinding affected the peak density by approximately 30%.

We evaluated a first-order upwinded approach similar to that used in Barnes et al. [13].
The sign of the electric field at xk+1/2 determines the discretization of the drift component
of the electron flux. All the other variables are calculated in the same fashion as before:

je,k+1/2 =




−p7

[
ne,k Ek+1/2 + ne Te,k+1 − ne Te,k

δxk

]
, if Ek+1/2 < 0

−p7

[
ne,k+1 Ek+1/2 + ne Te,k+1 − ne Te,k

δxk

]
, if Ek+1/2 > 0.

(19)

Although more robust, this approach is not as accurate as the central-difference technique
discussed previously. For the same stretched grid as the “exact” calculation, the upwinded
calculation still shows grid dependence; see Fig. 5. Not surprisingly, the effects of upwinding
are most noticeable in the electron quantities; the upwinding only indirectly affects the ions.
The period-averaged ion density simply reflects the increased average electron density, and
the ion velocity is hardly affected.

4.1.3. Scharfetter–Gummel

The Scharfetter–Gummel discretization [14] is also a popular method to overcome the
stiffness in the drift-diffusion form of the electron flux. Some examples of its use can
be found in [2, 4, 27–29]. The nondimensional form of the flux discretization using this
method is

je,k+1/2 = −p7 Ek+1/2


 ne,k

1 − exp
(

Ek+1/2δxk

Te,k+1/2

) + ne,k+1

1 − exp
(−Ek+1/2δxk

Te,k+1/2

)

 . (20)

All the other variables are calculated in the same fashion as before, such as with the evalu-
ation of the upwinded method.
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FIG. 5. The period-averaged electron number density at the conditions of Case I in [11] for four different
calculations: the “exact” solution (—); 400 points, upwinded (- · -); 200 points, upwinded (- - -); 100 points,
upwinded (· · ·). All the simulations used the second-order implicit Runge–Kutta with δt = 0.004 T, and the grids
were stretched using a tanh function.

The accuracy of the Scharfetter–Gummel method is reasonably good, as shown in Fig. 6
with the period-averaged electron number density. However, the grid-converged result dif-
fers noticeably from that of the central-difference or upwinded techniques; the plasma
density is nearly 20% higher. As with the upwinded calculations, the increase in ion density
reflects the increase in electron density, and the ion velocity is hardly affected. The results
using the Scharfetter–Gummel discretization differ because in the limit as δxk tends to zero,
the modified equation for je,k+1/2 does not reduce to Eq. (2):

je
(
xk+1/2

) = −p7

[
ne

(
xk+1/2

)
E

(
xk+1/2

) + Te
(
xk+1/2

)∂ne

∂x

∣∣∣∣
xk+1/2

+ O
(
δx2

k

)]
. (21)

FIG. 6. The period-averaged electron number density at the conditions of Case I in [11] for four different
calculations: the “exact” solution (—); 80 points, Scharfetter–Gummel (- · -); 40 points, Scharfetter–Gummel
(- - -); 20 points, Scharfetter–Gummel (· · ·). All the simulations used the second-order implicit Runge–Kutta with
δt = 0.004 T, and the grids were stretched using a tanh function.
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The electron temperature has been taken out of the pressure gradient, and an additional
approximation has been introduced into the fluid model. The Scharfetter–Gummel dis-
cretization is inconsistent with the originally posed problem.

4.1.4. Mean Velocity Flux

It is evident from the linear variation of ne in the sheath regions of Fig. 4 that the electron
density varies exponentially in the sheath region. Thus, the derivative of the logarithm of
ne would be more accurately calculated numerically than the derivative of an exponentially
varying quantity such as ne. An alternative approach that exploits this behavior and is
nondissipative, yet robust, is derived below. The robustness of the method is proven for a
simple model problem in Appendix B.

