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This paper extends the recently introduced structured input-output analysis method for
incompressible flows to the compressible regime. The proposed method relies upon an exact
quadratic representation of the compressible Navier-Stokes equations that allows for efficient
modeling and analysis within the structured singular value framework. Specifically, the
compressible plane Couette flow is investigated and the structure of the nonlinear forcing is
used to formulate an input-output model suitable for the structured singular value analysis. We
have outlined an efficient method to compute upper bounds on the structured singular value,
which provide insight into flow instability. Numerical results of the proposed framework are
included for subsonic, transonic, and supersonic Mach numbers. These results are compared
with those obtained from resolvent gain and unstructured input-output analysis. Our findings
show that accounting for the structure of the nonlinearity not only reduces the conservatism in
the unstructured gains—thereby increasing the estimated stability margin—but also eliminates
some of the instability mechanisms predicted by these other analysis tools. Moreover, the
structured input-output results reveal instability mechanisms that are not captured by the
resolvent analysis. These contradictory findings between the analysis techniques considered
need to be substantiated through experimental and/or computational studies in the future.

I. Introduction

Compressible flows arise in most aerospace applications. These flows are governed by the compressible Navier-Stokes
equations (NSE), which can result in highly complex flow physics with a rich array of nonlinear flow interactions.

Modal analysis techniques have proven to be invaluable for unraveling these complex flow physics to arrive at an improved
understanding of key instability mechanisms and coherent structures that drive the associated fluid dynamics [1–3].
Input-output (I/O) and resolvent-based techniques have established themselves as key tools in the arsenal [4]. These
techniques were primarily adopted and developed in the context of incompressible flows [5, 6], but have since been
adopted and developed for studies of compressible fluid dynamics [7–11]. I/O methods are inherently physics-based and
work by decomposing the governing equations into a feedback interconnection between the linear dynamics and the
nonlinear terms. Traditionally, the outputs of the nonlinear terms are treated as an implicit (unstructured) forcing on the
linear dynamics, which results in an optimization problem that is relatively straightforward to solve using linear systems
analysis techniques. Despite their successes, linear I/O analysis neglects any known structure regarding the nonlinear
terms. Most existing analysis methods that account for these nonlinearities result in computationally expensive—or
even intractable—solution algorithms [12–16].
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Recently, a structured I/O analysis framework was proposed within the context of incompressible flows that provides
a computationally tractable method for imposing structural information about the nonlinear terms within the linear I/O
analysis framework [17]. This approach extends established ideas from the robust controls literature [18, 19] to the
context of incompressible fluid dynamics for which the (convective) nonlinear terms are quadratic. It was further shown
in [20] that additional repeated structure in the convective nonlinearity in the incompressible NSE can be exploited to
further refine the structured I/O analysis. Moreover, the structured I/O framework can be utilized to conduct modal
analysis, as shown in [21].

In this paper, we investigate the utility of structured I/O methods for the analysis of compressible flows. The
nonlinear terms in the compressible NSE are substantially more complicated than in the incompressible NSE. In most
systems-theoretic formulations, the nonlinearity in the compressible NSE is cubic [22], which creates non-trivial
challenges with regards to the necessary uncertainty modeling of the nonlinear terms for subsequent structured I/O
analysis. Here, we will exploit a reformulation of the compressible NSE for which the resulting nonlinearity is quadratic.
The nonlinearity in this reformulation is still substantially more complicated than for incompressible flows, but makes
the application of structured I/O analysis more tractable. For this investigation, we consider a compressible plane
Couette flow over a range of Mach numbers. This flow has been investigated in numerous other works on stability and
I/O analysis due to its simplicity [8, 23, 24]. Results of the structured I/O analysis are compared with those obtained
from resolvent gain and unstructured input-output (using the 𝐻∞ norm) analysis. Included numerical results illustrate
that accounting for the structure of the nonlinearity not only reduces the conservatism in the unstructured gains (which
translates to a larger margin of stability) but also eliminates some of the possibly redundant instability mechanisms
predicted by these other analysis tools. Moreover, the structured I/O results reveal different instability mechanisms that
are not predicted in the resolvent gain results.

The remainder of the paper proceeds as follows. The exact quadratic representation of compressible NSE and
relevant details are provided in Section II. The compressible plane Couette flow problem is elaborated in Section III
which includes details on the base flow calculations, perturbation dynamics, and structured I/O analysis. Section IV
contains the simulation results and the conclusions of this work are provided in Section V.

We use symbols C𝑛, C𝑛×𝑚 and R𝑛×𝑚 to denote the sets of 𝑛-dimensional complex vectors, complex matrices of
dimension 𝑛 × 𝑚, real matrices of dimension 𝑛 × 𝑚, respectively. The symbols ∥ · ∥2 and ∥ · ∥𝐹 respectively denote the
spectral and Frobenius norms of a matrix. Also, an 𝑛 × 𝑛 identity matrix is denoted by I𝑛 and we use i =

√
−1 as the

imaginary unit.

II. Quadratic Representation of Compressible Navier-Stokes Equations
Consider a compressible fluid in the domain Ω ⊂ R3. The state of the fluid at any instant in time can be characterized

solely based on the primitive variables of density 𝜚(x, 𝑡), velocity u(x, 𝑡) = (𝑢(x, 𝑡), 𝑣(x, 𝑡), 𝑤(x, 𝑡)), and pressure 𝑝(x, 𝑡).
Here, x ∈ Ω is the spatial coordinate and 𝑡 ∈ R is time. The equations of motion governing the dynamics of the flow in
Ω are derived from the conservation laws for mass, momentum, and energy. These equations can be expressed in terms
of the primitive variables q = (𝜉 := 1/𝜚, u, 𝑝). All variables are non-dimensionalized in the usual way using 𝐿, 𝑢𝑟 , 𝑇𝑟 ,
𝜉𝑟 = 1/𝜌𝑟 , and 𝜂𝑟 as the reference length, velocity, temperature, specific volume (density), and viscosity, respectively.
The reference pressure is chosen to be 𝑝𝑟 = 𝑇𝑟𝑅/𝜉𝑟 . Denoting all dimensional quantities with a superscript (·)𝑑 , we
define the following non-dimensional quantities:

𝜉 =
𝜉𝑑

𝜉𝑟
, u =

u𝑑

𝑢𝑟
, 𝑡 =

𝑡𝑑

𝐿/𝑢𝑟
, 𝜂 =

𝜂𝑑

𝜂𝑟
, 𝑇 =

𝑇𝑑

𝑇𝑟
, 𝑝 =

𝑝𝑑

𝑝𝑟
, 𝑅𝑒 =

𝑢𝑟𝐿

𝜂𝑟𝜉𝑟
, 𝑀𝑟 =

𝑢𝑟

𝑎𝑟
=

𝑢𝑟√
𝛾𝑅𝑇𝑟

, (1)

where 𝜂 is the coefficient of shear viscosity, while 𝑅𝑒 and 𝑀𝑟 denote the Reynolds number and Mach number, respectively.
The resulting non-dimensional compressible Navier-Stokes equations can be expressed as

𝜕𝑡𝜉 + u · ∇𝜉 − 𝜉∇ · u = 0 (2)

𝜕𝑡u + u · ∇u = − 1
𝛾𝑀2

𝑟

𝜉∇𝑝 + 1
𝑅𝑒

𝜉∇ · Π(u, 𝜂) (3)

𝜕𝑡 𝑝 + u · ∇𝑝 + 𝛾𝑝∇ · u =
𝛾(𝛾 − 1)𝑀2

𝑟

𝑅𝑒
Φ(u, 𝜂) + 𝛾

𝑅𝑒𝑃𝑟
∇ · (𝜂∇(𝑝𝜉)) (4)
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with the associated non-dimensional equation of state for a perfect polytropic gas 𝑝𝜉 = 𝑇 . Here, Π(u, 𝜂) denotes the
viscous stress tensor, which for a Newtonian fluid takes the form

Π(u, 𝜂) =

𝜏𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑦𝑥 𝜏𝑦𝑦 𝜏𝑦𝑧

𝜏𝑧𝑥 𝜏𝑧𝑦 𝜏𝑧𝑧

 = 2𝜂𝐷 + (𝜂𝑏 −
2
3
𝜂) (∇ · u)𝐼,

where 𝜂𝑏 is the coefficient of bulk viscosity, and 𝐷 is the deformation tensor given by

