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A novel technique based on the Full Orthogonalization Arnoldi (FOA) is proposed to 
perform Dynamic Mode Decomposition (DMD) for a sequence of snapshots. A modification 
to FOA is presented for situations where the matrix A is unknown, but the set of vectors 
{Ai−1 v1}N

i=1 are known. The modified FOA is the kernel for the proposed projected DMD 
algorithm termed, FOA based DMD. The proposed algorithm to compute DMD modes and 
eigenvalues i) does not require Singular Value Decomposition (SVD) for snapshot matrices 
X with κ2(X) � 1/εm , where κ2(X) is the 2-norm condition number of the snapshot 
matrix and εm is the relative round-off error or machine epsilon, ii) has an optional rank 
truncation step motivated by round off error analysis for snapshot matrices X with κ2(X) ≈
1/εm , iii) requires only one snapshot at a time, thus making it a ‘streaming’ method 
even with the optional rank truncation step, iv) consumes less memory and requires 
less floating point operations to obtain the projected matrix than existing projected DMD 
methods and v) lends itself to easy parallelism as the main computational kernel involves 
only vector additions, dot products and matrix vector products. The new technique is 
therefore well-suited for DMD of large datasets on parallel computing platforms. We show 
both theoretically and using numerical examples that for FOA based DMD without rank 
truncation, the finite precision error in the computed projection of the linear mapping is 
O (εmκ2(X)). The proposed method is also compared to existing projected DMD methods 
for computational cost, memory consumption and relative round off error. Error indicators 
are presented that are useful to decide when to stop acquiring new snapshots. The 
proposed method is applied to several examples of numerical simulations of fluid flow.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Numerical simulations of both laminar and turbulent flows with O (105−10) degrees of freedom generate high-
dimensional datasets comprising of velocity and pressure field at multiple time instants. These datasets can be low-
dimensional when expressed in appropriate bases, often termed as ‘modes’. The high-dimensional dataset can be repre-
sented as a linear combination of few of these modes to reasonable accuracy. A review of different modal decomposition 
techniques to identify these modes for fluid flows is given in Taira et al. [1] and Rowley and Dawson [2].

Dynamic Mode Decomposition (DMD) is a data-driven modal decomposition technique that identifies a set of modes 
from multiple snapshots of the observable vectors (defined in section 2). Each of these modes are assigned an eigenvalue 
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which denotes growth/decay rate and oscillation frequency of the mode. The obtained modes and corresponding eigenvalues 
together capture the dynamics of the underlying system. Rowley et al. [3] related the DMD modes and DMD eigenvalues 
to the eigenfunctions and eigenvalues of the Koopman operator. The Koopman operator [4] is an infinite dimensional linear 
operator that describes the evolution of linear and nonlinear dynamical systems. These connections make DMD applicable 
to nonlinear systems such as those governed by the Navier–Stokes equations.

DMD for sequential snapshots uniformly separated in time was first introduced by Schmid and Sesterhenn [5]. Schmid [6]
proposed two algorithms which used different choices of basis vectors to perform Galerkin projection of the assumed linear 
mapping between the snapshots. One algorithm was based on Arnoldi method with no orthogonalization, with the snapshot 
vectors as the basis vectors, and the other relied on singular value decomposition (SVD) of the sequence of snapshots, and 
used the resulting left singular vectors as the basis vectors. The SVD based method was seen to have better finite precision 
accuracy than the Arnoldi based method. Tu et al. [7] modified the SVD version of Schmid [6] proposed for a sequence of 
snapshots, to consider snapshot pairs. They also proposed Exact DMD where the DMD modes and eigenvalues are defined as 
the eigendecomposition of the minimum Frobenius norm mapping that relates the snapshot pairs in a least-squares sense. 
This essentially involved a new definition of the DMD modes from the eigenvalues and eigenvectors of the projected linear 
mapping. The drawback of the SVD based DMD method discussed in Schmid [6] and Tu et al. [7] (both projected and exact 
DMD) is that it requires access to all snapshots at once to compute the projected linear mapping. Hemati et al. [8] proposed 
a streaming version of Tu et al. [7] to process large and streaming datasets which requires access to only the current 
snapshot pair to compute the projected linear mapping, and also a compression procedure to reduce the effect of noise in 
the dataset on the DMD modes. However, as shown in this paper through numerical experiments, the finite precision error 
in computing the projected linear mapping from the streaming version of Hemati et al. [8] without compression can be 
large. Two DMD algorithms that are the same in theory might can have very different finite precision error. It is therefore 
important to have an estimate of finite precision error of the computed projection while devising DMD algorithms. A parallel 
version of the DMD algorithm proposed in Schmid [6] was presented in Sayadi and Schmid [9]. Scaling of the algorithm was 
shown upto 1024 processors. However, this method is not streaming as it requires access to all snapshot vectors to compute 
the projected linear mapping. The underlying parallel algorithm used the TSQR algorithm of Demmel et al. [10] to compute 
QR factorization of the snapshot vectors followed by SVD of a small upper triangular matrix. Several other variants of DMD 
apart from projected DMD and Exact DMD [7] include optimized DMD [11], extended DMD [12], kernel DMD [13], noise 
corrected DMD [14], forward–backward DMD [14], total least-squares DMD [14], recursive DMD [15], sparsity promoting 
DMD [16] and optimal mode decomposition [17].

Numerical experiments on the error due to the number of snapshots and spatial resolution were performed by Duke 
et al. [18] for synthetically generated data with noise, and that due to the choice of observables is presented in Zhang 
et al. [19]. Approximate solution to eigenvalue problems using Arnoldi’s method and Galerkin projection [20] also provide 
estimates for the error associated with each eigenvector and eigenvalue pair. We utilize these results which have been used 
for numerical solution of eigenvalue problems in the context of DMD where the linear mapping is not explicitly known.

The contribution of this paper is a novel parallel streaming DMD algorithm suitable for large data along with its fi-
nite precision error analysis. DMD is inherently not a backward stable (refer Higham [21] for more on backward stability) 
procedure to compute projection of linear mapping using orthonormal basis vectors. This is because it relies on the snap-
shot vectors and not on the knowledge of linear mapping A. This leads to dependence of the finite precision error in the 
computed projection on the condition number of the snapshot matrix. Also, this warrants care in the design of DMD al-
gorithms which might otherwise lead to dependence on higher powers of condition number and subsequently large finite 
precision error. In this paper, we examine the finite precision arithmetic properties of the proposed and few other existing
DMD methods. The proposed method allows quantitative estimates of whether additional snapshots are needed, and the 
finite precision error contributions to the estimated modes. These properties are obtained in a readily parallelizable and 
streaming formulation, which makes reliable DMD representation of large datasets possible.

The proposed method is derived from the Full Orthogonalization Arnoldi (FOA) procedure used to compute the projection 
of a given linear mapping A onto the Krylov subspace. However, the FOA procedure explicitly requires the knowledge of 
operating A onto the successively generated Arnoldi vectors v j . We avoid this by reformulating FOA such that in the jth 
step, the new method relies only on the additional knowledge of A jψ1 to compute Av j , where ψ1 is a random starting 
vector used in FOA. This results in a streaming DMD algorithm which requires access to only the current snapshot vector 
ψ j+1 := A jψ1.

The paper is organized as follows. Section 2, discusses the proposed method in the broader context of projected DMD 
methods. Section 3 presents the proposed FOA based DMD. First, the algorithm is derived in batch processed form by 
drawing parallels to the Rayleigh–Ritz procedure using FOA in section 3.1. Then, the method is recast in streaming form. 
Properties of the algorithm which include computational cost, memory consumption and finite precision error in compu-
tation of the projected linear mapping are discussed and compared to exiting projected DMD algorithms in sections 3.2.1
and 3.2.2. Error indicators for DMD eigenvalues and eigenvectors computed using FOA based DMD and their finite precision 
quality are discussed in section 3.2.3. Parallel scaling of the proposed algorithm is presented in section 3.2.5. Section 4
demonstrates FOA based DMD algorithm for three test cases: i) linearized channel flow at Re = 10000, ii) flow over a 
circular cylinder at Re = 100 and iii) jets in cross-flow at two different jet velocity to cross flow velocity ratios.



S. Anantharamu, K. Mahesh / Journal of Computational Physics 380 (2019) 355–377 357
2. Projected DMD methods: background

Let x j ∈ C
n be the state of system at time t j . The states x j are assumed to be equally spaced in time, i.e. t j = ( j − 1)�t

where �t is the time separation between successive states. Let ψ(x) := [ψ1(x) ψ2(x) . . . ψM(x)]T be a vector of func-
tions i.e. each ψ i(x) : Cn → C. Each ψ i(x) is termed an observable [3], and ψ(x) is termed vector of observables. The 
snapshot vector ψ j ∈ C

M := ψ(x j), i.e. ψ j = [ψ1(x j) ψ2(x j) . . . ψM(x j)]T . Let X j
i ∈ C

M×( j−i+1) be the snapshot matrix 
formed by stacking the snapshot vectors from time ti to t j :

X j
i := [ψi ψi+1 . . . ψ j−1 ψ j]. (1)

A common state vector is the velocity at all points in the domain of fluid simulation and a common vector of observables 
is the state vector itself. Let N denote the total number of snapshots collected. A linear mapping A is assumed to relate the 
successive snapshot vectors as

ψi+1 = Aψi, X N
2 = A X N−1

1 . (2)

As discussed by Schmid [6], for linear time evolution of the observable vectors, no assumption is involved. For nonlinear 
time evolution of the observable vectors, for N ≤ R + 1 where R is the rank of the snapshot matrix, a linear mapping can 
always be defined to connect the snapshot vectors over the time interval [0, N�t]. However, such a linear mapping may 
only be an approximation to the nonlinear evolution of the observable vectors. In section 3.2.4, we discuss that the projected 
linear mapping A contains information of the interpolant through the sampled observable vectors which approximates the 
nonlinear time evolution of the system. A linear mapping between the successive snapshots implies that the range of matrix 
X N−1

1 is also a Krylov subspace associated with the assumed linear mapping A and the starting vector ψ1,

K N−1(A,ψ1) := span{ψ1, Aψ1, ..., AN−2ψ1}. (3)

The columns of X N−1
1 can be linearly dependent and need not always form the set of basis vectors for the above Krylov 

subspace. If they are linearly dependent, then N is modified to include the linearly independent snapshot sequence 
only.

The Galerkin statement for the approximate eigenvalue problem is to find λ ∈ C, v ∈ K N−1(A, ψ1) pair s.t. Av − λv is 
orthogonal to all the vectors in the subspace K N−1(A, ψ1) in the �2 inner product. Suppose span of columns of Q ∈ C

M×N−1

and V ∈ C
M×N−1 are two sets of basis vectors for K N−1(A, ψ1), then the approximate eigenvector v can be written as Q z

for z ∈C
N−1. The Galerkin problem for λ ∈C, z ∈ C

N−1 pair is then the generalized eigenvalue problem,

V H (A Q z − λQ z) = 0,

V H A Q z = λV H Q z.
(4)

If V = Q , then we obtain,

Q H A Q z = λQ H Q z. (5)

Furthermore, if columns of Q are orthonormal, we obtain

Q H A Q z = λz. (6)

The goal of all projected DMD methods is to compute Q (which may or may not be orthonormal) and Q H A Q from the 
snapshot vectors X N

1 alone without knowledge of the linear mapping A. Some possible choices of Q are: matrix of snapshots 
X N−1

1 [5,6,3], left singular vectors of economy SVD of X N−1
1 [6,9] and orthonormal matrix from QR factorization of X N−1

1
(Hemati et al. [8]).

