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Direct numerical simulation (DNS) and dynamic mode decomposition (DMD) are
used to study the shear layer characteristics of a jet in a crossflow. Experimental
observations by Megerian et al. (J. Fluid Mech., vol. 593, 2007, pp. 93–129) at
velocity ratios (R = vj/u∞) of 2 and 4 and Reynolds number (Re = vjD/ν) of 2000
on the transition from absolute to convective instability of the upstream shear layer
are reproduced. Point velocity spectra at different points along the shear layer show
excellent agreement with experiments. The same frequency (St = 0.65) is dominant
along the length of the shear layer for R = 2, whereas the dominant frequencies
change along the shear layer for R= 4. DMD of the full three-dimensional flow field
is able to reproduce the dominant frequencies observed from DNS and shows that
the shear layer modes are dominant for both the conditions simulated. The spatial
modes obtained from DMD are used to study the nature of the shear layer instability.
It is found that a counter-current mixing layer is obtained in the upstream shear layer.
The corresponding mixing velocity ratio is obtained, and seen to delineate the two
regimes of absolute or convective instability. The effect of the nozzle is evaluated by
performing simulations without the nozzle while requiring the jet to have the same
inlet velocity profile as that obtained at the nozzle exit in the simulations including the
nozzle. The shear layer spectra show good agreement with the simulations including
the nozzle. The effect of shear layer thickness is studied at a velocity ratio of 2
based on peak and mean jet velocity. The dominant frequencies and spatial shear
layer modes from DNS/DMD are significantly altered by the jet exit velocity profile.
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1. Introduction
A jet in crossflow (also referred to as a transverse jet) describes a jet of fluid that

exits an orifice and interacts with fluid flowing in a direction perpendicular to the jet.
Jets in crossflow occur in a wide range of practical applications – dilution air jets in
combustors, fuel injectors, thrust vectoring and V/STOL aircraft. Jets in crossflow have
been studied for a number of years, both experimentally and computationally. Much
of this work may be found in the reviews by Margason (1993), Karagozian (2010)
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and Mahesh (2013). The fundamental dynamics of the jet in crossflow involve an
inter-related set of vortex systems, including upstream shear layer vortices, the counter-
rotating vortex pair (CVP) observed to dominate the jet cross-section (Kamotani &
Greber 1972; Smith & Mungal 1998), horseshoe vortices which form in the plane of
the flush jet’s injection wall (Kelso & Smits 1995) and upright wake vortices (Fric &
Roshko 1994).

Instabilities associated with the transverse jet’s upstream shear layer are of
considerable importance to transverse jet control. Yet, until recently, there have
been few studies that have quantified Strouhal numbers associated with transverse
jet shear layer instabilities for a range of conditions. The velocity ratio (R = vj/u∞)
defined as the ratio of the jet to crossflow velocity is used to characterize a jet
in crossflow. The experiments of Megerian et al. (2007) and Davitian et al. (2010)
explore the range 1.15 6 R < ∞, at fixed jet Reynolds numbers (2000 and 3000).
In the parameter range 3.2< R<∞, dominant shear layer instabilities are observed
through measured spectra to be strengthened, to move closer to the jet orifice, and
to increase in frequency as crossflow velocity U∞ increases for a fixed jet Reynolds
number Re.

The shear layer instabilities at higher R values (above 3.2) exhibit frequency shifting
downstream along the jet shear layer. When R is reduced below approximately
3.2, single frequency instabilities are dramatically strengthened, forming almost
immediately beyond the jet exit within the shear layer, without any evidence of
frequency shifting. The spectra along the jet shear layer for R > 3.2 are typical
of convectively unstable shear layers where disturbances grow downstream of their
initiation (Huerre & Monkewitz 1990), while the spectra for R < 3.2 are typical of
an absolutely unstable shear flow where disturbances also grow near their location of
initiation. As a result, the flow becomes self-excited. While a number of canonical
flows are known to become absolutely unstable under certain critical conditions,
Megerian et al. (2007) appear to be the first to have discovered such a transition in
the transverse jet. The difference in shear layer behaviour corresponds to a difference
in how the jet responds to axial forcing; strong square wave forcing is necessary
at low velocity ratios while small amplitude sinusoidal pulsing is found effective at
higher velocity ratios.

Bagheri et al. (2009) performed a global stability analysis of a jet in crossflow
at a velocity ratio of 3 and found multiple unstable modes. The most unstable
mode corresponded to loop-shaped vortical structures on the jet shear layer while
lower frequency unstable modes were associated with the wake of the jet in the
boundary layer. A steady base flow was used for the global stability analysis.
Rowley et al. (2009) performed a Koopman mode analysis (also referred to as
dynamic mode decomposition (DMD)) of a jet in crossflow at the same conditions
as Bagheri et al. (2009) and showed that the Koopman modes capture the dominant
frequencies associated with the flow. The simulations by both Bagheri et al. (2009)
and Rowley et al. (2009) used a prescribed parabolic velocity profile at the jet exit
and neglected the effects of a nozzle or pipe. Schlatter, Bagheri & Henningson
(2011) found that neither the inclusion of the jet pipe nor unsteadiness are necessary
to generate the characteristic counter-rotating vortex pair. While these numerical
studies yield important insights, they do not address the influence of nozzle on shear
layer instability.

This paper uses DNS to study this phenomenon of instability transition with
velocity ratio. To the best of our knowledge, this behaviour has not yet been
computationally reproduced nor has a physical mechanism been proposed. This
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paper attempts to address these issues. We simulate two flow conditions: R = 2 and
R = 4 at a jet Re = 2000 which match the experimental conditions of Megerian
et al. (2007). The simulations include the nozzle used in the experiments, and are
compared to experimental data. DMD or Koopman mode decomposition (Rowley
et al. 2009; Schmid 2010) is then used to better understand the difference in the flow
characteristics between low and high values of R. This paper also quantifies the effect
of simulating a nozzle by prescribing the same mean flow field obtained from the
simulation with nozzle for R= 2. Also, the effect of varying the jet exit shear layer
thickness is studied by prescribing a pipe-like profile at the jet exit and comparing
the nature of the shear layer instability to the simulation with a nozzle.

This paper is organized as follows. Section 2 briefly describes the algorithm
used in the DNS and DMD. Section 3 describes the flow conditions and relevant
computational details. The numerical results are compared to those from experiments
in § 4. The comparison includes shear layer velocity spectra, mean velocity contours
and mean streamlines. Section 5 discusses in detail the results from DNS and DMD
for R = 2 and 4 which correspond to the simulations that match the experiments of
Megerian et al. (2007). Section 6 quantifies the effect of simulating the nozzle for
R= 2. The effect of jet exit velocity on the shear layer characteristics is discussed in
§ 7 by comparing the results of R= 2 flow to simulations with a prescribed pipe-like
jet exit velocity. Finally, § 8 summarizes the main findings of the paper.

2. Numerical algorithm
2.1. Direct numerical simulation

The simulations use an unstructured grid, finite-volume algorithm developed by
Mahesh, Constantinescu & Moin (2004) for solving the incompressible Navier–Stokes
equations. The algorithm emphasizes discrete kinetic energy conservation in the
inviscid limit which enables it to simulate high Reynolds number flows in complex
geometries without adding numerical dissipation. Least-square reconstruction is used
for the viscous terms and an explicit second-order Adams–Bashforth scheme is used
for time integration. The solution is advanced using a predictor–corrector methodology
where the velocities are first predicted using the momentum equation alone, and then
corrected using the pressure gradient obtained from the Poisson equation yielded by
the continuity equation. The algorithm has been validated for a wide range of complex
problems which include a gas turbine combustor geometry (Mahesh et al. 2004) and
predicting propeller crashback (Verma, Jang & Mahesh 2012; Jang & Mahesh 2013).
It has been used to study the entrainment from free jets by (Babu & Mahesh 2004)
and was applied to transverse jets by Muppidi & Mahesh (2005, 2007, 2008) and Sau
& Mahesh (2007, 2008). DNS of a round turbulent jet in crossflow was performed
by Muppidi & Mahesh (2007) under the same conditions as Su & Mungal’s (2004)
experiments, and very good agreement with the experimental data was obtained. DNS
of passive scalar mixing was performed under the same conditions as experiment by
Muppidi & Mahesh (2008) and used to examine the entrainment mechanisms of the
transverse jet.

