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This paper investigates the non-uniqueness of resolvent analysis in the context of compressible
fluid flows. Specifically, we compare two mathematically equivalent formulations of the
compressible Navier-Stokes equations (NSEs) in two sets of flow variables related via a nonlinear
transformation, which we refer to as the ‘Cubic+’ and ‘Quadratic+’ formulations. The Cubic+
formulation is based on the conventional representation of compressible NSEs using the primitive
variables of density, velocity components and temperature, whereas the Quadratic+ formulation
utilizes a representation where density and temperature are replaced by specific volume and
pressure, respectively. These formulations are implemented on a compressible plane Couette
flow for a broad range of Mach numbers. Although the Quadratic+ formulation generally
predicts higher amplifications than the Cubic+ formulation when the Chu energy is utilized
for the compressible inner product, this trend reverses if kinetic energy is instead used to
define the inner product. Furthermore, for some combinations of the streamwise and spanwise
wavenumber pairs, the two formulations predict substantially different temporal behaviors.
These range from differences in estimating the temporal frequencies for the largest gains to
instances wherein one formulation predicts a single global peak when the other predicts multiple
local peaks. In addition, the Quadratic+ results feature localized regions of wavenumber space
associated with high resolvent gains that are absent in the Cubic+ results, but are qualitatively
comparable to one another otherwise. The inconsistencies observed in resolvent analysis based
on the two formulations considered here suggest that any insights drawn from resolvent analysis
should be accompanied by computational and/or experimental studies to corroborate findings
and interpretations of the underlying physics.

I. Introduction
Developing a comprehensive understanding of the flow physics of high-speed fluid flows, which are governed by the

compressible Navier-Stokes equations (NSEs), is a key component for aerospace applications going forward. In this
regard, conducting high-fidelity numerical experiments using computational fluid mechanics tools are now a viable
option due to the advances in super-computing technology in the last few decades. Especially in the context of turbulent
flows, direct numerical simulations has proven to be a powerful numerical tool, but its applicability for a broad range of
parameters–primarily, Reynolds number and Mach number–remains somewhat limited despite recent progress [1, 2].
Alternative to the numerical experiments, model-based frameworks like input-output (I/O) methods have been successful
in providing important insight into the flow physics and have been useful in uncovering key mechanisms of instability in
the incompressible regime [3, 4] and are getting increasingly popular for analyzing high-speed compressible flows as
well [1, 2, 5–8].

In the context of flow instability and transition to turbulence, the equations governing the fluid flow can be expressed
as a feedback interconnection between a linear system and a nonlinear mapping (see, for example, the schematic in
Fig. 1a). Now, resolvent analysis [10, 11], like all other linear I/O methods, removes the aforementioned feedback
interconnection and replaces the nonlinear terms by some implicit forcing on the linear dynamics (compare the Figs. 1c
and 1a), which greatly simplifies the subsequent analysis. We recently extended an I/O method–called the structured
I/O analysis [12]–to the compressible flows in Ref. [9]. Instead of removing the feedback nonlinearity altogether, the
structured I/O modeling introduces pseudo-linear approximations for the nonlinear (quadratic) terms [9, 12] (compare
the schematics shown in Figs. 1b and 1a). The structured I/O analysis is based upon the concept of structured singular
value [13] from robust control theory. In Ref. [9], we implemented the structured I/O framework for compressible
flows on a compressible plane Couette flow and compared the results with those obtained from an equivalent resolvent
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Fig. 1 Stability of transitional fluid flows and the governing equations of perturbations (q) about a steady base
flow. These equations are shown in three different forms: (a) the original system with the linear dynamics in
feedback with the nonlinearity f (q); (b) the structured I/O modeling with f𝜒 (q) representing the approximated
nonlinearity (see Ref. [9] for details); (c) the linearized system obtained by removing the aforementioned feedback
connection.

analysis. The comparison revealed several contradictory aspects about the instability mechanisms associated with the
flow [9]. Although the structured I/O modeling is an obvious source of the discrepancies reported in Ref. [9], another
possibility is the choice of variables used to describe the flow, as pointed out in Ref. [14]. The theoretical developments
and case studies in Ref. [14] established that resolvent analysis–or indeed any I/O analysis based on the linearization of
nonlinear NSEs about a base or mean flow–might lead to substantially different results for different choices of the flow
variables describing the same flow. This ambiguity, coupled with the discrepancies noticed in our prior work (Ref. [9]),
serves as a motivation for the study reported in this paper.

We start by linearizing the compressible NSEs described in terms of two sets of primitive variables. When working
with the primitive variables of density, velocity components and temperature, the resulting linearized equations are
termed ‘Cubic+’. The other representation–which replaces density and temperature with specific volume and pressure,
respectively–leads to the ‘Quadratic+’ formulation of linearized equations. The corresponding resolvent operators are
then implemented on a compressible Couette flow for a wide range of Mach numbers. Despite qualitative similarities
between the two sets of results, we have identified several combinations of the streamwise and spanwise wavenumber
pairs where the results differ substantially, predicting significantly different temporal behaviors of the linearized flow
dynamics.

The remainder of the paper proceeds as follows: the linearized formulations of compressible NSEs are discussed in
Section II. Details of the resolvent analysis and simulation results for a compressible plane Couette flow are given in
Section III. Section IV provides the concluding remarks and future directions of research.

II. Linearization of Compressible Navier-Stokes Equations
In this section, we describe two sets of linearized equations of flow perturbations about a steady base flow based on

two mathematically equivalent representations of the compressible NSEs. These representations include the conventional
one typically used for I/O methods in the literature [1, 5, 6] and the specific one we outlined for structured I/O analysis
in [9]. Let us consider a compressible fluid in the domain Ω ⊂ R3, and use x ∈ Ω and 𝑡 ∈ R≥0 to denote the spatial
coordinates and time, respectively. The state of the fluid at any instant in time can be characterized solely based
on one of the following sets of primitive variables: (i) density 𝜌(x, 𝑡), velocity u(x, 𝑡) = (𝑢(x, 𝑡), 𝑣(x, 𝑡), 𝑤(x, 𝑡)),
and temperature 𝑇 (x, 𝑡); (ii) specific volume 𝜉 (x, 𝑡) = 1/𝜌(x, 𝑡), velocity u(x, 𝑡) = (𝑢(x, 𝑡), 𝑣(x, 𝑡), 𝑤(x, 𝑡)), and
pressure 𝑝(x, 𝑡). Then, the fundamental principles of mass, momentum and energy conservation are applied to derive
the equations governing the dynamics of the flow in Ω.
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A. Cubic+ Formulation
Let us first consider the non-dimensionalized compressible NSE in the variables q𝑐 = (𝜌, u, 𝑇) = (𝜌, 𝑢, 𝑣, 𝑤, 𝑇),

i.e., the conventional description widely used in the literature [1, 5, 6]. These are given by

𝜕𝑡 𝜌 + ∇ · (𝜌u) = 0

𝜌 (𝜕𝑡u + u · ∇u) = − 1
𝛾𝑀2

𝑟

∇𝑝 + 1
𝑅𝑒

∇ · Π(u, 𝜂, 𝜆) (1)

𝜌 (𝜕𝑡𝑇 + u · ∇𝑇) = (1 − 𝛾)𝑝(∇ · u) + 𝛾

𝑅𝑒𝑃𝑟
∇ · (𝜂∇𝑇) + 𝛾(𝛾 − 1)𝑀2

𝑟

𝑅𝑒
Φ(u, 𝜂, 𝜆)

with the non-dimensional equation of state for a perfect polytropic gas 𝑝 = 𝜌𝑇 . Here, 𝑅𝑒, 𝑃𝑟 and 𝑀𝑟 denote the
Reynolds number, Prandtl number, and Mach number, respectively. Also, Π(u, 𝜂, 𝜆) is the viscous stress tensor and can
be expressed as