𝐷 =


𝜕𝑥𝑢

1
2 (𝜕𝑥𝑣 + 𝜕𝑦𝑢) 1

2 (𝜕𝑥𝑤 + 𝜕𝑧𝑢)
1
2 (𝜕𝑦𝑢 + 𝜕𝑥𝑣) 𝜕𝑦𝑣

1
2 (𝜕𝑦𝑤 + 𝜕𝑧𝑣)

1
2 (𝜕𝑧𝑢 + 𝜕𝑥𝑤) 1

2 (𝜕𝑧𝑣 + 𝜕𝑦𝑤) 𝜕𝑧𝑤

 .
In this work, we will apply Stokes’ hypothesis, so that 𝜂𝑏 = 0. Also, the term Φ(u, 𝜂) in (4) is the viscous dissipation
term given by

Φ(u, 𝜂) = 𝜂

(
2
(
(𝜕𝑥𝑢)2 + (𝜕𝑦𝑣)2 + (𝜕𝑧𝑤)2

)
+ (𝜕𝑦𝑢 + 𝜕𝑥𝑣)2 + (𝜕𝑧𝑣 + 𝜕𝑦𝑤)2 + (𝜕𝑧𝑢 + 𝜕𝑥𝑤)2

)
− 2

3
𝜂(∇ · u)2

=
𝜂

2
[
∇u + (∇u)T]2 − 2

3
𝜂(∇ · u)2.

(5)

Next, we consider the dynamics of perturbations about a steady base flow (𝜉0, u0, 𝑝0, 𝑇0, 𝜂0) with u0 = (𝑢0, 𝑣0, 𝑤0). We
will assume temperature dependence of the viscosity in the base flow calculation 𝜂0 = 𝜂0 (𝑇0); however, the temperature
dependence of viscosity in the perturbation dynamics—and therefore perturbations to the base viscosity 𝜂0—will be
neglected in the ensuing analysis. Isolating the linear dynamics on the left-hand side and the nonlinear terms on the
right-hand side, the dynamics of perturbations can be expressed as

𝜕𝑡𝜉 − 𝐿 𝜉 (q) = 𝑄 𝜉 (q) (6)
𝜕𝑡u − 𝐿u (q) = 𝑄u (q) (7)
𝜕𝑡 𝑝 − 𝐿𝑝 (q) = 𝑄𝑝 (q) (8)
𝑇 − 𝐿𝑇 (q) = 𝑄𝑇 (q) (9)

where q = (𝜉, u, 𝑝) is the vector of perturbed quantities, and

𝐿 𝜉 (q) = −u0 · ∇𝜉 − u · ∇𝜉0 + 𝜉∇ · u0 + 𝜉0∇ · u

𝐿u (q) = −u0 · ∇u − u · ∇u0 − 𝜉0∇𝑝 − 𝜉∇𝑝0 +
1
𝑅𝑒

(𝜉∇ · Π(u0, 𝜂0) + 𝜉0∇ · Π(u, 𝜂0))

𝐿𝑝 (q) = −u0 · ∇𝑝 − u · ∇𝑝0 − 𝛾 (𝑝∇ · u0 + 𝑝0∇ · u) + 𝛾(𝛾 − 1)𝑀2
𝑟

𝑅𝑒

(
𝜂0

(
4𝜕𝑥𝑢𝜕𝑥𝑢0 + 4𝜕𝑦𝑣𝜕𝑦𝑣0 + 4𝜕𝑧𝑤𝜕𝑧𝑤0

+ 2(𝜕𝑦𝑢 + 𝜕𝑥𝑣) (𝜕𝑦𝑢0 + 𝜕𝑥𝑣0) + 2(𝜕𝑧𝑣 + 𝜕𝑦𝑤) (𝜕𝑧𝑣0 + 𝜕𝑦𝑤0) + 2(𝜕𝑧𝑢 + 𝜕𝑥𝑤) (𝜕𝑧𝑢0 + 𝜕𝑥𝑤0)
)

− 4
3
𝜂0 (∇ · u0) (∇ · u)

)
+ 𝛾

𝑅𝑒𝑃𝑟
∇ · 𝜂0 (∇(𝑝0𝜉 + 𝑝𝜉0))

𝐿𝑇 (q) = 𝑝0𝜉 + 𝑝𝜉0

𝑄 𝜉 (q) = 𝜉∇ · u − u · ∇𝜉

𝑄u (q) = −u · ∇u − 𝜉∇𝑝 + 1
𝑅𝑒

𝜉∇ · Π(u)

𝑄𝑝 (q) = −u · ∇𝑝 − 𝛾𝑝∇u + 𝛾(𝛾 − 1)𝑀2
𝑟

𝑅𝑒
Φ(u, 𝜂0) +

𝛾

𝑅𝑒𝑃𝑟
∇ · (𝜂0∇(𝑝𝜉))

𝑄𝑇 (q) = 𝑝𝜉.

The partitioning into linear and nonlinear terms facilitates the formulation of the structured I/O problem. We will
demonstrate this in the context of a compressible plane Couette flow in the next section.
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III. Structured I/O Analysis of Compressible Plane Couette Flow
The compressible plane Couette flow is a convenient canonical setup for investigation that has been considered in

many prior works—see, e.g., [8, 23–25].

A. Steady Base Flow
The base profile can be computed with relative ease: it can be shown that the base temperature profile 𝑇0 (𝑦) will be

a second-order polynomial function of the streamwise base velocity profile 𝑈0 (𝑦) [23]. Further, this base flow profile
will be independent of the Reynolds number 𝑅𝑒. Here we will show that the same conclusion can be drawn from the
non-dimensional quadratic representation of the compressible NSE. Assume a base profile with (𝑢, 𝑣, 𝑤) = (𝑈0 (𝑦), 0, 0),
𝜉 = 𝜉0 (𝑦), and 𝑝 = 𝑝0 (𝑦). The continuity and 𝑧-momentum equations will be satisfied automatically. It follows from
the 𝑦-momentum equation that the base pressure profile will actually be a constant, which we will take to be unity:
𝑝0 (𝑦) = 𝑝0 = 1. The 𝑥-momentum equation shows that the base shear-stress profile 𝜏0 = 𝜂0 (𝜕𝑈0/𝜕𝑦) will be constant:

d
d𝑦

(
𝜂0

d𝑈0
d𝑦

)
= 0. (10)

The energy equation reduces to the condition:

d
d𝑦

(
(𝛾 − 1)𝑀2

𝑟 𝜏0𝑈0 +
𝜂0
𝑃𝑟

d𝑇0
d𝑦

)
= 0, (11)

where we have utilized the equation of state 𝜉0 (𝑦) = 𝑇0 (𝑦) since 𝑝0 = 1. The boundary conditions are taken to be

𝑈0 (0) = 0, 𝑈0 (1) = 1, 𝑇0 (0) = 𝑇𝐿 , 𝑇 (1) = 1, (12)

where 𝑇𝐿 is the mean temperature of the lower wall. Now, we can integrate (11) to obtain the baseflow temperature
profile as [23, 24]

𝑇0 = 𝑇𝑟𝑒𝑐
[
𝑟 + (1 − 𝑟)𝑈0 − (1 − 𝑇−1

𝑟𝑒𝑐)𝑈2
0
]
, (13)

where we have defined the recovery temperature 𝑇𝑟𝑒𝑐 = 1 + (𝛾 − 1)𝑃𝑟𝑀2
𝑟 /2 and recovery factor 𝑟 = 𝑇𝐿/𝑇𝑟𝑒𝑐. For

consistency with this prior work, we assume temperature dependence of the base viscosity according to Sutherland’s
law:

𝜂0 =
𝑇

3/2
0 (1 + 𝐶)
𝑇0 + 𝐶

, with 𝐶 = 0.5. (14)

The base velocity profile can be computed from (10). Since the shear stress 𝜏0 is an unknown constant, this can be
done iteratively together with (13) and (14). Here, we use a shooting method composed of a fourth order Runge-Kutta
integration scheme in conjunction with a secant method for determining the initial condition for the next iterate. The
process is then repeated until convergence. Base profiles for 𝑃𝑟 = 0.72, 𝑟 = 1 (adiabatic lower wall), and 𝑀𝑟 = (0.5, 1, 2)
are shown in Fig. 1. As noted in [23], beginning with a monotone initial guess for 𝑈0 (𝑦) facilitates convergence. For
the cases considered in our study, convergence of the shooting method to an absolute error of 𝜖 ≤ 10−8 between iterates
required ∼ O(10) total iterations.

