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a b s t r a c t

The paper performs simulation of a rectangular plate excited by turbulent channel
flow at friction Reynolds numbers of 180 and 400. The fluid–structure interaction is
assumed to be one-way coupled, i.e, the fluid affects the solid and not vice versa. We
solve the incompressible Navier–Stokes equations using finite volume direct numerical
simulation in the fluid domain. In the solid domain, we solve the dynamic linear
elasticity equations using a time-domain finite element method. The obtained plate
averaged displacement spectra collapse in the low frequency region in outer scaling.
However, the high frequency spectral levels do not collapse in inner units. This spectral
behavior is reasoned using theoretical arguments. The resonant vibration is stronger
at the third natural frequency than at the first natural frequency. We explain this
behavior by comparing the fluid and solid length scales. We further study the sources
of plate excitation using a novel formulation. This formulation expresses the average
displacement spectrum of the plate as an integrated contribution from the fluid sources
within the channel. Analysis of the sources reveals that at the plate natural frequencies,
the contribution of the fluid sources to the plate excitation peaks in the buffer layer. The
corresponding wall-normal width is found to be ≈ 0.75δ. The integrated contribution
of the overlap and outer regions together to the plate response is comparable to that
from the buffer region for Reτ = 180 and exceeds the buffer region contribution
for Reτ = 400. We analyze the decorrelated features of the sources using spectral
Proper Orthogonal Decomposition (POD) of the net displacement source. We enforce
the orthogonality of the modes in an inner product with a symmetric positive definite
kernel. The dominant spectral POD mode contributes to the entire plate excitation. The
contribution of the remaining modes from the different wall-normal regions undergo
destructive interference resulting in zero net contribution. The envelope of the dominant
mode further shows that the intensity of the sources peaks in the buffer region and the
wall-normal width of the sources extend well into the outer region of the channel.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The coupling between a turbulent flow and the resulting structural excitation is a problem of interest in marine,
ivil and aerospace engineering. In this paper, we investigate this coupling in a canonical setting — linear one-way
oupled (fluid affects solid, but not vice versa) response of an elastic plate in turbulent channel flow (Pope, 2001) due
o wall-pressure fluctuations alone. Specifically, we address the question — how much do the fluid sources at different

∗ Corresponding author.
E-mail addresses: anant035@umn.edu (S. Anantharamu), kmahesh@umn.edu (K. Mahesh).
https://doi.org/10.1016/j.jfluidstructs.2020.103173
0889-9746/© 2020 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jfluidstructs.2020.103173
http://www.elsevier.com/locate/jfs
http://www.elsevier.com/locate/jfs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfluidstructs.2020.103173&domain=pdf
mailto:anant035@umn.edu
mailto:kmahesh@umn.edu
https://doi.org/10.1016/j.jfluidstructs.2020.103173


S. Anantharamu and K. Mahesh Journal of Fluids and Structures 100 (2021) 103173

w
w
w
t

f
(
(
w
o
k
f
o

i
P
ω
i
r
t
P
(
i
n
d
i
t

c
p
f
s
e
h
t

w
d
m
i
h
a
o
g
d

a
2

w
p

wall-normal locations contribute to the plate excitation for different frequencies, and what are the salient features of
these fluid sources? We answer this question with a novel formulation that combines Direct Numerical Simulation (DNS)
data, Green’s function formulation and spectral Proper Orthogonal Decomposition (POD). For brevity, we will sometimes
refer to wall-pressure fluctuations as just wall-pressure.

The one-way coupling between the fluid sources and plate excitation can be broken into two parts: (i) fluid source–
all-pressure fluctuation coupling, and (ii) wall-pressure fluctuation–plate excitation coupling. Note that we neglect the
all-shear stress contribution to the plate forcing. We further classify the techniques to investigate the fluid source–
all-pressure fluctuation coupling into — scaling variables-based, Green’s function-based and conditional averaging-based
echniques. We discuss some features of the wall-pressure fluctuation sources identified by each of these techniques.

Identification of the scaling variables for the power-spectral density (PSD)/wavenumber spectrum of wall-pressure
luctuation yields qualitative information of the wall-normal region of the fluid sources. The wall-pressure PSD in the low
ωδ/uτ < 5), mid (5 < ωδ/uτ < 100) and high frequency ranges (ωδ/uτ > 0.3Reτ ) scale with the potential flow variables
ρf , δ

∗,Uo), outer flow variables (ρf , δ, τw), and inner flow variables (ρf , νf , τw), respectively (Farabee and Casarella, 1991),
here ω is the angular frequency, ρf is the fluid density, δ is the boundary layer thickness, δ∗ is the displacement thickness
f the boundary layer, Uo is the centerline velocity, τw is the wall-shear stress, uτ =

√
τw/ρf is the friction velocity, νf is the

inematic viscosity of the fluid, and the friction Reynolds number Reτ is defined as uτ δ/νf . Thus, the sources responsible
or the low, mid and high frequency wall-pressure fluctuations are predominantly in the potential, outer and inner region
f the turbulent boundary layer, respectively.
The Green’s function-based techniques (Chang III et al., 1999; Anantharamu and Mahesh, 2020) yield quantitative

nformation of the sources of wall-pressure fluctuation. The premultiplied streamwise wavenumber spectrum and the
SD of the wall-pressure fluctuations in a turbulent channel show peaks at λ+

x = 300 (Panton et al., 2017) and
+

≈ 0.35 (Hu et al., 2006) for Reτ = 180 − 5000, respectively, where λx is the streamwise wavelength, and +

ndicates normalization with viscous units (νf and uτ ). The dominant contributors to this inner peak are in the buffer
egion of the channel (Anantharamu and Mahesh, 2020). The approach of Anantharamu and Mahesh (2020) that identified
his dominant contribution (i) combines DNS data with the Green’s function formulation to express the wall-pressure
SD (φpp(ω)) as integrated contribution (Γ (r, s, ω)) from all wall-parallel plane pairs, φpp(ω) =

∫∫
+δ

−δ
Γ (r, s, ω) dr ds,

ii) accounts for the relative phase difference between the contributions from different wall-parallel planes neglected
n the previous Green’s function approach of Chang III et al. (1999), and (iii) yields a distribution of sources in the wall-
ormal direction instead of a wall-normal region as indicated by the scaling variables. Further, the methodology identified
ecorrelated features of wall-pressure fluctuation sources using spectral Proper Orthogonal Decomposition (POD). The
dentified dominant wall-pressure source at the linear and premultiplied wall-pressure PSD peak frequency resembled
all and inclined patterns, respectively.

The conditional averaging-based technique (Ghaemi and Scarano, 2013) yields patterns of the flow structure that are
orrelated to a particular wall-pressure fluctuation event. The time history of the wall-pressure fluctuation signal at a
oint on the wall shows occasional positive and negative high amplitude wall-pressure peaks. The conditionally averaged
low fields show coupling between a hairpin vortex and the high amplitude peaks (Ghaemi and Scarano, 2013). The flow
tructure responsible for the positive and negative high amplitude wall-pressure peak at a point are the sweep and ejection
vent occurring above it, respectively. The ejection event responsible for the negative peak occurs upstream of the hairpin
ead in between the quasi-streamwise vortices. The sweep event that leads to the positive peak occurs downstream of
he hairpin head.

The dynamic linear elasticity equations describe the wall-pressure fluctuation–plate excitation coupling. This one-
ay coupled FSI approach is valid for small linear deformation (duτ/νf < 1) of the plate, where d is the wall-normal
isplacement. The approach generally uses (i) plate theories (e.g. Poisson–Kirchhoff) to describe the deformation, and
odal superposition to obtain the response, (ii) frequency domain since steady state response is usually the quantity of

nterest, and (iii) a model wavenumber-frequency spectrum (Corcos, 1964; Chase, 1980; Hwang, 1998) for the spatially
omogeneous wall-pressure fluctuations as input. Note that the model wavenumber-frequency spectrum usually requires
model PSD (Bull, 1967; Smol’Iakov and Tkachenko, 1991; Goody, 2004). The mode shapes and natural frequencies
f the plate required to perform modal superposition can be obtained analytically for simple boundary conditions and
eometry. For complicated boundary conditions and geometry, Finite Element Method (FEM) is used to compute the modal
ecomposition.
The wall-pressure fluctuation–plate excitation coupling has been previously investigated in wavenumber space (Hwang

nd Maidanik, 1990; Blake, 2017). The modal force PSD of the plate can be expressed as the wavenumber integral (Blake,
017)

φfjfj (ω) =

∫∫
+∞

−∞

ϕpp(k1, k3, ω)|Sj(k1, k3)|2dk1 dk3,

Sj(k1, k3) =

∫ a+Lx

a

∫ b+Lz

b
Sj(x, z)ei(k1x+k3z) dx dz,

(1)

here a and b are the origins of the plate in the streamwise and spanwise directions, Lx and Lz are the lengths of the

late in the streamwise and spanwise directions, φfjfj (ω) is the modal force PSD of the jth mode shape, ϕpp(k1, k3, ω) is the
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Table 1
Fluid and solid domain extents.

Lfx × Lfy × Lfz Lsx × Lsy × Lsz
6πδ × 2δ × 2πδ (6π/5) δ × 0.004δ × (2π/5) δ

wall-pressure wavenumber-frequency spectrum and |Sj(k1, k3)|2 is the modal shape function. From the above equation, we
observe that the modal shape function couples the wall-pressure wavenumber-frequency spectrum to the modal force.
The relative contribution of different wavenumber regions to the modal force spectra depends on the mode order (j),
boundary conditions, and the ratio of the streamwise modal wavenumber (km,j) to the convective wavenumber at the
natural frequency of the mode (Hwang and Maidanik, 1990). The high streamwise wavenumber (k1/km,j ≫ 1) portion of
|Sj(k1, k3)|2 decays as k−6

1 , k−4
1 and k−2

1 for clamped, simply supported and free boundary conditions on all edges (Blake,
2017). Thus, plates with free boundary conditions accept more of the high streamwise wavenumber component of the
wall-pressure fluctuations. Further, special wall-pressure fluctuation models that separately approximate the high and low
wavenumber portion of the wall-pressure fluctuation wavenumber-frequency spectrum can be derived and used to obtain
the response of plates (Hambric et al., 2004). Hambric et al. (2004) showed good agreement between FEM response of a
plate excited by the modified Corcos model of Hwang (1998) and an equivalent edge forcing model which only models the
convective component in the modified Corcos model for a plate with three edges clamped and one edge free. This shows
the importance of the convective region of wall-pressure fluctuation spectrum for plates with free boundary conditions.
For a plate with all four edges clamped, FEM response from a low wavenumber excitation model showed good agreement
with the modified Corcos model, thus highlighting the dominance of low wavenumber contribution for clamped boundary
condition.

