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This paper presents a control synthesis method for the flight testing of a hypersonic vehicle.
The dynamic model of a hypersonic vehicle is highly nonlinear and features terms that are the
result of computational fluid dynamics simulations or data from wind tunnel testing performed
across a number of operating conditions. This results in lookup-table-based models that are
not analytic in nature, making it difficult to apply typical nonlinear control techniques without
curve fitting, which can introduce inaccuracies. To overcome the need for curve fitting, the
proposed control synthesis method uses quadratic constraints to bound the sampled nonlinear
dynamics of a hypersonic vehicle for control synthesis. Sampling the nonlinear dynamics comes
with the challenge of synthesizing a controller while staying within the bounds of the sampled
region. This is addressed in the proposed approach through an iterative synthesis method
that involves solving convex semi-definite programs. Flight tests often include harmonic inputs
to excite the vehicle’s dynamics for system identification and refinement purposes. A novel
feature of the proposed control synthesis method is the ability to bound the vehicle’s states in
the presence of these harmonic excitation signals. This provides a quantification of the region of
allowable initial conditions that will ensure the vehicle stays within the sampled region of the
state space, as demonstrated in numerical simulation results.

I. Introduction

Hypersonic vehicles traveling at speeds greater than Mach 5 are currently under development for commercial and
defense applications. Developing robust feedback controllers for these vehicles is challenging due to their highly

uncertain, nonlinear, and coupled dynamics, which stems from the difficulty in capturing complex aerothermodynamics
at hypersonic speeds. This is especially true for prototype hypersonic flight vehicles, where opportunities to collect flight
test data to refine the vehicle model are limited and the available flight tests are limited in duration. In this scenario, it is
essential to develop feedback controllers and flight maneuvers that sufficiently excite the vehicle’s dynamics within
a short window of time while ensuring that closed-loop stability and safety-critical constraints are maintained in the
presence of relatively large model uncertainty.

Model-based control methods are found in the literature for hypersonic vehicles, notably [1], which features a robust
control design and the adaptive sliding mode control proposed by [2]. While these controllers address the nonlinear
dynamics of a hypersonic vehicle, they rely on knowledge of an analytic form of the system’s nonlinearities, albeit
while accounting for uncertainty in certain model parameters. This is a potential limitation when working with dynamic
models generated from computational fluid dynamics (CFD) simulations [3] or experimental wind tunnel data [4], which
typically provide modeling information at specific points within a parametric space (e.g., a lookup table of aerodynamic
coefficients), rather than an analytic model. In the case of a hypersonic flight test, it may be required to design flight test
controllers based on such a model, which limits the use of traditional nonlinear control approaches.

Data-driven techniques are now becoming increasingly popular within the control community to overcome these
issues [5]. For example, strategies are being developed to determine the input-output properties of dynamical systems
from sampled data, including identifying dissipation inequalities [6] and passivity metrics [7]. Once the input-output
properties of a system or a portion of the system are identified from data, stability theorems (e.g., passivity theorem,
circle criterion) can be leveraged to design controllers that ensure closed-loop stability properties. This input-output
approach allows for a “black box” interpretation of the complicated, nonlinear, and possibly uncertain aspects of the
system, while allowing for a framework in which stabilizing controllers can be designed.
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This paper makes use of data-driven input-output control theory to develop a control design method for the
stabilization of a hypersonic flight test vehicle with nonlinear dynamics. Our proposed approach follows a method
similar to what is described in [8], where the nonlinear and uncertain dynamics of the hypersonic vehicle are modeled as
perturbations to a known linear time-invariant (LTI) linearization of the system within a linear fractional transformation
(LFT) framework. Integral quadratic constraints [9] provide a means to quantify the input-output properties of an
operator (e.g., a nonlinear function or a dynamic system). Static and memoryless nonlinearities can be characterized
through specific classes of quadratic constraints (QCs) [9], which are a type of integral quadratic constraint that
holds point-wise in time. In this work, input-output samples of the vehicle’s nonlinear dynamics are used to quantify
the system’s nonlinearities in terms of norm bound QCs. Control synthesis is a challenge due to the fact that the
perturbations are described with input-output data and the sampling range of this data is dependent on the choice of
controller. This poses a problem, as the sampled-based input-output characterization of the perturbations requires a
controller to be chosen a priori, while a controller cannot be synthesized until this input-output characterization is
known. The causality dilemma is resolved by first prescribing a closed set for the states and inputs for use in sampling
and subsequent characterization of QC properties of the nonlinearities. By constraining the maximum singular value of
the controller during synthesis, this ensures that the control inputs always remain within the prescribed range of sampled
inputs. As the synthesis problem is non-convex, it is resolved by iteratively solving three semi-definite programs (SDPs)
that are obtained through convex relaxations.

The main contributions of this work in comparison to the control methodology presented in [8] include 1) the manner
in which weightings and uncertainty decomposition are employed to make the hypersonic vehicle model in [10, 11]
amenable to the control synthesis method in [8] and 2) the development of an analysis and synthesis framework that
extends the work in [8] to account for the exogenous excitation signals relevant to a hypersonic vehicle flight test. Our
proposed control synthesis method is able to account for the sampled nonlinearities of the control-oriented hypersonic
model in [10] by providing a guarantee that the vehicle states remain bounded within a specified region in the presence
of harmonic excitation signals [12]. The synthesized controller provides a means of performing flight test maneuvers of
a nonlinear hypersonic vehicle, while adhering to safety-critical constraints. In contrast to traditional nonlinear control
techniques, this control synthesis method does not require an analytic representation of the vehicle’s nonlinear dynamics.