B. Perturbation Dynamics about the Steady Base Flow
The perturbation dynamics about the steady base flow is given by

𝜕𝑡𝜉 +𝑈0𝜕𝑥𝜉 + 𝑣𝜉′0 − 𝜉0∇ · u = −u · ∇𝜉 + 𝜉∇ · u

𝜕𝑡u +𝑈0𝜕𝑥u + 𝑣𝑈′
0e𝑥 +

1
𝛾𝑀2

𝑟

𝜉0∇𝑝 − 𝜉0
𝑅𝑒

∇ · Π(u, 𝜂0) = − 1
𝛾𝑀2

𝑟

𝜉∇𝑝 − u · ∇u + 𝜉

𝑅𝑒
∇ · Π(u, 𝜂0)

𝜕𝑡 𝑝 +𝑈0𝜕𝑥 𝑝 + 𝛾𝑝0∇ · u − 𝛾(𝛾 − 1)𝑀2
𝑟

𝑅𝑒

(
2𝜂0𝑈

′
0 (𝜕𝑦𝑢 + 𝜕𝑥𝑣)

)
− 𝛾

𝑅𝑒𝑃𝑟

(
𝜂0𝑝0∇2𝜉 + 𝜂0𝜉0∇2𝑝 + 2𝜂0𝜉

′
0𝜕𝑦 𝑝 + 𝜂0𝜉

′′
0 𝑝 + 𝜂′0

(
𝑝0𝜕𝑦𝜉 + 𝑝𝜉′0 + 𝜉0𝜕𝑦 𝑝

) )
= −u · ∇𝑝 − 𝛾𝑝∇ · u + 𝛾(𝛾 − 1)𝑀2

𝑟

𝑅𝑒
Φ(u, 𝜂0) +

𝛾

𝑅𝑒𝑃𝑟

(
𝜂0∇2 (𝑝𝜉) + 𝜉∇𝑝 · ∇𝜂0 + 𝑝∇𝜉 · ∇𝜂0

)
(15)
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Fig. 1 Steady base flow profiles for compressible plane Couette flow for different Mach numbers.

where e𝑥 is the unit vector for the 𝑥 direction, (·)′ = d(·)/d𝑦 and (·)′′ = d2 (·)/d𝑦2 for the associated base flow quantities.
Therefore, the linear operators for the perturbation dynamics about the steady base flow reduce to

𝐿 𝜉 (q) = −𝑈0𝜕𝑥𝜉 − 𝑣𝜉′0 + 𝜉0∇ · u

𝐿𝑢 (q) = −𝑈0𝜕𝑥𝑢 −𝑈′
0𝑣 −

1
𝛾𝑀2

𝑟

𝜉0𝜕𝑥 𝑝 + 𝜉0
𝑅𝑒

[
𝜂0

(
∇2𝑢 + 1

3
(𝜕𝑥𝑥𝑢 + 𝜕𝑥𝑦𝑣 + 𝜕𝑥𝑧𝑤)

)
+ (𝜕𝑦𝑢 + 𝜕𝑥𝑣)𝜂′0

]
𝐿𝑣 (q) = −𝑈0𝜕𝑥𝑣 −

1
𝛾𝑀2

𝑟

𝜉0𝜕𝑦 𝑝 + 𝜉0
𝑅𝑒

[
𝜂0

(
∇2𝑣 + 1

3
(𝜕𝑥𝑦𝑢 + 𝜕𝑦𝑦𝑣 + 𝜕𝑦𝑧𝑤)

)
+

(
4
3
𝜕𝑦𝑣 −

2
3
(𝜕𝑧𝑤 + 𝜕𝑥𝑢)

)
𝜂′0

]
𝐿𝑤 (q) = −𝑈0𝜕𝑥𝑤 − 1

𝛾𝑀2
𝑟

𝜉0𝜕𝑧 𝑝 + 𝜉0
𝑅𝑒

[
𝜂0

(
∇2𝑤 + 1

3
(𝜕𝑥𝑧𝑢 + 𝜕𝑦𝑧𝑣 + 𝜕𝑧𝑧𝑤)

)
+ (𝜕𝑧𝑣 + 𝜕𝑦𝑤)𝜂′0

]
𝐿𝑝 (q) = −𝑈0𝜕𝑥 𝑝 − 𝛾𝑝0∇ · u + 𝛾(𝛾 − 1)𝑀2

𝑟

𝑅𝑒

(
2𝜂0𝑈

′
0 (𝜕𝑦𝑢 + 𝜕𝑥𝑣)

)
+ 𝛾

𝑅𝑒𝑃𝑟

(
𝜂0𝑝0∇2𝜉 + 𝜂0𝜉0∇2𝑝 + 2𝜂0𝜉

′
0𝜕𝑦 𝑝 + 𝜂0𝜉

′′
0 𝑝 + 𝜂′0

(
𝑝0𝜕𝑦𝜉 + 𝑝𝜉′0 + 𝜉0𝜕𝑦 𝑝

) )
.

(16)

No-slip and impermeability boundary conditions are applied to velocity perturbations at both walls, i.e., 𝑢(0) = 𝑢(1) =
𝑣(0) = 𝑣(1) = 𝑤(0) = 𝑤(1) = 0. In this work, we assume an adiabatic lower wall (i.e., 𝜕𝑦𝑇 (0) = 0) and an isothermal
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upper wall (i.e., 𝑇 (1) = 0). These translate to the following conditions on specific volume and pressure at the boundaries:

𝜕𝑦 𝑝(0)𝜉0 (0) + 𝜕𝑦𝜉 (0) + 𝜕𝑦 (𝑝𝜉) (0) = 0, (17)
𝑝(1)𝜉0 (1) + 𝜉 (1) (1 + 𝑝(1)) = 0. (18)

These conditions are satisfied by imposing homogeneous Dirichlet and Neumann boundary conditions, i.e., 𝜉 (1) =
𝑝(1) = 0 and 𝜕𝑦𝜉 (0) = 𝜕𝑦 𝑝(0) = 0.

With the linear operators as defined above, the perturbation dynamics (15) can now be expressed as

𝜕𝑡𝜉 = 𝐿 𝜉 (q) + 𝑓𝜉 (q), 𝜕𝑡u = 𝐿u (q) + 𝑓u (q), 𝜕𝑡 𝑝 = 𝐿𝑝 (q) + 𝑓𝑝 (q), (19)

where 𝐿u (q) =
[
𝐿𝑢 (q) 𝐿𝑣 (q) 𝐿𝑤 (q)

]T
and the nonlinear forcings are

𝑓𝜉 (q) = −u · ∇𝜉 + 𝜉∇ · u, 𝑓u (q) = − 1
𝛾𝑀2

𝑟

𝜉∇𝑝 − u · ∇u + 𝜉

𝑅𝑒
∇ · Π(u, 𝜂0),

𝑓𝑝 (q) = −u · ∇𝑝 − 𝛾𝑝∇ · u + 𝛾(𝛾 − 1)𝑀2
𝑟

𝑅𝑒
Φ(u, 𝜂0) +

𝛾

𝑅𝑒𝑃𝑟

(
𝜂0∇2 (𝑝𝜉) + 𝜉∇𝑝 · ∇𝜂0 + 𝑝∇𝜉 · ∇𝜂0

)
.