Experiments by Zhang et al. (2017) have shown coupling between flow structures and the response of a compliant wall
in a turbulent channel flow. The large positive and negative deformation of the compliant wall is coupled to the ejection
and sweep events, respectively, occurring above it (Zhang et al., 2017). Conditionally averaged flow fields show that these
events are related to the high amplitude pressure peaks and hairpin vortices that surround the local deformation of the
compliant wall. For large deformation of the compliant wall, the plate deflection affects the near-wall turbulence. The
compliant wall deflection into the buffer layer breaks the near-wall streaks and the associated quasi-streamwise vortices,
and induces more spanwise coherence (Rosti and Brandt, 2017).

In this paper, we develop a formulation to obtain the wall-normal distribution of intensity and relative phase of the
fluid sources responsible for the plate excitation. Previous research works do not yield such quantitative information of
the fluid sources. The main idea is to express the plate averaged displacement PSD as a double wall-normal integral of the
‘net displacement source’ cross-spectral density (CSD) Γ a(r, s, ω) across the height of the channel. The analysis framework
combines the volumetric DNS data, Green’s function solution of the pressure fluctuation and modal superposition, and
builds on the previous work of Anantharamu and Mahesh (2020). We then apply the framework to explain the one-way
coupled FSI simulation results of an elastic plate in turbulent channel flow at Reτ = 180 and 400. The fluid and solid
simulations make use of finite volume DNS and time-domain FEM, respectively. Further, the decorrelated fluid sources
that contribute the most to plate response are obtained using spectral POD of the net displacement source CSD.

The organization of the paper is as follows: In Section 2, we describe the computational domain, mesh resolution,
and the FSI simulation details. Section 3 discusses the novel one-way coupling analysis framework. In Section 4.1, we
discuss the obtained one-way coupled FSI results. We compare the fluid and solid length scales for the first three modes
in Section 4.2. Section 4.3 discusses the spectral features of the net displacement source CSD and in Section 4.4, we identify
the decorrelated features of the fluid source using spectral POD. Finally, we summarize the results in Section 5.

Note that x, y and z denote the streamwise, wall-normal and spanwise coordinates, respectively. Superscripts/subscripts
f and s denote fluid and solid quantities, respectively.

2. FSI simulation details

2.1. Computational domain

Fig. 1 shows a schematic of the fluid and solid computational domain and Table 1 shows the domain extents. The fluid
computational domain is a Cartesian box of size Lfx × Lfy × Lfz . We choose Lfx = 6πδ, Lfy = 2δ and Lfz = 2πδ, where δ is the
half channel height. Long streamwise and spanwise domains include the contribution of large scale structures to pressure
fluctuations. The solid computational domain is a rectangular plate clamped on all sides placed at the bottom wall of the
channel. The plate is flush with the bottom wall and centered. The length (Lsx), width (Lsz), and thickness (Lsy) of the plate
is 6πδ/5, 2πδ/5 and 0.004δ, respectively. The smaller dimension of the plate ensures that the pressure fluctuations with
wavelengths larger than the plate dimensions are present in the computational box. Thus, we include the low wavenumber

(k1 ≪ km,j) wall-pressure fluctuation contribution to plate excitation.
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Fig. 1. Computational domain of the FSI simulation.

Table 2
Fluid and solid mesh sizes and resolution of the FSI simulation. Note that the fluid and
solid meshes match at the interface.

Reτ N f
x × N f

y × N f
z N s

x × N s
y × N s

z ∆x+ ∆z+ ∆yf+w ∆yf+c
180 720 × 176 × 330 144 × 1 × 66 4.7 3.4 0.27 4.4
400 1388 × 288 × 660 288 × 1 × 132 5.4 3.8 0.37 5.9

2.2. Fluid DNS

We solve the incompressible Navier–Stokes equations in the fluid domain using the collocated finite volume method
f Mahesh et al. (2004) in a frame of reference moving with the bulk velocity of the fluid as done by Bernardini et al.
2013). This lead to better prediction of the high frequency component of the pressure spectra. The walls in the channel
re assumed to be rigid in the fluid calculation. For time integration, we use the Crank–Nicholson scheme. Overall, the
ethod is second order accurate in space and time, and non-dissipative. The algorithm conserves kinetic energy discretely.
his ensures stability of the algorithm at high Reynolds numbers without adding numerical dissipation. We perform the
NS using the in-house flow solver — MPCUGLES.
The fluid mesh is Cartesian. The mesh is uniform in the streamwise and spanwise directions. In the wall-normal

irection, we use a non-uniform hyperbolic tangent spacing to cluster control volumes near the wall. Table 2 shows
he fluid mesh sizes and resolutions for both Reτ . The streamwise spacing (∆x+), spanwise spacing (∆z+), the wall-
ormal spacing near the wall (∆yf+w ) and channel centerline (∆yf+c ) is fine enough to resolve the fine-scale features of
all turbulence. The timestep of the fluid simulation is 5 × 10−4δ/uτ for both Reτ . The velocity (Ub/uτ ) of the moving
eference frame is 15.8 and 17.8 in the streamwise direction for Reτ = 180 and 400, respectively. We employ a slip
elocity boundary condition (equal to -Ub/uτ ) at the top and bottom wall. For pressure, we use a zero Neumann boundary
ondition at the top and bottom wall. In the streamwise and spanwise directions, we use periodic boundary conditions
or both velocity and pressure. For validation of the fluid DNS, we refer the reader to Anantharamu and Mahesh (2020).

.3. Solid simulation

We solve the three-dimensional dynamic linear elasticity equations in the solid domain with the continuous Galerkin
inite Element Method (abbreviated as just FEM). We perform the solid simulation using the validated in-house solid
olver — MPCUGLES-SOLID. We use second-order polynomials in each element to represent the solution and trapezoidal
ule for the time integration of the equations. We solve the resulting matrix problem using the parallel sparse direct solver
ackage SuperLU_DIST (Li and Demmel, 2003). We compute the sparse factors once at the beginning of the simulation
nd use it to obtain the solution at each timestep. For thin plate problems, we found the sparse direct solvers to be at
east 20 times faster than the state of the art iterative solvers (multigrid preconditioned conjugate gradient on the scaled
hickness preconditioned system (Klöppel et al., 2011)). This is because the matrix problem arising from the discretization
f thin plate using solid elements is extremely ill-conditioned. Therefore, even the state of the art iterative solvers require
large number of iterations to converge to a specified tolerance. For validation of the structural solver, we refer the reader
o Appendix B.

We non-dimensionalize the structural equations with the half-channel height (δ), fluid density (ρf ), and friction velocity
uτ ). The non-dimensional properties of the plate are shown in Table 3. We describe the procedure used to arrive at the
alues in Table 3 and the physical significance behind the choice in Appendix A.
4
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Table 3
Non-dimensional properties of the plate.
Young’s modulus (E/

(
ρf u2

τ

)
) 6.88 × 109

Poisson ratio (νs) 0.4
Solid density (ρs/ρf ) 1.17 × 103

We incorporate damping using Rayleigh damping with mass proportional damping coefficient of 2.25. The structural
loss factor with the chosen mass proportional damping is around 0.05 at the first natural frequency. The solid simulation
timestep is the same as the fluid DNS.

The solid mesh is Cartesian and composed of 27-node hexahedral elements. Table 2 gives the dimensions of the mesh.
Since the plate is of high aspect ratio, we only use one element in the thickness direction. Further, the fluid and solid
meshes match at the interface. Thus, no special load transfer strategy is required. We set the displacement of the nodes
on all four sides of the plate to zero and apply the rigid wall DNS wall-pressure fluctuations onto the top surface of the
plate.

The fluid DNS is first run until it reaches a statistically stationary state. Then, the one-way coupled FSI simulation is
run for a total time of 30δ/uτ units for Reτ = 180 and 23δ/uτ units for Reτ = 400. For Reτ = 180 and 400, we discard
he first 15δ/uτ and 8δ/uτ time units of the solid response, respectively, as it contains the initial transient response of
he solid. We use the remaining 15δ/uτ time units for Reτ = 180 and 15δ/uτ for Reτ = 400 to compute the statistics of
he plate response.

. Analysis framework

.1. Theory

The goal is to express the plate averaged displacement PSD as a double integral over all the wall-parallel plane pairs.
o accomplish this, we first express the steady-state component of the bottom wall displacement d(x, −δ, z, t) as a
all-normal integral,

d(x, −δ, z, t) =

∫
+δ

−δ

fd(x, y, z, t)dy. (2)

Here, fd(x, y, z, t) is called the ‘net displacement source’ (exact form is derived later). It gives the contribution of each
wall-parallel plane to the surface displacement of the plate. We define the plate averaged displacement PSD φa

dd(ω) as

φa
dd(ω) =

1
Ap

∫∫
Γfs

φdd(x, −δ, z, ω) dx dz,

φdd(x, −δ, z, ω) =
1
2π

∫
+∞

−∞

⟨d∗(x, −δ, z, t)d(x, −δ, z, t + τ )⟩e−iωτ dτ ,

(3)

here φdd(x, −δ, z, ω) is the displacement PSD at a point (x, −δ, z) on the surface of the plate, ⟨·⟩ denotes ensemble
average, Ap is the area of the plate, and Γfs is the plate surface. Note that the PSD φdd is independent of time t because
we include only the steady-state component of the plate displacement d(x, −δ, z, t), which is stationary in time due to
the stationary wall-pressure fluctuations.