The drift–diffusion approximation can be rearranged and then integrated to determine
the mean electron velocity. Since the electron flux, je, equals neve, where ve is the electron
velocity, the drift–diffusion Eq. (2) can be divided by ne and rearranged via the chain and
product rules to yield

ve = −p7

(
E + Te

∂ ln ne

∂x
+ ∂Te

∂x

)
. (22)

Here, quantities that vary more linearly are being differentiated. Since ne varies exponen-
tially in x, ln ne varies “linearly” in x , and Te is observed to have only a weak dependence
on x .

With the electric field expressed as the gradient of the potential, Eq. (22) can be integrated
from xk to xk+1. Using the midpoint rule for the Te∂ ln ne/∂x term we obtain the following
expression for the mean electron velocity:

v̄e,k+1/2 = −p7

[
− 	k+1 − 	k

δxk
+ Te,k+1/2

δxk
ln

ne,k+1

ne,k
+ Te,k+1 − Te,k

δxk

]
. (23)

The electron flux at the midpoint is now simply the product of the average velocity and the
average number density:

je,k+1/2 =
(

ne,k + ne,k+1

2

)
v̄e,k+1/2. (24)

The solutions obtained with this new method (henceforth referred to as the mean velocity
method) on several different stretched grids are compared against the “exact” solution in
Fig. 7. The solution using 80 points with the mean velocity flux discretization is virtually
indistinguishable from the “exact” solution in Fig. 7. The peak density in the 80-point
solution differs from the “exact” solution by less than 1%; the 40- and 20-point solutions
differ by 1 to 2 percentage points.

The results from a 20-point upwinded calculation and a 20-point calculation with the new
method are compared with the “exact” solution in Fig. 8–10. The electron velocity technique
is close to the “exact” answer while the upwinded method is noticeably inaccurate. The
discrepancy between the two methods is apparent not only in the bulk plasma parameters,
but also in the sheath region where the electron densities can be extremely low. Figures 9
and 10 show the large errors with the upwinded calculation for the electron energy ( 3

2 kB Te)
and for the electron density in the sheath regions. The electron energy from the mean
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FIG. 7. The period-averaged electron number density at the conditions of Case I in reference [11] is shown
for four different simulations: the “exact” solution (—); 80 points, mean velocity (- · -); 40 points, mean velocity
(- - -); 20 points, mean velocity (· · ·). All the simulations used the same time advancement and tanh-stretching for
the grids.

velocity method differs slightly from that for “exact” solution in the sheaths; this difference
disappears as more points are added to the sheath regions. The variables actually being
solved for are ne and neTe, both of which are very nearly zero in the sheaths; the electron
energy is found from the ratio of the two.

Besides being more accurate than the common low-order upwinding, the mean velocity
method provides two advantages over the Scharfetter–Gummel discretization. Not only does
it retain the electron temperature in the pressure gradient, but also it is computationally less
burdensome. The run times and floating point operation counts are compared in Table I for
three similar runs that used the upwinded, Scharfetter–Gummel and mean velocity methods.
The Scharfetter–Gummel technique is clearly much more expensive than either upwinding
or the mean velocity method. This is because the electric field appears nonlinearly in the

FIG. 8. The period-averaged electron number density at the conditions of Case I in [11] is shown for three
different simulations: “exact” solution (—); 20 points, mean velocity (�); 20 points, upwinded (�). All the
simulations used the same time advancement and tanh-stretching for the grids.
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TABLE I

Comparison of Computational Cost

Method Time (sec) Floating point operations

Scharfetter–Gummel 630 2.70 × 1010

Upwinding 353 1.30 × 1010

Mean velocity 338 1.19 × 1010

Note. All three simulations were run on the same computer (Silicon Graphics Iris
Indigo 2) for 500 radio-frequency periods (T) on identical 20-point, tanh-stretched
grids with second-order implicit Runge–Kutta time advancement and δt = 0.004 T.

electron flux discretization, which makes the calculation of the Jacobian for implicit time
advancement more expensive. Both the upwinded and the mean velocity methods maintain
the linear nature of the electric field in the flux discretization.