(20)

This description of the perturbation dynamics in (19) provides a systems-theoretic (or feedback) interpretation of the
equations, which is shown in Fig. 2a where the perturbed quantities (𝜉, u, 𝑝) denote the state of a linear system (i.e., the
linear perturbation dynamics). The states are also the outputs of the linear system and the inputs forcing the linear
system are nonlinear feedback of the outputs (see Fig. 2a). Furthermore, the term Φ(u, 𝜂0) can be expressed as

Φ(u, 𝜂0) =
𝜂0
2

[
∇u + (∇u)T]2 − 2

3
𝜂0 (∇ · u)2 =

𝜂0
2
Ψ1 (u) −

2
3
𝜂0Ψ2 (u) (21)

where

Ψ1 (u) =
[
(∇𝑢)T (∇𝑣)T (∇𝑤)T (𝜕𝑥u)T (𝜕𝑦u)T (𝜕𝑧u)T

]


∇𝑢
∇𝑣
∇𝑤

(2∇𝑢 + 𝜕𝑥u)
(2∇𝑣 + 𝜕𝑦u)
(2∇𝑤 + 𝜕𝑧u)


, Ψ2 (u) = (∇ · u)2. (22)

Also, we have the following identity

∇2 (𝑝𝜉) = 𝜉∇2𝑝 + 𝑝∇2𝜉 + 2∇𝑝 · ∇𝜉. (23)

After substituting the above expressions in (20), we derive

𝑓𝜉 (q) = −u · ∇𝜉 + 𝜉∇ · u, 𝑓u (q) = − 1
𝛾𝑀2

𝑟

𝜉∇𝑝 − u · ∇u + 𝜉

𝑅𝑒
∇ · Π(u, 𝜂0),

𝑓𝑝 (q) = −u · ∇𝑝 − 𝛾𝑝∇ · u + 𝛾(𝛾 − 1)𝑀2
𝑟

𝑅𝑒

𝜂0
2

[
(∇𝑢)T∇𝑢 + (∇𝑣)T∇𝑣 + (∇𝑤)T∇𝑤

+ (𝜕𝑥u)T (2∇𝑢 + 𝜕𝑥u) + (𝜕𝑦u)T (2∇𝑣 + 𝜕𝑦u) + (𝜕𝑧u)T (2∇𝑤 + 𝜕𝑧u)
]
− 𝛾(𝛾 − 1)𝑀2

𝑟

𝑅𝑒

2
3
𝜂0 (∇ · u)2

+ 𝛾

𝑅𝑒𝑃𝑟

(
𝜂0𝜉∇2𝑝 + 𝜂0𝑝∇2𝜉 + 2𝜂0∇𝑝 · ∇𝜉 + ∇𝜂0 · 𝜉∇𝑝 + ∇𝜂0 · 𝑝∇𝜉

)
.

(24)

C. Modeling the Nonlinear Terms: Structured Uncertainty
We now describe a modeling of the quadratic nonlinearities in (24), collectively denoted by a vector f, that enables the

structured I/O analysis using the structured singular value formalism. This involves separating each quadratic nonlinearity
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into its constituent linear parts and approximating one of the linear parts as an uncertain gain. Following the terminology
used in the robust controls literature, we refer to the resulting gain matrix as a structured uncertainty which typically
has a block-diagonal structure. In fact, the modeling actually requires a couple of linear transformations/operators
to make the structured uncertainty block-diagonal—one each for the inputs and outputs of the structured uncertainty.
The system modeling and resulting approximated system are schematically shown in Fig. 2b where the subscript (·)𝜒
denotes approximated quantities. Therefore, the I/O modeling approximates the nonlinearity by a quasi-nonlinearity
that neglects the dependence of the mapping on the states that make up both y and f, i.e., the uncertainty is treated as
independent of these signals. Despite this approximation, structured I/O framework provides a systematic approach to
treat the nonlinearities compared to the traditional unstructured I/O techniques. This is evidenced by the structured I/O
analysis of incompressible flows in [17], which led to results that were in agreement with both experimental observations
and direct numerical simulation results. This indicates the usefulness of structured I/O analysis, even with the above
mentioned inexactness of the modeling, and serves as a motivation for the I/O model in our research. The details of our
model are provided next.

Linear
dynamics

Nonlinear
mapping

𝑓𝜉

𝑓u

𝑓𝑝


-


𝜉

u
𝑝


�

(a) Original system

Linear
dynamics

Structured
uncertainty

Linear
mapping

Linear
mapping

[
𝑓𝜉 𝑓 T

u 𝑓𝑝

]T

𝜒

?

- [
𝜉 uT 𝑝

]T

yf𝜒

6

�

(b) Approximated system

Fig. 2 The perturbation dynamics expressed in feedback forms - both the original system and the system
obtained through the modeling approximation, with subscript (·)𝜒 denoting approximated quantities.

First, we separate out the nonlinear terms in (24) into three different vectors as

f1 =



𝜉∇2𝑝

𝜉∇𝑝
𝜉 (∇ · u)

𝜉∇ · Π(u, 𝜂0)
𝑝∇2𝜉

𝑝∇𝜉
𝑝∇ · u


, f2 =



u · ∇𝜉
u · ∇𝑢
u · ∇𝑣
u · ∇𝑤
u · ∇𝑝


, f3 =



∇𝑢 · ∇𝑢
∇𝑣 · ∇𝑣
∇𝑤 · ∇𝑤

𝜕𝑥u · (2∇𝑢 + 𝜕𝑥u)
𝜕𝑦u · (2∇𝑣 + 𝜕𝑦u)
𝜕𝑧u · (2∇𝑤 + 𝜕𝑧u)

∇𝑝 · ∇𝜉
(∇ · u)2


. (25)

These are related to the nonlinear forcings in (24) as
𝑓𝜉

𝑓u

𝑓𝑝

 = B1f1 + B2f2 + B3f3 =

[
B1 B2 B3

] 
f1

f2

f3

 = Bf (26)

where B2 = −I5 and

B1 =


0 0 1 0 0 0 0
0 − 1

𝛾𝑀2
𝑟
I3 0 1

𝑅𝑒
I3 0 0 0

𝑐3𝜂0 𝑐3 (∇𝜂0)T 0 0 𝑐3𝜂0 𝑐3 (∇𝜂0)T −𝛾

 , B3 =


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
𝑐1 𝑐1 𝑐1 𝑐1 𝑐1 𝑐1 2𝜂0𝑐3 𝑐2

 (27)
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with 𝑐1 =
𝛾 (𝛾−1)𝑀2

𝑟

𝑅𝑒

𝜂0
2 , 𝑐2 = − 2

3𝜂0
𝛾 (𝛾−1)𝑀2

𝑟

𝑅𝑒
, and 𝑐3 =

𝛾

𝑅𝑒𝑃𝑟
. Next, we describe the approximation for the nonlinear

terms in the vectors f𝑖:

f1𝜒
=



𝜉𝜒∇2𝑝

𝜉𝜒∇𝑝
𝜉𝜒 (∇ · u)

𝜉𝜒∇ · Π(u, 𝜂0)
𝑝𝜒∇2𝜉

𝑝𝜒∇𝜉
𝑝𝜒∇ · u


=



𝜉𝜒 0 0 0 0 0 0
0 𝜉𝜒I3 0 0 0 0 0
0 0 𝜉𝜒 0 0 0 0
0 0 0 𝜉𝜒I3 0 0 0
0 0 0 0 𝑝𝜒 0 0
0 0 0 0 0 𝑝𝜒I3 0
0 0 0 0 0 0 𝑝𝜒





∇2𝑝

∇𝑝
∇ · u

∇ · Π(u, 𝜂0)
∇2𝜉

∇𝜉
∇ · u


= Δ̄1y1, (28)

f2𝜒
=



u𝜒 · ∇𝜉
u𝜒 · ∇𝑢
u𝜒 · ∇𝑣
u𝜒 · ∇𝑤
u𝜒 · ∇𝑝


=



uT
𝜒 0 0 0 0

0 uT
𝜒 0 0 0

0 0 uT
𝜒 0 0

0 0 0 uT
𝜒 0

0 0 0 0 uT
𝜒





∇𝜉
∇𝑢
∇𝑣
∇𝑤
∇𝑝


= Δ̄2y2, (29)

f3𝜒
=



(∇𝑢)𝜒 · ∇𝑢
(∇𝑣)𝜒 · ∇𝑣
(∇𝑤)𝜒 · ∇𝑤

(𝜕𝑥u)𝜒 · (2∇𝑢 + 𝜕𝑥u)
(𝜕𝑦u)𝜒 · (2∇𝑣 + 𝜕𝑦u)
(𝜕𝑧u)𝜒 · (2∇𝑤 + 𝜕𝑧u)

(∇𝑝)𝜒 · ∇𝜉
(∇ · u)𝜒 (∇ · u)



=



(∇𝑢)T
𝜒 0 0 0 0 0 0 0

0 (∇𝑣)T
𝜒 0 0 0 0 0 0

0 0 (∇𝑤)T
𝜒 0 0 0 0 0

0 0 0 (𝜕𝑥u)T
𝜒 0 0 0 0

0 0 0 0
(
𝜕𝑦u

)T
𝜒

0 0 0
0 0 0 0 0 (𝜕𝑧u)T

𝜒 0 0
0 0 0 0 0 0 (∇𝑝)T

𝜒 0
0 0 0 0 0 0 0 (∇ · u)𝜒





∇𝑢
∇𝑣
∇𝑤

(2∇𝑢 + 𝜕𝑥u)
(2∇𝑣 + 𝜕𝑦u)
(2∇𝑤 + 𝜕𝑧u)

∇𝜉
(∇ · u)


= Δ̄3y3.