2.2. Dynamic mode decomposition
We follow the method of Rowley et al. (2009) and Schmid (2010) to perform DMD
(also referred to as Koopman mode decomposition) of the three-dimensional flow field
for R = 2 and 4. We store (m + 1) snapshots of the three velocity components at
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each spatial location and express the last snapshot as a linear combination of the
previous snapshots. The size of each xi vector is the number of grid points multiplied
by the number of velocity components. The size of each vector for the jet in crossflow
problem is 80 million × 3 = 240 million. Let K represent a matrix of the different
snapshots from x0 to xm−1,

K = [x0, x1, x2, . . . , xm−1]. (2.1)

Suppose each snapshot (xi) is obtained from application of a linear matrix A to the
previous snapshot (xi−1), the matrix K can also be written as:

K = [x0, Ax0, A2x0, . . . , Am−1xm−1]. (2.2)

Now, expressing the last snapshot (xm) as a linear combination of the previous
snapshots,

xm = c0x0 + c1x1 + c2x2 + · · · cm−1xm−1 + r=Kc+ r. (2.3)

In the above equation, r represents the residual of the linear combination. If the
residual is zero, then the above representation would be exact. Here, c is given by:

c= (c0, c1, c2, . . . , cm−1)
T. (2.4)

The vector c is obtained by solving the least-squares problem in (2.3) using singular
value decomposition (SVD). Based on the above definitions, we obtain:

AK = KC + reT, eT = (0, 0, . . . , 1), (2.5)

where C is a companion matrix whose eigenvalues approximate those of the matrix A,
which represents the dynamics of the flow. The imaginary part of the eigenvalue gives
the frequency while the real part gives the growth rate of the mode. The eigenvector
(v) or the spatial variation of the DMD mode is obtained from the eigenvector of
the companion matrix (C) and the matrix (K ). The energy of each DMD mode is the
L2-norm of the eigenvector v. Here, the vectors xi are obtained by the operation of the
nonlinear Navier–Stokes operator and the eigenvalues and eigenvectors approximate
the Koopman modes of the dynamical system. The reader is referred to Rowley et al.
(2009) and Schmid (2010) for further theoretical and implementation details.

We perform DMD for two-dimensional cylinder flow at Reynolds numbers
(Re = u∞D/ν) of 60, 100 and 200 to validate the method. The computational grid
has 1 million elements and the upstream, downstream and spanwise extents (on either
side of the centre plane) are 20, 40 and 50 respectively when scaled with the cylinder
diameter (d). The size of each vector for the DMD is 1 million× 2= 2 million. The
Strouhal number (St = fd/u∞) computed from the time history of lift in the DNS
is compared to the St obtained from DMD (of the most energetic mode) in table 1.
Note that the agreement is excellent, thus validating the DMD methodology. Also,
the values of St obtained are in agreement with past studies (Tritton 1959). Here, 50
snapshots were used in the DMD computation with a 1tu∞/D = 0.4. The vorticity
contours of the most energetic DMD mode (not shown) for Re= 60 was qualitatively
similar to those obtained by Chen, Tu & Rowley (2012) at the same Re and the
streamfunction contours by Bagheri (2013) at Re= 50.
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FIGURE 1. (Colour online) A schematic of the problem is shown in (a) and shape of
the nozzle coloured by vertical velocity contours in (b). The vertical extent of the domain
is 16D.

Re= u∞D/ν St (DNS) St (DMD)

60 0.1465 0.1467
100 0.1701 0.1697
200 0.1856 0.1856

TABLE 1. Validation of DMD for a 2-D cylinder. The St from DNS is obtained from
the lift spectra.

3. Problem description

A schematic of the problem is shown in figure 1. A laminar boundary layer
crossflow is prescribed at the inflow of the computational domain, and the jet
emanates out of the origin in the figure. For the simulations with nozzle, its shape
is modelled by a fifth-order polynomial (figure 1) and matches the nozzle used in
the experiments of Megerian et al. (2007). The diameter of the jet nozzle (D) at the
exit is 3.81 mm and the mean velocity of the jet (vj) is 8 m s−1. The simulation
conditions are listed in table 2. The simulation conditions R2 and R4 match the
experimental conditions of Megerian et al. (2007) corresponding to velocity ratios
(R = vj/u∞) of 2 and 4. Here u∞ denotes the free-stream velocity of the crossflow.
To assess the effect of simulating the nozzle for R2, R2nn was performed without the
nozzle where a steady jet exit profile was prescribed from the mean flow field of
the R2 simulation. R2m1 and R2p1 correspond to simulations without the nozzle and
a pipe-like steady profile imposed at the jet exit to study the effect of varying the
jet exit profile on the shear layer instability. R2m1 and R2p1 have a mean and peak
jet velocity of 1 respectively. Further details of R2nn, R2m1 and R2p1 are discussed in
§§ 6 and 7.

The unstructured grid capability enables simulation of the flow inside the nozzle
along with the crossflow domain. The inflow, outflow, top wall and side walls of
the computational domain are located at 8D, 16D, 16D and 8D from the origin
respectively as shown in the schematic in figure 1. Zero-gradient Neumann boundary
conditions are specified at the outflow and side walls, while the inflow boundary
condition is prescribed as a laminar boundary layer obtained from the Blasius
similarity solution. A view of the symmetry plane and a top view of the grid are
shown in figure 2. A coarse and fine grid containing 10 and 80 million grid points
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FIGURE 2. The grid used in the simulation is shown in (a) symmetry plane and (b)
wall-parallel view close to jet exit. Note that the grid is finer in the vicinity of the jet.

Case Nozzle Rej =Dvj/ν Recf =Du∞/ν R= vj/u∞ R∗ = vj,max/u∞ θbl/D

R2 Yes 2000 1000 2 2.44 0.1215
R4 Yes 2000 500 4 4.72 0.1718
R2nn No 2000 1000 2 2.44 0.1215
R2m1 No 2000 1000 2 3.78 0.1215
R2p1 No 1060 1000 1.06 2 0.1215

TABLE 2. Table listing the flow conditions used in the study. R2 and R4 correspond to
the experimental conditions of Megerian et al. (2007). R2nn corresponds to the simulation
similar to R2 but without simulating a nozzle and prescribing the jet exit velocity from
the R2 simulation. R2m1 and R2p1 correspond to the simulations without the nozzle with
a pipe-like prescribed jet exit velocity profile. R2m1 has a mean jet exit velocity of 1 and
R2p1 has a peak jet exit velocity of 1. Here, θbl is the momentum thickness of the crossflow
boundary layer at the jet exit location when the jet is turned off.

respectively were used in this study. Details of the 80 million grid are described here.
There are 400 points along the circumference of the jet exit. The upstream portion of
the grid contained 80 points within the boundary layer in the y-direction. A constant
spacing of 1x/D = 0.033 and 1z/D = 0.02 was maintained downstream of the jet
with a 1ymin/D = 0.0013. The spacings used are finer than those used by Muppidi
& Mahesh (2007) for a turbulent jet in crossflow. Assuming that the boundary layer
downstream was turbulent at the outflow, this yields viscous wall spacings 1y+min/D,
1x+/D and 1z+/D of 0.1, 2.74 and 1.66 for R = 2 and 0.058, 1.48 and 0.89 for
R= 4 respectively. The viscous spacings were computed assuming cf = 0.0576Re−0.2

x
for a turbulent boundary layer (Schlichting 1968).