4.1.5. Time Advancement

Other time advancement techniques were explored besides the fully implicit second-order
Runge–Kutta. The implicit Euler method’s cost is approximately half the cost per time step
of the implicit Runge–Kutta scheme since only one iterative solution is required per time

FIG. 9. The instantaneous electron energy profiles at four times during the period for simulations run at
the conditions of Case I in [11]: (a), t = 0.5 T; (b), t = 0.625 T; (c), t = 0.75 T; and (d), t = 0.875 T. The three
different calculations are the “exact” solution (—); 20 points, mean velocity (�); 20 points, upwinded (�). All
the simulations used identical time advancement and tanh-stretching for the grids.
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FIG. 10. The instantaneous electron density profiles at four times during the period for the conditions of
Case I in [11]: (a), t = 0.5 T; (b), t = 0.625 T; (c), t = 0.75 T; and (d), t = 0.875 T. The three different calculations
are the “exact” solution (—); 20 points, mean velocity (�); 20 points, upwinded (�). All the simulations used
identical time advancement and tanh-stretching for the grids.

step (instead of two). Also, with suitable relaxation of the Newton–Raphson iterations, as
large a time step as desired can be taken with the implicit Euler, provided the ion CFL’s
do not become limiting. However, the implicit Euler is less accurate than the second-order
Runge–Kutta and requires smaller time steps for the same level of accuracy, which causes
longer runtimes. Results from both the fully implicit methods using the same 20-point
stretched grid and the mean velocity method are shown in Table II. While the fully implicit
Runge–Kutta is time step independent at 250 steps per radio-frequency period, the implicit
Euler still shows time step dependence at 1,000 steps per period.

Linearized implicit versions of the fully implicit methods were also examined. Although
the runtimes were dramatically shortened (by factors of 4 or more, depending on how many
Newton–Raphson iterations were needed for the fully implicit solution), the accuracy suf-
fered. The smaller time steps required for greater accuracy result in runtimes longer than the
fully implicit calculations. Results from both the linearized methods using the same 20-point
grid discretized with the mean velocity method are shown in Table II. The linearized implicit
Euler is quite inaccurate, and even at 4,000 steps per period—a time step 16 times smaller
than the time step for the converged fully implicit Runge–Kutta—it still shows time step
dependence. Similarly, the linearized implicit Runge–Kutta shows some error at 4,000 steps
per period. For suitably small time steps, all the time advancement methods converge to the
same result. These results are discussed in a more general context in Appendix A.
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TABLE II

Comparison of the Different Time Advancement Methods

Time Steps per Peak density
advancement period (1015 m−3)

Fully implicit 1,000 3.26
Runge–Kutta 500 3.26

250 3.26

Fully implicit 1,000 3.33
Euler 500 3.41

250 3.55

Linearized implicit 4,000 3.36
Runge–Kutta 2,000 3.45

1,000 3.67

Linearized implicit 4,000 3.62
Euler 2,000 4.04

1,000 5.21

Note. All simulations were performed at the conditions of Case I in
Nitschke and Graves [11], and they used the mean velocity method on a
20-point, stretched grid.

4.1.6. Ion Boundary Conditions

A characteristic analysis of the ion equations indicates that no boundary conditions should
be enforced, and the results of simulations with and without boundary conditions bear this
out. The effect of imposing boundary conditions is shown in Fig. 11. The ∂ni/∂x = 0
boundary condition used by Nitschke and Graves [11] is enforced by setting the ion density at
the wall equal to the ion density at the nearest adjacent grid point in the interior. Thus, the flux
of ions out the left side of the domain (refer to Fig. 2), for example, is determined by ni,1vi,1/2.
The ∂vi/∂x = 0 boundary condition on the left side is enforced by setting vi,1/2 = vi,3/2.
With the boundary conditions imposed, oscillations in ni are observed close to the bound-
aries. When the boundary conditions are removed (see Section 3.2), so are the oscillations.