(30)

Therefore, the entire vector f is approximated as

f𝜒 =


f1𝜒

f2𝜒

f3𝜒

 = diag
(
Δ̄1, Δ̄2, Δ̄3

) 
y1

y2

y3

 = diag (Δ1,Δ2, . . . ,Δ11) y = Δy (31)

where

Δ1 = 𝜉𝜒I8, Δ2 = 𝑝𝜒I5, Δ3 = I5 ⊗ uT
𝜒, Δ4 = (∇𝑢)T

𝜒, Δ5 = (∇𝑣)T
𝜒, Δ6 = (∇𝑤)T

𝜒,

Δ7 = (𝜕𝑥u)T
𝜒, Δ8 = (𝜕𝑦u)T

𝜒, Δ9 = (𝜕𝑧u)T
𝜒, Δ10 = (∇𝑝)T

𝜒, Δ11 = (∇ · u)𝜒 .
(32)
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The vectors y𝑖 can be expressed in terms of the perturbed quantities (𝜉, u, 𝑝) as follows:

y1 =



∇2𝑝

∇𝑝
∇ · u

∇ · Π(u, 𝜂0)
∇2𝜉

∇𝜉
∇ · u


= C1



𝜉

𝑢

𝑣

𝑤

𝑝


, y2 =



∇𝜉
∇𝑢
∇𝑣
∇𝑤
∇𝑝


= C2



𝜉

𝑢

𝑣

𝑤

𝑝


, (33)

where

C1 =



0 0 0 0 ∇2

0 0 0 0 ∇
0 𝜕𝑥 𝜕𝑦 𝜕𝑧 0
0 𝐶Π11 𝐶Π12 𝐶Π13 0
0 𝐶Π21 𝐶Π22 𝐶Π23 0
0 𝐶Π31 𝐶Π32 𝐶Π33 0
∇2 0 0 0 0
∇ 0 0 0 0
0 𝜕𝑥 𝜕𝑦 𝜕𝑧 0



, C2 =



∇ 0 0 0 0
0 ∇ 0 0 0
0 0 ∇ 0 0
0 0 0 ∇ 0
0 0 0 0 ∇


, (34)

with

𝐶Π11 = 𝜂0∇2 + 1
3
𝜂0𝜕𝑥𝑥 + 𝜂′0𝜕𝑦 , 𝐶Π12 =

1
3
𝜂0𝜕𝑥𝑦 + 𝜂′0𝜕𝑥 , 𝐶Π13 =

1
3
𝜂0𝜕𝑥𝑧 ,

𝐶Π21 =
1
3
𝜂0𝜕𝑥𝑦 −

2
3
𝜂′0𝜕𝑥 , 𝐶Π22 = 𝜂0∇2 + 1

3
𝜂0𝜕𝑦𝑦 +

4
3
𝜂′0𝜕𝑦 , 𝐶Π23 =

1
3
𝜂0𝜕𝑦𝑧 −

2
3
𝜂′0𝜕𝑧 ,

𝐶Π31 =
1
3
𝜂0𝜕𝑥𝑧 , 𝐶Π32 =

1
3
𝜂0𝜕𝑦𝑧 + 𝜂′0𝜕𝑧 , 𝐶Π33 = 𝜂0∇2 + 1

3
𝜂0𝜕𝑧𝑧 + 𝜂′0𝜕𝑦 .

(35)

Also, we have

y3 =



∇𝑢
∇𝑣
∇𝑤

(2∇𝑢 + 𝜕𝑥u)
(2∇𝑣 + 𝜕𝑦u)
(2∇𝑤 + 𝜕𝑧u)

∇𝜉
(∇ · u)


= C31



∇𝑢
∇𝑣
∇𝑤
𝜕𝑥u
𝜕𝑦u
𝜕𝑧u
∇𝜉


= C31C32



𝜉

𝑢

𝑣

𝑤

𝑝


(36)
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where

C31 =



I3 0 0 0 0 0 0
0 I3 0 0 0 0 0
0 0 I3 0 0 0 0

2I3 0 0 I3 0 0 0
0 2I3 0 0 I3 0 0
0 0 2I3 0 0 I3 0
0 0 0 0 0 0 I3[

1 0 0
] [

0 1 0
] [

0 0 1
]

0 0 0 0


, C32 =



0 ∇ 0 0 0
0 0 ∇ 0 0
0 0 0 ∇ 0
0 𝜕𝑥 0 0 0
0 0 𝜕𝑥 0 0
0 0 0 𝜕𝑥 0
0 𝜕𝑦 0 0 0
0 0 𝜕𝑦 0 0
0 0 0 𝜕𝑦 0
0 𝜕𝑧 0 0 0
0 0 𝜕𝑧 0 0
0 0 0 𝜕𝑧 0
∇ 0 0 0 0



. (37)

Hence, we finally have

y =


y1

y2

y3

 =


C1

C2

C31C32




𝜉

𝑢

𝑣

𝑤

𝑝


= C𝑦



𝜉

𝑢

𝑣

𝑤

𝑝


. (38)

Therefore, the overall perturbation dynamics obtained through the modeling is given by
𝜕𝑡𝜉

𝜕𝑡u
𝜕𝑡 𝑝

 =


𝐿 𝜉 (q)
𝐿u (q)
𝐿𝑝 (q)

 + Bf𝜒, y = C𝑦

[
𝜉 uT 𝑝

]T
, f𝜒 = Δy (39)

which is discretized using the Fourier-Chebyshev-Fourier spectral discretization. The discretized equations (with ˆ(·)
denoting the discretized quantities) can be expressed in the following form:

i𝜔q̂ = L̂(𝑘𝑥 , 𝑘𝑧)q̂ + B̂f̂𝜒
ŷ = Ĉ𝑦 (𝑘𝑥 , 𝑘𝑧)q̂

f̂𝜒 = diag
(
Δ̂1, Δ̂2, . . . , Δ̂11

)
ŷ = Δ̂ŷ

(40)

where 𝑘𝑥 and 𝑘𝑧 are the wavenumbers along the streamwise (𝑥) and spanwise (𝑧) directions, respectively, 𝜔 is the
temporal frequency, L̂(𝑘𝑥 , 𝑘𝑧) ∈ C𝑛𝑞×𝑛𝑞 , Ĉ𝑦 (𝑘𝑥 , 𝑘𝑧) ∈ C𝑛𝑦×𝑛𝑞 are the discretized operators (see Appendix A for
details on the discretized operators), and B̂ ∈ R𝑛𝑞×𝑛 𝑓 is the dimensionally consistent form of B for the discretized
variables. Thus, we have 𝑛𝑞 = 5𝑁𝑦 where 𝑁𝑦 denotes the number of Chebyshev collocation points in the wall-normal
(𝑦) direction. Also in the above, each Δ̂𝑖 is a complex block matrix, with Δ̂3 containing a repeated full-block structure
(i.e., a single full block repeated 5 times, see (32)). Note that we do not exploit this repeated full-block structure in the
current study, but plan to do so in our future work.

For a given tuple (𝑘𝑥 , 𝑘𝑧 , 𝜔), the system of equations in (40) can be interpreted as a feedback interconnection
between a linear time invariant (LTI) system and a structured uncertainty Δ̂. In this interpretation, the inputs and outputs
of the LTI system are f̂𝜒 ∈ C𝑛 𝑓 and ŷ ∈ C𝑛𝑦 , respectively. Furthermore, the I/O relationship can be written as

ŷ = H(𝑘𝑥 , 𝑘𝑧 , 𝜔) f̂𝜒 (41)

where H(𝑘𝑥 , 𝑘𝑧 , 𝜔) = Ĉ𝑦 (𝑘𝑥 , 𝑘𝑧) (i𝜔I𝑛𝑞 − L̂(𝑘𝑥 , 𝑘𝑧))−1B̂ is the frequency response operator. Figure 3 schematically
outlines how the continuous-time modeling of the perturbation dynamics leads to the equivalent discretized system.
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Linear
dynamics

Structured
uncertainty

Linear
mapping

Linear
mapping

[
𝑓𝜉 𝑓 T

u 𝑓𝑝

]T

𝜒

?