To prescribe the Blasius boundary layer similarity solution at the inflow, the profiles
were compared to those obtained from the experiment with the jet turned off (A. R.
Karagozian, private communication, 2012). The inflow solution was prescribed so
as to match the experimental profiles at 5.5D upstream of the jet inflow location.
Figure 3 shows the streamwise velocity obtained from the simulation with the jet
turned on and the velocity profiles obtained from the experiment for R = 2 and 4.
Overall, we see good agreement with experiment. From figure 3, it can be seen that
the boundary layer is thicker for R= 4 due to the lower crossflow Reynolds number
as also indicated by the momentum thickness (θbl/D) values of 0.1215 and 0.1718
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FIGURE 3. Streamwise velocity profiles from simulation (——) and experiment (@) (A. R.
Karagozian, personal communication, 2012) at x/D=−5.5 from the jet exit for R= 2 (a)
and R= 4 (b).

(listed in table 2) for R= 2 and 4, respectively. Note that there are minor deviations
between the experimental and Blasius profiles especially for the R = 4 profile close
to the wall.

4. Comparison to experiment
4.1. Upstream shear layer spectra

Point velocity spectra were obtained at various locations in the flow. Figure 4
compares the vertical velocity spectra (scaled by the mean jet exit velocity) obtained
from the simulation to those obtained from the experiment at different stations along
the shear layer (s/D, where s denotes the distance from the leading edge of the jet
exit, x/D, y/D = −0.5, 0) in the symmetry plane (z = 0). The spatial locations at
which spectra are shown in figure 4 correspond to (x/D, y/D) of (−0.5, 0.1), (0.006,
0.854), (0.654, 1.614) and (1.432, 2.238) for R= 2 and (−0.5, 0.1), (−0.329, 0.958),
(−0.092, 1.933), (0.23, 2.873), (0.71, 3.75) and (1.38, 4.49) for R = 4. Here, the
non-dimensional frequency or Strouhal number (St = fD/vj) is defined based on the
diameter (D) and peak velocity (vj) at the jet exit. The spectra were computed using
50 % overlap of the samples with 11 windows and a Hamming windowing function.
The minimum St from the spectra is 0.019 for both R = 2 and 4 which is more
than an order of magnitude lower than the dominant frequencies in the flow. Also
shown are vorticity contours in the symmetry plane along with the spatial locations
where the spectra are compared. Due to minor differences between the simulation and
experiment in the boundary layer velocity profile upstream of the jet (figure 3) and
mean jet exit velocity profile (figure 5), an exact quantitative match is not expected in
the spectra. Hence, the spectra from experiment and simulation are shown in separate
plots. Note that good agreement is observed between simulation and experiment. The
velocity spectra from the coarse grid (not shown) which is coarser by a factor of 2
in each direction matched well with the experiment for R= 2 but not for R= 4.
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FIGURE 4. (Colour online) Instantaneous spanwise vorticity contours in the symmetry
plane for R= 2 (a) and R= 4 (b). The black dots indicate the locations at which velocity
spectra are shown in the figures below. Vertical velocity spectra from experiments of
Megerian et al. (2007) (c,d) and simulation (e,f ) are shown. Plots of R= 2 are on (a,c,e)
while R= 4 are on (b,d,f ). The lines correspond to the distance (s/D) from (x/D, y/D)=
(−0.5, 0) with s/D= 0.1 (black), 1 (orange), 2 (green), 3 (blue), 4 (grey) and 5 (purple).
The spatial coordinates of the points are listed in the text.

For the R= 2 flow, it can be seen that St= 0.65 is the most dominant along all the
locations considered. However, for R= 4, it can been seen that at s/d= 0.1, St= 0.39
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FIGURE 5. Mean vertical velocity profiles from simulation (——) and experiments of
Megerian et al. (2007) (@) in the symmetry plane at y/D = 0.1 from the flat plate for
R= 2 (a) and R= 4 (b).

is the most dominant, while further downstream, St = 0.78 is most dominant, and
far downstream at s/d = 5, St= 0.39 is again most dominant. Thus, we observe that
while a single frequency dominates for R= 2, different frequencies are dominant for
R= 4 flow. This phenomena has been extensively studied by Megerian et al. (2007),
who found that the shear layer was absolutely unstable for R < 3.1 giving rise to
a single global frequency that was dominant throughout the shear layer while for
R > 3.1, the shear layer was found to be convectively unstable leading to multiple
frequencies being dominant along the shear layer. For R= 4, note that the St= 0.39
peak is observed at all points in the DNS but not at the first couple of locations in
the experiment, possibly due to the very low amplitude of the peak.

The instantaneous vorticity contours depict a clear roll up of the leading-edge shear
layer for both R= 2 and 4. However, for R= 4, coherent roll up of the trailing edge
is also visible which is not the case for R= 2. It can also be observed that vortical
activity exists between the jet and the wall for R= 2 but not for R= 4 indicating a
stronger jet–wall interaction at lower velocity ratios.

4.2. Mean velocity and streamlines
Figure 5 shows the mean vertical velocity profiles from the simulation and experiment
at y/D = 0.1 in the symmetry plane for R = 2 and 4. Overall, good agreement is
observed except in the vicinity of the jet wall. We see that the R = 2 flow is more
asymmetric when compared to R= 4 indicating the greater effect of the crossflow on
the jet for R = 2. We also see from the simulation results for R = 2 that there is a
region of reverse flow close to the jet exit indicating a higher adverse pressure gradient
created by the crossflow.

Figure 6 shows contours of the mean streamwise velocity for R = 2 and 4 from
the coarse and fine grid simulations and compares it to the experiments of Getsinger
(2012) at similar conditions of R= 2.2 and 4.4. Overall, good agreement is observed.
However, the jet trajectory in the simulations is slightly shallower when compared to
the experiments due to the higher velocity ratio of the experiments. The R= 2 jet is
closer to the flat plate when compared to R= 4 due to the lower momentum of the
jet at R= 2. Figure 7 shows the mean vertical velocity contours for R= 2 and 4 from
the coarse and fine grid simulations and compares it to the experiments of Getsinger
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FIGURE 6. (Colour online) Mean streamwise velocity contours in the symmetry plane
are shown for R= 2 (a–c) and R= 4 (d–f ). Figures from experiments of Getsinger (2012)
(a,d), coarse grid DNS (b,e) and fine grid DNS (c,f ) are shown for comparison. Note that
the experimental figures (a,d) correspond to R= 2.2 and 4.4, respectively.

–2 0 2 4 6

(a) (b) (c)

(d ) (e) ( f )

6
5
4
3
2
1
0

6
5
4
3
2
1
0
–2 0 2 4 6

–2 0
0

2

4

6

–2 0 2 4 6

0

2

4

6

–2 0 2 4 6
0

2

4

6

–2

0

2

4

6

0
0.2
0.4
0.6
0.8
1.0
1.2 1.20

0.92
0.64
0.36
0.08
–0.20

1.20
0.92
0.64
0.36
0.08
–0.20

0
0.2
0.4
0.6
0.8
1.0
1.2 1.20

0.92
0.64
0.36
0.08
–0.20

1.20
0.92
0.64
0.36
0.08
–0.20

2 4 6

0 2 4 6

FIGURE 7. (Colour online) Mean vertical velocity contours in the symmetry plane are
shown for R = 2 (a–c) and R = 4 (d–f ). Figures from experiments of Getsinger (2012)
(a,d), coarse grid DNS (b,e) and fine grid DNS (c,f ) are shown for comparison. Note
that the experimental figures (a,d) correspond to R= 2.2 and 4.4, respectively.