FIG. 11. The period-averaged ion number density at the left edge of the domain (a) and at the right edge
(b) for calculations done on 20-point, stretched grids at the conditions of Case I in [11]. The simulations were
performed without ion boundary conditions (�—�) and with boundary conditions (�- - -�).
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Nitschke and Graves upwind their discretizations of the ion continuity and momentum
equations, and they do not note any point-to-point oscillations in the ion variables [11].

4.2. Validation

The mean velocity discretization of the electron flux is validated by comparing the results
against the previously published results of Nitschke and Graves [11]. Nitschke and Graves
reported using 100 to 400 grid points to obtain their solutions. Thus, as shown in Fig. 5,
the overall impact of the upwinding is likely not large. Validation is not performed against
experimental data at this time as this model was developed to compare fluid and particle sim-
ulations. Comparisons with experimental data should be made with a model that represents
more of the plasma chemistry, for example, metastable species and their reactions.

The fluid simulations presented in reference [11] are repeated here for the three condi-
tions simulated: 50 mTorr with a 12-cm gap, 100 mTorr with a 6-cm gap, and 250 mTorr
with a 4-cm gap. All the cases were run with an applied voltage of 500 V at a frequency of
12 MHz. The overall plasma properties predicted by the mean velocity method are com-
pared in Table III against the “exact” 400-point simulations. The most noticeable difference
between the results here and those of Nitschke and Graves is in the electron energy at
100 mTorr; Nitschke and Graves reported a value of 5.9 eV, while a value of 7.0 eV is
obtained with the mean velocity method (and also with the standard flux discretization on
a 400-point grid). This discrepancy is unusual since all the other parameters in the table,
including those at different pressures, agree to within several percentage points. Profiles of
various parameters from a 20-point mean velocity simulation at the conditions of Nitschke

TABLE III

Comparison of Overall Plasma Properties

400 points, 40 points, 20 points,
standard mean velocity mean velocity

50 mTorr
Power (W/m2) 207 207 206
Current (A/m2) 14.9 15.0 15.4
Plasma density (1015 m−3) 1.33 1.33 1.33
Electron energy (eV) 6.52 6.54 6.56

100 mTorr
Power (W/m2) 287 285 290
Current (A/m2) 19.0 19.0 19.5
Plasma density (1015 m−3) 1.47 1.45 1.44
Electron energy (eV) 6.97 7.00 7.04

250 mTorr
Power (W/m2) 522 521 532
Current (A/m2) 28.2 28.2 29.3
Plasma density (1015 m−3) 3.31 3.27 3.26
Electron energy (eV) 6.05 6.07 6.11

Note. Plasma properties were computed with the mean velocity method using 20 and 40 grid points, and they
are compared to the converged, 400-point “exact” solutions for the different cases of Nitschke and Graves [11].
For the calculation of the power, a small time step (1,000 steps per period) was used since the time integration of
the product of the voltage and current is sensitive to the time step size; the error in the power calculation is less
than a few percent.
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FIG. 12. Instantaneous plasma parameters for Case I in reference [11]: (a) electron current, (b) ion current,
(c) electric field, and (d) joule heating ( je E). The line styles and symbols represent two different times in the
radio-frequency period for the “exact” solution, 0.75 T (—) and 0.875 T (- - -), and for the 20-point mean velocity
solution, 0.75 T (�) and 0.875 T (�). The coarse 20-point simulation agrees quite well with the resolved 400-point
simulation.

and Graves’ Case I are shown in Fig. 12 and compared against the “exact” 400-point so-
lution. The parameters plotted are not the dependent variables that are advanced in time
but are “secondary” variables that are generally nonlinear combinations of the principal
dependent variables. The agreement is quite good. Other comparisons between the mean
velocity method and the “exact” solution were shown in Figs. 8 to 10.

4.3. Extension to Multiple Dimensions

The one-dimensional method described above can be implemented in multiple dimen-
sions. The results from a common reactor geometry in a cylindrical coordinate system are
shown to demonstrate the method.