- [
𝜉 uT 𝑝

]T

yf𝜒

6

�

⇒
H(𝑘𝑥 , 𝑘𝑧 , 𝜔)

Δ̂

f̂𝜒

�

-

ŷ

Fig. 3 The models of perturbation dynamics - continuous-time form (left) and discretized form (right).

D. Code validation: Eigenvalue spectra
For the purposes of code validation, we compare eigenvalues of the discretized linear operator L̂(𝑘𝑥 , 𝑘𝑧) with

eigenvalues of the equivalent operator for the standard (cubic) description of compressible NSE. Following the common
practice in the literature [8, 23, 24], the eigenvalues (𝜆) are plotted in terms of the complex wavespeed 𝑐 = 𝜆/𝑘𝑥 = 𝑐𝑟 + i𝑐𝑖 .
The comparison results are shown in Fig. 4 where we have utilized 𝑘𝑥 = 𝑘𝑧 = 0.1, 𝑅𝑒 = 2 × 105, 𝑀𝑟 = 2, 𝑃𝑟 = 0.72,
𝑁𝑦 = 200. As shown in Fig. 4, both sets of eigenvalues match, and these results are also consistent with results in the
literature (see, for example, [8]).

-0.5 0 0.5 1 1.5

c
r

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

c
i Quadratic

Cubic

Fig. 4 Eigenvalue spectra of the linear operators for 𝑘𝑥 = 𝑘𝑧 = 0.1, 𝑅𝑒 = 2 × 105, 𝑀𝑟 = 2, 𝑃𝑟 = 0.72, 𝑁𝑦 = 200.

E. Structured I/O Analysis: Structured Singular Value
As stated before, the structured I/O analysis utilizes the concept of structured singular value (SSV or 𝜇). We will

start the discussion with the matrix case by recalling the definition of 𝜇 for a given matrix H ∈ C𝑛×𝑚 and a set of
structured matrices 𝚫 ⊂ C𝑚×𝑛.

Definition 1 ([18, 26]) For a given matrix H ∈ C𝑛×𝑚 and a set of structured matrices 𝚫 ⊂ C𝑚×𝑛, the structured
singular value is defined as

𝜇𝚫 (H) = 1
min(∥Δ̂∥2 : Δ̂ ∈ 𝚫, det(I𝑛 − HΔ̂) = 0)

. (42)
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If there does not exist Δ̂ ∈ 𝚫 such that det(I𝑛 − HΔ̂) = 0, then 𝜇𝚫 (H) = 0.

Note that 𝜇𝚫 (H) depends both on the matrix H and the set 𝚫. Also, SSV is inversely related to the smallest structured
uncertainty Δ̂ (in the sense of ∥ · ∥2) that can make the feedback interconnection of the form shown in Fig. 3 (right)
unstable (see Remark 3.4 in [18] for more details). Thus, SSV is closely related to flow stability, i.e., a large value
indicates that the system is sensitive to small perturbations that can cause instability and vice versa [26]. For the
frequency response operator H(𝑘𝑥 , 𝑘𝑧 , 𝜔) at a given wavenumber pair (𝑘𝑥 , 𝑘𝑧), computing SSV reduces to computing
the 𝜇𝚫 (H (𝑘𝑥 , 𝑘𝑧 , 𝜔)) on a grid of temporal frequencies 𝜔. This approach essentially provides information about
wavenumber pairs (𝑘𝑥 , 𝑘𝑧) where the SSV is higher, thereby indicating an instability mechanism. However, exactly
computing the SSV is NP-hard for a general uncertainty structure [27–29]. As a result, it is a common practice to
compute upper and lower bounds on the SSV instead. Specifically in this paper, we are interested in calculating an
upper bound, which provides a sufficient condition for robust stability [18, 19, 30–32]. Details on the upper bound
calculation are provided next.

By definition, we have 𝜇(H) ≤ ∥H∥2 [18]. Furthermore, for each set of uncertainties 𝚫 ⊂ C𝑚×𝑛, there are sets of
non-singular matrices D1 ⊂ C𝑛×𝑛, D2 ⊂ C𝑚×𝑚 such that Δ̂D1 = D2Δ̂ for any D1 ∈ D1,D2 ∈ D2, Δ̂ ∈ 𝚫. Therefore,
det(I𝑛−HΔ̂) = det(I𝑛−HD−1

2 Δ̂D1) = det(I𝑚−Δ̂D1HD−1
2 ) = det(I𝑛−D1HD−1

2 Δ̂) which means 𝜇𝚫 (H) = 𝜇𝚫 (D1HD−1
2 ).

This can be used to tighten the upper bound as

𝜇𝚫 (H) ≤ min
D1∈D1 , D2∈D2

∥D1HD−1
2 ∥2. (43)

The upper bound is called the 𝐷-scale upper bound. In this paper, we consider the uncertainty to consist of non-repeating
full blocks, i.e., we take 𝚫𝑛𝑟 = {diag(Δ̂1, Δ̂2, . . . , Δ̂15) : Δ̂𝑖 ∈ C𝑚𝑖×𝑛𝑖 } with

∑15
𝑖=1 𝑚𝑖 = 𝑛 𝑓 and

∑15
𝑖=1 𝑛𝑖 = 𝑛𝑦 for

consistent dimensions. Note that the 5 repeated full blocks in Δ̂3 are approximated with non-repeating ones in this
setting. Due to this structure of 𝚫𝑛𝑟 , the corresponding sets of the scaling matrices take the following diagonal form:

D1𝑛𝑟 = {diag(𝑑1I𝑛1 , 𝑑2I𝑛2 , . . . , 𝑑15I𝑛15 ) : 𝑑𝑖 > 0, 𝑖 = 1, 2, . . . , 15},
D2𝑛𝑟 = {diag(𝑑1I𝑚1 , 𝑑2I𝑚2 , . . . , 𝑑15I𝑚15 ) : 𝑑𝑖 > 0, 𝑖 = 1, 2, . . . , 15}.

(44)

Thus, the optimization problem for the 𝐷-scale upper bounds in (43) reduces to solving for the optimal scalars 𝑑𝑖 .
This can be posed as a generalized eigenvalue problem [18, 19]. However, this approach is computationally expensive
for large-dimensional problems. Instead, utilizing a weaker bound ∥D1HD−1

2 ∥2 ≤ ∥D1HD−1
2 ∥𝐹 is often sufficient for

practical purposes [33]. In this case, an upper bound for a given matrix H becomes

𝜇𝚫 (H) ≤ min
D1∈D1𝑛𝑟 , D2∈D2𝑛𝑟

∥D1HD−1
2 ∥𝐹 . (45)

The optimization problem on the right-hand side of (45) can be efficiently solved using a variation of the standard
Osborne’s iterations [34]. Details on the particular variation used in this paper can be found in [20].

In terms of the frequency response operator H(𝑘𝑥 , 𝑘𝑧 , 𝜔) at a given wavenumber pair (𝑘𝑥 , 𝑘𝑧) and the uncertainty
set 𝚫𝑛𝑟 , we choose the ‘best’ upper bound, denoted by 𝛼𝜇 (𝑘𝑥 , 𝑘𝑧), as the maximum of the upper bounds computed on a
temporal frequency (𝜔) grid. This is given by

𝛼𝜇 (𝑘𝑥 , 𝑘𝑧) = max
𝜔∈Ω

[
min

D1∈D1𝑛𝑟 , D2∈D2𝑛𝑟
∥D1H(𝑘𝑥 , 𝑘𝑧 , 𝜔)D−1

2 ∥𝐹
]

(46)

where Ω ⊂ R is the 𝜔 grid.