(2012) at similar conditions of R= 2.2 and 4.4. Good agreement is observed between
simulation and experiment. Figure 8 compares the mean streamlines obtained from
experiment to those obtained from the fine grid simulations for R= 2 and 4. Again,
good agreement is observed between experiment and simulation. For R= 2, upstream
of the jet, a prominent boundary layer separation vortex is visible which is absent for
R= 4. Downstream of the jet, nodes are observed in the streamlines in the symmetry
plane (z = 0) indicating that the fluid is being entrained into the plane due to the
crossflow fluid going around the jet. Such a node downstream of the jet has also been
observed by other researchers such as Kelso, Lim & Perry (1996), Muppidi & Mahesh
(2005) and Schlatter et al. (2011). While a single node is observed for R= 4, similar
to Kelso et al. (1996) and Muppidi & Mahesh (2005); an additional node closer to the
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FIGURE 8. Mean streamlines in the symmetry plane from experiment (a,b) (A. R.
Karagozian, personal communication, 2012) and simulation (c,d) for R= 2 (a,c) and R= 4
(b,d).

jet is observed for R= 2 which was also observed by Schlatter et al. (2011). A more
intense low pressure region is observed downstream of the jet for R= 2 as compared
to R= 4 as can be seen in the instantaneous pressure contours shown in figure 11.

5. Effect of velocity ratio
The results of R2 and R4 which correspond to the experimental conditions of

Megerian et al. (2007) are discussed in this section. A detailed investigation of the
instantaneous and mean flow fields from DNS and data extracted from DMD is
performed to understand the difference in the absolute versus convective nature of the
upstream shear layer instability for the two flows. Note that the nozzle is included
in the simulations here. R2 and R4 flow conditions are also referred to as R= 2 and
R= 4 respectively in this section.

5.1. Instantaneous flow features
Figure 9 shows isocontours of Q coloured by streamwise velocity contours for R= 2,
where Q is defined as follows (Hunt, Wray & Moin 1988): Q=−0.5((dui/dxj)(duj/dxi)).
In an incompressible flow, the Q-criterion represents regions of pressure minimum
which occurs in vortex cores. From the divergence of the Navier–Stokes equations,
Q=−1p where 1 is the Laplacian operator. Thus, regions of negative Q represent
pressure minima which are used to identify vortex cores. The Q-criterion can be used
to identify any coherent vortex whether it lies in the jet shear layer or wake and does
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FIGURE 9. (Colour online) Instantaneous isocontours of Q coloured by streamwise
velocity contours for R= 2. Note the coherent shear layer roll up and small scale features
further downstream.
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FIGURE 10. (Colour online) Instantaneous isocontours of Q coloured by streamwise
velocity contours for R= 4. Note the coherent shear layer roll up and small scale features
further downstream.

not differentiate between the two regions. Note the roll up of the shear layer near
the jet exit along the jet trajectory, followed by smaller scale vortices indicating the
transitional/turbulent nature of the flow. Also visible are long vortices close to the wall.
Figure 10 shows isocontours of Q coloured by streamwise velocity for R= 4. Again,
the shear layer roll up is clearly visible followed by smaller scale vortices along the jet
trajectory. Note that the roll up takes place farther away from the wall when compared
to R = 2 and that vortices are absent close to the wall. A closer look at the R = 4
isocontours reveals secondary roll-up vortices that are smaller in size and are due to
the roll up of the trailing edge shear layer. Such vortices are not very prominent for
R= 2. Also, vortices can be observed close to the wall for R= 2 due to the interaction
between the jet and the wall which is not seen for R= 4.

Figure 11 shows instantaneous pressure contours along with streamlines in the
symmetry plane for R= 2 and 4. The roll up of the shear layer is clearly visible for



A numerical study of shear layer characteristics of low-speed transverse jets 287

0

0

1

1

2

2

3

3

–1

–10 1 2

2
p p

–2
0

1

–1
0

3–1

0

1

2

(a) (b)3

–1

FIGURE 11. (Colour online) Instantaneous pressure contours (p/ρv2
j ) with streamlines

are shown in the symmetry plane for R= 2 (a) and R= 4 (b).

both the flows with the roll up occurring close to the jet exit for R = 2. Upstream
of the jet, a boundary layer separation vortex is visible for R = 2, which is absent
for R= 4. The roll up of the shear layer extends into the nozzle for R= 2. This can
be explained by the fact that the flow inside nozzle separates close to the jet exit
for R = 2 due to the higher momentum of the crossflow when compared to R = 4.
This causes the shear layer to be stronger for R = 2 close to the exit, causing it to
become unstable and roll up. Also, there is a large low pressure region downstream
of the jet for R= 2 along with a recirculation vortex which is absent for the R= 4
jet. There is a source point located downstream of the jet for both flows caused by
the reattachment of the crossflow streamlines in the plane parallel to the wall. The
source point is located farther from the jet for R= 2.

Instantaneous wall-normal vorticity contours (ωy) are shown in planes parallel to the
wall for R = 2 and 4 at three different locations to quantify the nature of the wake
caused by the jet. At the location closest to the wall (y/D= 0.67), for R= 2, the wake
appears to be asymmetric and unsteady. However, for R= 4, at the location closest to
the wall (y/D= 1.3), the wake appears to be quiescent. A lower crossflow Reynolds
number for R = 4 and the delay in shear layer roll up as observed in figure 4 due
to the higher momentum of the jet are likely responsible for the quiescent nature of
the wake for R = 4. At the farthest location from the wall shown in figure 12, for
both flows, smaller scales are observed at large distances downstream of the jet exit,
indicating the transitional/turbulent nature of the jet.

For R= 2, there exists a region of low pressure downstream of the jet (figure 11)
and an asymmetric, unsteady wake (figure 12). Also, in figure 4, only the vertical
velocity spectra along the upstream shear layer was discussed. We plot the variation
of u, v and w velocities with time at s/D= 0.1 (for R= 2) and at s/D= 0.2 for R= 4
in figure 13, where s/D is defined along the leading-edge shear layer as in figure 4.
While the same frequency is dominant for R= 4 in all the three velocity spectra, it
can be seen that a very low frequency is dominant in the w velocity for R= 2. From
figure 13, the Strouhal number based on the crossflow velocity and diameter of the
jet exit (Stc = u∞D/ν) corresponding to the low frequency in w velocity for R = 2
is approximately 0.15 which is close to the values of 0.15–0.17 reported by Kelso
et al. (1996) in the wake of a jet in crossflow at the same R. This indicates that the
frequency is related to the wake phenomena for R= 2 as seen in figures 11 and 12.
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FIGURE 12. (Colour online) Instantaneous wall-normal vorticity contours (ωy) are shown
at (a) y/D = 0.67, (c) y/D = 1.3 and (e) y/D = 3.33 for R = 2 and (a) y/D = 1.3,
(c) y/D= 3.33 and (e) y/D= 6.67 for R= 4.
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FIGURE 13. (Colour online) Temporal variation of u (blue line), v (green line) and w
(red line) velocities along the leading-edge shear layer in the symmetry plane (z= 0) for
R = 2 at (x/D = 0.006, y/D = 0.854) (a) and R = 4 at (x/D = −0.092, y/D = 1.933) (b)
where D/L= 0.15. Note that a lower frequency is observed in the w velocity for R= 2.