4.3.1. Multidimensional Spatial Discretization

A structured, staggered grid is used, and scalar parameters, such as ne or Te, are located
in the cell interior. Vector quantities, such as � e or �vi , are stored on the cell faces, and
the component normal to the face is stored at the face. The staggered grid scheme and the
variable locations are illustrated in Fig. 13, and the grid parameters are shown in Fig. 14.
The grid is stretched in the z- and r -directions, but it is uniform in the θ -direction.
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FIG. 13. A generic computational cell is illustrated in (a); a � denotes the “central” node. The cell volume
and the area of the faces are used in the finite volume discretization. In (b), the principle locations of the variables
are sketched. Scalar quantities such as ne, ni , neTe, Te, and 	 are stored at the i, j, k node roughly in the cell
center. The vector quantities are stored at the cell surfaces and are located halfway between the nodes; the vector
component at each face is the component normal to the cell surface. The vector components stored at the cell faces
are those for � e, �qe, �vi , and �E .

The finite volume method is used to discretize the electron and ion continuity equations
and also the electron energy equation. The ion momentum equation is kept in its primitive
form, and it is discretized with finite differences. For Poisson’s equation for the electrostatic
potential, a discrete Fourier transform is performed in the periodic azimuthal direction for
three-dimensional simulations. The semidiscretized equations are presented below in two
dimensions for conciseness:

Ion continuity:

Vcell
dnii, j

dt
= −Az

(
nii+1/2, j vzi+1/2, j − nii−1/2, j vzi−1/2, j

) − Ar+nii, j+1/2vri, j+1/2

+ Ar−nii, j−1/2vri, j−1/2 + Vcell p1 nei, j e
−p2/Tei, j . (25)

FIG. 14. The locations of the different grid parameters used in the finite difference discretizations and in the
flux calculations.



422 HAMMOND, MAHESH, AND MOIN

Where nodal values are required at the flux locations, simple averaging is done since the
flux locations are midway between the nodes, for example, nii+1/2, j = (nii, j + nii+1, j )/2.

Ion momentum:

dvzi+1/2, j

dt
= −

(
vri+1/2, j

δr j + δr j−1

)[
δr j−1

δr j
vzi+1/2, j+1 −

(
δr j−1

δr j
− δr j

δr j−1

)
vzi+1/2, j −

δr j

δr j−1
vzi+1/2, j−1

]

−
(

vzi+1/2, j

�zi−1 + �zi

)[
�zi−1

�zi
vzi+3/2, j −

(
�zi−1

�zi
− �zi

�zi−1

)
vzi+1/2, j

− �zi

�zi−1
vzi−1/2, j

]
+ p3 Ezi+1/2, j − p4

√
v2

zi+1/2, j
+ v2

ri+1/2, j
vzi+1/2, j (26)

dvri, j+1/2

dt
= −

(
vri, j+1/2

�r j + �r j−1

)[
�r j−1

�r j
vri, j+3/2 −

(
�r j−1

�r j
− �r j

�r j−1

)
vri, j+1/2

− �r j

�r j−1
vri, j−1/2

]
−

(
vzi, j+1/2

δzi−1 + δzi

)[
δzi−1

δzi
vri+1, j+1/2 −

(
δzi−1

δzi
− δzi

δzi−1

)
vri, j+1/2

− δzi

δzi−1
vri−1, j+1/2

]
+ p3 Eri, j+1/2 − p4

√
v2

zi, j+1/2
+ v2

ri, j+1/2
vri, j+1/2 . (27)

Some of the velocity components are required at locations where they are not normally
stored (e.g., vri+1/2, j ); these values are computed by linear interpolation and averaging. This
example is illustrated in Fig. 15.