We can then relate the plate averaged displacement PSD φa
dd(ω) to the net displacement source fd(x, y, z, t) using

Eqs. (2) and (3) as

φa
dd(ω) =

∫∫
+δ

−δ

Γ a(r, s, ω) dr ds,

Γ a(r, s, ω) =
1
Ap

∫
Γfs

(
1
2π

∫
+∞

−∞

⟨f ∗

d (x, r, z, t)fd(x, s, z, t + τ )⟩e−iωτ dτ
)

dx dz,
(4)

where Γ a(r, s, ω) is the plate averaged CSD of fd(x, y, z, t). The function Γ a(r, s, ω) yields the contribution of each wall-
parallel plane pair to the PSD φa

dd(ω) for different frequencies. Note that the CSD does not depend on time t because, like
the steady-state component of the plate displacement, the net displacement source is also stationary in time.

We obtain fd(x, y, z, t) as follows. First, we express the total (steady-state and transient) displacement d̃(x, −δ, z, t) in
the modal basis as

d̃(x, −δ, z, t) =

∞∑
d̃j(t)ϕj(x, −δ, z), (5)
j=1

5
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where, ϕj(x, −δ, z) is the wall-normal component of the jth mode shape on the top surface of the plate, and d̃j(t) is
he component of the d̃ along the jth mode shape. Then, we separate d̃j(t) into steady-state (dj(t)) and transient (d̂j(t))
omponent as d̃j(t) = dj(t) + d̂j(t). The steady-state component of the displacement is then

d(x, −δ, z, t) =

∞∑
j=1

dj(t)ϕj(x, −δ, z). (6)

To obtain the expression for d̃j(t), we assume zero initial displacement and velocity of the plate, Rayleigh damping model
to account for the damping of the plate, and obtain the below solution using the Duhamel integral (Bathe, 2006),

d̃j(t) =
1
ω̄j

∫ t

0
fj(τ )e−ξjωj(t−τ)sin

(
ω̄j (t − τ)

)
dτ , (7)

where ω̄j = ωj

√
1 − ξ 2

j , and fj(t) is the modal force of the jth mode shape of the plate given by

fj(t) = −

∫∫
Γfs

p(x, −δ, z, t)ϕj(x, −δ, z) dx dz, (8)

and ξj = (α/ωj + βωj)/2. Here, α and β are the Rayleigh damping coefficients. We separate d̃j(t) into steady-state and
transient components by Fourier transforming fj(t) in Eq. (10) and carrying out some algebraic manipulations,

d̃j(t) =

∫
+∞

−∞

f̂j(ω)(
ω2

j − ω2
)
+ 2iξjωjω

eiωt dω  
steady−state

+

e−ξjωjt
∫

+∞

−∞

f̂j(ω)(
ω2

j − ω2
)
+ 2iξjωjω

(
cos
(
ω̄jt
)
+

(
ξjωj + iω

ω̄j

)
sin
(
ω̄jt
))

dω  
transient

,

(9)

here f̂j(ω) = (1/(2π))
∫

+∞

−∞
fj(τ )eiωτ dτ . From the above equation, we observe that the steady-state component is

ersistent, whereas the transient component decays exponentially with time. The steady state component dj(t) is then

dj(t) =

∫
+∞

−∞

f̂j(ω)(
ω2

j − ω2
)
+ 2iξjωjω

eiωt dω. (10)

To express p(x, −δ, z, t) in Eq. (8) as a wall-normal integral, we use the pressure fluctuation Poisson equation,

−∇
2p = f = ρf

(
2
∂U f

i

∂xj

∂uf ′
j

∂xi
+

∂2

∂xi∂xj

(
uf ′
i u

f ′
j − uf ′

i u
f ′
j

))
, (11)

here U f
i and uf ′

i are the mean and fluctuating fluid velocities, respectively. Neglecting the Stokes contribution, we use
zero Neumann boundary condition at the top and bottom walls for the pressure fluctuations. This is reasonable as the
tokes component of wall-pressure fluctuations is small at high Reynolds number (Hoyas and Jiménez, 2006). To obtain
unique solution, we set the average of the pressure fluctuations at the top and bottom wall to zero at all times. The
olution to the pressure fluctuations p(x, −δ, z, t) at the bottom wall is then,

p(x, −δ, z, t) =

∫
+δ

−δ

fG(x, y, z, t) dy,

fG(x, y, z, t) =

∫∫
+∞

−∞

G(−δ, y, k)f̂ (k1, y, k3, t)ei(k1x+k3z)dk1 dk3,

k =

√
k21 + k23,

G(r, s, k) =

⎧⎨⎩ cosh(k(s−δ)) cosh(k(r+δ))
2k sinh(kδ) cosh(kδ) , r ≤ s,

cosh(k(s+δ)) cosh(k(r−δ))
2k sinh(kδ) cosh(kδ) , r > s,

(12)

here fG(x, y, z, t) is termed the ‘net source’ function (Anantharamu and Mahesh, 2020), G(−δ, y, k) is the Green’s function,
nd f̂ (k1, y, k3, t) is the multidimensional Fourier transform of the source terms f (x, y, z, t) defined as

f̂ (k1, y, k3, t) =
1

2

∫∫
+∞

f (x, y, z, t)e−i(k1x+k3z)dx dz. (13)

(2π ) −∞

6
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We call fG(x, y, z, t) the ‘net source’ function because it includes contributions from all wavenumbers and the Green’s
function. Combining Eqs. (6), (8), (10), and (12), we obtain the required expression for the net displacement source
fd(x, y, z, t) as

fd(x, y, z, t) =

∞∑
j=1

(∫
+∞

−∞

r̂j(y, ω)(
ω2

j − ω2
)
+ i2ξjωjω

eiωt dω

)
ϕj(x, −δ, z), (14)

where r̂j(y, ω) = 1/(2π )
∫

+∞

−∞
rj(y, t)e−iωt dt, and rj(y, t) is given by

rj(y, t) =

∫∫
Γfs

fG(x, y, z, t)ϕj(x, −δ, z) dx dz. (15)

To obtain the contribution from the cross-correlation of the fluid sources with a particular plane y = r to the plate
averaged response PSD, we integrate Γ a(r, s, ω) along s to obtain Ψ a(r, ω),

Ψ a(r, ω) =

∫
+δ

−δ

Γ a(r, s, ω) ds. (16)

It can be shown that Ψa(r, ω) is the plate averaged wall displacement–net displacement source CSD,

Ψ a(r, ω) =
1
Ap

∫
Γfs

(
1
2π

∫
+∞

−∞

⟨f ∗

d (x, r, z, t)d(x, −δ, z, t + τ )⟩e−iωτ dτ
)

dx dz. (17)

urther, the plate averaged wall displacement–net displacement source CSD relates to the plate averaged displacement
SD φa

dd(ω) as

φa
dd(ω) =

∫
+δ

−δ

Ψ a(r, ω) dr =

∫
+δ

−δ

Re
(
Ψ a(r, ω)

)
dr, (18)

here Re(·) is the real part of ·.
We relate the plate averaged net displacement source CSD Γa(r, s, ω) to the four-dimensional CSD of the pressure

luctuation source terms ϕff (r, s, k1, k3, ω) as follows. The four-dimensional CSD ϕff (r, s, k1, k3, ω) is defined as

ϕff (r, s, k1, k3, ω) =

1
(2π)3

∫∫∫
+∞

−∞

⟨f ∗(x, z, r, t)f (x + ξ1, z + ξ3, s, t + τ )⟩e−i(k1ξ1+k3ξ3+ωτ)dξ1 dξ3 dτ .
(19)

The PSD of the steady-state component of the modal displacement φdjdj (ω) relates to the modal force PSD φfjfj (ω) as
(Eq. (10))

φdjdj (ω) = |Hj(ω)|2φfjfj (ω),

Hj(ω) =
1(

ω2
j − ω2

)
+ i2ξjωjω

,
(20)

here |Hj(ω)|2 is the gain in the response of the jth mode. Further, the modal force φfjfj (ω) relates to the wall-pressure
avenumber frequency spectrum ϕpp(k1, k3, ω) as

φfjfj (ω) =

∫∫
+∞

−∞

ϕpp(k1, k3, ω)|Sj(k1, k3)|2 dk1 dk3. (21)

elating ϕpp(k1, k3, ω) to the four-dimensional CSD ϕff (r, s, k1, k3, ω) using the Green’s function, we obtain

φfjfj (ω) =

∫∫
+δ

−δ

∫∫
+∞

−∞

G∗(−δ, r, k)G(−δ, s, k)ϕff (r, s, k1, k3, ω)

|Sj(k1, k3)|2 dk1 dk3 dr ds,
(22)

here Sj(k1, k3) =
∫∫

Γfs
ϕj(x, −δ, z)ei(k1x+k3z) dx dz is the Fourier transform of the mode shape, and |Sj(k1, k3)|2 is the

modal shape function’ (Hwang and Maidanik, 1990). Next, we relate the plate averaged displacement PSD φa (ω) to the
dd

7
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modal displacement PSD φdjdj (ω) as

φa
dd(ω) =

1
Ap

∫∫
Γfs

φdd(x, −δ, z) dx dz,

=
1
Ap

∫∫
Γfs

∞∑
i=1

∞∑
j=1

φdidj (ω)ϕi(x, −δ, z)ϕj(x, −δ, z) dx dz,

≈
1

ρsLsyAp

∞∑
j=1

φdjdj (ω)

(
∵

∫∫
Γfs

ϕi(x, −δ, z)ϕj(x, −δ, z) dx dz ≈
1

ρLsy
δij

) (23)

hus, combining Eqs. (20), (22), and (23), we obtain the required expression

Γ a(r, s, ω) ≈
1

ρLsyAp

∫∫
+∞

−∞

G∗(−δ, r, k)G(−δ, s, k)ϕff (r, s, k1, k3, ω)⎛⎝ ∞∑
j=1

|Sj(k1, k3)|2|Hj(ω)|2

⎞⎠ dk1 dk3.
(24)

We investigate the structure of the decorrelated contribution from wall-parallel planes by performing spectral POD of
he CSD Γ a(r, s, ω). We use the following inner product to define the orthonormal relation between the eigenfunctions
¯ i and Φ̄j of Γ a(r, s, ω),∫

+δ

−δ

((
− (1 − β)

∂2

∂y2
+ β

)
Φ̄i

)
Φ̄∗

j dy = δij, (25)

here β is a real number satisfying 0 < β ≤ 1 and δij is the Kronecker delta. Further, the eigenfunctions Φ̄i(r, ω) are
ssumed to satisfy the zero-Neumann boundary conditions at the wall r = −δ and r = +δ. Following Anantharamu and
ahesh (2020), we call the above inner product as the Poisson inner product because the symmetric positive definite
ernel