Π(u, 𝜂, 𝜆) = 𝜂(∇u + (∇u)T) + 𝜆(∇ · u)I
where 𝜂 and 𝜆 are the first and second coefficient of viscosity, respectively. The term Φ(u, 𝜂, 𝜆) in (1) is the viscous
dissipation term given by

Φ(u, 𝜂, 𝜆) = 𝜂

(
2
(
(𝜕𝑥𝑢)2 + (𝜕𝑦𝑣)2 + (𝜕𝑧𝑤)2

)
+ (𝜕𝑦𝑢 + 𝜕𝑥𝑣)2 + (𝜕𝑧𝑣 + 𝜕𝑦𝑤)2 + (𝜕𝑧𝑢 + 𝜕𝑥𝑤)2

)
+ 𝜆(∇ · u)2

=
𝜂

2
[
∇u + (∇u)T]2 + 𝜆(∇ · u)2.

Also, each row of the vector ∇ · Π(u, 𝜂, 𝜆) can be expressed as [5, 15]

(∇ · Π(u, 𝜂, 𝜆))𝑥𝑖 = 𝜂∇2𝑢𝑖 + 𝜕𝑥𝑖 (𝜆(∇ · u)) + 𝜂𝜕𝑥𝑖 (∇ · u) + (∇𝜂) · (∇𝑢𝑖) + (∇𝜂) · 𝜕𝑥𝑖u
= 𝜂∇2𝑢𝑖 + (𝜂 + 𝜆)𝜕𝑥𝑖 (∇ · u) + 𝜕𝑥𝑖𝜆 (∇ · u) + (∇𝜂) · (∇𝑢𝑖) + (∇𝜂) · 𝜕𝑥𝑖u

where 𝑥𝑖 represents the three coordinates of x. Throughout the remainder of the paper, we assume 𝜆 = −2/3𝜂 using
Stokes’ hypothesis. The temperature dependence of viscosity is modeled through the Sutherland’s law, given by [15]

𝜂(𝑇) = 𝑇3/2 (1 + 𝐶)
𝑇 + 𝐶

(2)

where the constant 𝐶 = 0.5. Note that all the non-viscous nonlinear terms in (1) are either quadratic or cubic in the
variables, with the viscosity-dependent nonlinear terms taking non-integer orders due to the Sutherland’s law in (2). It is
for this reason we refer to the linearized dynamics obtained from (1) as the ‘Cubic+’ formulation in this paper.

Next, we consider the dynamics of perturbations about a steady base flow (𝜌0, u0, 𝑝0, 𝑇0, 𝜂0) with u0 = (𝑈0 (𝑦), 0, 0).
The steady base flow equations are given by

𝑑

𝑑𝑦

(
𝜂0

𝑑𝑈0
𝑑𝑦

)
= 0

𝑑𝑝0
𝑑𝑦

= 0 ⇒ 𝑝0 = 1 (3)

𝑃𝑟−1 𝑑

𝑑𝑦

(
𝜂0

𝑑𝑇0
𝑑𝑦

)
+ (𝛾 − 1)𝑀2

𝑟 𝜂0

(
𝑑𝑈0
𝑑𝑦

)2
= 0

along with the equation of state 𝜌0𝑇0 = 1 (since we have scaled the constant pressure as 𝑝0 = 1). The linearized
dynamics of the perturbed flow states about this base flow are summarized in the following:

𝜕𝑡 𝜌 = −𝑈0𝜕𝑥𝜌 − 𝑣𝜌′0 − 𝜌0∇ · u + 𝑓𝑐𝜌

𝜕𝑡𝑢 = −𝑈0𝜕𝑥𝑢 − 𝑣𝑈′
0 −

1
𝛾𝑀2

𝑟

(
𝑇2

0 𝜕𝑥𝜌 + 𝜕𝑥𝑇

)
+ 𝑇0
𝑅𝑒

(
𝜂𝑇𝑇0𝑇

′
0𝑈

′
0𝑇 + 𝜂𝑇0𝑈

′
0𝜕𝑦𝑇 + 𝜂𝑇0𝑈

′′
0 𝑇

+ 𝜂0∇2𝑢 + (𝜂0 + 𝜆0)𝜕𝑥 (∇ · u) + 𝜂′0
(
𝜕𝑥𝑣 + 𝜕𝑦𝑢

) )
+ 𝑓𝑐𝑢

𝜕𝑡𝑣 = −𝑈0𝜕𝑥𝑣 −
1

𝛾𝑀2
𝑟

(
𝑇2

0 𝜕𝑦𝜌 + 𝑇0𝜌𝑇
′
0 + 𝑇0𝑇𝜌

′
0 + 𝜕𝑦𝑇

)
3
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+ 𝑇0
𝑅𝑒

(
𝜂𝑇0𝑈

′
0𝜕𝑥𝑇 + 𝜂0∇2𝑣 + (𝜂0 + 𝜆0)𝜕𝑦 (∇ · u) + 𝜆′0 (∇ · u) + 2𝜂′0𝜕𝑦𝑣

)
+ 𝑓𝑐𝑣 (4)

𝜕𝑡𝑤 = −𝑈0𝜕𝑥𝑤 − 1
𝛾𝑀2

𝑟

(
𝑇2

0 𝜕𝑧𝜌 + 𝜕𝑧𝑇

)
+ 𝑇0
𝑅𝑒

(
𝜂0∇2𝑤 + (𝜂0 + 𝜆0)𝜕𝑧 (∇ · u) + 𝜂′0

(
𝜕𝑧𝑣 + 𝜕𝑦𝑤

) )
+ 𝑓𝑐𝑤

𝜕𝑡𝑇 = −𝑈0𝜕𝑥𝑇 − 𝑣𝑇 ′
0 + 𝑇0 (1 − 𝛾) (∇ · u) + 𝑇0𝛾

𝑅𝑒𝑃𝑟

(
𝜂𝑇0𝑇

′′
0 + 𝜂𝑇𝑇0 (𝑇 ′

0)
2 + 2𝜂′0𝜕𝑦 + 𝜂0∇2

)
𝑇

+ 𝑇0𝛾(𝛾 − 1)𝑀2
𝑟

𝑅𝑒

(
2𝜂0𝑈

′
0 (𝜕𝑥𝑣 + 𝜕𝑦𝑢) + 𝜂𝑇0 (𝑈′

0)
2𝑇

)
+ 𝑓𝑐𝑇

where all the nonlinear terms are collected in 𝑓( ·)s and 𝜂𝑇0 , 𝜂𝑇𝑇0 are the first and second derivatives, respectively, of
𝜂(𝑇) with respect to 𝑇 and evaluated at 𝑇 = 𝑇0. Also, (·)′ and (·)′′ respectively mean 𝑑 (·)/𝑑𝑦 and 𝑑2 (·)/𝑑𝑦2 for the
associated base flow quantities. The linearized perturbation dynamics (4) can be expressed in a more compact form as