For comparison with the SSV upper bounds, we compute the 𝐻∞ norm and resolvent gain at each wavenumber pair
(𝑘𝑥 , 𝑘𝑧), respectively denoted by ∥H ∥∞ (𝑘𝑥 , 𝑘𝑧) and 𝜎𝑅 (𝑘𝑥 , 𝑘𝑧), as

∥H ∥∞ (𝑘𝑥 , 𝑘𝑧) = max
𝜔∈Ω

∥H (𝑘𝑥 , 𝑘𝑧 , 𝜔)∥2,

𝜎𝑅 (𝑘𝑥 , 𝑘𝑧) = max
𝜔∈Ω

∥(i𝜔I𝑛𝑞 − L̂(𝑘𝑥 , 𝑘𝑧))−1∥2.
(47)

It should be noted that both the 𝐻∞ norm and resolvent gain calculations are carried out using the quadratic representation
of compressible NSE presented here and not the standard cubic formulation in the literature. Also, the input-output
model used for the 𝐻∞ norm is as shown in Fig. 3 (right) with the structured uncertainty Δ̂ replaced by the set C𝑛 𝑓 ×𝑛𝑦 .
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Fig. 5 Distributions of the SSV upper bound, 𝐻∞ norm and resolvent gain over the wavenumer pair (𝑘𝑥 , 𝑘𝑧)
grid for 𝑀𝑟 = 0.5.

IV. Simulation Results
In this section, we will present numerical results for the compressible plane Couette flow by considering a

𝑛𝑘𝑥 × 𝑛𝑘𝑦 × 𝑛𝜔 grid where 𝑛𝑘𝑥 , 𝑛𝑘𝑧 , 𝑛𝜔 are the total number of grid points for 𝑘𝑥 , 𝑘𝑧 , and 𝜔, respectively. We
choose (𝑛𝑘𝑥 , 𝑛𝑘𝑧 ) = (60, 80) logarithmically spaced points for the wavenumbers in the range 𝑘𝑥 ∈ [10−3, 102] and
𝑘𝑧 ∈ [10−4, 103], and take 𝑛𝜔 = 50 logarithmically spaced points for the temporal frequency in the range 𝜔 ∈ [−10, 10].
Also, we choose other parameter values as 𝑅𝑒 = 2 × 105, 𝑃𝑟 = 0.72, 𝑁𝑦 = 100. We will illustrate the results for
subsonic (𝑀𝑟 = 0.5), transonic (𝑀𝑟 = 1), and supersonic (𝑀𝑟 = 2) Mach number regimes. All the results in this section
are generated using MATLAB R2022a. To provide an estimate of the computation times associated with the SSV upper
bounds, we have utilized the ‘tic-toc’ functionality within MATLAB. These calculations are carried out on a desktop
computer with a 12-th Gen Intel(R) Core(TM) i7-12700K processor and 16 GB RAM. Also, computation times for
our current implementation of the Osborne’s iteration are compared with an inbuilt MATLAB function/command,
‘osborne’, which implements another variation of the Osborne’s iteration. In this setting, the average times required for
computing the SSV upper bounds at each (𝑘𝑥 , 𝑘𝑧 , 𝜔) tuple on the grid are as shown in Table 1. Our implementation is
clearly much faster compared to the inbuilt command and it is mainly achieved by avoiding overheads associated with
the inbuilt command.
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Table 1 Average computation times for the SSV upper bounds (50 runs)

Implementation Time (seconds)
Current 2.16
MATLAB’s ‘osborne’ function/command 8.69

The results for a subsonic Mach number (𝑀𝑟 = 0.5) are shown in Fig. 5. The consistent feature among all three
results is the existence of the horizontal bands of higher values/gains approximately for (a) 𝑘𝑥 ∈ [10−2, 10−1] and
𝑘𝑧 ∈ [10−4, 10] in Figs. 5a, 5b; (b) 𝑘𝑥 ∈ [10−2.5, 10−1.5] and 𝑘𝑧 ∈ [10−4, 10−1] in Fig. 5c. This means that all these
methods are predicting some instability mechanisms at the corresponding wavenumber pairs. There is another feature
that is common between the SSV upper bound and 𝐻∞ norm results for 𝑘𝑥 values approximately higher than 1. These
are the narrow ridges followed by narrow valleys as we move up or down the 𝑘𝑥 axis (see Figs. 5a, 5b), which seem
to indicate other mechanisms of instability. Notably, this feature is not produced in the resolvent gain result and this
might be due to the fact that the input-outputs used for resolvent analysis are different than the ones used for the other
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Fig. 6 Distributions of the SSV upper bound, 𝐻∞ norm and resolvent gain over the wavenumer pair (𝑘𝑥 , 𝑘𝑧)
grid for 𝑀𝑟 = 1.
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two methods. Note that the 𝐻∞ norm values overall are larger compared to the SSV upper bounds, highlighting the
conservatism in the unstructured I/O analysis using the 𝐻∞ norm for this problem. This also means that structured I/O
analysis predicts a larger stability margin overall compared to the unstructured I/O analysis. Both the 𝐻∞ norm and
resolvent gain results include hotspots with local maxima, although the distribution of these features as a function of
the wavenumber pairs is different across the two results (see Figs. 5b, 5c). This particular feature is not present in the
SSV upper bound result. Thus, accounting for the structure of the nonlinearity eliminates these instability mechanisms
otherwise predicted through the other analysis tools, which might not even represent actual system behavior. Therefore,
structured I/O analysis can prove helpful in eliminating potentially redundant instability mechanisms. Furthermore, both
the SSV upper bound and 𝐻∞ norm values are much higher compared to the resolvent gain. This is likely due to the
outputs utilized in the SSV upper bound and 𝐻∞ analyses containing gradients and higher-order derivatives, whereas
the outputs for the resolvent analysis not containing any derivatives (see Sections III.C, III.E).
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Fig. 7 Distributions of the SSV upper bound, 𝐻∞ norm and resolvent gain over the wavenumer pair (𝑘𝑥 , 𝑘𝑧)
grid for 𝑀𝑟 = 2.

The results for transonic and supersonic Mach numbers are shown in Fig. 6 and Fig. 7, respectively. The overall
trends discussed for the subsonic results hold true for these cases as well. On the other hand, the higher-valued horizontal
bands in the SSV upper bound and 𝐻∞ norm results, which are present for both the subsonic (see Figs. 5a, 5b) and
transonic cases (see Figs. 6a, 6b), disappear in the supersonic results (see Figs. 7a, 7b). Thus, these mechanisms of
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instability appear to be a function of the Mach number, with a dominant behavior at lower Mach numbers. Notably, the
resolvent gains still continue to predict these mechanisms (albeit in a much diminished manner) for the supersonic case
(see Fig. 7c). However, this might be an artifact of the method itself, especially given the consistent predictions by the
other two methods here.

V. Conclusion
We have presented a structured input-output analysis tool for compressible flows in this paper. We have derived an

exact quadratic representation of the compressible Navier-Stokes equations, which facilitates the subsequent modeling
of the nonlinear terms and analysis using the structured singular value formalism. The compressible plane Couette flow
is considered as a representative problem. An efficient method for computing the SSV upper bounds is outlined. The
numerical results illustrated that the SSV bounds are smaller overall compared to the 𝐻∞ norm results, thereby reducing
the conservatism in the unstructured analysis and extending the estimated stability margin of the flow. In addition, SSV
analysis identifies qualitatively different instability mechanisms than either 𝐻∞ or resolvent analyses. This indicates that
accounting for the structure of the nonlinearity can have profound influence on the eventual interpretation of underlying
flow physics. Still, these contradictory observations between the analysis methods considered point towards the need for
computational and/or experimental data, which can provide crucial insight into the methods and results discussed in the
paper. Our future efforts will involve designing efficient algorithms to exploit the repeated structure of the uncertainty
and refine the structured input-output analysis for compressible flows further.
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A. Discretization of Linear Operators for Perturbation about Base Flow
The discretization is carried out using Chebyshev polynomials in the wall-normal direction and Fourier modes in the