Electron continuity:

Vcell
dnei, j

dt
= −Az

(
jzi+1/2, j − jzi−1/2, j

)− Ar+ jri, j+1/2 + Ar− jri, j−1/2 + Vcell p1 nei, j e
−p2/Tei, j . (28)

The electron fluxes are found as follows:

jzi+1/2, j = −p7 nei+1/2, j

[
Ezi+1/2, j + Tei+1/2, j

δzi
ln

nei+1, j

nei, j

+
(

Tei+1, j − Tei, j

δzi

)]

jri, j+1/2 = −p7 nei, j+1/2

[
Eri, j+1/2 + Tei, j+1/2

δr j
ln

nei, j+1

nei, j

+
(

Tei, j+1 − Tei, j

δr j

)]
.

FIG. 15. To compute the value of the radial velocity (vr ) at the axial velocity (vz) location, first the radial
velocities are interpolated onto the cell nodes (indicated by �’s). These interpolated values at the two nodes, which
are equidistant from the axial velocity location, are then averaged to obtain the radial velocity at the axial velocity
location. One-sided extrapolation is used adjacent to boundaries.
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Electron energy:

Vcell
3

2

dneTei, j

dt
= −Az

(
qzi+1/2, j − qzi−1/2, j

) − Ar+qri, j+1/2 + Ar−qri, j−1/2

− 1

2
Vcell

(
jzi−1/2, j Ezi−1/2, j + jzi+1/2, j Ezi+1/2, j + jri, j−1/2 Eri, j−1/2 + jri, j+1/2 Eri, j+1/2

)
− Vcell p5 nei, j e

−p2/Tei, j − Vcell p6 nei, j

(
Tei, j − Tneut

)
. (29)

The electron energy fluxes are defined as

qzi+1/2, j = 5

2
jzi+1/2, j Tei+1/2, j − p8 neTei+1/2, j

(
Tei+1, j − Tei, j

δzi

)

qri, j+1/2 = 5

2
jri, j+1/2 Tei, j+1/2 − p8 neTei, j+1/2

(
Tei, j+1 − Tei, j

δr j

)
.

Poisson’s equation:

Az

[(
	i+1, j − 	i, j

δzi

)
−

(
	i, j − 	i−1, j

δzi−1

)]
+ Ar+

(
	i, j+1 − 	i, j

δr j

)

− Ar−

(
	i, j − 	i, j−1

δr j

)
= −Vcell

(
nii, j − nei, j

)
. (30)

The matrix resulting from the discretization of Poisson’s equation is solved with a conju-
gate gradient method that is preconditioned with a relaxed, modified incomplete Cholesky
decomposition [30].

The time advancement is done with the fully coupled, second-order, semi-implicit,
Runge–Kutta scheme of Zhong [19]. As in one dimension, the Jacobian matrix for the
multidimensional case is, strictly speaking, nearly a full matrix due to the global effect
of the electric field. Frequent inversion of such a matrix would make a multidimensional
simulation impossible. Similar to the one-dimensional simulation, the Jacobian calculation
ignores the effect of a change in local electric field due to a change in charge density in
a nonadjacent (distant) cell. The neglect of nonadjacent terms is even more justified in
multiple dimensions since now the change in electric field due to a change in charge density
diminishes with distance, which was not the case in one dimension. The Jacobian matrix is
inverted by alternating sweeps through the z- and r -directions.

4.3.2. Two-Dimensional Simulation

The geometry corresponds to that for the Gaseous Electronics Conference (GEC) Refer-
ence Cell [31] and is illustrated in Fig. 16. A 1-mm-thick ground shield is separated from
the upper and lower 5-cm-radius electrodes by a 1.5-mm-thick alumina insulator with a
dielectric constant of 9. Experimental measurements are often made in the GEC Reference
Cell configuration; see [31]. In practice, plasma discharges frequently have electrodes with
unequal areas, and the potential on the powered electrode floats. This can lead to a DC
self-bias on the powered electrode to enforce a zero time-averaged current through the
electrode, i.e., charge is not allowed to build up continuously on the powered electrode. To
represent this effect in the simulation, a blocking capacitor is inserted between the voltage-
driven power supply and the powered electrode. Although the GEC Cell commonly uses a
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FIG. 16. A sketch of the simulation geometry. The powered electrode is indicated by the hatched box, and the
blocking capacitor is shown between the powered electrode and the power supply. The other walls of the chamber
are assumed to be grounded. The reactor has azimuthal symmetry; the centerline is indicated by the dash–dot line.
The computational cells used to discretize this geometry are shown to the right; the axial and radial directions
were each subdivided into 40 computational cells.