(
− (1 − β) ∂2

∂y2
+ β

)
relates to the Poisson equation. The spectral POD of Γ a(r, s, ω) is then

Γ a(r, s, ω) =

∞∑
j=1

λj(ω)Φj(r, ω)Φ∗

j (s, ω), (26)

here {Φj, λj}
∞

j=1 is the set of spectral POD modes and eigenvalues. The spectral POD mode Φj relates to the eigenfunction
¯ j of Γ a(r, s, ω) through the relation Φj =

(
− (1 − β) ∂2

∂y2
+ β

)
Φ̄j. The associated eigenvalue problem for Φ̄j and λj is∫

+δ

−δ

Γ a(r, s, ω) Φ̄j(s, ω) ds = λj(ω)
((

− (1 − β)
∂2

∂y2
+ β

)
Φ̄j

)
(r, ω). (27)

urther, the functions {Φj}
∞

j=1 and {Φ̄j}
∞

j=1 satisfy the orthonormality relation∫
+δ

−δ

Φi(y, ω)Φ̄∗

j (y, ω), dy = δij. (28)

The obtained spectral POD eigenvalues gives ranked contribution from each spectral POD mode to the following double
ntegral,

∫∫
+δ

−δ

G
(
r, s, β

1−β

)
1 − β

Γ a(r, s, ω) dr ds =

∞∑
j=1

λj(ω) (29)

here G(r, s, β/(1 − β)) is the Green’s function given by Eq. (12). For small values of β , the function G(r, s, β/(1 − β))

ecomes flatter and approaches a constant in r and s, and the left hand side
∫∫

+δ

−δ

G
(
r,s, β

1−β

)
1−β

Γ a(r, s, ω) dr ds becomes a
ood proxy for the plate averaged displacement PSD φa

dd(ω) =
∫∫

+δ

−δ
Γ a(r, s, ω) dr ds. Therefore, the obtained spectral POD

odes isolate the dominant contributors to plate averaged displacement PSD. For more details about the effectiveness of
he Poisson inner product, we refer the reader to Anantharamu and Mahesh (2020).
8
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To obtain the contribution of each spectral POD mode to the plate averaged displacement PSD, we doubly integrate
q. (26) to obtain

φa
dd(ω) =

∞∑
j=1

γj(ω),

γj(ω) = λj(ω)|
∫

+δ

−δ

Φj(y, ω) dy|2; j = 1, . . . ,∞,

(30)

here γj(ω) is the contribution of jth mode to PSD at frequency ω. Further, we can show that

|

∫
+δ

−δ

Φj(y, ω) dy| =

∫
+δ

−δ

|Φj(y, ω)|cos
(
̸ Φj(y, ω) − ̸ Φn

i (ω)
)
dy, (31)

here ̸ · is the argument of ·, and ̸ Φn
j (ω) is the argument of the integral

∫
+δ

−δ
Φj(y, ω) dy. Using Eq. (31) in Eq. (30), we

btain

γj(ω) = λj(ω)
(∫

+δ

−δ

|Φj(y, ω)|cos
(
̸ Φj(y, ω) − ̸ Φn

i (ω)
)
dy
)2

; j = 1, . . . ,∞. (32)

From the above equation, we observe that the eigenvalue, and both magnitude and phase of the spectral POD mode all
play a role in determining its contribution to the plate averaged displacement PSD. The contribution from different wall-
normal locations can constructively or destructively interfere based on the phase of the spectral POD mode. Constructive
interference occurs between the contribution from regions where the phase angle satisfies |̸ Φj(y, ω) − ̸ Φn

j (ω)| < π/2.
Further, the contribution from regions with the phase angle in the range |̸ Φj(y, ω) − ̸ Φn

j (ω)| < π/2 destructively
interfere with the regions where π/2 < |̸ Φj(y, ω) − ̸ Φn

j (ω)| < π .
To obtain the contribution of each spectral POD mode to the integrated energy of the net displacement source, we set

= r in Eq. (26) and integrate along r ,∫
+δ

−δ

Γ a(r, r, ω) dr =

∞∑
j=1

λ̄i(ω);

λ̄i(ω) = λi(ω)
∫

+δ

−δ

|Φi(r, ω)|2 dr,

(33)

where λ̄i is the contribution of the ith spectral POD mode to the integrated net displacement source PSD. Further, we can
show that if we require the modes to be orthogonal in the L2 inner product (β = 1), then λi(ω) = λ̄i(ω). In other words,
he modes optimally decompose the integrated PSD as∫

+δ

−δ

Γ a(r, r, ω) dr =

∞∑
j=1

λi(ω). (34)

.2. Implementation

To compute the net displacement source CSD Γ a, we need to store the four-dimensional CSD ϕff from the fluid
NS (Eq. (24)). However, storing this function is prohibitively memory intensive. For the Reτ = 400 case, as-
uming 2000 frequencies, approximately 1000 TB is required to store the four-dimensional function. To circumvent
his issue, we use a parallel, streaming methodology presented in Anantharamu and Mahesh (2020) with a small
odification. Anantharamu and Mahesh (2020) presented the implementation to compute the CSD Γ (r, s, ω) =∫
+∞

−∞
G∗(−δ, r, k)G(−δ, s, k)ϕff (r, s, k1, k3, ω) dk1 dk3. We modified their implementation to compute the CSD Γ a given

y Eq. (24) instead.
We use the first 50 modes of the plate to perform the summation in Eq. (24). The first 50 modes are sufficient to analyze

he plate excitation sources with frequencies smaller than ωδ/uτ = 500. To verify this, we compare the plate averaged
isplacement spectrum computed using the CSD to that obtained from the one-way coupled DNS. The two spectra match
or frequencies smaller than ωδ/uτ = 500 which shows that 50 modes are sufficient (see Fig. 19 in Appendix C). For a
iscussion on how to choose the number of modes for other Reynolds numbers, and material properties, we refer the
eader to Appendix C.

We use the pressure fluctuation Poisson source terms sampled at a resolution of ∆tuτ/δ = 3.5×10−3 for both Reynolds
umbers. This amounts to sampling the data once every 7 timesteps of the DNS simulation. In total, we use 20δ/uτ and
3δ/uτ time units of the simulation data for Reτ = 180, and Reτ = 400, respectively. In each FFT chunk, we use 2000
amples which leads to a frequency resolution of ∆ωδ/uτ = 2π/7. To reduce the spectral leakage and to increase the
tatistical convergence, we use Hanning window with 75% overlap. Further, to account for the reduction in the spectral
evel after windowing, we multiply the estimated CSD by a factor of 8/3 (Bendat and Piersol, 2011).
9
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Fig. 2. Instantaneous visualization of the FSI simulation for Reτ = 180.

Table 4
Plate averaged Root Mean Square (RMS) displacement and velocity of the plate.

Reτ ⟨d+
2
⟩
1/2

⟨v+
2
⟩
1/2

180 1.81 × 10−2 5.32 × 10−3

400 5.32 × 10−2 7.87 × 10−3

Table 5
First ten natural frequencies of the plate.
Mode index, j 1 2 3 4 5 6 7 8 9 10

Natural frequency, ωjδ/uτ 45.05 50.2 59.66 73.9 93.03 116.95 121.65 127.24 136.77 145.55

4. Results and discussion

4.1. FSI simulation results

Fig. 2 shows an instantaneous visualization of the FSI simulation. The vertical and horizontal slices show the fluid
treamwise velocity and wall-pressure fluctuations, respectively. The center patch denotes the deformed plate. The
sosurfaces are of Q-criterion at non-dimensional values of 500 and 1000. The colored overlayed on the isosurface denotes
he streamwise component of vorticity. We use different colormaps for each quantity. The instantaneous field clearly
hows the fine scales features of wall turbulence.
The plate averaged root mean square (RMS) wall-normal displacement and velocity for both Reτ is given in Table 4.

ince, the RMS displacement and velocity is much lesser than 1 in viscous units, the one-way coupling is justified.
Fig. 3a and b show the plate averaged wall-normal displacement spectra for both Reτ in outer (normalized with δ

and uτ ) and inner units (normalized with δν and uτ ), respectively. We subsample the plate response at a resolution of
∆tuτ/δ = 3.5 × 10−3. This amounts to storing the data once every seven timesteps. The total time span of the temporal
data used to compute the spectra is 15δ/uτ for Reτ = 180 and 15δ/uτ for Reτ = 400. We divide the temporal data
nto chunks of size 7δ/uτ for averaging. This leads to a spectral resolution of ∆ωδ/uτ = 2π/7. To increase convergence
nd reduce spectral leakage, we use 75% overlap and Hanning window, respectively. We multiply the obtained spectral
stimate by a factor of 8/3 to account for the reduction in the spectral level after windowing (Bendat and Piersol, 2011).
inally, to obtain the plate averaged spectrum, we average the estimated spectrum on the top surface of the plate.
Table 5 shows the first 10 natural frequencies (ωjδ/uτ ; j = 1, . . . , 10) of the plate. The natural frequencies coincide

n outer units for both Reτ . This coincidence occurs because we choose the plate properties to be the same in outer units
or the two Reτ . At these natural frequencies, the plate undergoes resonant vibration leading to large structural response.
he plate displacement spectrum in Fig. 3a peaks at the natural frequencies (ωjδ/uτ ) of the plate.
The low frequency (ω ≪ ω1) spectral levels overlap for both Reτ . This is because (i) the non-dimensional Young’s

odulus of the plate is the same for both Reτ and (ii) the low wavenumber and frequency component of the wall-
ressure wavenumber-frequency spectrum is approximately the same in outer units for both Reτ . We can understand
his as follows.

Combining Eqs. (20), (21), and (23), we have

φa
dd(ω) ≈

1
ρsLsAp

∞∑
|Hj(ω)|2

∫∫
+∞

−∞

ϕpp(k1, k3, ω)|Sj(k1, k3)|2 dk1 dk3. (35)

y j=1

10
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Fig. 3. Plate averaged wall-normal displacement power spectra in (a) outer units (normalized by δ and uτ ) and (b) inner units (normalized by δν

and uτ ).