3. FOA based DMD

3.1. Algorithm

The batch processed form (i.e. all snapshots processed at once) of the proposed FOA based DMD is shown in Algorithm 1. 
V N

1 is the matrix formed by stacking the set of vectors {vi}N
i=1 as columns, and hi, j and βi, j are the entries of the matrices 

H̄ N and βN respectively. The algorithm takes snapshot matrix X N
1 as input and computes DMD modes and eigenvalues 

with or without rank truncation. Rank truncation before computing DMD modes reduces the finite precision error in the 
computed projection of the linear mapping A, and is useful for snapshot matrices with κ2(X N−1

1 ) ≈ 1/εm , where κ2(X N−1
1 )

is the 2-norm condition number defined as ‖X N−1
1 ‖2‖X N−1†

1 ‖2. For snapshot matrices with condition number κ2(X N−1
1 ) �

1/εm , no rank truncation is required before computing the DMD modes and eigenvalues. We use Classical Gram Schmidt 
(CGS) with reorthogonalization as the orthogonalization kernel in FOA based DMD. This is because parallel implementation 
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Algorithm 1: FOA based DMD in batch processed form.

1: Collect N snapshots and form X N
1 . Create space for matrices V N

1 ∈C
M×N , H̄N ∈C

N,N−1 and βN ∈C
N,N and initialize to 0.

2: Construct initial vector v1 from the first snapshot, v1 := ψ1
‖ψ1‖2

3: β1,1 = ‖ψ1‖2

4: for j = 1 to N − 1 do
5: β1, j+1 = h1,1: j−1β1: j−1, j

6: for i = 2 to j do
7: βi, j+1 = hi,i−1: j−1βi−1: j−1, j

8: end for
9: w = 1

β j, j

(
ψ j+1 − ∑ j

i=1 βi, j+1 vi

)
10: h1: j, j = V j

1

H
w

11: w = w − V j
1h1: j, j

12: s1: j = V j
1

H
w

13: h1: j, j = h1: j, j + s1: j

14: w = w − V j
1 s1: j

15: h j+1, j = ‖w‖2; v j+1 = w
h j+1, j

16: for i = 1 to j + 1 do
17: βi, j+1 = βi, j+1 + hi, jβ j, j

18: end for
19: end for
20: Define HN−1 := H̄N (1 : N − 1, 1 : N − 1).
21: if rank truncation then
22: Compute SVD of βN−1 := βN (1 : N − 1, 1 : N − 1), i.e., βN−1 = U	W H .
23: Choose the truncated rank r and Ur := U (:, 1 : r) and form U H

r HN−1Ur .
24: Compute right eigenvectors {zi}r

i=1 and eigenvalues {λi}r
i=1 of U H

r HN−1Ur .

25: DMD modes are {V N−1
1 Ur zi} and DMD eigenvalues are {λi}r

i=1.
26: else
27: Compute right eigenvectors {zi}N−1

i=1 and eigenvalues {λi}N−1
i=1 of HN−1.

28: DMD modes are {V N−1
1 zi}N−1

i=1 and DMD eigenvalues are {λi}N−1
i=1 .

29: end if

Algorithm 2: Rayleigh Ritz procedure with Arnoldi’s method.

1: Given A. Create space for matrices V N
1 ∈C

M×N and H̄N ∈C
N,N−1.

2: Construct initial vector v1 from the first snapshot. v1 := ψ1
‖ψ1‖2

3: for j = 1 to N − 1 do
4: w = Av j

5: h1: j, j = V j
1

H
w

6: w = w − V j
1h1: j, j

7: s1: j = V j
1

H
w

8: h1: j, j = h1: j, j + s1: j

9: w = w − V j
1 s1: j

10: h j+1, j = ‖w‖2; v j+1 = w
h j+1, j

11: end for
12: Define HN−1 := H̄N (1 : N − 1, 1 : N − 1).
13: Compute right eigenvectors {zi}N−1

i=1 and eigenvalues {λi}N−1
i=1 of HN−1.

14: Approximate eigenvectors are {V N−1
1 zi}N−1

i=1 and approximate eigenvalues are {λi}N−1
i=1 .

of CGS sends lesser number of messages than Modified Gram Schmidt (MGS), and CGS makes use of matrix vector products 
which are more efficient to compute. Reorthogonalization ensures orthogonality of V N

1 upto machine precision [22].
The batch processed form of FOA based DMD can be derived from the Rayleigh–Ritz procedure using the Arnoldi method 

shown in Algorithm 2. The Rayleigh–Ritz procedure computes approximate eigenvectors and eigenvalues of linear map-
ping A. However, we use a modified Arnoldi method where the matrix A is unknown, but the set of vectors {ψi}N

i=1 is 
known. Steps 2 to 10 of Algorithm 2 constitute the Arnoldi method which generates an orthonormal basis for the Krylov 
subspace, K N−1(A, ψ1). The vectors vi generated from the Arnoldi method, in addition to being orthonormal satisfy the 
property [20]

AV N−1
1 = V N

1 H̄ N ,

AV N−1
1 = V N−1

1 H N−1 + hN,N−1 v N eH
N−1,

(7)

where H N−1 := H̄ N(1 : N − 1, 1 : N − 1) is the projection of A onto the Krylov subspace K N−1 (A,ψ1), i.e.,

V N−1 H
AV N−1 = H N−1, (8)
1 1
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and hence the eigenvalues and eigenvectors of H N−1 can be used to approximate those of A (steps 13 and 14 of Algo-
rithm 2).

The Rayleigh Ritz procedure with the Arnoldi method cannot be directly used to perform projected DMD, as the step 4 
in Algorithm 2 requires knowledge of the assumed linear mapping A, which is not explicitly known before hand in DMD. 
However, we can compute Av j by using a linear combination of the snapshot vector ψ j+1 and the set of vectors {vi} j

i=1. 
The Arnoldi vectors vi ’s generated by the above algorithm have the following property [20],

span{v1, . . . , v j} = span{ψ1, . . . ,ψ j} = span{ψ1, Aψ1, . . . , A j−1ψ1}. (9)

So, ψ j may be expressed as a linear combination of {vi} j
i=1,

ψ j =
j∑

i=1

βi, j vi . (10)

In matrix form,

ψ j = V j
1β1: j, j, (11)

where V j
1 is the matrix formed by vectors {vi} j

i=1 as columns. Suppose, we are in the jth iteration of the Arnoldi method. 
We can develop a method to compute Av j from knowledge of H̄ j , the non-zero entries of jth column of βN and the Arnoldi 
relation until the ( j − 1)th iteration using

ψ j+1 = Aψ j = AV j
1β1: j, j

= AV j−1
1 β1: j−1, j + Av jβ j, j

= V j
1 H̄ jβ1: j−1, j + Av jβ j, j,

(12)

where H̄ j is the j × ( j − 1) top left submatrix of H̄ N . Rearranging,

Av j = 1

β j, j

⎛
⎝ψ j+1 − v1

j−1∑
i=1

h1,iβi, j −
j∑

k=2

vk

j−1∑
i=k−1

hk,iβi, j

⎞
⎠ . (13)

Once the jth step of Arnoldi iteration is performed and the non-zero entries of the jth column of H̄ N are computed, the 
( j + 1)th column of βN can be computed using the relation Av j = ∑ j+1

i=1 hi, j vi in equation (12) which leads to

ψ j+1 = V j
1 H̄ jβ1: j−1, j + V j+1

1 h1: j+1, jβ j, j = V j+1
1 H̄ j+1β1: j, j. (14)

The above equation shows that the non-zero entries in the ( j + 1)th column of βN can be computed as,

β1, j+1 =
j∑

i=1

h1,iβi, j,

βk, j+1 =
j∑

i=k−1

hk,iβi, j ; k = 2, . . . , j + 1.

(15)

The steps 1–19 of Algorithm 1 incorporating these modifications, constitutes what we call the modified FOA procedure.
Essentially, we are factorizing X N

1 into V N
1 which is a matrix with orthonormal columns obtained from the Arnoldi 

method, and βN which is an upper triangular matrix. Incorporating these changes yields the FOA based DMD shown in 
Algorithm 1 except the rank truncation part whose rationale will be discussed in section 3.2.2. Even though the Rayleigh Ritz 
procedure and FOA based DMD are theoretically equivalent, their computer implementations will yield different computed 
projection of A whose error will be analyzed in 3.2.2.

The batch processed version of FOA based DMD in Algorithm 1 can be equivalently recast in streaming form shown in 
Algorithm 3. The streaming update routine shown in Algorithm 4 is called in each pass of the streaming algorithm where a 
single, or a set of snapshot vectors, are processed to a compute better projection of the assumed linear mapping between 
the successive snapshots. Specifically, in each pass of the ‘while loop’ in Algorithm 3, the snapshot matrix X is formed by 
stacking p new consecutive snapshot vectors as columns. Then, the streaming FOA based DMD update routine shown in 
Algorithm 4 is called to update the matrix H , matrix V with Arnoldi-generated orthonormal basis, the upper triangular 
matrix β , and q which stores the current number of columns of V . Once these quantities are updated, the DMD modes and 
eigenvalues can be optionally evaluated with or without rank truncation. Usually, in streaming algorithms, p is set to 1 and 
only one new snapshot vector is used to update the matrices. However, in Algorithm 4, snapshots can also be streamed 
in batches of p. This would reduce the number of times the matrices are resized (step 2 of Algorithm 4) while processing 
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a fixed total number of snapshots. For a given total number of snapshots, the computed Arnoldi vectors, the projection of 
the linear mapping, and the upper triangular matrix computed using the streaming form, are exactly the same as those 
computed using the batch processed form since the exact same floating point operations are carried out in the same order, 
in both algorithms. So, unless otherwise stated, we refer to the batch processed form of FOA based DMD in the following 
sections. Also, from Algorithm 3, note that FOA based DMD retains its streaming property even with rank truncation. This 
is because FOA based DMD with rank truncation additionally requires computing the SVD of βN−1 and the new projected 
matrix U H

r Hq−1Ur which does not require previous snapshots.

Algorithm 3: FOA based DMD in streaming form.
1: q = 0.
2: while true do
3: Collect p new snapshot vectors in X .
4: (H, V , β, q) = streamingFOAbasedDMDupdate (X, p, H, V , β, q).
5: if compute DMD modes and eigenvalues then
6: Define Hq−1 := H1:q−1,1:q−1

7: if rank truncation then
8: Compute SVD of βq−1 := β1:q−1,1:q−1, i.e., βq−1 = U	W H .
9: Choose the truncated rank r and Ur := U :,1:r .

10: Compute right eigenvectors {zi}r
i=1 and eigenvalues {λi}r

i=1 of U H
r Hq−1Ur .

11: DMD modes are {V :,1:q−1Ur zi}r
i=1 and DMD eigenvalues are {λi}r

i=1.
12: else
13: Compute right eigenvectors {zi}q−1

i=1 and eigenvalues {λi}q−1
i=1 of Hq−1.