FIG. 17. The period-averaged electron number density, (a), is shown in units of 1015 m−3; the contours begin
at 0.13 × 1015 m−3 and are equally spaced by 0.13 × 1015 m−3. The peak electron density is 1.33 × 1015 m−3. The
period-averaged electron energy, (b), is shown in eV; the contours begin at 3.33 eV and are spaced by 0.33 eV.
The peak electron energy is 0.39 eV.
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100-nF blocking capacitor [31], a 1-nF capacitor was used in the simulation, as indicated in
Fig. 16, to reduce the computational time to achieve harmonic steady state. The differential
equation governing the voltage drop across the capacitor, dVc(t)/dt = I (t)/C , is advanced
explicitly in time using the total current that flows from the powered electrode through the
plasma and the alumina insulator.

A simulation was run in this GEC geometry on a 40 × 40 grid to demonstrate the viability
of the mean velocity method for simulations in multiple dimensions. The pressure of the he-
lium background gas was 500 mTorr at a temperature of 300 K; the radio-frequency voltage
on the lower electrode was at 13.56 MHz with an amplitude of 110 V (at the power supply
the amplitude was 297 V). The powered electrode developed a DC self-bias of −80 V. The
period-averaged electron number density and electron energy are shown in Fig. 17. Using
100 steps per period, approximately 1,000 radio-frequency periods were needed to achieve
steady state; that is, the relative change in the peak ion number density from period to period
was less than 10−5 after 1,000 periods. The total CPU time, on the same Silicon Graphics
workstation used for the one-dimensional simulations, was approximately 67 hours.

5. CONCLUSION

A fully conservative, efficient numerical algorithm for plasma simulation was derived and
extended to multiple dimensions. The method was validated by reproducing the published
simulation results for a one-dimensional, radio-frequency, helium discharge of Nitschke
and Graves [11]. The method is robust and accurate even on fairly coarse grids. Low-order
upwinding of the electron flux discretization on the same coarse grid was found to have a
significant impact on the accuracy of the solution. Also, the Scharfetter–Gummel discretiza-
tion was found to be more expensive computationally than the proposed method and found
to introduce an additional approximation that significantly affected the plasma density.

APPENDIX A

Fully Implicit Versus Linearized Implicit Time Advancement

Stiff systems of differential equations are usually solved with implicit methods. The
implicit discretization can be linearized to increase the efficiency of the numerical algorithm;
however, it is possible that the linearization can significantly impact the accuracy of the
solution method. An example of such a situation is the following ODE:

dy

dt
= f (t, y) = ey−t with y(t) = −ln(e−y0 + e−t − 1), y0 = y(t = 0).

The analytical solution can be used to compute exact values for the leading error terms
in the implicit Euler method: the time discretization error ( d2 y

dt2
δt
2 ), which is the only source

of error for the fully implicit treatment, and the linearization error (− ∂2 f
∂y2

(∂y)2

2 ), which is a
result of linearizing in the unknown coordinate, y. Typically, the linearization error term
is thought of as being O(δt2), since δy can be approximated by f δt . Thus, one might
assume that the error introduced by the linearization is less than the error due to the time
discretization. However, this is not always the case. These error terms from the fully nonlin-
ear solution and the linearized solution are shown as a function of time along with the exact
solution in Fig. 18 for y0 = −1 × 10−5 and δt = 0.1. The linearization error is significantly
larger than the time discretization error at the start of the calculation, and this causes the
linearized implicit calculation to be much less accurate than the fully implicit calculation.
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FIG. 18. In (a), the time discretization (—) and the linearization (- · -) error terms are plotted as a function
of time. In (b), the exact solution (—), the fully implicit Euler solution (- · -), and the linearized implicit Euler
solution (- - -) are plotted as functions of time.