Fig. 4. Product |S1(k1, k3)|2ϕpp(k1, k3, ω = 12.6uτ /δ) for (a) Reτ = 180 and (b) Reτ = 400. Contours are 100 equally spaced values between 2× 10−7

nd 10−5 .

or frequencies ω ≪ ω1, we can approximate the average spectra using only the first mode as

φa
dd(ω) ≈

1
ρsLsyAp

|H1(ω)|2
∫∫

+∞

−∞

ϕpp(k1, k3, ω)|S1(k1, k3)|2 dk1 dk3,

≈
1

ρsLsyApω
4
1

∫∫
+∞

−∞

ϕpp(k1, k3, ω)|S1(k1, k3)|2 dk1 dk3.
(36)

ince, the first natural frequency (ω1) is proportional to the longitudinal wave speed (cl) of the plate, we have

c4l φ
a
dd(ω) ∝

∫∫
+∞

−∞

ϕpp(k1, k3, ω)|S1(k1, k3)|2 dk1 dk3. (37)

ote that we have absorbed ρs, Lsy, Ap into the proportionality constant. Non-dimensionalizing the above equation, we
ave (

c4l
u3

τ

)
φa
dd(ω)
δ3

≈ C
(

ωδ

uτ

, Reτ

)
, (38)

here C is some function of ωδ/uτ and Reτ only. We absorb the proportionality constant into C . Fig. 4a and b show
he product |S1(k1, k3)|2ϕpp(k1, k3, ω) for Reτ = 180 and 400 in outer units, respectively for a typical frequency ωδ/uτ =

2.6 ≪ ω . Overall, the contours are similar for both Re . This similarity of contours occurs in the frequency range ω ≪ ω .
1 τ 1

11
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Fig. 5. a) High frequency plate averaged displacement spectra comparison by fixing Eδ2/(ρf ν
2
f ) and E/ρf u2

τ between the two Reynolds numbers. b)
Low frequency plate averaged displacement spectrum in semilogarithmic coordinates. The results are normalized in outer units. The vertical dashed
lines denote the frequency coordinates of the first ten natural frequencies in outer units.

Thus, the dependency on Reτ can be dropped, and we have(
c4l
u3

τ

)
φa
dd(ω)
δ3

≈ C
(

ωδ

uτ

)
. (39)

urther, substituting for cl in terms of the Young’s modulus E, we have(
E

ρsu2
τ

)2
φa
dd(ω)uτ

δ3
≈ C

(
ωδ

uτ

)
. (40)

ince, E
ρsu2τ

is the same for both Reτ , we have the required result,

φa
dd(ω)uτ

δ3
≈ C

(
ωδ

uτ

)
. (41)

Fig. 3b shows the plate averaged displacement PSD with inner scaling (δν = νf /uτ and uτ as length and velocity scale,
espectively). The PSD at the two Reτ do not overlap in the high-frequency region. This is because for identical natural
requencies in inner units, the corresponding modal wavenumbers do not match in inner units, i.e., if j and k are two
ode indices such that(

ωjδν/uτ

)
Reτ =180 = (ωkδν/uτ )Reτ =400 , (42)

hen (
km,jδν

)
Reτ =180 ̸=

(
km,kδν

)
Reτ =400 . (43)

herefore, the plate filters different wavenumbers from the wall-pressure wavenumber frequency spectrum in viscous
nits leading to dissimilar high-frequency spectral levels.
A better overlap of high-frequency spectral levels is observed (shown in Fig. 5a) if Eδ2/

(
ρf ν

2
f

)
(velocity scale is νf /δ)

is fixed for the two Reynolds numbers instead of E/ρf u2
τ (velocity scale is uτ ). This is because for fixed Eδ2/

(
ρf ν

2
f

)
and

coinciding natural frequencies in inner units, the corresponding modal wavenumbers also coincide in inner units. We
explain this as follows. Let j and k be the mode indices with coinciding natural frequencies in inner units for Reτ = 180
and 400, respectively, i.e.,(

ωjδν/uτ

)
Reτ =180 ≈ (ωkδν/uτ )Reτ =400 . (44)

We can show that for fixed Eδ2/
(
ρf ν

2
f

)
and Lsy/δ, we have(

km,jδ
)2

≈
(
km,kδ

)2 (180
400

)2

. (45)

urther, non-dimensionalizing in viscous units, we obtain the desired relation,(
km,jδν

)
Reτ =180 ≈

(
km,kδν

)
Reτ =400 (46)
12
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Fig. 6. Comparison of the streamwise length scales of the wall-pressure and the plate deflection for the first three natural frequencies. Figures
(a), (b), and (c) compare the streamwise shape ϕj(x); j = 1, 2, 3 of the first three modes to the real part of the streamwise CSD of the DNS
all-pressure fluctuations ξpp(∆x, ω) at its natural frequencies. Here, ∆x is the streamwise separation distance. Black solid line denotes the shape
f the plate mode along the streamwise direction. Red solid and dashed lines denote the real part of the streamwise CSD for Reτ = 180 and 400,
espectively. xc is the streamwise coordinate of the center of the domain. Figures (d), (e), and (f) are the spanwise counterparts of figures (a), (b)
nd (c), respectively. ϕj(z); j = 1, 2, 3 denote the spanwise shape of the first three modes, and ξpp(∆z, ω) denotes the spanwise CSD of the DNS
all-pressure fluctuations. Figures (g), (h) and (i) compare the integrated modal shape function

∫
+∞

−∞
|Sj(k1, k3)|2 dk3 to the streamwise wavenumber

requency spectrum φ̄pp(k1, ω) =
∫

+∞

−∞
ϕpp(k1, k3, ω) dk3 of the DNS wall-pressure fluctuations as a function of the streamwise wavenumber k1 .

igures (a), (d), and (g) are for mode 1. Figures (b), (e), and (h) are for mode 2. Figures (c), (f) and (i) are for mode 3.

.2. Length scale comparison for the first three modes

Fig. 5b provides a closer look at the resonant vibration levels for the first few modes in semi-logarithmic coordinates.
n the same figure, we also mark the frequency ordinate of the first ten natural frequencies of the plate using vertical
lack dashed lines. The resonant spectrum level at the first natural frequency is lower than at the second mode. The
lobal maximum of the spectrum occurs at the third natural frequency. This behavior is due to the relative ratio of the
treamwise length scales of the structural mode and the pressure fluctuation correlations at the mode’s natural frequency.
he lower resonant vibration at the first mode is because the relative ratio is large. And, the maximum resonant vibration
t the third mode is because the relative ratio is close to unity indicating similar fluid and solid length scales.
We further investigate this in Fig. 6a where we compare the streamwise length scales of the fluid and solid for the

late’s first mode. For the structural length scale, we use the solid black line to plot the plate’s first mode shape in the
treamwise direction. Note that the mode shape is the same for both Reτ . For the fluid length scale, we use the solid
nd dashed red lines to plot the real part of the streamwise CSD of the DNS wall-pressure fluctuations at the mode’s
atural frequency. The solid red line is for Reτ = 180, and the dashed red line is for Reτ = 400. The streamwise CSD
hows the correlation of the fluid wall-pressure fluctuations at the mode’s natural frequency. The comparison shows that
13
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Fig. 7. Real part of the normalized wall displacement–net displacement source CSD Re(Ψa(y,ω))∫
+∞

−∞

∫
+1
−1 Ψa(y,ωδ) dy/δ dωδ/uτ

. The wall-normal distance is in outer

nits in figures (a) and (b), and is in inner units in figures (c) and (d). Figures (a) and (c) are for Reτ = 180, and figures (b) and (d) are for Reτ = 400.
n all the figures, the contours are 100 equally spaced values between −0.002 and 0.2. Horizontal dashed red lines denote the first four natural
requencies of the plate. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

he streamwise length scale of the wall-pressure is much finer than the plate’s mode shape. This difference leads to less
orcing on the first mode by the wall-pressure fluctuations and therefore, smaller resonant vibration.

One can better understand how the difference in the streamwise length scale translates to less modal forcing in
avenumber space (Blake, 2017). In Fig. 6e, we compare the wall-pressure wavenumber frequency spectrum to the modal
hape function at the plate’s first natural frequency. Both the spectrum and the modal shape functions are integrated
long the spanwise wavenumbers, and hence the curves are only a function of the streamwise wavenumber. The product
f these two functions reflects the contribution from each streamwise wavenumber to the modal forcing. For an exact
xpression of this contribution, see the integrand of Eq. (1).
From Fig. 6e, we can observe that the modal shape function peaks at k1δ = 0, and its values are similar to the peak

alue until k1δ ≈ 1. However, the wavenumber frequency spectrum peaks at the convective wavenumber k1δ ≈ 2.5. This
eparation between the dominant fluid and solid wavenumbers results in a smaller product of the two functions, which,
n turn leads to smaller modal forcing.

For the above discussion, we considered only the first mode. For higher mode indices 2 and 3, the streamwise structural
ength scale is smaller than mode 1. Fig. 6b and c compare these higher mode shapes to the fluid wall-pressure streamwise
SD at the corresponding natural frequencies. Fig. 6b is for mode 2, and Fig. 6c is for mode 3. As we go from mode 1 to
ode 2, the length scale of both the mode and wall-pressure decrease, but the mode’s length scale decreases faster. This
ecrease continues as we go from mode 2 to mode 3, where the two length scales approach each other. This similarity
n the length scales leads to maximum resonant vibration at mode 3.

In the spectral space, this streamwise length scale similarity of the higher modes appears as a coincidence between
he modal wavenumber (peak of the modal shape function) and the convective wavenumber (peak of the wall-pressure
treamwise wavenumber frequency spectrum). Fig. 6h and i show this comparison in wavenumber space for modes 2
nd 3, respectively. Here, we plot the same quantities plotted in Fig. 6g but for the higher modes. The two peaks start to
pproach each other as we go from mode 1 (Fig. 6g) to mode 2 (Fig. 6h), and move even closer as we go from mode 2
o mode 3 (Fig. 6i). This coincidence leads to relatively higher modal forcing for modes 2 and 3 than mode 1 and is the
eason for the higher resonant vibration of the higher modes.
14
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Fig. 8. Fractional plate averaged wall displacement-net displacement source CSD (normalized by the spectrum) at the third natural frequency for
eτ = 180 and 400. Figure (a) is in outer units and figure (b) is in inner units. Vertical dashed line in figure (a) denotes y/δ = 0.75.