5.2. Mean comparisons
Figure 14 shows the mean pressure contours in the symmetry plane for R= 2 and 4.
A high pressure region upstream of the jet is observed similar to Muppidi & Mahesh
(2005). Also, a region of low pressure in the upstream shear layer lies between regions
of high pressure on either side and corresponds to the location of the shear layer roll
up. For R = 4, it can be seen that this low pressure region lies further away from
the wall as compared to R= 2 flow. It can be observed that the pressure field varies
significantly as R is varied. While the region of minimum pressure occurs downstream
of the jet close to the downstream shear layer for R= 2, the same occurs along the jet
trajectory for R=4. Also, the region of low pressure occurs close to the wall for R=2
which is not the case for R= 4. Since the region of low pressure occurs downstream
of the jet closer to the wall for R = 2, it is due to the obstruction of the boundary
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FIGURE 14. (Colour online) Mean pressure contours (p/ρv2
j ) are shown in the symmetry

plane for R= 2 (a) and R= 4 (b). Note that the colour scale is different between the two
figures to emphasize the differences in the flow field.

layer by the jet, while for R = 4, the low pressure region is due to the turning of
the jet. Since the high pressure upstream of the jet occurs due to the obstruction of
the crossflow by the jet, the magnitude would scale with the square of the crossflow
velocity. Since the R= 2 flow has a higher crossflow velocity (u∞= 0.5) as compared
to R= 4 (u∞= 0.25), the magnitude of high pressure would be large enough to cause
the jet boundary layer to separate at the exit as observed in figure 11.

Figure 15 shows symmetry plane contours of turbulent kinetic energy (TKE =
u′iu′i/u2

∞) and spanwise unsteadiness (w′w′/u2
∞) for R = 2 and 4. For R = 2, it can

be observed that the maximum unsteadiness occurs downstream of the jet close to
the wall with a magnitude of ≈0.3. Also, w′w′/u2

∞ is predominant in the region of
maximum TKE for R= 2 with the magnitude being nearly equal to TKE downstream
of the jet. This indicates a strong spanwise oscillation downstream of the jet for
R= 2 flow which is absent for R= 4. The region of maximum unsteadiness for R= 4
occurs along the jet trajectory beyond y/D= 3.5.

5.3. Shear layer dominance from DMD
DMD was performed for the entire three-dimensional flow field for R= 2 and 4 using
all the three velocity components (u, v, w) using the algorithm described in § 2.2. The
snapshots were taken at an interval of 1tv̄j/D= 0.333 units. Two hundred and forty-
nine snapshots were used for R= 2 while 80 snapshots were used for R= 4. For R= 2,
the residual of the DMD approximation did not vary significantly between 100, 200
and 249 snapshots. Hence just 80 snapshots were used for R= 4. Figure 16 shows the
energy spectra of the DMD modes. Note the prominent peaks at St= 0.65 and 1.3 for
R= 2 and St= 0.39 and 0.78 for R= 4; they correspond to the same peaks observed
along the shear layer. Thus, the shear layer modes are dominant global modes in the
flow.

Figure 16 shows the spatial DMD modes corresponding to the shear layer peaks
using isocontours of Q-criterion coloured with streamwise velocity contours (of the
spatial DMD mode). Coherent three-dimensional shear layer vortices are observed for
both R= 2 and 4 corresponding to the roll up of the jet shear layer. The spatial modes
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FIGURE 15. (Colour online) Mean turbulent kinetic energy (TKE) (a,c) and w′w′
contours (b,d) are shown in the symmetry plane for R= 2 (a,b) and R= 4 (c,d).

corresponding to St= 1.3 for R= 2 and St= 0.78 for R= 4 display three-dimensional
vortices with a smaller length scale suggestive of a harmonic. Note that the scale of
the figure is different for R= 2 and 4 to clearly depict the spatial mode. The vortices
are coherent until a certain distance downstream, beyond which smaller scales can be
observed.

Significant differences are observed between the spatial modes of R= 2 and 4. For
the R = 2 jet, both the St = 0.65 and 1.3 modes begin immediately at the flat plate
(jet exit) whereas for R = 4, both the modes are located further away from the flat
plate. Also, the St= 0.78 mode lies closer to the flat plate for R= 4 which explains
why the St= 0.78 mode is more dominant initially in figure 4 along the shear layer
after which the St= 0.39 mode becomes more dominant. It can also be observed from
the spatial modes for R= 2 that the shear layer vortices extend all the way up to the
wall while no such behaviour is observed for R = 4 modes. This indicates that the
oscillation for R= 2 is not just restricted to the shear layer, but is also present in the
boundary layer downstream of the jet close to the wall.

To better understand the spatial DMD modes observed in figure 16, the symmetry
plane contours of Q criterion are shown in figure 17 for R= 2 and 4. For R= 2, it
can be observed that the upstream shear layer vortices are dominant for both St= 0.65
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FIGURE 16. (Colour online) Spectral energy with Strouhal number obtained from DMD
(a,b), isocontours of Q obtained from DMD for St= 0.65 (c), St= 0.39 (d), St= 1.3 (e)
and St= 0.78 ( f ). The plots correspond to R= 2 (a,c,e) and R= 4 (b,d,f ) respectively.

and 1.3. Also, the spatial location of the modes coincide indicating that the St= 1.3
is a higher harmonic of St= 0.65. For R= 4, while the upstream shear layer vortices
are dominant for St = 0.78, the St = 0.39 mode for R = 4 is strongest closer to the
centre of the jet beyond y/D≈ 3.5, in contrast to the behaviour observed for R= 2.
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FIGURE 17. (Colour online) Symmetry plane contours of Q criterion of the DMD mode
for St= 0.65 (a) and St= 1.3 (b) for R= 2 and St= 0.39 (c) and St= 0.78 (d) for R= 4.

From figure 4, we observed that while the St = 0.65 mode was most dominant
along the upstream shear layer for R= 2, initially St= 0.78 was dominant for R= 4
and further downstream, St = 0.39 became most dominant indicative of a convective
instability. Also, from figure 13, we saw that the dominant frequency of the w velocity
in the upstream shear layer for R = 2 was different from the St = 0.65 observed in
the v velocity spectra. Hence, we extract the magnitude of the fluctuation velocity
components from DMD corresponding to the dominant frequencies observed from the
v velocity spectra. We extract magnitudes of velocity fluctuations corresponding to
St = 0.65 and 1.3 for R = 2 and St = 0.39 and 0.78 for R = 4. From the vertical
velocity magnitude plots (figure 18b,e), we observe that St = 0.65 is always more
dominant when compared to St = 1.3 for R = 2 while St = 0.78 is more dominant
until s/D = 4 for R = 4 beyond which St = 0.39 becomes more dominant. These
observations are consistent with those observed from figure 4 and the experiments
of Megerian et al. (2007). While similar behaviour is observed for the u fluctuation
magnitude, the trend of w fluctuation magnitude is very different. For R= 2, St= 1.3
becomes more dominant than St = 0.65 beyond s/D= 2.0 while St = 0.78 is always
more dominant than St=0.39 for R=4. It is also important to note that the magnitude
of w fluctuation is an order of magnitude smaller than u and v.
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FIGURE 18. The magnitude of u, v and w fluctuations obtained from DMD for R = 2
(a–c) and R = 4 (d–f ) is shown along the upstream shear layer in the symmetry plane
(z= 0). The velocity fluctuations are shown for St= 0.65 (——) and 1.3 (– – –) for R= 2
and St = 0.39 (——) and 0.78 (– – –) for R = 4. The spatial locations are the same as
those in figure 4 corresponding to s/D = 0.1, 1, 2, 3, 4 and 5 which are specified in
§ 4.1. Note that the locations at s/D= 4 and 5 are only shown for R= 4.