APPENDIX B

Robustness of the Mean Velocity Method for Simple Drift–Diffusion

The steady-state, drift–diffusion problem d/dx(b u − a du/dx) = 0, with Dirichlet
boundary conditions u(x = 0) = u0 and u(x = L) = uL and a > 0, makes a good model
problem to estimate the behavior of the electrons, especially in the sheath region where
both ne and ∂ne/∂t are going to zero. This model can be used to compare the classic central
difference discretization with the mean velocity method. The computational burden can be
reduced by considering a crude three-point discretization that has two (known) boundary
points, u0 and uL , with one central point, u, to be solved for with grid spacing h = L/2,
illustrated in Fig. 19. The exact solution is

u(x = L/2) = u0
(
ebL/a − ebL/2a

) + uL
(
ebL/2a − 1

)
ebL/a − 1

,

which yields a “physical” positive number when “physical” boundary conditions are spec-
ified, u0, uL > 0.

On a staggered grid with the u “flux” (given by b u − a du/dx) calculated halfway
between the grid points, the classic central difference discretization provides the following

FIG. 19. Discretization for the model drift–diffusion problem; u is the only unknown, and the “flux” of u is
calculated at the ×’s, which are halfway between the �’s.
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equation for u:

1

h

{[
b

(
uL + u

2

)
− a

(
uL − u

h

)]
−

[
b

(
u + u0

2

)
− a

(
u − u0

h

)]}
= 0.

This can easily be solved to find u in terms of the boundary conditions and the grid Peclet
number, Pe = bh/2a:

u = 1

2
(1 − Pe)uL + 1

2
(1 + Pe)u0.

This discretization can fail by predicting a “nonphysical” negative value for u when the
magnitude of the grid Peclet number is greater than 1 and appropriate boundary conditions
are chosen (e.g., uL � u0 or u0 � uL ).

The mean velocity discretization on the same staggered grid provides the following
equation for u:

1

h

[(
uL + u

2

)(
b − a

h
ln

uL

u

)
−

(
u + u0

2

)(
b − a

h
ln

u

u0

)]
= 0.

This equation can be rearranged so that the left-hand side, f (u), depends only on the
boundary conditions and the grid Peclet number:

f (u) = (uL + u)

(
Pe − 1

2
ln

uL

u

)
− (u + u0)

(
Pe − 1

2
ln

u

u0

)
= 0.

It can be shown that only one root exists to f (u) = 0, regardless of the grid Peclet
number or strictly positive boundary conditions. First, at least one root exists because
f (u) is a smooth, continuous function of u for u ∈ (0, ∞), and it changes sign for u ∈
(0, ∞). As u → 0, f (u) → 1/2(uL + u0) ln u, which is negative for u0, uL > 0, and as
u → ∞, f (u) → u ln u, which is positive. Second, only one root exists because d f/du is
strictly positive. The slope of f (u) is

d f

du
= ln

u√
u0uL

+ u0 + uL

2u
+ 1.

The problem can be simplified with no loss of generality by rescaling the u variables so
that uL = 1. The condition for f (u) to be a strictly increasing function can be rewritten as

u exp

(
1 + u0 + 2u

2u

)
>

√
u0

let y = √
u0

u

[
1 +

(
1 + y2 + 2u

2u

)
+ 1

2

(
1 + y2 + 2u

2u

)2

+ · · ·
]

> y

u + 1 + y2 + 2u

2
+ 1

2

(1 + y2 + 2u)2

4u
+ · · · > y.

It is clear that (1 + y2)/2 ≥ y for all y; thus, since u > 0, the above inequality is true and
f (u) is a strictly increasing function for u, u0, uL > 0.
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