14: DMD modes are {V :,1:q−1zi}q−1
i=1 and DMD eigenvalues are {λi}q−1

i=1 .
15: end if
16: end if
17: if stopping criterion == true then
18: exit do while loop.
19: end if
20: end while

Algorithm 4: Streaming FOA based DMD update routine.
1: (H, V , β, q) = streamingFOAbasedDMDupdate (X, p, H, V , β, q)

2: Expand H to (p + q) × (p + q − 1) Upper Hessenberg matrix,
V to M × (p + q) matrix,
β to (p + q) × (p + q) upper triangular matrix and set all new entries to 0.

3: jb := q
4: if q == 0 then
5: β1,1 = ‖X:,1‖2

6: V :,1 := X:,1
‖X:,1‖2

7: jb := 1
8: end if
9: for j = jb to p + q − 1 do

10: β1, j+1 = H1,1: j−1β1: j−1, j

11: for i = 2 to j do
12: βi, j+1 = Hi,i−1: j−1βi−1: j−1, j

13: end for
14: w = 1

β j, j

(
X:, j−q+1 − ∑ j

i=1 βi, j+1 V :,i
)

15: H1: j, j = V :,1: j
H w

16: w = w − V :,1: j H1: j, j

17: s1: j = V :,1: j
H w

18: H1: j, j = H1: j, j + s1: j

19: w = w − V :,1: j s1: j

20: H j+1, j = ‖w‖2; V :, j+1 = w
H j+1, j

21: for i = 1 to j + 1 do
22: βi, j+1 = βi, j+1 + Hi, jβ j, j

23: end for
24: end for
25: q = q + p

3.2. Properties

3.2.1. Computational cost and memory consumption
This section presents the cost (number of floating point operations) and memory requirements of FOA based DMD, and 

compares it to existing projected DMD methods. We show in A.1 that the cost of computing the projection of linear mapping 
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Table 1
Cost (approximate) comparison of projected DMD methods without rank 
truncation.

Method Cost without rank truncation

FOA based DMD 5MN2 + N3/3
SVD based DMD 8MN2 + 22N3

Streaming DMD 10MN2 + 16N3/3

Table 2
Cost (approximate) comparison of projected DMD methods with rank trun-
cation.

Method Cost with rank truncation

FOA based DMD 5MN2 + 37N3/3 + 2rN2 + 2r2 N
SVD based DMD 6MN2 + 20N3 + 2MrN + 2r2 N

Table 3
Memory requirement (approximate) comparison of projected DMD methods 
without rank truncation.

Method Memory required without rank truncation

FOA based DMD MN + N2

SVD based DMD 2MN + 2N2

Streaming DMD 2MN + 4N2

Table 4
Memory requirement (approximate) comparison of projected DMD methods 
with rank truncation.

Method Memory required with rank truncation

FOA based DMD MN + 2N2 + r2

SVD based DMD 2MN + N2 + r2

A onto the Krylov subspace K N−1(A, ψ1) using snapshot matrix X N
1 without rank truncation is approximately 5MN2 + N3/3, 

and with rank truncation is 5MN2 + 37N3/3 + 2rN2 + 2r2N , where r is the truncated rank. The approximate number of 
floating point operations for SVD based DMD (with and without rank truncation) of Schmid [6] and streaming DMD of 
Hemati et al. [8] to obtain corresponding projected matrices is derived in A.2 and A.3 respectively, and compared in Table 1. 
Note that only terms which are cubic in the dimensions M, N of the problem are retained. From Table 1, it can be seen 
that FOA based DMD without rank truncation requires the least number of floating point operation count when compared 
to the existing projected DMD methods. We also compare the cost of rank truncated FOA based DMD and SVD based DMD 
in Table 2. Note that we do not consider the compressed streaming DMD of Hemati et al. [8] since this algorithm does not 
give the same result as rank truncated FOA based DMD and SVD based DMD methods (A.3). Table 2 shows that even with 
rank truncation, the cost of FOA based DMD is smaller than SVD based DMD.

We also derive the memory (number of floating point numbers) required for the three projected DMD methods consid-
ered (both with and without rank truncation) in Appendix A. Table 3 shows that without rank truncation, the FOA based 
DMD method utilizes approximately half the space as the other two projected DMD methods. Also, when rank truncation is 
used, from Table 4 we see that FOA based DMD still uses less memory than the SVD based DMD method.

3.2.2. Finite precision error in computed projected linear mapping
DMD computes projection of the assumed linear mapping A generally through orthonormal basis vectors (as this leads 

to well-conditioned eigenvalue problem) which are generated using the snapshot vectors {Ai−1ψ1}N
i=1. Since, we do not 

know explicitly the mapping A, as we will see in this section, the finite precision error in the computed projection depends 
on the condition number of the snapshot matrix. However, depending on the algorithm used to compute the projection, 
the error in projection might even depend on different powers of the condition number and might lead to larger error. This 
makes finite precision error analysis important for DMD algorithms. However, such an issue is not present if we explicitly 
know the linear mapping A and use the standard Arnoldi procedure in Algorithm 2, as this leads to computed projection of 
A which in a relative sense depends only on machine precision [23].

We first review the numerical stability results of QR factorization using CGS with reorthogonalization. Then, we perform 
finite precision error analysis of FOA based DMD and motivate rank truncation as a method to obtain small error due to 
finite precision arithmetic. Note that in addition to reducing the finite precision error, rank truncation also helps in rejecting 
statistical noise in the accumulated data. We also perform finite precision error analysis of SVD based DMD and streaming 
DMD and compare to FOA based DMD. Quantities with ˆ over them indicate computed counterparts in finite precision 
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arithmetic and εm denotes machine precision. In deriving error estimates, we only consider real matrices and vectors. ci ’s 
are defined as constants that are moderate powers of M, N , i.e. ci := ci(M, N).

3.2.2.1. FOA based DMD The finite precision error analysis of QR factorization using CGS and MGS was performed by Björck 
and Paige [24] and discussed in Higham [21]. Giraud et al. [22] showed that CGS and also MGS with reorthogonalization not 
only retain the backward stability of QR factorization, but also yield vectors which are orthonormal upto machine precision. 
The finite precision results of QR factorization using CGS with reorthogonalization to orthonormalize the vectors obtained 
by Giraud et al. [22] is mentioned next as we will use these to discuss the finite precision properties of FOA based DMD.

Let Y ∈ R
M×N be the matrix whose QR factorization is to be computed. Then QR factorization using CGS with reorthog-

onalization produces Q̂ and R̂ under the numerical nonsingularity of Y [22] such that

Y + �Y = Q̂ R̂, ‖�Y ‖F ≤ c1εm‖Y ‖F , (16)

‖I − Q̂ H Q̂ ‖2 ≤ c2εm. (17)

Equation (16) shows that computed factors Q̂ and R̂ are the exact QR factorization of a perturbed matrix bounded by the 
machine epsilon in a relative sense. This is called the backward error estimate. Equation (17) shows that the computed 
Q̂ is orthonormal upto machine precision. Using the above estimates for QR decomposition Giraud et al. [22] also derived 
backward error estimates for the standard Arnoldi method (used in Algorithm 2) using the corresponding orthogonalization 
kernel. Even though the modified FOA is theoretically equivalent to the standard Arnoldi method, due to the unavailability 
of A in FOA based DMD, the error estimates for backward error of computed quantities of the standard Arnoldi do not 
apply. However, the computed Arnoldi vectors using modified FOA will still be orthonormal upto machine precision.

To obtain the backward error estimate of FOA based DMD without rank truncation, we first decompose AV̂ N−1
1 β̂N−1 −

V̂ N
1

ˆ̄H N β̂N−1 into different components which we can individually estimate as follows.

AV̂ N−1
1 β̂N−1 − V̂ N

1
ˆ̄H N β̂N−1 = A

(
V̂ N−1

1 β̂N−1 − X N−1
1

)
+

(
X N

2 − V̂ N
1 β̂1:N,2:N

)
+ V̂ N

1

(
β̂1:N,2:N − ˆ̄H N β̂N−1

)
(18)

We show in Appendix B (Equation (B.18)) that the error in computed factorization of X N−1
1 into the orthonormal vectors 

V̂ N−1
1 and upper triangular matrix β̂N−1 is of order εm‖X N−1

1 ‖2 which is important, as it implies that we can reliably use 
the columns of V̂ N−1

1 as basis vectors for the range of X N−1
1 . Also, we show in Appendix B (Equation (B.18)) that each term 

in the right hand side of Equation (18) is of order εm‖X N−1
1 ‖2 i.e.,

‖AV̂ N−1
1 β̂N−1 − V̂ N

1
ˆ̄H N β̂N−1‖F ≤ C1

(
‖A‖2,‖ ˆ̄H N‖2, M, N

)
εm‖X N−1

1 ‖2 + O
(
ε2

m

)
, (19)

where C1

(
‖A‖2,‖ ˆ̄H N‖2, M, N

)
is a constant which is a function of ‖A‖2, ‖ ˆ̄H N‖2, M and N . The backward error of the 

Arnoldi relation using FOA based DMD can then be obtained as follows.

‖AV̂ N−1
1 − V̂ N

1
ˆ̄H N‖F = ‖

(
AV̂ N−1

1 β̂N−1 − V̂ N
1

ˆ̄H N β̂N−1

)
β̂−1

N−1‖F ,

≤ ‖AV̂ N−1
1 β̂N−1 − V̂ N

1
ˆ̄H N β̂N−1‖F ‖β̂−1

N−1‖2 (∵ ‖AB‖F ≤ ‖A‖F ‖B‖2) .

(20)

From Equation (B.17), we also see that ‖β̂−1
N−1‖2 ≤ ‖X N−1†

1 ‖2 + O  (εm), where X N−1†

1 is the pseudoinverse of X N−1
1 . Using 

this in Equation (20), we get the following backward error estimates,

‖AV̂ N−1
1 − V̂ N

1
ˆ̄H N‖F ≤C1εmκ2

(
X N−1

1

)
+ O

(
ε2

m

)
,

‖V̂ N−1H

1 AV̂ N−1
1 − Ĥ N−1‖F ≤C1εmκ2

(
X N−1

1

)
+ O

(
ε2

m

)
,

(21)

where κ2

(
X N−1

1

)
is the 2-norm condition number defined as ‖X N−1

1 ‖2‖X N−1†

1 ‖2.

The estimates obtained in Equation (21) are important because they imply that the error in the computed projection 
‖V̂ N−1H

1 AV̂ N−1
1 − Ĥ N−1‖F is of order εmκ2

(
X N−1

1

)
. So, as the condition number of the snapshot matrix increases, the error 

in the computed projection due to finite precision arithmetic increases. As we will see later, this κ2

(
X N−1

1

)
dependence 

in the computed projection is also true for SVD based DMD and sometimes it might also depend on higher powers of 
κ2

(
X N−1

1

)
which is the case in streaming DMD. This dependence primarily arises since we are working with the snapshot 

vectors and not with the linear mapping A itself, which is the case for the standard Arnoldi method (used in Algorithm 2). 
So, DMD methods without rank truncation should be used to compute DMD modes and eigenvalues when κ2

(
X N−1

1

)
�

1/εm . Next, we discuss the rationale behind FOA based DMD with rank truncation, to reduce the finite precision error in 
the computed projected matrix which can be used when κ2

(
X N−1

1

)
≈ 1/εm .
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From equation (19), note that the error in AV̂ N−1
1 β̂N−1 − V̂ N

1
ˆ̄H N β̂N−1 is small and does not depend on condition number 

of snapshot matrix. It is in Equation (20) when we multiply by inverse of β̂N−1 that we introduce dependence of AV̂ N−1
1 −

V̂ N
1

ˆ̄H N on the condition number of snapshots. If the smallest singular value of β̂N−1 is very close to 0, then ‖β̂−1
N−1‖2 is 

very large thereby indicating large error in AV̂ N−1
1 − V̂ N

1
ˆ̄H N and V̂ N−1H

1 AV̂ N−1
1 − Ĥ N−1. So, the computed projection of A

onto the Krylov subspace will have large error. However, we can choose a subspace of the Krylov subspace on which we 
can more accurately compute the projection of A.