5.4. Analogy to counter-current mixing layer to explain absolute versus
convective instability

As the jet exits the nozzle and interacts with the crossflow boundary layer, the
crossflow streamlines are deflected towards and away from the wall as they approach
the jet which is shown in figure 20. This is similar to the streamline pattern obtained
in front of an obstacle; see for example Baker (1979) and Simpson (2001). Figure 20
shows the symmetry plane contours of the mean vertical velocity (v) for R= 2 and 4
with mean streamlines. Note that only regions of negative v are shown in the figure.
It can be seen that regions of negative v are observed upstream and downstream of
the jet. Note that the region upstream of the jet lies closer to the jet and occurs due
to the streamlines below the stagnation streamlines deflected towards the wall due to
the pressure difference.

Figure 20 also shows the variation of mean vertical velocity (v) at lines extracted
along the upstream shear layer as shown in figure 19. Note that the profiles shown
correspond to the region where v is negative upstream of the jet. The profiles resemble
a counter-current mixing layer where the sign of the velocity of the two streams are
opposite. A mixing layer is characterized by its velocity ratio:

R1 = V1 − V2

V1 + V2
, (5.1)

where V1 and V2 are the velocity of the two streams, which are of opposite signs for
a counter-current mixing layer yielding R1 > 1.

Huerre & Monkewitz (1985) used linear stability theory to theoretically predict that
the counter-current mixing layer is absolutely unstable when R1 > 1.315 while it is
convectively unstable when R1<1.315. An absolutely unstable flow is characterized by
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FIGURE 19. (Colour online) Mean spanwise shear (|ωz|) is shown in the symmetry plane
for R= 2 (a) and R= 4 (b). Solid black lines indicate the locations at which profiles were
extracted along the upstream shear layer which correspond to the profiles in figures 20(b)
and 20(d).

a single frequency that is dominant throughout the flow while a convectively unstable
flow can have multiple frequencies along the flow. This was verified by experiments
of Strykowski & Niccum (1991) who performed experiments for a round jet exiting a
nozzle and suction was applied outside the nozzle to create a counter-current mixing
layer profile. From their experiments, they found that a single frequency was dominant
when the average R1 was greater than 1.32 while multiple frequencies were dominant
when R1 was less than 1.32. Note that for a spatially evolving mixing layer, R1 varies
along the streamwise direction.

Since a similar transition from absolute to convective instability is observed for
the jet in crossflow as we increase R from 2 to 4 and a region of counter-current
mixing layer is observed as shown in figure 20, we compute an equivalent mixing
layer ratio (R1) for R= 2 and 4 flows. Note that counter-current mixing layer profiles
are obtained only in regions where there is a negative v velocity upstream of the
shear layer. The minimum mean v velocity upstream of the shear layer (V2) is −0.2
and −0.11 for R = 2 and 4 respectively from the simulations. From the velocity
profiles in figures 20(b) and 20(d), we see that the maximum v velocity (V1) is 1.1
and 1.2 for R = 2 and 4, respectively. Corresponding to these values, R1 is 1.44
and 1.2 for R = 2 and 4, respectively. These values are clearly consistent with the
absolute and convective instability behaviour of the counter-current mixing layers,
suggesting that the mixing ratio in the upstream shear layer for a jet in crossflow
is very important to the nature of the shear layer instability. Davitian et al. (2010)
found that the transition from absolute to convective instability for a jet in crossflow
occurs at Rcritical ≈ 3 and interpolating the value of mixing velocity ratio R1 between
the values of R = 2 and 4 yields Rcritical = 3 corresponding to an R1,critical of 1.32
predicted by linear stability theory (Huerre & Monkewitz 1985). Note that the value
of 1.32 obtained by Huerre & Monkewitz (1985) is for a plane mixing layer. While
the jet in crossflow interaction is three-dimensional and complex, with the presence of
a curved shear layer and pressure gradient, it is interesting that the upstream mixing
layer characteristics in the symmetry plane correlate with the instability behaviour of
the jet–crossflow interaction.
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FIGURE 20. (Colour online) Mean vertical velocity contours (a,c) are shown in the
symmetry plane along with variation of mean vertical velocity along the upstream shear
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FIGURE 21. Schematic showing the stagnation streamline and reverse flow upstream for
a jet in crossflow.

Figure 21 shows a schematic of the jet in crossflow problem showing the stagnation
streamline and the reverse region produced upstream of the jet shear layer. The
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FIGURE 22. Variation of mixing layer velocity ratio R1 = (V1 + V2)/(V1 − V2) with V1
for R= 2 (——) and 4 (– – –). A constant minimum mean upstream vertical velocity (V2)
of −0.2 and −0.11 were chosen to compute R1 for R= 2 and 4 respectively. R1 = 1.32
(· · · · · ·) represents the critical value beyond which the flow is absolutely unstable and
q andp represent points corresponding to R= 2 and 4, respectively.

pressure at the stagnation point (Pstag) is given by:

Pstag = P∞ + 1
2ρ∞u2

∞, (5.2)

where P∞, ρ∞ and u∞ are the free-stream crossflow pressure, density and velocity
respectively. The velocity of the reverse flow (vrev) is given by:

vrev ≈
√

1
ρ
(Pstag − Pwall). (5.3)

If we assume that the pressure at the wall (Pwall) is of the order of P∞, and since
ρ = ρ∞, we get

vrev ≈ ku∞, (5.4)

where k is a constant. Thus, the magnitude of the reverse flow upstream of the shear
layer depends on the velocity of the crossflow. This is consistent with the values
of −0.2 and −0.11 obtained for R = 2 and 4 respectively corresponding to a u∞
of 0.5 and 0.25. The value of k is approximately −0.4 for both simulations. For
a given crossflow velocity, to quantify the effect of increasing jet velocity, we plot
the variation of R1 with V1 (velocity of the jet) in figure 22 for R = 2 and 4 with
V2 = −0.2 and −0.11 respectively. We also plot R1 = 1.32, which represents the
critical value for transition from absolute to convectively unstable behaviour from the
experiments of Strykowski & Niccum (1991). It can be observed that with increasing
jet velocity, the flow is likely to become more convectively unstable. Also, for a
given jet velocity, increased crossflow velocity produces a higher magnitude of V2
(from (5.4)), making the flow more absolutely unstable. From (5.1), a vertical velocity
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FIGURE 23. Vertical velocity spectra inside the nozzle (a,b) in the symmetry plane (z= 0)
at (x/D, y/D)= (−0.49,−0.21) for R= 2 (a) and R= 4 (b) respectively.

scaled with the maximum jet exit velocity (V2/V1) of −0.137 or lower upstream of
the jet would be required to obtain an R1 > 1.32 corresponding to an absolutely
unstable shear layer. Here, V1 represents the maximum jet velocity normalized by the
mean jet exit velocity. Thus, figure 22 also shows the effect of the jet shear layer
thickness at the exit of the jet, i.e. for a given crossflow velocity, a higher value of
V1 indicates a thicker jet exit shear layer for the same nozzle shape. From figure 22,
a thicker shear layer at the jet exit (or larger V1) is likely to make the flow less
absolutely unstable.