𝜕𝑡q𝑐 = L𝑐q𝑐 + f𝑐 (5)

where f𝑐 =

(
𝑓𝑐𝜌 , 𝑓𝑐𝑢 , 𝑓𝑐𝑣 , 𝑓𝑐𝑤 , 𝑓𝑐𝑇

)
denotes the forcing and the linear operator L𝑐 is

L𝑐 =



𝐿𝑐𝜌𝜌 𝐿𝑐𝜌𝑢 𝐿𝑐𝜌𝑣 𝐿𝑐𝜌𝑤 𝐿𝑐𝜌𝑇

𝐿𝑐𝑢𝜌 𝐿𝑐𝑢𝑢 𝐿𝑐𝑢𝑣 𝐿𝑐𝑢𝑤 𝐿𝑐𝑢𝑇

𝐿𝑐𝑣𝜌 𝐿𝑐𝑣𝑢 𝐿𝑐𝑣𝑣 𝐿𝑐𝑣𝑤 𝐿𝑐𝑣𝑇

𝐿𝑐𝑤𝜌
𝐿𝑐𝑤𝑢

𝐿𝑐𝑤𝑣
𝐿𝑐𝑤𝑤

𝐿𝑐𝑤𝑇

𝐿𝑐𝑇𝜌
𝐿𝑐𝑇𝑢

𝐿𝑐𝑇𝑣
𝐿𝑐𝑇𝑤

𝐿𝑐𝑇𝑇


with each sub-operator given by

𝐿𝑐𝜌𝜌 = −𝑈0𝜕𝑥 , 𝐿𝑐𝜌𝑢 = −𝜌0𝜕𝑥 , 𝐿𝑐𝜌𝑣 = −𝜌′0 − 𝜌0𝜕𝑦 , 𝐿𝑐𝜌𝑤 = −𝜌0𝜕𝑧 , 𝐿𝑐𝜌𝑇 = 0, 𝐿𝑐𝑢𝜌 = − 1
𝛾𝑀2

𝑟

𝑇2
0 𝜕𝑥 ,

𝐿𝑐𝑢𝑢 = −𝑈0𝜕𝑥 +
𝑇0
𝑅𝑒

(
𝜂0∇2 + (𝜂0 + 𝜆0)𝜕𝑥𝑥 + 𝜂′0𝜕𝑦

)
, 𝐿𝑐𝑢𝑣 = −𝑈′

0 +
𝑇0
𝑅𝑒

(
(𝜂0 + 𝜆0)𝜕𝑥𝑦 + 𝜂′0𝜕𝑥

)
,

𝐿𝑐𝑢𝑤 =
𝑇0
𝑅𝑒

((𝜂0 + 𝜆0)𝜕𝑥𝑧) , 𝐿𝑐𝑢𝑇 = − 1
𝛾𝑀2

𝑟

𝜕𝑥 +
𝑇0
𝑅𝑒

(
𝜂𝑇𝑇0𝑇

′
0𝑈

′
0 + 𝜂𝑇0𝑈

′
0𝜕𝑦 + 𝜂𝑇0𝑈

′′
0
)
,

𝐿𝑐𝑣𝜌 = − 1
𝛾𝑀2

𝑟

(
𝑇2

0 𝜕𝑦 + 𝑇0𝑇
′
0

)
, 𝐿𝑐𝑣𝑢 =

𝑇0
𝑅𝑒

(
(𝜂0 + 𝜆0)𝜕𝑥𝑦 + 𝜆′0𝜕𝑥

)
,

𝐿𝑐𝑣𝑣 = −𝑈0𝜕𝑥 +
𝑇0
𝑅𝑒

(
𝜂0∇2 + (𝜂0 + 𝜆0)𝜕𝑦𝑦 + 𝜆′0𝜕𝑦 + 2𝜂′0𝜕𝑦

)
, 𝐿𝑐𝑣𝑤 =

𝑇0
𝑅𝑒

(
(𝜂0 + 𝜆0)𝜕𝑦𝑧 + 𝜆′0𝜕𝑧

)
,

𝐿𝑐𝑣𝑇 = − 1
𝛾𝑀2

𝑟

(
𝑇0𝜌

′
0 + 𝜕𝑦

)
+ 𝑇0
𝑅𝑒

(
𝜂𝑇0𝑈

′
0𝜕𝑥

)
, 𝐿𝑐𝑤𝜌

= − 1
𝛾𝑀2

𝑟

(
𝑇2

0 𝜕𝑧

)
, 𝐿𝑐𝑤𝑢

=
𝑇0
𝑅𝑒

(𝜂0 + 𝜆0)𝜕𝑥𝑧 , (6)

𝐿𝑐𝑤𝑣
=

𝑇0
𝑅𝑒

(
(𝜂0 + 𝜆0)𝜕𝑦𝑧 + 𝜂′0𝜕𝑧

)
, 𝐿𝑐𝑤𝑤

= −𝑈0𝜕𝑥 +
𝑇0
𝑅𝑒

(
𝜂0∇2 + (𝜂0 + 𝜆0)𝜕𝑧𝑧 + 𝜂′0𝜕𝑦

)
,

𝐿𝑐𝑤𝑇
= − 1

𝛾𝑀2
𝑟

𝜕𝑧 , 𝐿𝑐𝑇𝜌
= 0, 𝐿𝑐𝑇𝑢

= 𝑇0 (1 − 𝛾)𝜕𝑥 +
𝑇0𝛾(𝛾 − 1)𝑀2

𝑟

𝑅𝑒

(
2𝜂0𝑈

′
0𝜕𝑦

)
,

𝐿𝑐𝑇𝑣
= 𝑇0 (1 − 𝛾)𝜕𝑦 +

𝑇0𝛾(𝛾 − 1)𝑀2
𝑟

𝑅𝑒

(
2𝜂0𝑈

′
0𝜕𝑥

)
− 𝑇 ′

0 , 𝐿𝑐𝑇𝑤
= 𝑇0 (1 − 𝛾)𝜕𝑧 ,

𝐿𝑐𝑇𝑇
=

𝑇0𝛾

𝑅𝑒𝑃𝑟

(
𝜂𝑇0𝑇

′′
0 + 𝜂𝑇𝑇0 (𝑇 ′

0)
2 + 2𝜂′0𝜕𝑦 + 𝜂0∇2

)
+ 𝛾(𝛾 − 1)𝑀2

𝑟𝑇0

𝑅𝑒
𝜂𝑇0 (𝑈′

0)
2 −𝑈0𝜕𝑥 .

It should be noted here that (𝜂0 + 𝜆0) = 1/3𝜂0 due to Stokes’ hypothesis.

B. Quadratic+ Formulation
The compressible NSEs can alternatively be described in terms of the set of primitive variables q𝑞 = (𝜉 := 1/𝜚, u, 𝑝)

(see Ref. [9] for details). The resulting non-dimensional equations can be expressed as [9]

𝜕𝑡𝜉 + u · ∇𝜉 − 𝜉∇ · u = 0

4
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𝜕𝑡u + u · ∇u = − 1
𝛾𝑀2

𝑟

𝜉∇𝑝 + 1
𝑅𝑒

𝜉∇ · Π(u, 𝜂, 𝜆) (7)

𝜕𝑡 𝑝 + u · ∇𝑝 + 𝛾𝑝∇ · u =
𝛾(𝛾 − 1)𝑀2

𝑟

𝑅𝑒
Φ(u, 𝜂, 𝜆) + 𝛾

𝑅𝑒𝑃𝑟
∇ · (𝜂∇(𝑝𝜉))

with the associated non-dimensional equation of state for a perfect polytropic gas 𝑝𝜉 = 𝑇 . Similar to our earlier remarks
on the governing equations for the Cubic+ formulation, all the non-viscous nonlinear terms in (7) are quadratic, while
the viscous nonlinearities are of fractional order due to the viscosity modeling through the Sutherland’s law in (2).
Therefore, we refer to the linearized dynamics obtained from (7) as the ‘Quadratic+’ formulation here.