Consider the SVD (in exact arithmetic) of the upper triangular matrix β̂N−1 i.e. β̂N−1 = U	W H . Since, X N−1
1 − V̂ N−1

1 β̂N−1

is of size εm‖X‖2, the SVD of X N−1
1 is then

X N−1
1 = V̂ N−1

1 U	W H + O (εm‖X N−1
1 ‖2). (22)

Define Ur as that first ‘r’ columns of matrix U , Wr as the first ‘r’ columns of matrix W and 	r as the r × r sub-matrix of 	. 
Choosing the range of first r singular vectors of X N−1

1 as the subspace to perform Galerkin projection and V̂ N−1
1 Ur as the 

corresponding basis (i.e. V = Q = V N−1
1 Ur in Equation (4)), we can obtain the corresponding backward error as follows.

‖AV̂ N−1
1 Ur − V̂ N

1
ˆ̄H N Ur‖F = ‖

(
AV̂ N−1

1 β̂N−1 − V̂ N
1

ˆ̄H N β̂N−1

)
β̂−1

N−1Ur‖F ,

≤ ‖AV̂ N−1
1 β̂N−1 − V̂ N

1
ˆ̄H N β̂N−1‖F ‖β̂−1

N−1Ur‖2 (∵ ‖AB‖F ≤ ‖A‖F ‖B‖2) ,

= ‖AV̂ N−1
1 β̂N−1 − V̂ N

1
ˆ̄H N β̂N−1‖F ‖	−1

r ‖2,

‖V̂ N−1
1 Ur

H
AV̂ N−1

1 Ur − U H
r Ĥ N−1Ur‖F ≤ ‖AV̂ N−1

1 Ur − V̂ N
1

ˆ̄H N Ur‖F (1 + O (εm))

≤ C1εm‖X N−1
1 ‖2‖	−1

r ‖2 + O (ε2
m) (Using Equation (19))

(23)

Here, we considered the SVD in exact arithmetic as the finite precision error in the computed SVD will only contribute to 
terms of order ε2

m .
The span of the columns of V̂ N−1

1 Ur represent a subspace of the Krylov subspace (equation 3). The computed projection 
of A onto the subspace formed by the columns of V̂ N−1

1 Ur is then U H
r Ĥ N−1Ur . Since, ‖	−1

r ‖2 is much less than ‖X N−1†

1 ‖2

(for a suitably chosen r), Equation (23) tells us that the error in the computed projection of A onto subspace V̂ N−1
1 Ur is 

smaller than that onto V̂ N−1
1 . This explains the rationale behind the rank truncation option of the proposed FOA based DMD 

algorithm shown in Algorithm 1. Also, the DMD eigenvalue λ of U H
r Ĥ N−1Ur and DMD eigenvector V N−1

1 Ur z, where z is the 
eigenvector corresponding to λ, are nearly the same as the ones that one would obtain using DMD with rank truncated SVD 
[6].

3.2.2.2. SVD based DMD Next, we perform finite precision error analysis of SVD based DMD [6] without rank truncation. 
The computed SVD of X N−1

1 has the property [25],

X N−1
1 + E =

(
Û + δÛ

)
Ŝ
(

Ŵ + δŴ
)H

,

‖E‖2 ≤ p1εm‖X N−1
1 ‖2,

‖δÛ‖2 ≤ p2εm, ‖δ V̂ ‖2 ≤ p3εm,

(24)

where p1, p2, p3 are polynomials of reasonable degree in the matrix dimensions of X N−1
1 . First, we estimate how close 

AÛ ŜŴ H is to X N
2 .

AÛ ŜŴ H = A
(

X N−1
1 + E − δÛ Ŝ(Ŵ + δŴ )H − Û ŜδŴ H

)
= X N

2 + A
(

E − δÛ Ŝ(Ŵ + δŴ )H − Û ŜδŴ H
)

.
(25)

Multiplying the above equation by Ŵ Ŝ−1 from the right, we have

AÛ = X N
2 Ŵ Ŝ−1 + A

(
E − δÛ Ŝ(Ŵ + δŴ )H − Û ŜδŴ H

)
Ŵ Ŝ−1. (26)

Multiplying the above equation by U H from left and accounting for the error in matrix–matrix multiplication,

Û H AÛ − f l(Û H X N
2 Ŵ Ŝ−1) =

[
Û H X N

2 Ŵ Ŝ−1 − f l(Û H X N
2 Ŵ Ŝ−1)

]
+[

Û H A
(

E − δÛ Ŝ(Ŵ + δŴ )H − Û ŜδŴ H
)

Ŵ Ŝ−1
]
.

(27)

Observe that each of the two bracketed terms in right hand side is of size O (εmκ2(X N−1
1 )). So, the error in the computed 

projection of A is O (εmκ2(X N )) even using the SVD approach.
1
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To obtain the finite precision error of rank truncated SVD, multiplying the Equation (25) by Ŵr Ŝr
−1

, where r is the 
chosen truncated rank, Ŵr is the first r columns of Ŵ and Ŝr is the top left r × r submatrix of Ŝ , we obtain

AÛr = X N
2 Ŵr Ŝ−1

r + A
(

E − δÛ Ŝ(Ŵ + δŴ )H − Û ŜδŴ H
)

Ŵr Ŝ−1
r . (28)

Similar to the analysis of SVD based DMD, multiplying the above equation by U H
r on left and accounting for the error in 

matrix–matrix multiplication,

Û H
r AÛr − f l(Û H

r X N
2 Ŵr Ŝ−1

r )

=
[

Û H
r X N

2 Ŵr Ŝ−1
r − f l(Û H

r X N
2 Ŵr Ŝ−1

r )
]
+

[
Û H

r A
(

E − δÛ Ŝ(Ŵ + δŴ )H − Û ŜδŴ H
)

Ŵr Ŝ−1
r

]
. (29)

We can see from the above equation that size of the 2 bracketed terms in right hand side is εm‖X N−1
1 ‖2‖ Ŝ−1

r ‖2 which is 
small when compared to the O (εmκ2

(
X N−1

1

)
) in Equation (27) for a suitably chosen r. Hence, the finite precision error in 

the computed projected matrix for SVD based DMD with rank truncation is smaller than that without rank truncation.

3.2.2.3. Streaming DMD Streaming DMD [8] uses QR decomposition to compute the basis vectors for the Krylov subspace 
(Equation (3)). We do not consider compression and derive the finite precision error for the computed projection of the 
linear mapping.

A X N−1
1 = X N

2 ,

A
(

Q̂ X R̂ X + E X

)
=

(
Q̂ Y R̂Y + EY

)
,

(30)

where Q̂ X , R̂ X and Q̂ Y , R̂Y is the computed QR decomposition of X N−1
1 and X N

2 respectively. From Equation (16), it 
follows that the backward errors E X and EY , in the computed factors are bounded by c1εm‖X N−1

1 ‖2 and c1εm‖X N
2 ‖2

respectively. In streaming DMD, the projected linear mapping is computed as Q̂ H
X Q̂ Y

(
R̂ X R̂ H

Y

)
f l 

(
R̂ X R̂ H

X

)−1
using an in-

cremental method to compute the matrix products R̂ X R̂ H
Y and R̂ X R̂ H

X . The finite precision arithmetic error ‖Q̂ H
X A Q̂ X −

Q̂ H
X Q̂ Y

(
R̂Y R̂ H

X

)
f l 

(
R̂ X R̂ H

X

)−1 ‖F can be computed as follows. Multiplying Equation (30) by R̂ H
X from the right and rearrang-

ing, we get

A Q̂ X R̂ X R̂ H
X = Q̂ Y R̂Y R̂ H

X − AE X R̂ H
X + EY R̂ H

X . (31)

Multiplying by 
(

R̂ X R̂ H
X

)−1
on the right and Q̂ H

X from the left we have,

Q̂ H
X A Q̂ X − Q̂ H

X Q̂ Y R̂Y R̂ H
X

(
R̂ X R̂ H

X

)−1 = Q̂ H
X

(
EY R̂ H

X − AE X R̂ H
X

)(
R̂ X R̂ H

X

)−1
,

Q̂ H
X A Q̂ X − Q̂ H

X Q̂ Y R̂Y R̂ H
X f l

(
R̂ X R̂ H

X

)−1 = Q̂ H
X

(
EY R̂ H

X − AE X R̂ H
X

)(
R̂ X R̂ H

X

)−1

− Q̂ H
X Q̂ Y R̂Y R̂ H

X

(
f l

(
R̂ X R̂ H

X

)−1 −
(

R̂ X R̂ H
X

)−1
)

.

(32)

Observe that the size of right hand side in the above equation can be as large as order εm

(
κ2(X N−1

1 )
)2

. This is in contrast 
to FOA based and SVD based DMD without rank truncation whose finite precision arithmetic error in the computed pro-
jection is only order εmκ2(X N−1

1 ). So, for a fixed condition number of snapshots, the finite precision error in the computed 
projection from streaming DMD is higher than FOA based and SVD based DMD. This is primarily because streaming DMD 
involves inversion of the matrix product R̂ X R̂ H

X .
Fig. 1 shows numerical evidence for the above obtained error estimates for different projected DMD methods with-

out rank truncation. The linear mapping A is chosen to be a Vandermonde matrix ∈ R
50×50 generated in Matlab using 

vander(linspace(0, 1, 50)). Snapshots are generated by the application of A onto a random starting vector. The number of 
snapshots is varied to obtain a range of condition numbers of the snapshot matrix. The finite precision error in the com-
puted projection is plotted as a function of the condition number of the snapshot matrix for each of the three projected 
DMD methods in Fig. 1. As we can see from the figure, error in the computed projection using streaming DMD can depend 

on 
(
κ2(X N−1

1 )
)2

whereas that from FOA based and SVD based DMD depends on κ2(X N−1
1 ).

3.2.3. Error indicators for DMD modes and eigenvalues
DMD computes approximate eigenvector and eigenvalues of the assumed linear mapping A. In exact arithmetic, us-

ing matrix H̄ N and the eigenvector zi it is possible to obtain error estimates associated with DMD eigenvalues and DMD 
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Fig. 1. Finite precision error in computed projection using different projected DMD methods.

eigenvectors [20] in �2 norm computed using FOA based DMD by using the relation

‖AV N−1
1 zi − λi V N−1

1 zi‖2 = ‖hN,N−1 v N eH
N−1zi‖2. (33)

By monitoring the value of ‖hN,N−1 v N eH
N−1zi‖2 it is possible to monitor the accuracy of DMD eigenvector and eigenvalue 

pairs. This can be reasoned by the Bauer–Fike theorem [20] which states that suppose (λa, va) is an approximate eigenvalue–
eigenvector pair, then the error in λa is related to the residual ‖Ava − λa va‖2 such that

|λa − λ| ≤ κ2(V )
‖Ava − λa va‖2

‖va‖2
(34)

where V is the matrix of right eigenvectors of A (assuming that its eigenvectors are linearly independent). So, if the 
DMD eigenvector has unit magnitude, the error in DMD eigenvalue λi computed using FOA based DMD is indicated by 
‖hN,N−1 v N eH

N−1zi‖2. This can be used to devise stopping criterions for acquiring new snapshots when using FOA based 
DMD.