6. Effect of nozzle
6.1. Spectra inside the nozzle

Point spectra of vertical velocity taken at locations inside the nozzle show the same
dominant frequencies observed in the shear layer. Figure 23 shows the spectra in the
symmetry plane at (x/D, y/D) = (−0.49, −0.21) location and we see that the same
frequencies are dominant for both R = 2 and 4. Note that that the unsteadiness is
higher for R = 2 when compared to R = 4 based on the amplitude of the spectra.
To verify the nature of the disturbance inside the nozzle, we extract v fluctuation
magnitude of the dominant shear layer frequencies from DMD and plot it with
distance from the jet exit in figure 24. Note that y/D in the figure points away from
the crossflow or into the nozzle. Based on the magnitude of the v fluctuation from
DMD, the dominant frequencies observed inside the nozzle appear to be due to the
disturbances that originate from the shear layer oscillations. For both R = 2 and 4,
it can be observed that the disturbance is roughly constant until a certain location
inside the nozzle beyond which it decays as y−2. It is interesting to note that the
shear layer disturbances are dominant further inside the nozzle for R= 4 as compared
to R= 2.

6.2. Effect of simulating the nozzle for R= 2
Past studies (Bagheri et al. 2009; Schlatter et al. 2011; Ilak et al. 2012) have
simulated the jet in crossflow problem by assuming a profile at the jet exit without
solving for a nozzle or pipe. However, the influence of simulating the nozzle is not



298 P. S. Iyer and K. Mahesh

10–10

10–1 100 101 10–110–2 100 101

10–8

10–6

10–4

10–2(a) (b)

10–6

10–4

10–2

100

FIGURE 24. Vertical velocity fluctuation magnitude from DMD variation along the nozzle
centreline for R=2 (a) and St=0.65 (——) and 1.3 (– – –) and for R=4 (b) and St=0.39
(——) and 0.78 (– – –). An analytical decay corresponding to v = y−2

i (— · —) is also
shown. Here, yi/D represents distance from the jet exit which increases as we move closer
to the nozzle entrance.
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FIGURE 25. (Colour online) Mean vertical velocity spectra along the upstream shear layer
with (a) and without simulating the nozzle (b) for R = 2 at s/D = 0.1 (black line), 1
(orange line) and 2 (green line) at the same locations as figure 4. The corresponding
spatial coordinates are listed in § 4.1.

clear. Hence we simulate the R= 2 flow without the nozzle (R2nn) but prescribe the
mean flow from the R2 simulation to assess the effect of simulating the nozzle. From
figure 11, it was observed that a separation vortex exists close to the jet exit due to
the adverse pressure imposed by the crossflow fluid for R= 2. Also, figure 5 showed
that the jet exit profile was more asymmetric for R= 2. Due to these two factors, it
is expected that simulating the nozzle would have a greater effect for R= 2 flow and
hence we simulate this flow without the nozzle.

Figure 25 shows the v velocity spectra obtained at the same locations as in figure 4
with and without the nozzle. Note that good agreement is observed indicating that
the shear layer instability is captured without the presence of the nozzle. Figure 26
compares the mean streamwise velocity variation along the wall normal direction for
the simulations with and without the nozzle. The statistics reported were taken over 2
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FIGURE 26. Wall normal variation of mean streamwise velocity with (——) and without
(– – –) simulating the nozzle is shown for R= 2. Note that the curves agree well with each
other indicating the minimal influence of simulating the nozzle for this flow. (a) x/D=
−1.0, (b) x/D=−0.5, (c) x/D= 0.0, (d) x/D= 0.5, (e) x/D= 1.0, ( f ) x/D= 2.0.

flow-through domain times for both flows. Overall, very good agreement is observed
between the flows with and without the nozzle. Minor differences are observed at
x/D=0.5 which could be due to the unsteadiness (although small in magnitude) at the
trailing edge of the nozzle exit which is neglected in the simulation without the nozzle.
Figure 27 shows the streamwise variation of the vertical velocity at various locations
along the jet trajectory. Closest to the jet exit, minor differences can be observed
between the profiles close to the trailing edge similar to those observed at x/D= 0.5
in figure 26. Overall, again good agreement is observed between the simulations R2
and R2nn.

Since the difference between the simulations with and without the nozzle is small,
it can be concluded that the role of the nozzle lies in setting up the mean flow at
the jet exit which is then responsible for the shear layer instabilities. The mean jet
exit velocity interacts with the crossflow boundary layer and undergoes a Kelvin–
Helmholtz type instability resulting in the roll up of the upstream shear layer.

7. Effect of shear layer thickness

To assess the effect of increasing the shear layer thickness of the jet for R = 2,
we perform simulations with a pipe-like velocity profile and velocity ratio of 2 based
on the mean (R2m1) and peak velocities (R2p1). Note that the nozzle is not simulated
for these flows. A symmetric profile is prescribed for the jet exit velocity similar to
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FIGURE 27. Streamwise variation of mean wall normal velocity with (——) and without
(– – –) simulating the nozzle is shown for R= 2. Note that the curves agree well with each
other indicating the minimal influence of simulating the nozzle for this flow. (a) y/D=
0.25, (b) y/D= 0.5, (c) y/D= 1.0, (d) y/D= 2.0, (e) y/D= 3.0, ( f ) y/D= 5.0.
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FIGURE 28. Mean vertical velocity variation with x in the symmetry plane at the jet exit
for R2 and R2nn (——), R2p1 (– – –) and R2m1 (— · —).

Bagheri et al. (2009) and Rowley et al. (2009):

v(r)= vj(1− r2) exp
(
−
( r

0.7

)4
)
, (7.1)

where r is non-dimensionalized by the maximum radius of the jet exit. Figure 28
shows the variation of mean vertical velocity of the jet in the symmetry plane at the
jet exit. Here, x/D is the streamwise direction of the crossflow boundary layer. Note
that the velocity profile is axisymmetric for R2p1 and R2m1 flows which is not the case
for R2 and R2nn. The maximum velocity at r= 0 is vj which is 1 for R2p1 and 1.889
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FIGURE 29. (Colour online) Instantaneous isocontours of Q coloured by streamwise
velocity contours for R2p1 (a) and R2m1 (b) showing the vortical features.

for R2m1. Note that vj between R2p1 and R2m1 varies by nearly a factor of 2 and could
account for some of the differences observed between the two flows. The maximum
velocity at the jet exit (or centreline velocity) is used to define St= fD/vj.

Figure 29 shows instantaneous vortical features of the flow using isocontours of the
Q criterion coloured by the streamwise velocity (u) for R2p1 and R2m1 flows. Note that
the flow features are very different from R2 flow in figure 9. The vortex rings for
these flows appear coherent for long distances downstream of the jet which is not the
case for R2 where the flows breaks down into smaller scales quickly. Also, for R2p1
and R2m1, dominant vortical features are visible at the wall even at very large distances
downstream of the jet. The jet bends more for R2p1 as compared to R2m1 due to a
lower net momentum of the jet as compared to the crossflow. Also, for R2, closer to
the jet exit, vortical features correspond to the upstream shear layer roll up which is
highest in the spanwise symmetry plane. On the other hand, for R2p1 and R2m1 flows,
closer to the jet exit, it can be observed that the vortical activity is highest in the
x= 0 plane at the sides of the jet. The roll up of the shear layer also does not occur
immediately at the jet exit which was the case for R2.