Now, for a steady base flow with (𝜉0,𝑈0 (𝑦), 0, 0, 𝑝0, 𝑇0, 𝜂0), the base flow equations are given by

𝑑

𝑑𝑦

(
𝜂0

𝑑𝑈0
𝑑𝑦

)
= 0

𝑑𝑝0
𝑑𝑦

= 0 ⇒ 𝑝0 = 1

(𝛾 − 1)𝑀2
𝑟 𝜂0

(
𝑑𝑈0
𝑑𝑦

)2
+ 𝑃𝑟−1 𝑑

𝑑𝑦

(
𝜂0

𝑑𝜉0
𝑑𝑦

)
= 0

along with the equation of state 𝜉0 = 𝑇0 since the constant pressure is again scaled as 𝑝0 = 1. Thus, the above base
flow equations are the same as in (3). In Ref. [9], we only allowed the viscosity associated with the base flow to be
a function of the base flow temperature (i.e., 𝜂0 = 𝜂0 (𝑇0)) and perturbations to the base viscosity 𝜂0 were neglected.
This simplification was made so that the nonlinearity in the perturbation equations were quadratic in the perturbed
flow variables. This was crucial in the pseudo-linear structured I/O modeling and the subsequent analysis in Ref. [9].
However, it should be noted that no such assumption is made here and we allow viscosity perturbations as dictated by the
Sutherland’s law in (2). After carrying out a similar set of calculation as we previously did for the Cubic+ formulation,
we can express the linearized perturbation dynamics about the base flow as

𝜕𝑡q𝑞 = L𝑞q𝑞 + f𝑞 (8)

where f𝑞 is the forcing (see f𝑐 in (5) for comparison) and the linear operator L𝑞 takes the following form:

L𝑞 =



𝐿𝑞𝜉 𝜉
𝐿𝑞𝜉𝑢

𝐿𝑞𝜉𝑣
𝐿𝑞𝜉𝑤

𝐿𝑞𝜉 𝑝

𝐿𝑞𝑢𝜉
𝐿𝑞𝑢𝑢 𝐿𝑞𝑢𝑣 𝐿𝑞𝑢𝑤 𝐿𝑞𝑢𝑝

𝐿𝑞𝑣𝜉 𝐿𝑞𝑣𝑢 𝐿𝑞𝑣𝑣 𝐿𝑞𝑣𝑤 𝐿𝑞𝑣𝑝

𝐿𝑞𝑤𝜉
𝐿𝑞𝑤𝑢

𝐿𝑞𝑤𝑣
𝐿2𝑤𝑤

𝐿2𝑤𝑝

𝐿𝑞𝑝𝜉
𝐿𝑞𝑝𝑢

𝐿𝑞𝑝𝑣
𝐿𝑞𝑝𝑤

𝐿𝑞𝑝𝑝


with the sub-operators given by

𝐿𝑞𝜉 𝜉
= −𝑈0𝜕𝑥 , 𝐿𝑞𝜉𝑢

= 𝜉0𝜕𝑥 , 𝐿𝑞𝜉𝑣
= 𝜉0𝜕𝑦 − 𝜉′0, 𝐿𝑞𝜉𝑤

= 𝜉0𝜕𝑧 , 𝐿𝑞𝜉 𝑝
= 0,

𝐿𝑞𝑢𝜉
=

𝜉0
𝑅𝑒

(𝜂1 + 𝜂2𝜕𝑦), 𝐿𝑞𝑢𝑢 = −𝑈0𝜕𝑥 +
𝜉0
𝑅𝑒

(
𝜂0

(
∇2 + 1

3
𝜕𝑥𝑥

)
+ 𝜂′0𝜕𝑦

)
, 𝐿𝑞𝑢𝑣 = −𝑈′

0 +
𝜉0
𝑅𝑒

(
1
3
𝜂0𝜕𝑥𝑦 + 𝜂′0𝜕𝑥

)
,

𝐿𝑞𝑢𝑤 =
𝜉0𝜂0
3𝑅𝑒

𝜕𝑥𝑧 , 𝐿𝑞𝑢𝑝
= − 1

𝛾𝑀2
𝑟

𝜉0𝜕𝑥 +
𝜉0
𝑅𝑒

(
𝜂1𝜉0 + 𝜂2𝜉

′
0 + 𝜂2𝜉0𝜕𝑦

)
, 𝐿𝑞𝑣𝜉 =

𝜉0
𝑅𝑒

𝜂𝑇0𝑈
′
0𝜕𝑥 ,

𝐿𝑞𝑣𝑢 =
𝜉0
𝑅𝑒

(
1
3
𝜂0𝜕𝑥𝑦 −

2
3
𝜂′0𝜕𝑥

)
, 𝐿𝑞𝑣𝑣 = −𝑈0𝜕𝑥 +

𝜉0
𝑅𝑒

(
𝜂0

(
∇2 + 1

3
𝜕𝑦𝑦

)
+ 4

3
𝜂′0𝜕𝑦

)
, 𝐿𝑞𝑣𝑤 =

𝜉0
𝑅𝑒

(
1
3
𝜂0𝜕𝑦𝑧 −

2
3
𝜂′0𝜕𝑧

)
,

𝐿𝑞𝑣𝑝 = − 1
𝛾𝑀2

𝑟

𝜉0𝜕𝑦 +
𝜉0
𝑅𝑒

𝜂𝑇0𝑈
′
0𝜉0𝜕𝑥 , 𝐿𝑞𝑤𝜉

= 0, 𝐿𝑞𝑤𝑢
=
𝜉0𝜂0
3𝑅𝑒

𝜕𝑥𝑧 , 𝐿𝑞𝑤𝑣
=

𝜉0
𝑅𝑒

(
1
3
𝜂0𝜕𝑦𝑧 + 𝜂′0𝜕𝑧

)
, (9)

𝐿𝑞𝑤𝑤
= −𝑈0𝜕𝑥 +

𝜉0
𝑅𝑒

(
𝜂0

(
∇2 + 1

3
𝜕𝑧𝑧

)
+ 𝜂′0𝜕𝑦

)
, 𝐿𝑞𝑤𝑝

= − 1
𝛾𝑀2

𝑟

𝜉0𝜕𝑧 ,

𝐿𝑞𝑝𝜉
=

𝛾(𝛾 − 1)𝑀2
𝑟

𝑅𝑒
𝜂𝑇0 (𝑈′

0)
2 + 𝛾

𝑅𝑒𝑃𝑟

(
𝜂0∇2 + 𝜂′0𝜕𝑦 + 𝜂3 + 𝜂𝑇0𝜉

′
0𝜕𝑦

)
, 𝐿𝑞𝑝𝑢

= −𝛾𝜕𝑥 +
𝛾(𝛾 − 1)𝑀2

𝑟

𝑅𝑒

(
2𝜂0𝑈

′
0𝜕𝑦

)
,
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𝐿𝑞𝑝𝑣
= −𝛾𝜕𝑦 +

𝛾(𝛾 − 1)𝑀2
𝑟

𝑅𝑒

(
2𝜂0𝑈

′
0𝜕𝑥

)
, 𝐿𝑞𝑝𝑤

= −𝛾𝜕𝑧 ,

𝐿𝑞𝑝𝑝
= −𝑈0𝜕𝑥 +

𝛾(𝛾 − 1)𝑀2
𝑟

𝑅𝑒
𝜂𝑇0 (𝑈′

0)
2𝜉0

+ 𝛾

𝑅𝑒𝑃𝑟

(
𝜂0𝜉0∇2 + 2𝜂0𝜉

′
0𝜕𝑦 + 𝜂0𝜉

′′
0 + 𝜂′0

(
𝜉′0 + 𝜉0𝜕𝑦

)
+ 𝜂3𝜉0 + 𝜂𝑇0𝜉0𝜉

′
0𝜕𝑦 + 𝜂𝑇0 (𝜉′0)

2
)

where

𝜂1 = 𝜂𝑇𝑇0𝑇
′
0𝑈

′
0 + 𝜂𝑇0𝑈

′′
0

𝜂2 = 𝜂𝑇0𝑈
′
0

𝜂3 = 𝜂𝑇0𝑇
′′
0 + 𝜂𝑇𝑇0 (𝑇 ′

0)
2.