Suppose, we use FOA based DMD with rank truncation, the error indicator for the DMD eigenvectors and DMD eigenval-
ues can be obtained as follows. In exact arithmetic,

AV N−1
1 Ur zi − λi V N−1

1 Ur zi = V N−1
1 (I − Ur U H

r )H N−1Ur zi + hN,N−1 v N eH
N−1Ur zi,

‖AV N−1
1 Ur zi − λi V N−1

1 Ur zi‖2 = ‖V N−1
1 (I − Ur U H

r )H N−1Ur zi + hN,N−1v N eH
N−1Ur zi‖2,

‖AV N−1
1 Ur zi − λi V N−1

1 Ur zi‖2 = ‖
[
(I − Ur U H

r )H N−1

hN,N−1eH
N−1

]
Ur zi‖2.

(35)

The error in DMD eigenvector V N−1
1 Ur zi (unit magnitude in �2 norm) and eigenvalue λi pair computed using FOA based 

DMD with rank truncation is indicated by ‖ 
[
(I − Ur U H

r )H N−1

hN,N−1eH
N−1

]
Ur zi‖2.

Next, we investigate how close the computed error indicator for the DMD eigenvector and eigenvalue obtained using 
FOA based DMD without rank truncation is to the actual error using the finite precision results derived in previous section. 
From Equation (19) and assuming β̂N−1 to be full rank, we have

‖AV̂ N−1
1 β̂N−1 yi − V̂ N

1
ˆ̄H N β̂N−1 yi‖2 ≤ C1εm‖X N−1

1 ‖2‖yi‖2, (36)

β̂N−1 yi = zi, (37)

where λi, zi is an exact eigenvalue eigenvector pair of Ĥ N−1. Here, we assume for simplicity that the yi is the exact solution 
of β̂N−1 yi = zi and zi is the exact eigenvector of Ĥ N−1. Then, the accuracy of the error indicator is

‖AV̂ N−1
1 zi − λi V̂ N−1

1 zi − ĥN,N−1 v̂ N eH
N−1zi‖2 ≤ C1εm‖X N−1

1 ‖2‖yi‖2. (38)

The above equation tells us that the computed error indicator ĥN,N−1 v̂ N eH
N−1zi is a good estimate of the actual error 

AV̂ N−1
1 zi − λi V̂ N−1

1 zi if the magnitude of yi obtained from solving Equation (37) is small. This is essentially the same as 
saying that the component of zi along the left singular vectors corresponding to near zero singular values of β̂N−1 is small.
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However, for FOA based DMD with rank truncation, the computed error indicator ‖ 
[
(I − Ur U H

r )H N−1

hN,N−1eH
N−1

]
Ur z‖2 for the 

computed DMD eigenvector and eigenvalue will be very close to the actual error for a suitably chosen truncated rank r. 
This is because the backward error in Equation (23) is small for appropriately chosen r and is controlled by ‖	−1

r ‖2 rather 
than ‖β̂−1

N−1‖2. Numerical experiments shown in section 4.1 support the above arguments regarding finite precision quality 
of the FOA based DMD error indicators.

3.2.4. Reconstruction error and interpolation arguments
Let ϕ j := V N−1

1 z j; j = 1, . . . , N − 1. Since, we have assumed that the DMD eigenvectors are linearly independent, 
span{ϕi}N−1

i=1 is same as K N−1(A, ψ1). So, we should be able to reconstruct at least the first N − 1 snapshots using {ϕ}N−1
j=1

exactly [3].
Rowley et al. [3] showed that all snapshot vectors except the last one in the sequence can be exactly reconstructed from 

the DMD modes. The reconstruction error of the last snapshot was shown to be that of its orthogonal projection onto the 
previous ones. Here, we obtain the same results using the Arnoldi basis vectors in the context of FOA based DMD. Suppose 
ψ = ∑N−1

j=1 c jϕ j . Then, say we approximate Aψ as 
∑N−1

j=1 λ jc jϕ j . The error involved in this approximation can be obtained 
as follows

Aψ −
N−1∑
j=1

λ jc jϕ j =
N−1∑
j=1

c j
(

Aϕ j − λ jϕ j
)

=
N−1∑
j=1

c j

(
hN,N−1v N eH

N−1z j

)
= hN,N−1

⎛
⎝N−1∑

j=1

c je
H
N−1z j

⎞
⎠ v N ,

(39)

‖Aψ −
N−1∑
j=1

λ jc jϕ j‖2 = |hN,N−1| |
N−1∑
j=1

c je
H
N−1z j|. (40)

ψ = ∑N−1
j=1 c jϕ j can be written in matrix form as ψ = [ϕ]{c} where [ϕ] is matrix formed by stacking ϕ j as columns and 

{c} is the vector of coefficients, i.e. [ϕ] = [ϕ1 . . . ϕN−1] and {c} = [c1 . . . cN−1]H . Let [z] := [z1 . . . zN−1]. Then, we 
have

ψ = V N−1
1 [z]{c},

ψ = V N−1
1 {c̃} ({c̃} := [z]{c}). (41)

Suppose hN,N−1 is not 0. Then, ‖Aψ −∑N−1
j=1 λ jc jϕ j‖2 is 0 if 

∑N−1
j=1 c jeH

N−1z j is 0, i.e. the last entry in the vector {c̃} should 
be 0 or equivalently, ψ = V N−2

1 {c̄} where {c̄} = [c̃1 . . . c̃N−2]T . Therefore, the approximation 
∑N−1

j=1 λ jc jϕ j to Aψ is exact 
if at least one of the below conditions are satisfied.

1. ψ is in the range of V N−2.
2. hN,N−1 = 0, i.e. if the last snapshot can be written as linear combination of the previous snapshots.

The above 2 conditions are essentially consequences of the fact that we use Galerkin projection onto the subspace 
K N−1(A, ψ1).

The FOA based DMD method stops if linearly dependent snapshots are present, i.e. say ψ j+1 can be expressed as a linear 
combination of {ψ1, . . . , ψ j}. Then, in the jth step of Arnoldi method, h j+1, j is 0. The Galerkin method with the previously 
computed vi ’s will give exact eigenvectors and eigenvalues associated with the linear mapping A that connects the snapshot 
vectors.

In a continuous sense, DMD generates an interpolant through the snapshot vectors. The interpolant can be defined as

I Nψ(t) :=
N−1∑
j=1

eω j td jϕ j,

I Nψk := I Nψ(tk),

(42)

where ω j := ln(λ j)/�t , �t is the time spacing between the snapshots, tk := (k − 1)�t and ψ1 = ∑N−1
j=1 d jϕ j . Equation (40)

implies that snapshots ψ1 to ψN−1 can always be exactly reconstructed from the DMD eigenmodes and DMD eigenvalues,
i.e.

ψk = I Nψk k = 1, . . . , N − 1 (43)
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Fig. 2. Strong scaling of HN−1 computation using FOA based DMD (Algorithm. 1).

and the error associated with reconstruction of I NψN−1 is

‖I NψN − ψN‖2 = |hN,N−1| |
N−1∑
j=1

d jλ
N−2
j eH

N−1z j |. (44)

In the linear case, the interpolant I Nψ(t) approximates the evolution eBtψ1, where A = eB�t . For the nonlinear case, 
suppose we use P snapshots in the FOA based DMD algorithm starting from snapshot ψ1 and hP ,P−1 turns to be 0, then 
DMD eigenvectors and eigenvalues are the exact eigenpairs of A. All P snapshots can be constructed exactly using DMD 
eigenvectors and DMD eigenvalues and consequentially the interpolant I P ψ(t). Now, if we use I P ψ(t) to predict the ob-
servable vectors at future times, the error in the prediction is an indication of how close the span of observables is to 
a Koopman function and eigenvalues [7] of the system. Numerical experiments on evaluating the quality of approximate 
Koopman eigenfunctions obtained from DMD for different choices of set of observables is carried out in Zhang et al. [19].

The coefficients {c} of first snapshot ψ1 in the basis formed by DMD eigenmodes can be obtained by solving the following 
matrix problem of size (N − 1) × (N − 1).

[ϕ]{c} = ψ1,

[z]{c} = ‖ψ1‖2e1.
(45)

If rank truncated FOADMD is used, then the coefficients {c} of the first snapshot in eigenvector basis such that ‖ψi −
[V N−1

1 Ur][z]{c}‖2 is minimized, can be obtained by solving

[z]{c} = ‖ψ1‖2U H
r e1. (46)

3.2.5. Parallel scaling
The computational kernels of FOA based DMD algorithm include vector additions, dot products and matrix vector mul-

tiplications which can be parallelized. The snapshot data can be partitioned row-wise among different processors. Figs. 2a 
and 2b show strong scaling for the computation of projected matrix H N−1 using FOA based DMD algorithm on Texas Ad-
vanced Computing Center (TACC) Stampede2 Knights Landing cluster upto 16384 processors respectively. Both plots show 
time taken to generate Arnoldi vectors and Hessenberg matrix for different number of processors. The strong scaling shown 
in Fig. 2a utilized 101 snapshots of size 8 million each and in Fig. 2b used 201 snapshots of size 240 million each. The 
snapshot matrix was filled with random numbers as the operation count and scaling properties of the algorithm is inde-
pendent of the content of the snapshot matrix. Figs. 2a and 2b show good scaling properties of the algorithm. Since we 
use CGS with reorthogonalization, O (N) number of messages are exchanged between processors. This is in contrast to MGS 
orthogonalization kernel which would require O (N2) number of messages.

4. Numerical experiments

We illustrate application of FOA based DMD (Algorithm 1) on three problems, i) snapshots from a linearized channel 
flow simulation, ii) snapshots of vorticity field from flow over a circular cylinder and iii) snapshots from turbulent flow 
simulation of jets in cross flow.
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Fig. 3. Comparison of DMD eigenvalues for linearized channel flow simulation snapshots.

Table 5
Error ‖P A − P̂ A‖2 in computed projection of A for FOA based DMD, SVD based DMD and streaming DMD for linearized channel flow case. P A is the exact 
projection and P̂ A is the computed projection.

‖P A − P̂ A‖2 FOA based DMD SVD based DMD Streaming DMD

Without rank truncation 2.22e+01 6.03+00 1.05e+09
With rank truncation 5.77e−04 2.09e−03 –

4.1. Linearized channel flow simulation at Re = 10000

The dataset used to perform DMD analysis of linearized channel flow simulation was obtained from Jovanović et al. [16]. 
For a description of the numerical method and mesh resolution refer Jovanović et al. [16]. This dataset is extremely ill-
conditioned. The condition number of snapshot matrix is ≈ 1017. Even though, 100 snapshots are present, the numerical 
rank of the dataset is 26. We define numerical rank as the number of singular values of snapshot matrix that are larger 
than N ∗ eps(‖A‖2), where eps(x) is the distance between |x| and the next larger double precision floating point number. 
Also, the linear mapping A is available. So, we can compute the error involved in projection of A, DMD eigenvectors and 
eigenvalues and assess quality of proposed error indicators when the snapshots become extremely ill-conditioned. From the 
same set of snapshots as used in Jovanović et al. [16] we compute the DMD eigenvectors and eigenvalues and compare to 
the SVD based DMD. Streaming DMD without compression would not yield reliable results for this case due to the very 
high condition number of snapshot matrix. The size of each snapshot is 150 and a total of 100 snapshots are used. DMD 
eigenvalues obtained using FOA based DMD with and without rank truncation is compared to SVD based DMD in Fig. 3. 
The DMD eigenvectors and eigenvalues are ordered based on the values of coefficients obtained by projection of the first 
snapshot onto the DMD eigenmodes using equation (45).