Figure 30 shows the instantaneous spanwise vorticity contours (ωz) in the spanwise
symmetry plane and the u′u′ in the x = 0 plane (centre of the jet) for the R2, R2p1
and R2m1 flows. While coherent roll up of the upstream shear layer is observed for
R2, the roll up of the upstream shear layer is delayed for R2p1 and R2m1. For the
R2m1 flow, the trailing edge shear layer sheds before upstream shear layer. Thus, we
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FIGURE 30. (Colour online) Instantaneous spanwise vorticity contours in the symmetry
plane (a,c,e) and mean u′u′ contours in the x = 0 plane (b,d,f ) for R2 (a,b), R2p1 (c,d)
and R2m1 (e,f ) respectively.

see that the jet exit profile has a significant effect on the shear layer characteristics
of the jet in crossflow. To assess the nature of the initial roll up of the shear layer,
we compare the u′u′ contours in the x= 0 plane for the three flows. We see that for
R2, the unsteadiness is highest in the symmetry plane with the shape consistent with
an unsteady shear layer roll up based on the location of the maximum (y/D ≈ 1.2)
and the corresponding instantaneous ωz contour. Interestingly, for the R2p1 flow, we
see that the unsteadiness is highest on either side of the symmetry plane which does
not correspond to a shear layer roll up at this location. The shape of the unsteadiness
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resembles a boundary layer wake-type instability which appears to be dominant close
to the jet exit. For the R2m1 flow, the unsteadiness is again maximum at the symmetry
plane and corresponds to the location at which the upstream shear layer begins to shed
from the ωz contours.

Note that the R2m1 flow is similar to the experimental condition of Getsinger et al.
(2014) for a jet issuing out of a pipe with R = 2.8 and a jet Rej = 1900. However,
the two flows are different based on the spanwise vorticity contours in the current
simulations and the acetone passive scalar visualization of Getsinger et al. (2014).
This could be due to the asymmetry in the mean jet exit profile induced by the
crossflow in the experiments which is not accounted for when imposing a steady
symmetric profile in the current simulations. Muppidi & Mahesh (2005) have shown
that the jet exit profile has a significant effect on the near field characteristics. The
asymmetry in the jet exit profile affects the pressure gradient upstream of the jet
which alters the stability characteristics of the counter-current mixing layer obtained
in the upstream mixing layer. As discussed in § 5.4, the stability characteristics of
the upstream mixing layer has a significant role in determining the nature of the jet
shear layer.

DMD was performed for R2p1 and R2m1 flows to examine the dominant flow
features and compare it to R2. DMD was performed for the full three-dimensional
velocity field with 200 snapshots at an interval of 1tD/v = 0.33 and 1tD/vj = 0.33
for R2m1 and R2p1 respectively. Note that the time interval between the snapshots is
1tD/u∞ = 0.66 for R2, R2p1 and R2m1 flows. Vertical and spanwise velocity spectra
for R2p1 and R2m1 respectively taken along the leading-edge shear layer (at the same
locations as figure 4) and the energy obtained from DMD are shown in figure 31.
Note that St = fD/vj = 0.22 and St = fD/vj = 0.075 are dominant along the shear
layer for R2p1 and R2m1, respectively. The spanwise velocity spectra is shown for the
R2m1 flow since it shows the dominant frequency obtained from DMD. The same
St is obtained from both the DMD analysis and velocity spectra for R2m1. For R2p1,
the most dominant mode from DMD is St = 0.15 while another dominant mode is
obtained at St = 0.22 which corresponds to the St obtained from velocity spectra in
the upstream shear layer. Note that this St is much lower than was observed for the
R2 flow with the nozzle. However, note that the same St is dominant along the shear
layer indicating an absolute type instability as observed for R2 although the spectra
looks more broadband when compared to R2. Note that the St observed for R2p1 is
similar to the St = 0.14 observed by Rowley et al. (2009) for R= 3 and Re= 1650
(based on peak jet velocity and diameter of the jet) for the simulation without the
nozzle.

The spatial modes corresponding to the dominant frequencies seen from the DMD
energy spectra are shown in figure 32 for R2, R2p1 and R2m1 flows. Isocontours of
the w velocity obtained from DMD are shown. Positive isocontours are shown in red
while negative isocontours are shown in blue. It can be seen that while the R2 flow
is antisymmetric in w, R2p1 and R2m1 flows are symmetric in w. Note that modes that
are antisymmetric in w are symmetric in u, v and vice versa. Bagheri et al. (2009)
observe both symmetric and antisymmetric modes from a global stability analysis of
a jet in crossflow at R = 3 at similar Re and find that the shear layer symmetric
modes are most unstable at R= 3. However, the dominant modes from R2p1 and R2m1
indicate that antisymmetric wake modes are more dominant possibly due to the lower
momentum of the jet. Based on the nature of the dominant flow features and the
dominant frequency, we see that the jet exit profile has a significant effect on the
nature of the flow field and the shear layer characteristics. Thus, having a physically
relevant jet exit profile is paramount to predict the shear layer characteristics of the
complex jet in crossflow interactions at the values of R studied in this paper.
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FIGURE 31. (Colour online) Vertical and spanwise velocity spectra along the leading-edge
shear layer are shown for R2p1 (a) and R2m1 (c). The spatial locations (x/D, y/D)
correspond to black line (−0.5, 0.1), orange line (0.006, 0.854), green line (0.654, 1.614),
blue line (1.432, 2.238), grey line (−2.08, 0.137) and purple line (0.47, 1.03). Spectral
energy variation with Strouhal number from DMD is also shown for R2p1 (b) and
R2m1 (d).

8. Summary

Direct numerical simulation was performed of transverse jets for R= 2 and 4 under
the same conditions as the experiments of Megerian et al. (2007) to study the shear
layer characteristics of the flow. The simulations capture the shear layer instability
observed in the experiments and observe that the same frequency is dominant along
the shear layer for R = 2 flow, while different frequencies are dominant along the
shear layer for R = 4. It was observed that the region of minimum pressure was
downstream of the jet for R = 2 while it was along the jet for R = 4. Also, strong
oscillations in the spanwise velocity was observed for R = 2 downstream of the jet
while no such behaviour was observed for R= 4. DMD of the full three-dimensional
flow field was performed and was able to reproduce the dominant frequencies obtained
from shear layer velocity spectra. DMD showed that shear layer modes were dominant
for both R = 2 and 4 with a three-dimensional roll up of the shear layer. Also, the
St= 0.78 mode lies closer to the flat plate when compared to the St= 0.39 mode for
R = 4, consistent with different frequencies being dominant along the leading shear
layer. A counter-current mixing layer-type region was observed in the upstream shear
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FIGURE 32. (Colour online) Isocontours of the w velocity obtained from DMD of the
most dominant mode corresponding to St= 0.65, 0.15 and 0.075 for R2 (a), R2p1 (b) and
R2m1 (c) respectively. Red colour indicates a positive value while blue indicates a negative
value.

layer and the mixing layer ratio based on the minimum v velocity upstream of the
jet was ≈1.44 for R= 2 flow and ≈1.2 for R= 4 flow which is consistent with the
critical value of 1.32 obtained by the experiments of Strykowski & Niccum (1991)
and 1.315 obtained by Huerre & Monkewitz (1985) for transition from absolute to
convective instability. It was observed that the effect of simulating the nozzle for
R = 2 on the mean flow and shear layer characteristics was small when the jet exit
velocity was prescribed with the mean flow obtained from the simulation with nozzle.
Thus, the role of the nozzle was in setting up a mean flow at the jet exit which
determines the stability characteristics of the flow. However, changing the jet exit
velocity profile had a significant effect on both the nature of the flow field and the
shear layer characteristics. A symmetric pipe-like profile was prescribed at the jet exit
for simulations corresponding to a velocity ratio of 2 based on peak and mean jet exit
velocity. It was observed that lower frequencies were dominant and the shear layer
roll up was delayed as compared to the flow with nozzle. The dominant DMD modes
were antisymmetric in nature as opposed to the symmetric modes observed for the
flows with nozzle, further indicating that the nozzle has a significant effect on the
instability characteristics of a jet in crossflow.
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