Table 6
Fractional contribution of different wall-normal regions to the plate averaged displacement spectrum at the second,
third and fourth natural frequency.
Range 2nd mode 3rd mode 4th mode

Reτ = 180 Reτ = 400 Reτ = 180 Reτ = 400 Reτ = 180 Reτ = 400

0 < y+ < 30 0.51 0.29 0.50 0.21 0.53 0.29
30 < y+ < 0.2Reτ 0.07 0.24 0.10 0.31 0.08 0.24
0.2 < y/δ < 1 0.42 0.46 0.40 0.48 0.39 0.47

For the current example, the spanwise length scales of the first three modes are comparable to that of the wall-pressure
fluctuations. Fig. 6d–f show this comparison. For the spanwise solid length scale, we plot the spanwise shape of the mode.
For the fluid length scale, we plot to the spanwise wall-pressure CSD at the mode’s natural frequencies. These figures
are the spanwise counterparts of Fig. 6a–c. The modes in Fig. 6d–f are identical to each other. This is because for the
current aspect ratio (length/width) of the plate, as we go from mode 1 to 3, the streamwise mode index grows while the
spanwise mode index stays the same. The corresponding fluid length scales are comparable to the structural length scale
and decrease slightly with increasing natural frequency.

4.3. Wall-normal distribution of fluid sources

Fig. 7 shows the plate-averaged wall displacement–net displacement source CSD Ψ a(y, ω) normalized by its double
ntegral. In Figs. 7a and b, the wall-normal distance is in outer units. In Fig. 7c and d, the wall-normal distance is in inner
nits. Fig. 7a and c are for Reτ = 180, and Fig. 7b and d are for Reτ = 400. In all figures, the frequency ordinates of
he four horizontal dashed red lines are the first four natural frequencies of the plate (Table 5). Recall, from Eq. (18),
ntegrating the CSD Ψ a(y, ω) along y gives the plate averaged displacement spectrum. Therefore, the contours reflect the
ontribution of different wall-parallel planes to the displacement PSD as a function of frequency. Specifically, they indicate
he contribution from the correlations between the fluid sources at a given distance from the wall and every other plane.
rom a visual inspection of the contours in Fig. 7, we see that the fluid sources around the natural frequencies are the
ominant contributors to the structural response. This dominant contribution peaks close to the wall (Fig. 7c and d). The
ominant contribution’s width extends well up to the outer region of the channel (Fig. 7c and d).
In the previous section, we saw that the resonant vibration reaches its maximum for the third mode. We now

nvestigate the wall-normal distribution of the fluid sources that contribute to this resonant vibration. We do so by
nalyzing the CSD Ψ a(y, ω) at its natural frequency in Fig. 8. We normalize the curves so that they integrate to unity
long the wall-normal direction. In Fig. 8a, the wall-normal distance is in outer units. In Fig. 8b, the wall-normal distance
s in inner units. We use a dashed red line for Reτ = 180, and solid black line for Reτ = 400.

The global maximum of the CSD occurs in the inner region of the channel and the sources extend up to y/δ = 0.75.
n addition to this near-wall peak, we observe two other peak regions. We argue that these three peaks regions indicate
he contribution of the fluid sources in the channel’s inner, overlap, and outer regions. The peak region close to the wall,
haded in red for Reτ = 180 and in black for Reτ = 400, extends to y+

≈ 22 and 28, respectively. This region indicates the
ontribution of the inner-layer sources because its upper bound scales better in inner-units and is lesser than y+

= 30
the channel’s inner region bound). The second peak region, shaded in yellow for Re = 180 and green for Re = 400,
τ τ

15
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Fig. 9. Fractional plate averaged wall displacement-net displacement source CSD (normalized by the spectrum) at the second and fourth natural
requency for Reτ = 180 and 400. Figures (a) and (b) are at the second natural frequency and figures (c) and (d) are the fourth natural frequency.
igures (a) and (c) are in outer units and figure (b) and (d) are in inner units. Vertical dashed line in figures (a) and (c) denotes y/δ = 0.75.

Table 7
Fractional contribution of different wall-normal regions to the plate averaged root mean square
displacement (accounted by the first 50 modes) for the two Reτ .
Range Reτ = 180 Reτ = 400

0 < y+ < 30 0.52 0.34
30 < y+ < 0.2Reτ 0.06 0.17
0.2 < y/δ < 1 0.41 0.49

extends to y/δ = 0.2 and 0.25, respectively. Note that the lower bound of this region is the upper bound of the previous
egion. The upper and lower bounds scale better in different units, and therefore, this second peak region denotes the
hannel’s overlap region contribution to the plate excitation. The third peak region is farthest from the wall. It is shaded
n cyan for Reτ = 180 and in dark blue for Reτ = 400, and extends from y/δ = 0.2 and 0.25, respectively, to the channel
enterline. Hence, this region constitutes the contribution of the outer-region sources to the plate excitation.
We compare the fractional contribution of the inner, overlap, and the outer regions to the PSD by integrating the CSD

Fig. 8) from 0 < y+ < 30, 30 < y+ < 0.2Reτ , and 0.2 < y/δ < 1, respectively. The second column of Table 6 shows this
omparison for the third mode. The values sum to unity for both Reτ . We observe that, for Reτ = 180, nearly, 50% of the
eak resonant vibration comes from the overlap and outer regions of the channel. For Reτ = 400, this increases to 80%.
f the plate material parameters remain fixed in outer units, we expect this trend to continue for even higher Reynolds
umbers.
In the above analysis, we focused only on the maximum resonant vibration at the third mode. In Fig. 9, similar to Fig. 8,

e show the fractional CSD at the second and fourth natural frequencies. Fig. 9a and b are for the second mode. Fig. 9c
nd d are for the fourth mode. In Fig. 9a and c, the wall-normal distance is in outer units and in Fig. 9b and d, they are in
nner units. We choose the second and the fourth modes because these two constitute the next largest resonant vibration
16
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after the third mode. The CSDs in Fig. 8 peak in the buffer layer and have reasonable values for y/δ < 0.75. Similar to
he third mode, we compute the relative contribution from the inner, overlap and outer regions at the second and fourth
atural frequency ny integrating the CSD in each region. Column 1 in Table 6 is for the second mode and column 3 is
or the fourth mode. These relative contributions are similar to the previously discussed third mode, and show a similar
rend with Reynolds number. Further, we integrate the CSD Ψ a(y, ω) in frequency and obtain the contribution of each
all-normal region to the plate-averaged RMS displacement. The resulting values shown in Table 7 are similar to that in
able 6.
Overall, the contribution from the fluid sources to the plate excitation peaks in the buffer region of the channel at the

eynolds numbers considered. However, if we consider the integrated contribution, then the sources in the overlap and
he outer region of the channel also have a large relative contribution. This outer and overlap contribution is higher for
he higher Reynolds number.

The Mellen form (Corcos, 1964) of the wall-pressure wavenumber frequency spectrum has an interesting implication
n the associated one-way coupling. We show that for a Mellen type wavenumber frequency spectrum, the plate
veraged displacement PSD and the wall-pressure PSD couple in a similar manner with the channel fluid sources up
o a multiplicative constant. The Mellen type wavenumber-frequency spectrum ϕpp(k1, k3, ω) takes the form,

ϕpp(k1, k3, ω) = φpp(ω)
1
2π

(α1α3)
2[

(α1α3)
2
+ (α1k3Uc/ω)2 + α2

3 (1 − k1Uc/ω)2
]3/2 (47)

where α1 and α3 are the parameters that govern the decay of the spectrum in streamwise and spanwise directions, and
Uc is the convection velocity at frequency ω. The wall-pressure PSD φpp(ω) can be expressed as the wall-normal integral
(Anantharamu and Mahesh, 2020) using the Green’s function formulation,

φpp(ω) =

∫∫
+δ

−δ

Γ (r, s, ω) dr ds,

Γ (r, s, ω) =

∫∫
+∞

−∞

G∗(−δ, r, k)G(−δ, s, k)ϕff (r, s, k1, k3, ω) dk1 dk3.
(48)

where Γ (r, s, ω) is the net wall-pressure source CSD. The net wall-pressure source is a function fG(x, y, z, t) whose
integral in the wall-normal direction gives the instantaneous wall-pressure fluctuation p(x, −δ, z, t) =

∫
+δ

−δ
fG(x, y, z, t) dy.

Combining Eqs. (20), (21), (23), and (48), we obtain the desired result,

φa
dd(ω) = =

∫∫
+δ

−δ

Γ a(r, s, ω) dr ds =

∫∫
+δ

−δ

Γ (r, s, ω)α(ω) dr ds,

α(ω) =

∫∫
+∞

−∞

(α1α3)
2[

(α1α3)
2
+ (α1k3Uc/ω)2 + α2

3 (1 − k1Uc/ω)2
]3/2⎛⎝ ∞∑

j=1

|Ĥj(ω)|
2
|Sj(k1, k3)|2

⎞⎠ dk1 dk3.

(49)

ote that α(ω) is a positive number. Thus, for a Mellen type spectrum both plate averaged displacement PSD and
all-pressure PSD couple in a similar manner with the fluid sources. We choose the Mellen model for the analysis
ecause its isocontours in the wavenumber domain take an elliptic-like shape. The elliptic shape is more physical than
he diamond-like isocontours of the Corcos (1964) model. This similarity between the fluid–wall-pressure coupling and
he fluid–solid coupling is true for any wavenumber-frequency spectrum that takes a separable form ϕpp(k1, k3, ω) =

pp(ω)A (k1Uc/ω, k3Ucω), where A (k1Uc/ω, k3Ucω) is the similarity function that describes the streamwise and spanwise
orm of the spectrum.