Table 5 shows the error in computed projection of A. The exact projection P A is calculated as f l(Q H A Q ). Since, matrix–
matrix multiplication with orthogonal matrix is backward-stable [21], error in evaluation of P A will be very small. Finite 
precision error analysis of SVD based DMD and FOA based DMD without rank truncation showed that the error in computed 
projection is O (κ2(X N

1 )εm). This is consistent with the numerical results shown in Table 5. Also, the large error associated 
with streaming DMD is because of its dependence on higher powers of κ2(X N−1

1 ) as explained in section 3.2.2. The increase 
in accuracy of computed projection with rank truncated versions of SVD based DMD and FOA based DMD seen in Table 5 is 
explained in section 3.2.2.

Next, we consider the accuracy of computed DMD eigenvectors and eigenvalues using FOA based DMD with and with-
out rank truncation. Tables 6 and 7 show the comparison of actual error (Errora) in eigenvalue–eigenvector pair to the 
prediction using the error indicator (Errorp ) with and without rank truncation respectively for the 8 DMD modes with 
least error. The actual error and predicted error is defined as ‖AV N−1

1 z − λV N−1
1 z‖2 and |hN,N−1eH

N−1z| respectively for the 
case without rank truncation and for the case with rank truncation, they are defined as ‖AV N−1

1 Ur z − λV N−1
1 Ur z‖2 and 

‖V N−1
1

(
I − Ur U H

r

)
H N−1Ur z + hN,N−1 v N eH

N−1Ur z‖2 respectively, where λ and z are the eigenvalue and eigenvector pair of 
the projected problem. As, we can see from Tables 6 and 7, the error in dominant eigenvalues and corresponding eigen-
vectors are of the same order of magnitude. However, the predicted error is more close to the actual error for the case 
with rank truncation than without rank truncation. This is because of the smaller backward error for the Arnoldi relation 
(equation (23)) for the case with rank truncation.
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Table 6
Comparison of actual error ‖AV N−1

1 z − λV N−1
1 z‖2 with the predicted error without rank trun-

cation.

Eigenvalue Errora Errorp

9.76e−01+(−2.36e−01)i 3.75e−14 5.37e−15
9.14e−01+(−2.60e−01)i 1.07e−10 1.62e−11
8.30e−01+(−3.02e−01)i 5.79e−08 9.44e−09
8.18e−01+(−1.57e−01)i 1.90e−06 2.69e−07
5.62e−01+(−7.19e−01)i 1.39e−05 2.53e−06
5.56e−01+(−7.56e−01)i 8.03e−06 1.44e−06
5.50e−01+(−7.93e−01)i 5.32e−06 9.38e−07
7.97e−01+(−3.52e−01)i 3.77e−06 6.44e−07

Table 7
Comparison of actual error ‖AV N−1

1 Ur z − λV N−1
1 Ur z‖2 with the predicted error with rank 

truncation.

Eigenvalue Errora Errorp

9.76e−01+(−2.36e−01)i 3.40e−13 3.40e−13
9.14e−01+(−2.60e−01)i 6.01e−10 6.00e−10
8.30e−01+(−3.02e−01)i 1.53e−07 1.53e−07
8.18e−01+(−1.57e−01)i 6.32e−06 6.32e−06
5.62e−01+(−7.20e−01)i 1.30e−05 1.30e−05
5.57e−01+(−7.56e−01)i 5.66e−06 5.66e−06
5.50e−01+(−7.93e−01)i 3.02e−04 3.02e−04
7.97e−01+(−3.52e−01)i 7.58e−06 7.57e−06

Fig. 4. Cylinder test case.

4.2. Flow over cylinder at Re = 100

We consider the flow over a circular cylinder at Reynolds number (Re := V D/ν) of 100 (V , D and ν denote freestream 
velocity, diameter of cylinder and kinematic viscosity of fluid respectively). The data set for this case is obtained from Kutz 
et al. [26]. For details on the numerical method used to generate the cylinder snapshots refer Kutz et al. [26]. A total of 
151 snapshots of vorticity field separated by time interval �t = 0.2 were used. Fig. 4a shows a snapshot of the vorticity 
field. The cylinder is placed at (0, 0) and the diameter of the cylinder is 1. The flow is from left to right. It is known that as 
we increase Re, for Re > 47 vortices are shed from the cylinder at a particular frequency dependent on Re. These vortices 
can be clearly seen from Fig. 4a. At Re = 100, the Strouhal number St = f D/V is 0.16. We can capture this frequency 
by performing DMD of the snapshots of vorticity field. The condition number of the snapshots for flow over cylinder at 
Re = 100 is ≈ 107.

Fig. 4b compares DMD eigenvalues associated with 21 dominant eigenmodes from the proposed FOA based DMD method 
(without truncation), SVD based DMD (with rank truncation) and streaming DMD. The DMD eigenmodes from FOA based 
DMD are ranked based on the magnitude of c j when the first snapshot ψ1 is represented in the basis of DMD eigenmodes 
(equation 45). Also, only few of the computed DMD eigenmodes have sufficiently large values of c j (not shown). These DMD 
eigenmodes give an appropriate basis to represent the dataset. In SVD based DMD, only the first 21 singular vectors are 
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Fig. 5. DMD modes from snapshots of vorticity of flow over cylinder using FOA based DMD without rank truncation.

Table 8
Predicted error in DMD eigenvector and eigenvalues for the 5 
most dominant eigenvalues.

log(λ)
2π�t ErrorDM D

−0.0000+(0.0000)i 3.24e−08
0.0000+(0.1654)i 7.60e−08
0.0000+(−0.1654)i 7.60e−08
−0.0000+(0.3308)i 2.18e−07
−0.0000+(−0.3308)i 2.18e−07

used to evaluate the DMD eigenvalues and eigenmodes. Since, the condition number of the snapshot matrix is ≈ 107 � εm
streaming DMD returns reliable eigenvalues. Similar to FOA based DMD, the DMD modes obtained from streaming DMD are 
sorted based on the magnitude of the coefficients when the first snapshot ψ1 is represented as their linear combination. 
Fig. 4b shows good agreement of the computed DMD eigenvalues between the different projected DMD methodologies 
considered.

Figs. 5a and 5b show the first 2 dominant DMD eigenmodes obtained from FOA based DMD. DMD eigenmode in Fig. 5a
has DMD eigenvalue of 1 and represents the mean vorticity field. The second dominant DMD eigenmode shown in Fig. 5b 
corresponds to the vortex shedding frequency. The frequency of oscillation of DMD mode is given by imag(log(λ)/(2π�t))
where λ is corresponding DMD eigenvalue. Fig. 5b corresponds to DMD eigenvalue, λ = 0.9875 − 0.2063i whose associated 
frequency is 0.1654, which is exactly the St at Re = 100.

The snapshots matrix is full rank (measured using numerical rank). So, rank truncation is not required for this case. 
Table 8 shows the quality of the five most dominant DMD eigenvectors and eigenvalues. Since, the condition number of the 
snapshots is very small when compared with 1

εm
, the computed error indicator |hN,N−1eH

N−1z| should be close to the actual 
error ‖AV N−1

1 z − λV N−1
1 z‖2.

4.3. Jets in cross flow

Next, we consider a large dataset obtained from Direct Numerical Simulation (DNS) of turbulent jets in cross flow. DMD 
on this dataset has been previously performed by Iyer and Mahesh [27] using the algorithm of Schmid [6] using snapshot 
matrix as the basis vectors. Here, we use FOA based DMD to obtain the DMD modes and eigenvalues and compare to 
previously obtained results. For more information on the problem, simulation, timestep and grid, the reader is referred to 
Iyer and Mahesh [27]. Here, we consider jet velocity to cross-flow velocity ratios (R) of 2 and 4. The size of each snapshot 
is 240 million. A total of 80 snapshots were used for R = 4, and 250 snapshots were used for R = 2 case.

The parallel implementation discussed in section 3.2.5 was used. The data was split row-wise among different processors. 
A total of 512 processors were used to process the data. The condition number of snapshot matrix is ≈ 102 which is very 
small when compared with 1/εm for double precision datatype. So, FOA based DMD without rank truncation is used to 
compute the DMD eigenvalues and eigenvectors. Also, in Iyer and Mahesh [27], DMD eigenvalues and eigenvectors were 
obtained through the projected companion matrix. The normal equations for the last column of the companion matrix were 
solved using rank truncated SVD. Table 9 shows the good agreement of the Strouhal number (non-dimensionalized with 
peak jet velocity and diameter of orifice) associated with shear layer modes obtained from FOA based DMD with Iyer and 
Mahesh [27]. Fig. 6 shows the Q-criterion of shear layer modes at R = 2 and R = 4 and they agree with those obtained 
by Iyer and Mahesh [27]. Also, the computed error indicator |hN,N−1eH

N−1z| presented in Table 9 shows the better quality 
of eigenvectors for R = 2 case than R = 4. This is because of a larger set of snapshots used for R = 2 than R = 4. These 
error indicators are very useful as it allows us to quantitatively compare the quality of DMD modes and eigenvalues from 
different datasets and also informs the user when to stop adding new snapshots. The finite precision error analysis of error 
indicators elucidates that their reliability primarily depends on the condition number of the snapshot matrix. In this case, 
since the condition number is reasonable, the predicted error should be very close to the actual error. The time taken to 
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Table 9
Comparison of Strouhal number associated with shear layer modes obtained from FOA based 
DMD and result of Iyer and Mahesh [27] for different jet velocity to cross flow velocity ratios 
(R) and the predicted error associated with DMD eigenvalues and eigenvectors.

R [27] FOA based DMD ErrorDM D

2 0.6255 0.6263 0.0194
2 1.2077 1.2071 0.0323
4 0.3804 0.3804 0.0545
4 0.7624 0.7621 0.0518

Fig. 6. Real part of DMD eigenmode associated with shear layer. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

generate the Arnoldi vectors and projected matrix from the input snapshot matrix is approximately 234 s for 250 snapshots 
and 25 s for 80 snapshots on Stampede2 Skylake cluster.