streamwise and spanwise directions. The sub-operators of L̂ are given by

𝐿 𝜉 , 𝜉 = −i𝑘𝑥𝑈0

𝐿 𝜉 ,𝑢 = i𝑘𝑥𝜉0

𝐿 𝜉 ,𝑣 = −𝜉′0 + 𝜉0𝐷𝑦

𝐿 𝜉 ,𝑤 = i𝑘𝑧𝜉0

𝐿 𝜉 ,𝑝 = 0
𝐿𝑢, 𝜉 = 0

𝐿𝑢,𝑢 = −i𝑘𝑥𝑈0 −
𝜉0
𝑅𝑒

[
𝜂0

(
4
3
𝑘2
𝑥 − 𝐷𝑦𝑦 + 𝑘2

𝑧

)
− 𝜂′0𝐷𝑦

]
𝐿𝑢,𝑣 = −𝑈′

0 + i𝑘𝑥
𝜉0

3𝑅𝑒
[
𝜂0𝐷𝑦 + 3𝜂′0

]
𝐿𝑢,𝑤 = −𝑘𝑥𝑘𝑧

𝜉0𝜂0
3𝑅𝑒

𝐿𝑢,𝑝 = −i𝑘𝑥
𝜉0

𝛾𝑀2
𝑟

𝐿𝑣, 𝜉 = 0

𝐿𝑣,𝑢 = i𝑘𝑥
𝜉0

3𝑅𝑒
[
𝜂0𝐷𝑦 − 2𝜂′0

]
𝐿𝑣,𝑣 = −i𝑘𝑥𝑈0 −

𝜉0
𝑅𝑒

[
𝜂0

(
𝑘2
𝑥 −

4
3
𝐷𝑦𝑦 + 𝑘2

𝑧

)
− 4

3
𝜂′0𝐷𝑦

]
𝐿𝑣,𝑤 = i𝑘𝑧

𝜉0
3𝑅𝑒

[
𝜂0𝐷𝑦 − 2𝜂′0

]
𝐿𝑣,𝑝 = − 𝜉0

𝛾𝑀2
𝑟

𝐷𝑦

𝐿𝑤,𝜉 = 0

𝐿𝑤,𝑢 = −𝑘𝑥𝑘𝑧
𝜉0𝜂0
3𝑅𝑒

𝐿𝑤,𝑣 = i𝑘𝑧
𝜉0

3𝑅𝑒
[
𝜂0𝐷𝑦 + 3𝜂′0

]
𝐿𝑤,𝑤 = −i𝑘𝑥𝑈0 −

𝜉0
𝑅𝑒

[
𝜂0

(
𝑘2
𝑥 − 𝐷𝑦𝑦 +

4
3
𝑘2
𝑧

)
− 𝜂′0𝐷𝑦

]
𝐿𝑤,𝑝 = −i𝑘𝑧

𝜉0

𝛾𝑀2
𝑟

𝐿𝑝, 𝜉 = −
( 𝛾

𝑅𝑒𝑃𝑟

) [
𝜂0

(
𝑘2
𝑥 − 𝐷𝑦𝑦 + 𝑘2

𝑧

)
− 𝜂′0𝐷𝑦

]
𝐿𝑝,𝑢 = −i𝑘𝑥𝛾 + 𝛾(𝛾 − 1)𝑀2

𝑟

𝑅𝑒

(
2𝑈′

0𝜂0
)
𝐷𝑦

𝐿𝑝,𝑣 = −𝛾𝐷𝑦 + i𝑘𝑥
𝛾(𝛾 − 1)𝑀2

𝑟

𝑅𝑒

(
2𝑈′

0𝜂0
)

𝐿𝑝,𝑤 = −i𝑘𝑧𝛾

𝐿𝑝,𝑝 = −i𝑘𝑥𝑈0 +
𝛾

𝑅𝑒𝑃𝑟

{
𝜂0

[
𝜉′′0 + 2𝜉′0𝐷𝑦 − 𝜉0

(
𝑘2
𝑥 − 𝐷𝑦𝑦 + 𝑘2

𝑧

)]
+ 𝜂′0 (𝜉

′
0 + 𝜉0𝐷𝑦)

}
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The operators related to Ĉ𝑦 are given by

Ĉ1 =



0 0 0 0 −𝑘2
𝑥 + 𝐷𝑦𝑦 − 𝑘2

𝑧

0 0 0 0 i𝑘𝑥
0 0 0 0 𝐷𝑦

0 0 0 0 i𝑘𝑧
0 i𝑘𝑥 𝐷𝑦 i𝑘𝑧 0
0 𝐶̂Π11 𝐶̂Π12 𝐶̂Π13 0
0 𝐶̂Π21 𝐶̂Π22 𝐶̂Π23 0
0 𝐶̂Π31 𝐶̂Π32 𝐶̂Π33 0

−𝑘2
𝑥 + 𝐷𝑦𝑦 − 𝑘2

𝑧 0 0 0 0
i𝑘𝑥 0 0 0 0
𝐷𝑦 0 0 0 0
i𝑘𝑧 0 0 0 0
0 i𝑘𝑥 𝐷𝑦 i𝑘𝑧 0



,

Ĉ2 =



i𝑘𝑥 0 0 0 0
𝐷𝑦 0 0 0 0
i𝑘𝑧 0 0 0 0
0 i𝑘𝑥 0 0 0
0 𝐷𝑦 0 0 0
0 i𝑘𝑧 0 0 0
0 0 i𝑘𝑥 0 0
0 0 𝐷𝑦 0 0
0 0 i𝑘𝑧 0 0
0 0 0 i𝑘𝑥 0
0 0 0 𝐷𝑦 0
0 0 0 i𝑘𝑧 0
0 0 0 0 i𝑘𝑥
0 0 0 0 𝐷𝑦

0 0 0 0 i𝑘𝑧



, Ĉ32 =



0 i𝑘𝑥 0 0 0
0 𝐷𝑦 0 0 0
0 i𝑘𝑧 0 0 0
0 0 i𝑘𝑥 0 0
0 0 𝐷𝑦 0 0
0 0 i𝑘𝑧 0 0
0 0 0 i𝑘𝑥 0
0 0 0 𝐷𝑦 0
0 0 0 i𝑘𝑧 0
0 i𝑘𝑥 0 0 0
0 0 i𝑘𝑥 0 0
0 0 0 i𝑘𝑥 0
0 𝐷𝑦 0 0 0
0 0 𝐷𝑦 0 0
0 0 0 𝐷𝑦 0
0 i𝑘𝑧 0 0 0
0 0 i𝑘𝑧 0 0
0 0 0 i𝑘𝑧 0

i𝑘𝑥 0 0 0 0
𝐷𝑦 0 0 0 0
i𝑘𝑧 0 0 0 0



,

where

𝐶̂Π11 = 𝜂0

(
−4

3
𝑘2
𝑥 + 𝐷𝑦𝑦 − 𝑘2

𝑧

)
+ 𝜂′0𝐷𝑦 , 𝐶̂Π12 = i𝑘𝑥

(
1
3
𝜂0𝐷𝑦 + 𝜂′0

)
, 𝐶̂Π13 = −𝑘𝑥𝑘𝑧

1
3
𝜂0,

𝐶̂Π21 = i𝑘𝑥
(

1
3
𝜂0𝐷𝑦 −

2
3
𝜂′0

)
, 𝐶̂Π22 = 𝜂0

(
−𝑘2

𝑥 +
4
3
𝐷𝑦𝑦 − 𝑘2

𝑧

)
+ 4

3
𝜂′0𝐷𝑦 , 𝐶̂Π23 = i𝑘𝑧

(
1
3
𝜂0𝐷𝑦 −

2
3
𝜂′0

)
,

𝐶̂Π31 = −𝑘𝑥𝑘𝑧
1
3
𝜂0, 𝐶̂Π32 = i𝑘𝑧

(
1
3
𝜂0𝐷𝑦 + 𝜂′0

)
, 𝐶̂Π33 = 𝜂0

(
−𝑘2

𝑥 + 𝐷𝑦𝑦 −
4
3
𝑘2
𝑧

)
+ 𝜂′0𝐷𝑦 .

19

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IN
N

E
SO

T
A

 o
n 

Ja
nu

ar
y 

19
, 2

02
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

3-
19

84
 


	Introduction
	Quadratic Representation of Compressible Navier-Stokes Equations
	Structured I/O Analysis of Compressible Plane Couette Flow
	Steady Base Flow
	Perturbation Dynamics about the Steady Base Flow
	Modeling the Nonlinear Terms: Structured Uncertainty
	Code validation: Eigenvalue spectra
	Structured I/O Analysis: Structured Singular Value

	Simulation Results
	Conclusion
	Discretization of Linear Operators for Perturbation about Base Flow