.4. Spectral POD of fluid sources

Before we present the spectral POD results of Γ a(r, s, ω), we discuss the relevance of the spectral POD modes and
igenvalues to the plate surface displacement. Recall Eq. (2) that relates the surface displacement at a point (x, z) on the
late to the net displacement source,

d(x, −δ, z, t) =

∫
+δ

−δ

fd(x, y, z, t) dy. (50)

he Fourier transform of the net displacement source can be expanded in the spectral POD basis {Φ∗

j }
∞

j=1 as

fd(x, y, z, t) =

∫
+∞

−∞

f̂ (x, y, z, ω)eiωt dω,

=

∫
+∞

−∞

∞∑
αj(x, z, ω)Φ∗

j (y, ω) eiωt dω,

(51)
j=1
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Fig. 10. Spectral POD eigenvalues for (a) Reτ = 180 and (b) Reτ = 400 computed using the Poisson inner product (β = 0.01).

Fig. 11. Contribution of each spectral POD mode to plate averaged displacement PSD for (a) Reτ = 180 and (b) Reτ = 400 computed using the
Poisson inner product (β = 0.01).

where {αj(x, z, ω)}∞j=1 are the coefficients of expansion of f̂d(x, y, z, ω). Using Eq. (51) in Eq. (50), and rearranging the
integral, we have

d(x, −δ, z, t) =

∫
+∞

−∞

αj(x, z, ω)eiωt
(∫

+δ

−δ

Φ∗

j (y, ω) dy
)
dω. (52)

sing the expression Φ∗

j (y, ω) = |Φj(y, ω)|e−̸ Φj(y,ω) in the above equation, we have

d(x, −δ, z, t) =

∫
+∞

−∞

αj(x, z, ω)eiωt
(∫

+δ

−δ

|Φj(y, ω)|e−̸ Φj(y,ω) dy
)
dω. (53)

The above equation expresses the plate displacement as sum of contributions from each spectral POD mode. Further, the
coefficients {αj(x, z, ω)}∞j=1 are decorrelated in the plate averaged sense, i.e.,

1
Ap

∫
Γfs

⟨αj(x, z, ω)αk(x, z, ωo)⟩ dx dz = λj(ω)δjkδ(ω − ωo), (54)

here δij is the Kronecker delta and δ(ω −ωo) is the Dirac Delta function. We include the effect of structures of all length
cales because we integrate over all wavenumbers in Eq. (24).
We set the parameter β in the Poisson inner product (Eq. (25)) to a small value of 0.01 to compute the spectral POD

odes and eigenvalues. We did not observe a change in the computed mode shapes and the contribution of the modes to
he plate averaged displacement PSD for values smaller than 0.01. Further, we will see that the value β = 0.01 identifies
single dominant mode of the net displacement source responsible for the plate excitation. For more details on the effect
18
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Fig. 12. Contribution of each spectral POD mode computed using the Poisson inner product (β = 0.01) to the net displacement source PSD for (a)
eτ = 180 and (b) Reτ = 400. For definition of λ̄i , see Eq. (33).

Fig. 13. Envelope and phase of the dominant spectral POD mode computed using the Poisson inner product (β = 0.01) for Reτ = 180 ((a)-envelope,
b)-phase) and Reτ = 400 ((c)-envelope, (d)-phase) at peak frequency ωδ/uτ ≈ 50.2.

f the parameter β on the decomposition and guidelines on choosing β for other FSI configurations, we refer the reader
o Appendix D.

Fig. 10a and b show the computed spectral POD eigenvalues (normalized by the sum of eigenvalues) for both Reτ at
the first four peak frequencies in Fig. 3a. For β = 0.01, we observe that only the first eigenvalue is dominant, and it
contributes to the entire double integral

∫∫
+δ

−δ
G(r, s, β/(1 − β))/(1 − β)Γ a(r, s, ω) dr ds (Eq. (29)).

Fig. 11a and b show the contribution of each spectral POD mode to the plate averaged displacement PSD (Eq. (30)) for
the frequencies discussed in Table 6. The first spectral POD mode contributes nearly all the plate averaged displacement
PSD at all frequencies for both Reτ . Thus, the first spectral POD mode is the dominant decorrelated contributor to plate
esponse at all the peak frequencies investigated. To investigate the structure of this dominant fluid source, we plot the
nvelope and phase of the first spectral POD mode in Fig. 13–14 for the frequencies plotted in Fig. 10. For all the Reynolds
umbers and frequencies, the envelope is maximum in the buffer layer and the modes have a similar wall-normal width
or both Reτ . This again reaffirms the observation in the previous section that the contribution from the fluid sources
eak in the buffer layer and its width extends up to the outer layer. The phase variation of these dominant modes is
ostly in the range −π/2 to π/2. Thus, the contribution from different wall-parallel planes interfere constructively. This
onstructive interference is absent in the suboptimal spectral POD modes. Even though the second spectral POD mode
19
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Fig. 14. Envelope ((a), (c), (e), (g)) and phase ((b), (d), (f), (h)) of the dominant spectral POD mode computed using the Poisson inner product
β = 0.01). Figures (a), (b), (c), and (d) are for the peak frequency ωδ/uτ ≈ 60, and figures (e), (f), (g), and (h) are for the peak frequency
ωδ/uτ ≈ 73. Figures (a), (b), (e), and (f) are for Reτ = 180, and figures (c), (d), (g), and (h) are for Reτ = 400.

contains more energy than the first mode (Fig. 12), the contributions interfere destructively resulting in very small net
contribution. Therefore, the interference of the contributions from different wall-parallel planes plays a major role in
determining the dominance of a spectral POD mode.

Fig. 12 shows that the dominant spectral POD mode is not the dominant contributor to the integrated net displacement
source PSD (

∫
+δ

−δ
Γ a(y, y, ω) dy), i.e., they are not energetically dominant. The first two energetically dominant modes

identified by the inner product with β = 1 (standard L2 inner product) is shown in Fig. 15 for ωδ/uτ ≈ 50. The shape
of the modes resembles a stationary wavepacket enclosing a traveling wave (almost linear phase variation) for both Reτ .
owever, these wavepackets do not contribute much to the response of the plate as the contribution from different
all-normal locations interfere destructively to produce no net contribution. This behavior of the energetically dominant
ode is also true at higher frequencies (not shown). Further, the spectral POD modes identified by the inner-products with
= 1 (standard L2 inner-product) and β = 0.01 are inherently different because they optimize the modes based on their
20
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Fig. 15. Envelope and phase of the dominant spectral POD modes computed using the L2 inner product for Reτ = 180 ((a)-envelope, (b)-phase) and
eτ = 400 ((c)-envelope, (d)-phase) at peak frequency ωδ/uτ ≈ 50.2.

ontribution to
∫

+δ

−δ
Γ a(y, y, ω) dy (Eq. (34)) and

∫∫
+δ

−δ
1/(1 − β)G(y, r, β/(1 − β))Γ a(r, y, ω) dr dy (Eq. (29)), respectively.

he former picks the energetically dominant mode whereas the latter identifies the mode that contributes the most to
he double integral (which is a proxy for φa

dd(ω)).
Overall, spectral POD identifies a single dominant contributor to the plate excitation at each of the dominant resonant

requencies in Table 6. All the identified dominant plate excitation modes have an envelope that peaks in the buffer layer
nd has a width that extends up to the outer region of the channel for both Reynolds numbers. Further, the dominant plate
xcitation mode is not energetically dominant, i.e., it does not contribute much to the PSD Γ a(y, y, ω). It is the constructive
nterference between the contributions from different wall-normal regions that leads to maximum contribution to the
late excitation.

. Summary

In summary, we present a novel framework to investigate the fluid–solid coupling in a canonical setting — linear one-
ay coupled excitation of an elastic plate in turbulent channel flow. We apply the framework to explain the response of
clamped plate obtained using the in-house FSI solver — MPCUGLES-SOLID at Reτ = 180 and 400.
The obtained plate response at Reτ = 180 and 400 with fixed non-dimensional Young’s modulus E/(ρf u2

τ ) have
verlapping plate averaged low frequency spectrum in outer units. But, the high frequency component of the spectrum
oes not show overlap in inner units. Fixing Eδ2/(ρf ν

2
f ) instead of E/(ρf u2

τ ) for the two Reτ yields a better collapse of
he high-frequency region in inner units. We show that this high-frequency behavior is due to the modal wavenumber
caling better in inner units.
The resonant vibration at the first natural frequency is smaller than at the second natural frequency. The global

aximum seems to occur at the third natural frequency. We understand this by comparing the streamwise fluid and
olid length scales. For the solid length scale, we use the mode shape of the plate. For the fluid length scale, we use the
SD of the wall-pressure fluctuations. The differing values of the two length scales at the first natural frequency leads to
maller resonant vibration. At the second and third natural frequencies, the two length scales become comparable, leading
o larger resonant vibration.

In the proposed fluid–solid coupling framework, we express the displacement at a point on the surface of the plate
(x, −δ, z, t) as a wall-normal integral of the net displacement source fd(x, y, z, t), i.e., d(x, −δ, z, t) =

∫
+δ

−δ
fd(x, y, z, t) dy.

o quantify the statistical features of fluid sources of plate excitation, we compute the plate averaged CSD of the net
isplacement source using the DNS database and modal superposition. We use the first 50 mode shapes of the plate to
nvestigate the fluid sources.