C. Chu Energy Expression for the Quadratic+ Formulation
Chu energy [16] has been extensively utilized for the inner product in resolvent analysis of compressible flows

[1, 5, 6]. The expression of Chu energy in terms of the Cubic+ variables (q𝑐) is well known [17]. Here, we derive an
expression for the Chu energy in terms of the variables used in Quadratic+ formulation (q𝑞) based on the principles
outlined in Ref. [14]. We start by defining the nonlinear transformation between q𝑐 and q𝑞 as

q𝑐 = (𝜌, 𝑢, 𝑣, 𝑤, 𝑇) = ( 1
𝜉
, 𝑢, 𝑣, 𝑤, 𝑝𝜉) = 𝑔(𝜉, 𝑢, 𝑣, 𝑤, 𝑝) = 𝑔(q𝑞)

We need the expression of the Jacobian of 𝑔(·) with respect to q𝑞 , which is given by

𝜕q𝑞
𝑔 =



− 1
𝜉 2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
𝑝 0 0 0 𝜉


.

Let the Chu energy expressions in terms of q𝑐 and q𝑞 be denoted by E𝑐 and E𝑞 , respectively, with E𝑐 given by [17]

E𝑐 = diag
(

𝑇0

𝜌0𝛾𝑀
2
𝑟

, 𝜌0, 𝜌0, 𝜌0,
𝜌0

𝛾(𝛾 − 1)𝑀2
𝑟𝑇0

)
.

The equivalent expression for E𝑞 is then given by

E𝑞 =

(
𝜕q𝑞

𝑔
��
q𝑞=q𝑞0

)∗
E𝑐

(
𝜕q𝑞

𝑔
��
q𝑞=q𝑞0

)
where (·)∗ stands for Hermitian transpose, while q𝑞0 denotes the base flow described in terms of q𝑞 . Carrying out these
calculations leads to the following expression:

E𝑞 =



𝑇0
𝜉 3

0 𝛾𝑀
2
𝑟

+ 𝑝2
0𝜌0

𝛾 (𝛾−1)𝑀2
𝑟𝑇0

0 0 0 𝑝0
𝛾 (𝛾−1)𝑀2

𝑟𝑇0

0 𝜌0 0 0 0
0 0 𝜌0 0 0
0 0 0 𝜌0 0
𝑝0

𝛾 (𝛾−1)𝑀2
𝑟𝑇0

0 0 0 𝜉0
𝛾 (𝛾−1)𝑀2

𝑟𝑇0


.

III. Resolvent Analysis: Compressible Plane Couette Flow
In this section, we provide an overview of the resolvent analysis and discuss results pertaining to compressible

plane Couette flow. This flow provides a convenient canonical setup for investigating compressible flows and has been
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Fig. 2 Steady base flow profiles of compressible plane Couette flow for different Mach numbers.

utilized quite extensively in the literature [5, 15, 18–20]. The base flow profiles for this flow can be computed relatively
easily (see, for example, Refs. [5, 9] for details). Sample base flow profiles for different Mach numbers are shown in

7
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Fig. 2. We utilize a Fourier-Chebyshev-Fourier spectral discretization for the perturbation equations, i.e., we assume
solutions of the form q𝑖 (𝑥, 𝑦, 𝑧, 𝑡) = q̂𝑖 (𝑦) exp(i(𝑘𝑥𝑥 + 𝑘𝑧𝑧 − 𝜔𝑡)) where i =

√
−1 is the imaginary unit, 𝑖 = 𝑐, 𝑞 is used

to designate the formulations (𝑖 = 𝑐 for Cubic+ and 𝑖 = 𝑞 for Quadratic+), and 𝜔, 𝑘𝑥 and 𝑘𝑧 are the temporal frequency,
streamwise wavenumber and spanwise wavenumber, respectively. The discretized versions of the perturbation dynamics
(5) and (8) can be expressed as

q̂𝑖 =

(
−i𝜔I − L̂𝑖 (𝑘𝑥 , 𝑘𝑧)

)−1
f̂𝑖

where R𝑖 (𝑘𝑥 , 𝑘𝑧 , 𝜔) =
(
−i𝜔I − L̂𝑖 (𝑘𝑥 , 𝑘𝑧)

)−1
∈ C𝑛×𝑛 are the associated resolvent operators. Here, we have 𝑛 = 5𝑁𝑦

where 𝑁𝑦 denotes the number of Chebyshev collocation points in the wall-normal direction. Expressions for the
discretized linear operators L̂𝑖 are provided in Appendix A. Resolvent analysis focuses on the maximum singular value
and the associated singular vectors of this operator [5, 10, 11]. In the subsequent discussions, we utilize the following
two notions of the resolvent gain:

𝜎R𝑖
(𝑘𝑥 , 𝑘𝑧 , 𝜔) = 𝜎̄ (R𝑖 (𝑘𝑥 , 𝑘𝑧 , 𝜔)) ,
𝜎R𝑖

(𝑘𝑥 , 𝑘𝑧) = sup
𝜔∈R

𝜎̄ (R𝑖 (𝑘𝑥 , 𝑘𝑧 , 𝜔)) (10)

where 𝜎̄(M) denotes the largest singular value of a matrix M. A system-theoretic interpretation of 𝜎𝑅𝑖
(𝑘𝑥 , 𝑘𝑧)–which

are the 𝐻∞ norm of the associated linear perturbation dynamics–is that these provide the worst-case (i.e., largest) gain
induced by the nonlinear forcing terms f̂𝑖 on the perturbed flow variables q̂𝑖 . Note that computation of 𝜎𝑅𝑖

(𝑘𝑥 , 𝑘𝑧)
essentially boils down to computing the maximum of 𝜎R𝑖

(𝑘𝑥 , 𝑘𝑧 , 𝜔) over an appropriate grid of 𝜔 ∈ R.