5. Conclusion

In this paper, we develop a modified version of the standard FOA method, which forms the kernel of the proposed 
FOA based DMD algorithm (Algorithm 1). The streaming form of the proposed methodology is shown in Algorithm 3. The 
cost and memory consumption of FOA based DMD is smaller than that of SVD based DMD [6] and streaming DMD [8]. 
From finite precision error analysis of the FOA based DMD, the accuracy of computed projection of the linear mapping 
A is shown to be O (κ2(X N−1

1 )εm) which is same as that for SVD based methods. The finite precision error of streaming 

DMD is shown to be O  
((

κ2(X N−1
1 )

)2
εm

)
at most. So, DMD methods which are theoretically equivalent can have different 
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finite precision error. These error estimates are validated by considering snapshot matrices of logarithmically increasing 
condition number. For snapshots with extremely large condition numbers of O ( 1

εm
), rank truncation may be used within 

the FOA based DMD algorithm. The increase in accuracy of computed projection onto a subspace of Krylov subspace in 
rank truncated FOA based DMD method is explained using finite precision error analysis. Error indicators for the computed 
DMD eigenvectors and eigenvalues are derived for FOA based DMD with and without rank truncation. These error indicators 
can be used to devise stopping criterion for DMD. Exact reconstruction property and parallel implementation aspects of 
the proposed method are discussed. The method is easily parallelizable. Scaling of the algorithm is shown upto 16384 
processors. The proposed algorithm is tested on three cases of increasing levels of dimensionality and condition number 
of snapshot matrix. The proposed error indicators are validated and bounds of accuracy of computed projection is assessed 
using linearized channel flow simulation snapshots at Re = 10000. The DMD eigenvectors and eigenvalues are extracted 
from cylinder simulation snapshots at Re = 100 using FOA based DMD and compared with those obtained by SVD based 
and streaming DMD methods. The capability of the method to perform DMD on very large scale datasets is shown by 
performing DMD of snapshots obtained from DNS of turbulent jet in cross flow at two different jet velocity to cross flow 
velocity ratios.

FOA based DMD algorithm is well-suited for DMD of large datasets on parallel computing platforms as it is a streaming 
method. Finite precision error analysis is important for DMD algorithms as they rely on snapshot vectors and not on the 
linear mapping. DMD algorithms which are equivalent in theory can have different finite precision error. The error indicators 
for modes computed from FOA based DMD provides a quantitative means to compare the accuracy of modes computed from 
different datasets and decide when to stop acquiring new snapshots. Since FOA based DMD relies on the Arnoldi method 
with full orthogonalization, the method can utilize the advancements made in Arnoldi-based methods for large eigenvalue 
problems [20] in the context of DMD.
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Appendix A. Computational cost and memory requirement

A.1. FOA based DMD

First, we consider the cost of FOA based DMD without rank truncation to obtain the projected matrices for the batch 
processed algorithm shown in Algorithm 1. The streaming algorithm has the same floating point operation count as the 
batch processed one.

Cost of FOA based DMD without rank truncation

≈ 3M︸︷︷︸
step 2

+
N−1∑
j=1

⎡
⎢⎢⎢⎢⎢⎣2( j − 1)︸ ︷︷ ︸

step 5

+
j∑

i=2

2( j − i + 1)

︸ ︷︷ ︸
step 6-8

+2M j + M︸ ︷︷ ︸
step 9

+8M j + j︸ ︷︷ ︸
step 10-14

+ 3M︸︷︷︸
step 15

+2( j + 1)︸ ︷︷ ︸
step 16-18

⎤
⎥⎥⎥⎥⎥⎦ ,

≈ 5MN(N − 1) + (4M)(N − 1) + N(N − 1)(2N − 1)

6
+ 3N(N − 1) + 3M,

≈ 5MN2 + N3

3
(neglecting lower order terms).

(A.1)

Note that in the last step of the above equation we have only considered terms which are cubic in the dimension of the 
problem. The cost of obtaining the projected matrix using FOA based DMD with rank truncation would include additional 
costs of SVD and matrix multiplications, i.e.,

Cost of FOA based DMD with rank truncation

= Cost of FOA based DMD without rank truncation + Cost of SVD and matrix multiplication

≈ 5MN2 + N3

3︸ ︷︷ ︸
FOA based DMD

+ 12N3︸ ︷︷ ︸
step 22 [25]

+2r(N − 1)2 + 2r2(N − 1)︸ ︷︷ ︸
step 23

≈ 5MN2 + 37

3
N3 + 2rN2 + 2r2N (neglecting lower order terms),

(A.2)

where r is the truncated rank.
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The memory requirement (number of floating point numbers to be stored) of streaming FOA based DMD without rank 
truncation involves storing the Arnoldi vectors V N

1 , one upper Hessenberg matrix with an additional row H̄ N and upper 
triangular matrix βN , i.e.,

Memory requirement of streaming FOA based DMD without rank truncation

= MN︸︷︷︸
V N

1

+ (N − 1)(N + 2)

2︸ ︷︷ ︸
H̄ N

+ N(N + 1)

2︸ ︷︷ ︸
βN

≈ MN + N2 (including only quadratic terms)

(A.3)

Note that in the implementation, new snapshots which are to be processed can be stored as columns of V N
1 which are then 

overwritten by the computed orthonormal Arnoldi vectors. With rank truncation, additional memory requirement involves 
the left singular vectors, the singular values and the new projected full matrix.

Memory requirement of streaming FOA based DMD with rank truncation

≈ MN + N2 + (N − 1)2︸ ︷︷ ︸
left singular vectors

+ (N − 1)︸ ︷︷ ︸
singular values

+ r2︸︷︷︸
projected matrix

≈ MN + 2N2 + r2 (including only quadratic terms)

(A.4)

A.2. SVD based DMD [6]

SVD based methods involve computation of SVD and matrix multiplications to compute the projected matrix.

Cost of SVD based DMD with rank truncation

= Cost of SVD + Cost of matrix multiplication,

≈ 6M(N − 1)2 + 20(N − 1)3︸ ︷︷ ︸
SVD [25]

+2Mr(N − 1) + 2r2(N − 1) + r2 + r︸ ︷︷ ︸
matrix multiplication

,

≈ 6MN2 + 20N3 + 2MrN + 2r2N (neglecting lower order terms).

(A.5)

Here, r is the truncated rank. The cost associated without rank truncation which is obtained by setting r = N − 1 is ≈
8MN2 + 22N3.

SVD based DMD requires all the snapshots X N
1 , singular vectors U and W , N − 1 singular values and the full projected 

matrix.

Memory requirement for SVD based DMD with rank truncation

= MN︸︷︷︸
X N

1

+ M(N − 1)︸ ︷︷ ︸
U

+ (N − 1)2︸ ︷︷ ︸
W

+ N − 1︸ ︷︷ ︸
singular values

+ r2︸︷︷︸
projected matrix

≈ 2MN + N2 + r2 (including only quadratic terms)

(A.6)

If rank truncation is not involved, the number of floating point numbers that needs to be stored is then ≈ 2MN2 + 2N2.

A.3. Streaming DMD [8]

The method of Hemati et al. [8] without compression computes the projected matrix from snapshot pairs as

A X = Y , X = Q X X̃, Y = Q Y Ỹ ,

Q H
X A Q X = Q H

X Q Y Ỹ X̃ H
(

X̃ X̃ H
)−1

.
(A.7)

The floating point operation count to compute the projection of A, Q H
X A Q X comprises of two QR factorizations (with 

reorthogonalization), incrementally forming the matrices Ỹ X̃ H and X̃ X̃ H , solving Ỹ X̃ H
(

X̃ X̃ H
)−1

and a few matrix–matrix 
multiplications. In particular,
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Cost of streaming DMD without compression

≈ 8M(N − 1)2︸ ︷︷ ︸
2 QR factorizations (with reorthogonalization)

+ 2

3
N(N − 1)(2N − 1)︸ ︷︷ ︸

incrementally forming Ỹ X̃ H and X̃ X̃ H

+ 2(N − 1)3︸ ︷︷ ︸
solving Ỹ X̃ H

(
X̃ X̃ H

)−1

+ 2M(N − 1)2 + 2(N − 1)3︸ ︷︷ ︸
matrix multiplications

,

≈ 10MN2 + 16

3
N3 (neglecting lower order terms).

(A.8)

The number of floating point numbers to be stored consists of two orthogonal matrices Q X and Q Y , two upper triangular 
matrices X̃ and Ỹ , two outer product matrices Ỹ X̃ H and X̃ X̃ H and the projected matrix, i.e.,

Memory required for streaming DMD without compression

= 2M(N − 1)︸ ︷︷ ︸
2 orthogonal matrices

+ N(N − 1)︸ ︷︷ ︸
2 upper triangular matrices

+ 2(N − 1)2︸ ︷︷ ︸
2 outer product matrices

+ (N − 1)2︸ ︷︷ ︸
projected matrix

≈ 2MN + 4N2 (including only quadratic terms)

(A.9)

The authors do note that a special implementation of streaming DMD can be created for sequence of snapshots which has 
lower computational cost and memory requirement, but the method as is, consumes the above deduced cost and memory 
consumption.

It is important to note that the method of Hemati et al. [8] with compression is not the same as SVD based DMD and FOA 
based DMD with rank truncation. The compressed streaming DMD of Hemati et al. [8] makes an additional approximation 
that the rank truncated snapshot pairs are related by the same linear mapping A that relates the snapshot pairs, i.e.,

A Xr = Yr + U Y 	Y W H
Y

(
W Xr W H

Xr − W Y r W H
Y r

)
(A.10)

where X = U X	X W H
X , Y = U Y 	Y W H

Y , U Xr := U X (:, 1:r), U Y r := U Y (:, 1:r), 	Xr := 	X (1:r, 1:r), 	Y r := 	Y (1:r, 1:r), W Xr :=
W X (:, 1:r), W Y r := W Y (:, 1:r), Xr := U Xr	r W H

Xr and Yr := U Xr	r W H
Xr . In the compressed version of streaming DMD [8], the 

second term in the right hand side of the above equation is neglected and then the Galerkin projection is performed to 
obtain approximate eigenvectors of A in the range of Ur . In the case of rank truncated SVD based DMD and FOA based 
DMD, the second term in right hand side is not neglected and is followed by Galerkin projection to obtain approximate 
eigenvectors in the range of Ur .

Appendix B. Backward error of FOA based DMD

Rewriting Equation (18),

AV̂ N−1
1 β̂N−1 − V̂ N

1
ˆ̄H N β̂N−1 = A

(
V̂ N−1

1 β̂N−1 − X N−1
1

)
+

(
X N

2 − V̂ N
1 β̂1:N,2:N

)
+ V̂ N

1

(
β̂1:N,2:N − ˆ̄H N β̂N−1

)
(B.1)

From Equation (15), we see that β1:N,2:N is a matrix product of H̄ N and βN−1. Using finite precision arithmetic result of 
matrix multiplication [21],

‖β̂1:N,2:N − ˆ̄H N β̂N−1‖F ≤ γN−1‖ ˆ̄H N‖F ‖β̂N−1‖F , (B.2)

where γk := kεm
1−kεm

. Next, we estimate X N
1 − V̂ N

1 β̂N using finite precision inner product estimate for the first column and the 
finite precision arithmetic Arnoldi relation for the remaining columns.