The computed plate averaged wall displacement–net displacement source CSD Ψ a(y, ω) is maximum in the buffer
ayer, indicating peak correlation with the plate response. The CSD extends well into the outer region of the channel. If

e consider the integrated contribution from different regions of the channel to the plate response, the overlap and outer
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regions also contribute significantly (50% for Reτ = 180 and 65% for Reτ = 400). Further, this overlap and outer region
ontribution appears to increase with Reynolds number.
We show that the Mellen form of the wavenumber frequency spectrum implies identical coupling of the plate averaged

isplacement PSD and the wall-pressure PSD with the fluid sources in the channel up to a multiplicative constant.
We perform spectral POD of the net displacement source CSD to identify the decorrelated dominant fluid sources

esponsible for the plate excitation. To accomplish this, we require the modes to be orthogonal in a Poisson inner product
nstead of the commonly used L2 inner product. The envelope of the dominant spectral POD mode peaks in the buffer
egion for both Reτ and its width extends into the outer region, reaffirming the previous observations from the wall
isplacement–net displacement source CSD Ψ a(r, ω). From the phase of the mode, we observe that the dominance of
uch a fluid source is mainly due to the constructive interference of the contributions from different wall-parallel planes.
owever, this contribution is dominant only in terms of plate excitation, not energy. The energetically dominant fluid
ources obtained from spectral POD with the L2 inner product resemble stationary wall-normal wave packets. But these
avepackets do not contribute much to the plate excitation. This is because the contributions from different wall-normal

ocations to the plate response undergo destructive interference.
Overall, the framework presented here enables quantitative analysis of how different wall-normal regions contribute to

late response. The exact values of the contributions presented here are specific to the chosen plate dimensions, material
roperties and Reynolds number. In FSI simulations that use wall-modeled Large Eddy Simulation in the fluid domain,
he first point in the fluid domain will be in the logarithmic layer. The proposed framework can be used to assess the
ignificance of this missing buffer region contribution to the structural excitation. At very high Reynolds numbers, the
ontribution of the outer layer structures to the wall-pressure fluctuation increases (Panton et al., 2017). The framework
roposed here can be used to quantitatively investigate this outer layer contribution to the plate excitation.
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ppendix A. On the choice of the non-dimensional structural parameters

To arrive at the non-dimensional structural parameters in Table 3, we first start by setting the friction Reynolds number
Reτ ) to be 180. Then, we choose the dimensional values for the channel height (δ), fluid density (ρf ) and kinematic
iscosity (νf ) to be 2.5 × 10−2 m, 1.28 kg m−3, and 1.48 × 10−5 m2 s−1, respectively. The resulting friction velocity uτ

s 0.106 m s−1. Finally, we choose the solid Young’s modulus, density and Poisson’s ratio to be 100 MPa, and 1500 kg
−3 and 0.4, respectively, and we arrive at the non-dimensional values in Table 3. For Reτ = 400, we use the same
on-dimensional values to retain the same natural frequencies in outer units (ωδ/uτ ).
Note that the fluid properties are that of air. The structural properties, except for the Poisson’s ratio, are close to that

f rubber, and the channel height is similar to the experiment of Zhang et al. (2017). We mainly choose a soft material
ith the above properties to have at least five natural frequencies in the low-frequency (ω+ < 1) range. In this way, we
nsure the low-frequency structural response to be a combination of several mode shapes and not just the first mode.
tiffer materials like steel or aluminum would have led to the smallest natural frequency in the high-frequency range
ω+ > 1) for Reτ = 180 and 400. The resulting low-frequency structural response that would make up most of the
oot-mean-square would only depend on the first mode shape and not a combination of different modes. Multi-modal
ontribution to the low frequency excitation for stiff materials requires higher Reynolds number.
22
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Fig. 16. Static deformation of a clamped plate.

Table 8
Comparison of the non-dimensional numerical plate center displacement wc

qL4/D
103 to

Taylor and Govindjee (2004).
Number of dofs Reference Numerical

729 1.27 0.9
2601 1.27 1.18
9801 1.27 1.24
38025 1.27 1.26
17.3×106 1.27 1.27

Table 9
Comparison of the non-dimensional natural frequencies ωn

√
ρsh
D L2 to Leissa (1969).

Mode Reference Numerical

1 36 36.08
2 73.41 73.58
3 73.41 73.58
4 108.3 108.4
5 131.6 131.92

Appendix B. Structural solver validation

We validate the structural solver for static, eigenvalue, and dynamic problems for an elastic square plate clamped on
ll the four sides. For all the validation cases, we discretize the solid geometry with uniform 27-node hexahedral elements.
e choose the length and width of the plate (a) to be 10 and thickness (h) to be 0.1. We set the Young’s modulus (E)

nd the Poisson’s ratio (ν) to be 10.92 × 105 and 0.3, respectively and obtain a bending stiffness (D = Eh3/(12(1 − ν2)))
of 100.

Fig. 16 shows the static deformation of the plate with a uniform pressure loading of q = −10. We compare the obtained
non-dimensional plate center displacement wc

D/(qa4)
103 to the reference result of Taylor and Govindjee (2004), where wc

s the plate center displacement. Table 8 shows good agreement and convergence with increase in number of degrees of
reedom. Note that the reference results of Taylor and Govindjee (2004) solve the Poisson–Kirchhoff plate theory equations
sing spectral method where as we solve the 3D elasticity equations without thin plate theory assumptions.
Table 9 compares the computed eigenvalues of the first five modes of the clamped square plate to the reference results

ompiled by Leissa (1969). We use 32 elements in each direction parallel to the plane of the plate and 1 element along the
late thickness. We observe good agreement between the solver and the reference results. Fig. 17 shows the computed
ode shapes of the clamped plate.
To build confidence on the amplitude of the vibrations obtained from the solver, we validate the solver for a forced

ibration problem. The plate dimension and mesh are the same as that used in the eigenvalue validation. To restrict the
xcitation only to the first mode of vibration, we define the spatial form of the force vector to be M{ϕ1}sin(ωt), where M
s the mass matrix, {ϕ1} is the degree of freedom vector of the first mode of vibration, and ω is the excitation frequency.
e choose the nondimensional excitation frequency ω

√
ρh
D L2 to be 10. The response of such a forcing will only have

component (d1(t)) along the first mode of vibration, i.e., the resulting displacement degree of freedom vector will be
(t){ϕ }. Note that d (t) is a scalar function of time which we can compute analytically using the Duhamel integral
1 1 1
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Fig. 17. (a) First, (b) second, (c) third, (d) fourth, and (e) fifth mode shape of the clamped plate.

Fig. 18. Comparison of numerically obtained component of the response along the first mode of vibration to the analytical result.

(Bathe, 2006). We compare the analytical result to the obtained simulation results in Fig. 18. We observe good agreement
between the two. This validates the accuracy of the amplitude of the vibrations obtained from the solver.

Appendix C. On the choice of the number of modes to compute the net displacement source CSD

We verify below that 50 modes of the plate are sufficient to analyze the plate excitation sources for frequencies smaller
than ωδ/uτ = 500. We do so by comparing the plate averaged displacement spectrum computed directly from the one-
way coupled DNS to that obtained from the net displacement source CSD using Eq. (4). Fig. 19a and b show this comparison
for Reτ = 180 and 400, respectively. Red symbols denote the spectrum computed from the one-way coupled DNS and
solid black lines denote the net displacement source CSD Γ a. The two spectra agree for ωδ/uτ < 500. Therefore, 50 modes
re sufficient. For higher frequencies, the spectrum computed using the net displacement source CSD decays much rapidly.
his rapid decay is because of the absence of modes with indices higher than 50. These higher mode shapes need to be
ccounted to investigate even higher frequencies.
For the current example, this reasoning and the choice of the number of modes are valid for both Reynolds numbers.

his is because the material parameters are the same in outer units for both Reτ . This similarity leads to identical natural
requencies and mode shapes. Hence, the same number of modes are required to account for the contribution from
requencies smaller than ωδ/uτ = 500 for both Reτ .

If the material parameters remain fixed in outer units, then for increasing Reynolds numbers, 50 modes would still be
ufficient to analyze the sources in the same frequency range. However, suppose one chooses a different set of material
arameters or a different upper bound on the frequency range in outer units. Then, the number of modes required to
ompute the CSD is no longer equal to 50.
We present below the guidelines to choose the number of modes to compute the net displacement source CSD for the

eneral case (any Reynolds number and material parameters). First, choose an upper bound ωub/ωref for the frequencies
f interest. Here, ωref is the chosen frequency scale. Then, perform eigenanalysis of the plate to identify the smallest
ode-index jmin whose non-dimensional natural frequency ωjmin/ωref is larger than the chosen upper bound ωub/ωref . jmin
ould then be the minimum number of modes required to compute the net displacement source CSD. Finally, verify this
umber by comparing the spectrum computed using Γ a to that obtained using the one-way coupled DNS and add more
odes, if required. For the current example, ω = u /δ, ω = 500 and ω δ/u = 552.
ref τ c 50 τ
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R
a

Fig. 19. Comparison of the plate averaged displacement spectrum computed from the CSD Γ a using Eq. (4) to that obtained from DNS for (a)
eτ = 180 and (b) Reτ = 400. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
rticle.)

Fig. 20. Figure (a) compares the fractional contribution of each spectral POD mode to the plate averaged displacement spectrum for different values
of β . Figure (b) compares the fractional contribution of each spectral POD mode to the integrated net displacement source PSD. Figure (c) compares
the spectral POD eigenvalues for different values of β . Figures (d) and (e) show the envelope and phase of the dominant spectral POD mode for
different values of β . All the plots are for Reτ = 180 at ωδ/uτ = 50.2.
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Appendix D. On the choice of the parameter β in spectral POD

The influence of the value β on the reported spectral POD results is shown in Fig. 20 for Reτ = 180 at ωδ/uτ = 50.2.
he curves for β = 0.01 and 0.001 overlap in each figure. This shows that β = 0.01 is sufficiently small to extract
he same dominant plate excitation mode as β = 0.001. For β = 0.5, we observe some differences in the eigenvalues
Fig. 20c) and the mode shapes (Fig. 20d, e). However, the dominant mode still accounts for the entire plate excitation
nd has very similar shape to the other values of β .
Overall, we observe that the spectral POD modes appear to converge as we decrease β . We chose β = 0.01 because the

esults did not noticeably change by decreasing β to 0.001. We observed this behavior at other frequencies and Reynolds
umber.
To understand this dependence of the results on β , recall Eq. (29),∫∫

+δ

−δ

G
(
r, s, β

1−β

)
1 − β

Γ a(r, s, ω) dr ds =

∞∑
j=1

λj(ω). (55)

s we decrease the value of β , β/(1 − β) becomes smaller and the Green’s function G(r, s, β/(1 − β)) becomes flatter in
and s. In other words, the Green’s function becomes nearly constant. Hence, for very small values of β , the left hand
ide of Eq. (29) converges to

∫∫
+δ

−δ
Γ a(r, s, ω) dr ds (up to a multiplicative constant). Therefore, the resulting modes and

igenvalues also converge.
In general, for other FSI configurations, one should choose a small value of β to isolate sources responsible for structural

xcitation. The value β = 0.01 is not universal. To arrive at a suitable value for β , one should first compare the results
btained with several small values of β . Then, choose β to be the value for which the modes seem converged. Also, note
hat β cannot be zero because then, the kernel of the Poisson inner product would not be symmetric and positive definite.
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