A. Code Validation
According to the discussion in Section 2.1 in Ref. [14], the discretized linear operators L̂𝑖 associated with the

two formulations discussed here are guaranteed to share the same eigenvalues because of the steady base flow. The
eigenvalue spectra obtained through our numerical implementation are shown in Fig. 3. These results demonstrate that
the eigenvalues for two formulations match closely, as theoretically expected. The ‘Y’ shape of the eigenvalues in Fig.
3b are consistent with the existing literature [5, 18, 19]. Note that these eigenvalues are associated with the viscous
eigenmodes, i.e., modes that arise due to the viscous terms in the momentum and energy equations [18]. In addition, the
shape/pattern of the eigenvalues depicted in Fig. 3a away from the imaginary axis is also expected (see, for example,
similar trends reported in Ref. [19]). These eigenvalues belong to the inviscid or acoustic eigenmodes [5, 18, 19].
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Fig. 3 Eigenvalue spectra of the linear operators for 𝑘𝑥 = 𝑘𝑧 = 0.1, 𝑅𝑒 = 2 × 105, 𝑀𝑟 = 2, 𝑃𝑟 = 0.72,
𝑁𝑦 = 200. The eigenvalues are plotted in terms of complex wavespeeds 𝑐𝑤 = 𝑐𝑟 + i𝑐𝑖 = 𝜔𝑖/𝑘𝑥 where 𝜔𝑖 satisfies
L̂𝑖 (𝑘𝑥 , 𝑘𝑧)q𝑖 = −𝑖𝜔𝑖q𝑖 for 𝑖 = 𝑞, 𝑐. The two sets of eigenvalues match up, which is expected due to the steadiness
of the base flow, as discussed in Ref. [14].
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(c) 𝑀𝑟 = 1
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(d) 𝑀𝑟 = 1
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(e) 𝑀𝑟 = 0.5
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(f) 𝑀𝑟 = 0.5

Fig. 4 The log-scaled values of resolvent gains 𝜎R𝑖
(𝑘𝑥 , 𝑘𝑧) over the wavenumber pair grid for 𝑅𝑒 = 2 × 105,

𝑃𝑟 = 0.72, 𝑁𝑦 = 200. Note that the Chu energy is utilized for the compressible inner product. Despite the
qualitative similarities overall, the Quadratic+ formulation predicts larger hotspots and features localized oblique
regions of high gain.
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B. Resolvent Gain Variation in the Wavenumber Space
To study the variation of the resolvent gains 𝜎R𝑖

(𝑘𝑥 , 𝑘𝑧) over the wavenumber pairs, we choose a 60 × 80 grid of
𝑘𝑥 × 𝑘𝑧 with logarithmically spaced values of 𝑘𝑥 ∈ [10−3, 102] and 𝑘𝑧 ∈ [10−4, 103]. The temporal frequency grid
comprises of 50 logarithmically spaced points between -10 and 10, i.e., 𝜔 ∈ [−10, 10]. The results for three different
Mach numbers are shown in Fig. 4. A closer inspection of the results reveals that the Cubic+ formulation predicts
lower amplifications than the Quadratic+ formulation at more than 99.5% of all (𝑘𝑥 , 𝑘𝑧) grid points for each of the
three Mach numbers considered here. The hotspots in the Quadratic+ results are also much larger compared to the
hotspots in the other set of results. There are oblique waves/structures of relatively larger gains approximately for
𝑘𝑥 ∈ (10−1, 10), 𝑘𝑧 ∈ (10−2, 10) in the Quadratic+ results for all three Mach numbers. These, however, are absent in
the Cubic+ results. While it is possible that these oblique structures signify some mechanisms of instability, it is also
possible that these do not represent the actual flow physics and that the Cubic+ results indeed capture the true system
behavior. In terms of similarities, both formulations predict several horizontal bands of high gains for wavenumbers
in the region 𝑘𝑥 ∈ (10−2.5, 10−1), 𝑘𝑧 ∈ (10−4, 10−1). These potential mechanisms of instability are dependent on the
Mach number as these high-gain bands start to disappear as the Mach number increases. At a large fraction of the
wavenumber pairs on the grid in Fig. 4, the resolvent gains decrease with an an increase in the Mach number for both
the formulations-more so in the Quadratic+ results. This is consistent with the results reported in Ref. [5]. Also, as
remarked by the authors in [5], this variation with Mach number is also consistent with the results reported on transient
energy growth for the compressible Couette flow [15, 19].
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(a) 𝑘𝑥 = 1, 𝑘𝑧 = 1
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(b) 𝑘𝑥 = 𝑘𝑧 = 0.1
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(c) 𝑘𝑥 = 5, 𝑘𝑧 = 0.001
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(d) 𝑘𝑥 = 0.001, 𝑘𝑧 = 3

Fig. 5 The resolvent gains 𝜎R𝑖
(𝑘𝑥 , 𝑘𝑧 , 𝜔) as functions of 𝑐𝑟 for 𝑅𝑒 = 2 × 105, 𝑀𝑟 = 2, 𝑃𝑟 = 0.72, 𝑁𝑦 = 200. Note

that the variation in 𝑐𝑟 for a fixed 𝑘𝑥 means variation in 𝜔 since 𝜔 = 𝑘𝑥𝑐𝑟 . The Chu energy is used for the
compressible inner products. The results are qualitatively similar in (a), (b) but start to differ more in (c), (d).
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C. Temporal Behavior of Resolvent Gains at Fixed Wavenumber Pairs
The variations of the resolvent gains with the temporal frequency are depicted in Fig. 5 at four different wavenumber

pairs. As mentioned earlier, the peak values in the Quadratic+ results are higher overall compared to the ones in the
Cubic+ results. The patterns of variations are qualitatively similar for wavenumber pairs with similar values of 𝑘𝑥 and
𝑘𝑧 (i.e., potentially representing oblique structures, see Figs. 5a, 5b). However, as shown in Figs. 5d, 5c, the variations
in the gains start to differ if either 𝑘𝑥 or 𝑘𝑧 is significantly different from the other. Upon a closer inspection of the result
in Fig. 5b, the largest value in 𝜎R𝑐

(𝑘𝑥 , 𝑘𝑧 , 𝜔) occurs approximately at 𝑐𝑟 = 0.82, whereas the largest in 𝜎R𝑞
(𝑘𝑥 , 𝑘𝑧 , 𝜔)

corresponds to the peak approximately at 𝑐𝑟 = 1.41. Therefore, not only are the magnitudes of amplification predicted
by the two formulations different, but also the estimated temporal frequencies for largest amplification are different
across these two formulations. Moreover, the results shown in Figs. 5c, 5d indicate drastically different predictions by
the two formulations. In Fig. 5c, although both the formulations feature two distinct peaks at 𝑐𝑟 ≈ 0 and 𝑐𝑟 ≈ 1, the
local behavior of the gains are quite different for 𝑐𝑟 ∈ (0, 1). Finally in Fig. 5d, while 𝜎R𝑐

(𝑘𝑥 , 𝑘𝑧 , 𝜔) showcases a
single global peak, 𝜎R𝑞

(𝑘𝑥 , 𝑘𝑧 , 𝜔) features two distinct peaks with a local minimum (at 𝑐𝑟 ≈ 0.55) that approximately
coincides with the global peak in 𝜎R𝑐

(𝑘𝑥 , 𝑘𝑧 , 𝜔). Sample results for the resolvent response mode shapes–obtained from
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Fig. 6 The response mode shapes (absolute values) corresponding to both the formulations for 𝑘𝑥 = 𝑘𝑧 = 0.1
and 𝑐𝑟 = 0.5. The Chu energy is used for the compressible inner product.
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the left singular vectors associated with 𝜎R𝑖
(𝑘𝑥 , 𝑘𝑧 , 𝜔) (see Eq. (10))–for both the formulations are shown in Fig. 6.

The velocity mode shapes appear to be similar across the two sets of results. Our future work will focus on studying the
resolvent modes in more detail.

10
-4

10
-2

10
0

10
2

10
2

10
4

10
6

Ma = 0.5

Ma = 1

Ma = 2

Ma = 5

(a) Cubic+ formulation (𝑅𝑒 = 2 × 105)
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(c) Cubic+ formulation (𝑅𝑒 = 103)
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(d) Quadratic+ formulation (𝑅𝑒 = 103)

Fig. 7 The resolvent gains 𝜎R𝑖
(𝑘𝑥 , 𝑘𝑧 , 𝜔) as functions of 𝑘𝑧 for 𝑘𝑥 = 0.001, 𝜔 = 0. Results are shown for four

different Mach numbers and two different Reynolds numbers. While there are qualitative similarities between
the two sets of results for 𝑅𝑒 = 2 × 105, the implications are quite different for 𝑅𝑒 = 103.