For the first column ψ1 − v̂1β̂1,1,

β̂1,1 = f l(‖ψ‖2) = ‖ψ‖2 (1 + θM+1) ,

v̂1 = f l

(
ψ1

β̂1,1

)
= ψ1

‖ψ1‖2

(1 + θ1)

(1 + θM+1)
= ψ1

‖ψ1‖2
(1 + θ2M+3)

(
∵ 1 + θk

1 + θ j
= 1 + θk+2 j for j > k

)
,

ψ1 − v̂1β̂1,1 = −ψ1θ3M+4,

(B.3)

where θk is a real number such that |θk| ≤ γk .
For the remaining columns of X N

1 − V̂ N
1 β̂N , we first recognize that FOA based DMD is QR factorization of the matrix 

[v1, L1, . . . , LN−1] in exact arithmetic, where L j := 1
β j, j

(
ψ j+1 − v1

∑ j−1
i=1 h1,iβi, j − ∑ j

k=2 vk
∑ j−1

i=k−1 hk,iβi, j

)
. From Equation 

(16), we have in finite precision arithmetic,
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[
v̂1, L̂1, . . . , L̂N−1

]
= V̂ N

1 R̂ N +
[

0, E AR
]
,

‖E AR‖F ≤ c1εm‖L̂1, . . . , L̂N−1‖F ,
(B.4)

where, L̂ j := f l 
(

1
β̂ j, j

(
ψ j+1 − v̂1 f l

(∑ j−1
i=1 ĥ1,i β̂i, j

)
− ∑ j

k=2 v̂k f l
(∑ j−1

i=k−1 ĥk,i β̂i, j

)))
is the computed counterpart of L j , 

R̂ N := [e1, ˆ̄H N ] where e1 ∈ R
N is the first canonical basis vector and jth column of E AR is the error in the jth step of 

Arnoldi, i.e.,

f l

⎛
⎝ 1

β̂ j, j

⎛
⎝ψ j+1 − v̂1 f l

⎛
⎝ j−1∑

i=1

ĥ1,iβ̂i, j

⎞
⎠ −

j∑
k=2

v̂k f l

⎛
⎝ j−1∑

i=k−1

ĥk,iβ̂i, j

⎞
⎠

⎞
⎠

⎞
⎠ =

j+1∑
i=1

ĥi, j v̂ i + e AR
j , (B.5)

where e AR
j is the jth column of E AR . Separating the finite precision error in the evaluation of left hand side as

eLH S
j := 1

β̂ j, j

⎛
⎝ψ j+1 − v̂1 f l

⎛
⎝ j−1∑

i=1

ĥ1,iβ̂i, j

⎞
⎠ −

j∑
k=2

v̂k f l

⎛
⎝ j−1∑

i=k−1

ĥk,iβ̂i, j

⎞
⎠

⎞
⎠

− f l

⎛
⎝ 1

β̂ j, j

⎛
⎝ψ j+1 − v̂1 f l

⎛
⎝ j−1∑

i=1

ĥ1,iβ̂i, j

⎞
⎠ −

j∑
k=2

v̂k f l

⎛
⎝ j−1∑

i=k−1

ĥk,iβ̂i, j

⎞
⎠

⎞
⎠

⎞
⎠ ,

(B.6)

we have

1

β̂ j, j

⎛
⎝ψ j+1 − v̂1 f l

⎛
⎝ j−1∑

i=1

ĥ1,iβ̂i, j

⎞
⎠ −

j∑
k=2

v̂k f l

⎛
⎝ j−1∑

i=k−1

ĥk,iβ̂i, j

⎞
⎠

⎞
⎠ =

j+1∑
i=1

ĥi, j v̂ i + e AR
j + eLH S

j . (B.7)

Rearranging, adding and subtracting 
∑ j+1

i=1 β̂i, j+1 v̂ i ,

ψ j+1 −
j+1∑
i=1

β̂i, j+1 v̂ i =
⎛
⎝−β̂1, j+1 + f l

⎛
⎝ j−1∑

i=1

ĥ1,iβ̂i, j

⎞
⎠ + ĥ1, jβ̂ j, j

⎞
⎠ v̂1

+
j∑

k=2

⎛
⎝−β̂k, j+1 + f l

⎛
⎝ j−1∑

i=k−1

ĥk,iβ̂i, j

⎞
⎠ + ĥk, jβ̂ j, j

⎞
⎠ v̂k

+
(
−β̂ j+1, j+1 + ĥ j+1, jβ̂ j, j

)
v̂ j+1

+ e AR
j β̂ j, j + eLH S

j β̂ j, j.

(B.8)

Estimating the size of each entry in ψ j+1 − ∑ j+1
i=1 β̂i, j+1 v̂ i using β̂i, j+1 = f l 

(
f l

(∑ j−1
k=1 ĥi,kβ̂k, j

)
+ f l

(
ĥi, j β̂ j, j

))
; i = 1, . . . , j, 

β̂ j+1, j+1 = f l 
(

ĥ j+1, j β̂ j, j

)
and triangle inequality,

|ψ j+1 −
j+1∑
i=1

β̂i, j+1 v̂ i| ≤
⎛
⎝| f l

⎛
⎝ j−1∑

i=1

ĥ1,iβ̂i, j

⎞
⎠ | + |ĥ1, j| |β̂ j, j|

⎞
⎠γ2|v̂1|

+
j∑

k=2

⎛
⎝| f l

⎛
⎝ j−1∑

i=k−1

ĥk,iβ̂i, j

⎞
⎠ | + |ĥk, j| |β̂ j, j|

⎞
⎠γ2|v̂k|

+ |ĥ j+1, j| |β̂ j, j|εm|v̂ j+1|
+ |e AR

j | |β̂ j, j| + |eLH S
j | |β̂ j, j|.

(B.9)

Then, using the finite precision dot product error estimates | f l 
(∑ j−1

i=1 ĥ1,i β̂i, j

)
− ∑ j−1

i=1 ĥ1,i β̂i, j | ≤ γ j−1
∑ j−1

i=1 |ĥ1,i| |β̂i, j| and 

| f l 
(∑ j−1

i=k−1 ĥk,i β̂i, j

)
− ∑ j−1

i=k−1 ĥk,i β̂i, j| ≤ γ j−k+1
∑ j−1

i=k−1 |ĥk,i| |β̂i, j|; k = 2, . . . , j,

|ψ j+1 −
j+1∑
i=1

β̂i, j+1 v̂ i | ≤ γ2

j∑
i=1

|ĥ1,i| |β̂i, j| |v̂1| + γ2

j∑
k=2

j∑
i=k−1

|ĥk,i| |β̂i, j| |v̂k| + εm|ĥ j+1, j| |β̂ j, j| |v̂ j+1|

+ |e AR
j | |β̂ j, j| + |eLH S

j | |β̂ j, j| + O
(
ε2

m

)
. (B.10)
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Since, eLH S
j is the finite precision error in the addition and division operations in computing L j , we have

|β̂ j, j| |eLH S
j | ≤

⎛
⎝|ψ j+1| +

j−1∑
i=1

|ĥ1,i| |β̂i, j| |v̂1| +
j∑

k=2

j−1∑
i=k−1

|ĥk,i| |β̂i, j| |v̂k|
⎞
⎠γ j+2 + O

(
ε2

m

)
. (B.11)

Using Equation (B.11) in (B.10),

|ψ j+1 −
j+1∑
i=1

β̂i, j+1 v̂ i| ≤ γ2

j∑
i=1

|ĥ1,i| |β̂i, j| |v̂1| + γ2

j∑
k=2

j∑
i=k−1

|ĥk,i| |β̂i, j| |v̂k| + εm|ĥ j+1, j| |β̂ j, j| |v̂ j+1| + |e AR
j | |β̂ j, j|

+
⎛
⎝|ψ j+1| +

j−1∑
i=1

|ĥ1,i| |β̂i, j| |v̂1| +
j∑

k=2

j−1∑
i=k−1

|ĥk,i| |β̂i, j| |v̂k|
⎞
⎠γ j+2 + O

(
ε2

m

)
;

j = 1, . . . , N − 1.

(B.12)

In matrix form, we then have,

|X N
2 − V̂ N

1 β̂1:N,2:N | ≤ γ2|V̂ N
1 | | ˆ̄H N | |β̂N−1| + |E AR | |β̂d

N−1| + γN+1

(
|X N

2 | + |V̂ N−1
1 | |Ĥ N−1| |β̂U

N−1|
)

+ O (ε2
m) (B.13)

and

|X N−1
1 − V̂ N−1

1 β̂N−1| ≤
[
γ3M+4|ψ1|, γ2|V̂ N−1

1 | | ˆ̄H N−1| |β̂N−2| + |E AR:,1:N−2| |β̂d
N−2|

+ γN+1

(
|X N−1

2 | + |V̂ N−2
1 | |Ĥ N−2| |β̂U

N−2|
)] + O (ε2

m), (B.14)

where β̂d
j is the diagonal matrix formed by using the diagonal entries of β̂ j and β̂U

j is the strictly upper triangular matrix 
formed by using the strictly upper triangular entries of β̂ j .

From Equation (B.4) and using the assumption that c1εm < 1, we can bound the backward error E AR using the computed 
matrix ˆ̄H N as

‖E AR‖F ≤ c1εm

1 − c1εm

√
N‖ ˆ̄H N‖F . (B.15)

Taking Frobenius norm of Equation (B.13) and (B.14), and using Equation (B.15) we get,

‖X N
2 − V̂ N

1 β̂1:N,2:N‖F ≤γ2
√

N‖ ˆ̄H N‖F ‖β̂N−1‖F + c1εm

1 − c1εm

√
N‖ ˆ̄H N‖F ‖β̂N−1‖F +

γN+1

(
‖A‖F ‖X N−1

1 ‖F + √
N − 1‖Ĥ N−1‖F ‖β̂N−1‖F

)
+ O

(
ε2

m

) (B.16)

and

‖X N−1
1 − V̂ N−1

1 β̂N−1‖F ≤γ3M+4‖X N−1
1 ‖F + γ2

√
N − 1‖ ˆ̄H N−1‖F ‖β̂N−2‖F +

c1εm

1 − c1εm

√
N − 1‖ ˆ̄H N−1‖F ‖β̂N−2‖F + γN+1

√
N − 2‖Ĥ N−2‖F ‖β̂N−2‖F + O

(
ε2

m

) (B.17)

From Equation (B.17), we see that ‖βN−1‖F ≤ ‖X N−1
1 ‖2

√
N − 1 + O  (εm) as V̂ N−1

1 is orthonormal upto machine precision 
and since ‖β̂N−2‖F ≤ ‖β̂N−1‖F ,

‖β̂1:N,2:N − ˆ̄H N β̂N−1‖F ≤γN−1
√

N − 1‖ ˆ̄H N‖F ‖X N−1
1 ‖2 + O (ε2

m),

‖X N
2 − V̂ N

1 β̂1:N,2:N‖F ≤γ2N‖ ˆ̄H N‖F ‖X N−1
1 ‖2 + c1εm

1 − c1εm
N‖ ˆ̄H N‖F ‖X N−1

1 ‖2+
γN+1

(
(N − 1)‖A‖F ‖X N−1

1 ‖2 + (N − 1)‖Ĥ N−1‖F ‖X N−1
1 ‖2

)
+ O

(
ε2

m

)
,

‖X N−1
1 − V̂ N−1

1 β̂N−1‖F ≤γ3M+4‖X N−1
1 ‖F + γ2 (N − 1)‖ ˆ̄H N−1‖F ‖X N−1

1 ‖2+
c1εm

1 − c1εm
(N − 1)‖ ˆ̄H N−1‖F ‖X N−1

1 ‖2 + γN+1 (N − 2)‖Ĥ N−2‖F ‖X N−1
1 ‖2 + O

(
ε2

m

)
.

(B.18)

Using the above equation in Equation (B.1) we get,

‖AV̂ N−1
1 β̂N−1 − V̂ N

1
ˆ̄H N β̂N−1‖F ≤ C1

(
‖A‖2,‖ ˆ̄H N‖2, M, N

)
εm‖X N−1

1 ‖2 + O
(
ε2

m

)
, (B.19)

where C1

(
‖A‖2,‖ ˆ̄H N‖2, M, N

)
is a constant which is a function of ‖A‖2, ‖ ˆ̄H N‖2, M and N .
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