D. Effects of Mach Number and Reynolds Number
Next, we study the effects of varying the Mach number and Reynolds number on the resolvent gain 𝜎R𝑖

(𝑘𝑥 , 𝑘𝑧 , 𝜔)
in a manner similar to the analysis done in Ref. [5]. Therefore, we fix the values of 𝑘𝑥 and 𝜔, and focus on the variation
of the resolvent gain over a grid of 𝑘𝑧 values for different Mach numbers and Reynolds numbers. The results of this
analysis are shown in Fig. 7, where we have utilized a 100-point grid of 𝑘𝑧 with logarithmically spaced points between
10−4 and 102. Similar to the observations made in [5], the Cubic+ results feature localized peaks for 𝑘𝑧 ≈ (3, 5) across
the different Mach numbers considered for 𝑅𝑒 = 2 × 105 (see Fig. 7a). As shown in Fig. 7b, the Quadratic+ results
indicate a similar trend as well. Overall, the two sets of results for 𝑅𝑒 = 2 × 105 are qualitatively similar but that is not
the case for 𝑅𝑒 = 103, as depicted in Figs. 7c, 7d. While the Cubic+ results suggest a significant overall reduction in the
gains as 𝑘𝑧 increases, the Quadratic+ results show a slight increase in the gains as 𝑘𝑧 increases, which is true for all
Mach numbers except 𝑀𝑟 = 5. For 𝑀𝑟 = 5, there is a sharp spike in the gain at 𝑘𝑧 ≈ 43.
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E. Choice of Energy Norm for Compressible Inner Product
Finally, we study the effects of the energy norm/expression utilized in the compressible inner product. To highlight

the differences brought about solely by the energy norm used, we recompute the results provided in Fig. 5 with the
Chu energy replaced by the kinetic energy for the inner product. The results we obtained are shown in Fig. 8. It is
noteworthy that the Cubic+ formulation now predicts higher resolvent gains at almost all temporal frequencies (i.e., 𝑐𝑟
values) depicted in Fig. 8. It is also interesting that the qualitative behavior of the gains do not alter significantly when
𝑘𝑥 and 𝑘𝑧 are equal (compare Figs. 5a, 5b with 8a, 8b). Furthermore, the discrepancies highlighted in Fig. 5d persists
even when kinetic energy (a semi-norm) is utilized in the inner product definition (compare Figs. 5d and 8d).
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(a) 𝑘𝑥 = 1, 𝑘𝑧 = 1
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(c) 𝑘𝑥 = 5, 𝑘𝑧 = 0.001
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(d) 𝑘𝑥 = 0.001, 𝑘𝑧 = 3

Fig. 8 The resolvent gains 𝜎R𝑖
(𝑘𝑥 , 𝑘𝑧 , 𝜔) as functions of 𝑐𝑟 for 𝑅𝑒 = 2× 105, 𝑀𝑟 = 2, 𝑃𝑟 = 0.72, 𝑁𝑦 = 200. These

results are a re-computation of the results showcased in Fig. 5 with kinetic energy replacing the Chu energy for
the compressible inner products. Therefore, any differences with the equivalent plots in Fig. 5 are solely due to
the choice of energy norm.

IV. Conclusions
In this paper, we exploited the non-unique nature of resolvent analysis–that arises if different sets of variables,

even when related via some nonlinear transformations, are used to describe a given flow [14]–to reveal conflicting
predictions and discrepancies regarding instability mechanisms associated with a compressible plane Couette flow. Two
resolvent formulations are implemented and the results are compared over a broad range of Mach numbers, which
indicate substantially different temporal behaviors of the linearized flow dynamics at some values of the streamwise and
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spanwise wavenumbers. It is, therefore, crucial to substantiate these contradictory observations through high-fidelity
numerical simulations and/or experimental studies in the future. While the study here focused on the resolvent gain
(with two variations studied), our future work will involve investigating the resolvent mode shapes provided by the two
formulations. Furthermore, we will implement these formulations to study turbulent wall-bounded flows going forward.
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A. Details of the Discretized Linear Operators
Discretization of the linear operators require an expansion using Chebyshev polynomials in the wall-normal direction

and Fourier modes in the streamwise and spanwise directions. The resulting discretized sub-operators (see (6) and (9)
for the continuous forms) for both the formulations are summarized in the following where 𝐷𝑦 and 𝐷𝑦𝑦 denote the first
and second derivatives in the wall-normal direction.

A. Cubic+ formulation

𝐿̂𝑐𝜌𝜌 = −i𝑘𝑥𝑈0

𝐿̂𝑐𝜌𝑢 = −i𝑘𝑥𝜌0

𝐿̂𝑐𝜌𝑣 = −𝜌′0 − 𝜌0𝐷𝑦

𝐿̂𝑐𝜌𝑤 = −i𝑘𝑧𝜌0

𝐿̂𝑐𝜌𝑇 = 0
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𝐿̂𝑐𝑢𝑢 = −i𝑘𝑥𝑈0 −
𝑇0
𝑅𝑒

[
𝜂0

(
4
3
𝑘2
𝑥 − 𝐷𝑦𝑦 + 𝑘2

𝑧

)
− 𝜂′0𝐷𝑦

]
𝐿̂𝑐𝑢𝑣 = −𝑈′

0 + i𝑘𝑥
𝑇0

3𝑅𝑒
[
𝜂0𝐷𝑦 + 3𝜂′0

]
𝐿̂𝑐𝑢𝑤 = −𝑘𝑥𝑘𝑧

𝑇0𝜂0
3𝑅𝑒

𝐿̂𝑐𝑢𝑇 = −i𝑘𝑥
1

𝛾𝑀2
𝑟

+ 𝑇0
𝑅𝑒

(
𝜂𝑇𝑇0𝑇

′
0𝑈

′
0 + 𝜂𝑇0𝑈

′
0𝐷𝑦 + 𝜂𝑇0𝑈

′′
0
)

𝐿̂𝑐𝑣𝜌 = − 𝑇0

𝛾𝑀2
𝑟

(
𝑇0𝐷𝑦 + 𝑇 ′

0
)

𝐿̂𝑐𝑣𝑢 = i𝑘𝑥
𝑇0

3𝑅𝑒
[
𝜂0𝐷𝑦 − 2𝜂′0

]
𝐿̂𝑐𝑣𝑣 = −i𝑘𝑥𝑈0 −

𝑇0
𝑅𝑒

[
𝜂0

(
𝑘2
𝑥 −

4
3
𝐷𝑦𝑦 + 𝑘2

𝑧

)
− 4

3
𝜂′0𝐷𝑦

]
𝐿̂𝑐𝑣𝑤 = i𝑘𝑧

𝑇0
3𝑅𝑒

[
𝜂0𝐷𝑦 − 2𝜂′0

]
𝐿̂𝑐𝑣𝑇 = − 1

𝛾𝑀2
𝑟

(
𝑇0𝜌

′
0 + 𝐷𝑦

)
+ i𝑘𝑥

𝑇0
𝑅𝑒

(
𝜂𝑇0𝑈

′
0
)

𝐿̂𝑐𝑤𝜌
= −i𝑘𝑧

𝑇2
0

𝛾𝑀2
𝑟

𝐿̂𝑐𝑤𝑢
= −𝑘𝑥𝑘𝑧

𝑇0𝜂0
3𝑅𝑒

𝐿̂𝑐𝑤𝑣
= i𝑘𝑧

𝑇0
3𝑅𝑒

[
𝜂0𝐷𝑦 + 3𝜂′0

]
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𝐿̂𝑐𝑤𝑤
= −i𝑘𝑥𝑈0 −

𝑇0
𝑅𝑒

[
𝜂0

(
𝑘2
𝑥 − 𝐷𝑦𝑦 +

4
3
𝑘2
𝑧

)
− 𝜂′0𝐷𝑦

]
𝐿̂𝑐𝑤𝑇

= −i𝑘𝑧
1

𝛾𝑀2
𝑟

𝐿̂𝑐𝑇𝜌
= 0

𝐿̂𝑐𝑇𝑢
= i𝑘𝑥𝑇0 (1 − 𝛾) + 𝑇0𝛾(𝛾 − 1)𝑀2

𝑟

𝑅𝑒

(
2𝜂0𝑈

′
0
)
𝐷𝑦

𝐿̂𝑐𝑇𝑣
= −𝑇 ′

0 + 𝑇0 (1 − 𝛾)𝐷𝑦 + i𝑘𝑥
𝑇0𝛾(𝛾 − 1)𝑀2

𝑟

𝑅𝑒

(
2𝜂0𝑈

′
0
)

𝐿̂𝑐𝑇𝑤
= i𝑘𝑧𝑇0 (1 − 𝛾)

𝐿̂𝑐𝑇𝑇
= −i𝑘𝑥𝑈0 +

𝑇0𝛾(𝛾 − 1)𝑀2
𝑟

𝑅𝑒
𝜂𝑇0 (𝑈′

0)
2 + 𝑇0𝛾

𝑅𝑒𝑃𝑟

(
𝜂𝑇0𝑇

′′
0 + 𝜂𝑇𝑇0 (𝑇 ′

0)
2 + 2𝜂′0𝐷𝑦 + 𝜂0 (−𝑘2

𝑥 + 𝐷𝑦𝑦 − 𝑘2
𝑧)
)

B. Quadratic+ formulation

𝐿̂𝑞𝜉 𝜉
= −i𝑘𝑥𝑈0

𝐿̂𝑞𝜉𝑢
= i𝑘𝑥𝜉0

𝐿̂𝑞𝜉𝑣
= −𝜉′0 + 𝜉0𝐷𝑦

𝐿̂𝑞𝜉𝑤
= i𝑘𝑧𝜉0

𝐿̂𝑞𝜉 𝑝
= 0

𝐿̂𝑞𝑢𝜉
=

𝜉0
𝑅𝑒

(
𝜂1 + 𝜂2𝐷𝑦

)
𝐿̂𝑞𝑢𝑢 = −i𝑘𝑥𝑈0 −

𝜉0
𝑅𝑒

[
𝜂0

(
4
3
𝑘2
𝑥 − 𝐷𝑦𝑦 + 𝑘2

𝑧

)
− 𝜂′0𝐷𝑦

]
𝐿̂𝑞𝑢𝑣 = −𝑈′

0 + i𝑘𝑥
𝜉0

3𝑅𝑒
[
𝜂0𝐷𝑦 + 3𝜂′0

]
𝐿̂𝑞𝑢𝑤 = −𝑘𝑥𝑘𝑧

𝜉0𝜂0
3𝑅𝑒

𝐿̂𝑞𝑢𝑝
= −i𝑘𝑥

𝜉0

𝛾𝑀2
𝑟

+ 𝜉0
𝑅𝑒

(
𝜂1𝜉0 + 𝜂2𝜉

′
0 + 𝜂2𝜉0𝐷𝑦

)
𝐿̂𝑞𝑣𝜉 = i𝑘𝑥

𝜉0
𝑅𝑒

𝜂𝑇0𝑈
′
0

𝐿̂𝑞𝑣𝑢 = i𝑘𝑥
𝜉0

3𝑅𝑒
[
𝜂0𝐷𝑦 − 2𝜂′0

]
𝐿̂𝑞𝑣𝑣 = −i𝑘𝑥𝑈0 −

𝜉0
𝑅𝑒

[
𝜂0

(
𝑘2
𝑥 −

4
3
𝐷𝑦𝑦 + 𝑘2

𝑧

)
− 4

3
𝜂′0𝐷𝑦

]
𝐿̂𝑞𝑣𝑤 = i𝑘𝑧

𝜉0
3𝑅𝑒

[
𝜂0𝐷𝑦 − 2𝜂′0

]
𝐿̂𝑞𝑣𝑝 = − 𝜉0

𝛾𝑀2
𝑟

𝐷𝑦 + i𝑘𝑥
𝜉0
𝑅𝑒

𝜂𝑇0𝑈
′
0𝜉0

𝐿̂𝑞𝑤𝜉
= 0

𝐿̂𝑞𝑤𝑢
= −𝑘𝑥𝑘𝑧

𝜉0𝜂0
3𝑅𝑒

𝐿̂𝑞𝑤𝑣
= i𝑘𝑧

𝜉0
3𝑅𝑒

[
𝜂0𝐷𝑦 + 3𝜂′0

]
𝐿̂𝑞𝑤𝑤

= −i𝑘𝑥𝑈0 −
𝜉0
𝑅𝑒

[
𝜂0

(
𝑘2
𝑥 − 𝐷𝑦𝑦 +

4
3
𝑘2
𝑧

)
− 𝜂′0𝐷𝑦

]
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𝐿̂𝑞𝑤𝑝
= −i𝑘𝑧

𝜉0

𝛾𝑀2
𝑟

𝐿̂𝑞𝑝𝜉
=

𝛾(𝛾 − 1)𝑀2
𝑟

𝑅𝑒
𝜂𝑇0 (𝑈′

0)
2 +

( 𝛾

𝑅𝑒𝑃𝑟

) [
𝜂0

(
−𝑘2

𝑥 + 𝐷𝑦𝑦 − 𝑘2
𝑧

)
+ 𝜂′0𝐷𝑦 + 𝜂3 + 𝜂𝑇0𝜉

′
0𝐷𝑦

]
𝐿̂𝑞𝑝𝑢

= −i𝑘𝑥𝛾 + 𝛾(𝛾 − 1)𝑀2
𝑟

𝑅𝑒

(
2𝑈′

0𝜂0
)
𝐷𝑦

𝐿̂𝑞𝑝𝑣
= −𝛾𝐷𝑦 + i𝑘𝑥

𝛾(𝛾 − 1)𝑀2
𝑟

𝑅𝑒

(
2𝑈′

0𝜂0
)

𝐿̂𝑞𝑝𝑤
= −i𝑘𝑧𝛾

𝐿̂𝑞𝑝𝑝
= −i𝑘𝑥𝑈0 +

𝛾(𝛾 − 1)𝑀2
𝑟

𝑅𝑒
𝜂𝑇0 (𝑈′

0)
2𝜉0 +

𝛾

𝑅𝑒𝑃𝑟

{
𝜂0

[
𝜉′′0 + 2𝜉′0𝐷𝑦 − 𝜉0

(
𝑘2
𝑥 − 𝐷𝑦𝑦 + 𝑘2

𝑧

)]
+ 𝜂′0 (𝜉

′
0 + 𝜉0𝐷𝑦)

}
+ 𝛾

𝑅𝑒𝑃𝑟

(
𝜂3𝜉0 + 𝜂𝑇0𝜉0𝜉

′
0𝐷𝑦 + 𝜂𝑇0 (𝜉′0)

2
)
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