II. Preliminaries
This section presents a problem statement outlining the objectives of this work, as well as important notation used

throughout the paper.

A. Problem Statement
The objective of this paper is to synthesize a static full-state feedback controller for a hypersonic vehicle that

guarantees boundedness of the system states within a prescribed region given input-output sampled bounds on the
nonlinearities of the vehicle’s dynamic model within the same prescribed region. The controller is also required to
provide boundedness guarantees in the presence of harmonic excitation signals that would be present in a flight test.

It is worth nothing that in [10], the “truth model” was developed by [11] using physics-based first principles. There
were significant differences in the drag and lift plots when comparing the truth model to the “full fit” and “simplified
fit” models. The truth model is not publicly available, but the control-oriented model and associated coefficients are
published in [10], allowing us to demonstrate how sampled data, not just analytic curve-fitted data can be incorporated
into the control synthesis procedure.

B. Notation
The symbol N𝑛 is a shorthand for the set {1, 2, . . . , 𝑛}. The matrix of zeros and identity matrix are respectively

written as 0 and 1. A column matrix of zeros with the 𝑖th entry of 1 is denoted as 1𝑖 . Matrices and vectors are represented
in bold (e.g., A ∈ R𝑛×𝑚) with matrices capitalized. Symmetric 𝑛 by 𝑛 matrices are represented by A ∈ S𝑛, and their
positive or negative definiteness is denoted by > 0 or < 0, respectively. The maximum singular value of A is denoted
by 𝜎(A). A given ellipsoid centered at the origin is denoted as E𝑛 (E) = {x ∈ R𝑛 |



E−1x




2 ≤ 1} and B𝑛 denotes the
closed unit-norm ball of radius 𝑟 in R𝑛.
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Fig. 1 Schematic of the longitudinal hypersonic model in [10]

III. Hypersonic Model Dynamics
This section presents a slightly modified version of the control-oriented hypersonic model from [10] and reformulates

the dynamics to a form that is amenable to the proposed control synthesis approach. The harmonic excitation signals
used as part of a flight test are also described and formulated in a manner that they can be incorporated within the
hypersonic model and accounted for within the control synthesis procedure.

A. Modified Control-Oriented Model
The hypersonic vehicle model considered in this paper is based on a longitudinal Control-Oriented Model described

in [10] with a minor modification by removing the engine dynamics. The nonlinear equations of motion of the hypersonic
vehicle are

¤𝑉 =
1
𝑚

[𝑇 (𝛼,Φ) cos𝛼 − 𝐷 (𝑉, 𝛼)] − 𝑔 sin (𝜃 − 𝛼), (1)

¤𝛼 =
1
𝑚𝑉

[−𝑇 (𝛼,Φ) sin𝛼 − 𝐿 (𝛼)] +𝑄 + 𝑔

𝑉
cos (𝜃 − 𝛼), (2)

¤𝜃 = 𝑄, (3)

¤𝑄 =
1
𝐼𝑦𝑦

𝑀 (𝑉, 𝛼, 𝛿𝑒,Φ), (4)

where 𝑉 is the vehicle’s velocity, 𝛼 is the vehicle’s angle of attack, 𝜃 is the vehicle’s pitch angle, and 𝑄 is the vehicle’s
pitch rate. The vehicle’s mass is given by 𝑚, while its moment of inertia about the pitch axis is 𝐼𝑦𝑦 . The control inputs
are specified as the elevator deflection 𝛿𝑒 and the fuel-to-air ratio Φ. The thrust, drag, lift, and moment acting on the
vehicle are nonlinear functions of the state and input, and are denoted as 𝑇 (𝛼,Φ), 𝐷 (𝑉, 𝛼), 𝐿 (𝛼), and 𝑀 (𝑉, 𝛼, 𝛿𝑒,Φ)
respectively. Some of the states are illustrated in the simplified schematic of Fig. 1.

As described in [10], these nonlinear state- and input-dependent functions are obtained through compressible flow
theory model that are analytically intractable. Furthermore direct application of nonlinear design methodologies, such
as feedback linearization, to the truth model governing equations is not possible with implicit functions of the state
and input variables. The control-oriented model is a curve fit and simplified model that was used for application of
approximate feedback linearization technique.

The nonlinear dynamics described by (1) through (4) can be written in terms of the nonlinear ODE ¤x = f (x, u),
where the state is defined as x = [𝑉 𝛼 𝜃 𝑄]T and the inputs are given by u = [𝛿𝑒 Φ]T. The system’s nonlinear
dynamics can be linearized about a trim point (x0, u0), where f (x0, u0) = 0, producing the LTI model G with state
matrix A = 𝜕f

𝜕x
��
x0 ,u0

and control matrix B1 = 𝜕f
𝜕u

��
x0 ,u0

. A Taylor series expansion of ¤x = f (x, u) results in

𝛿 ¤x = A𝛿x + B1𝛿u + 𝚫(𝛿x, 𝛿u), (5)

where 𝛿x = x − x0, 𝛿u = u − u0, and 𝚫(𝛿x, 𝛿u) represent that nonlinear perturbations that account for the difference
between the nonlinear dynamics and linearized dynamics. Note that (5) exactly represents the nonlinear model of the
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hypersonic vehicle, as 𝚫(𝛿x, 𝛿u) accounts for all discrepancies between the linear and nonlinear model. It is also worth
noting that 𝚫(𝛿x, 𝛿u) approaches zero as 𝛿x → 0 and 𝛿u → 0, as the nonlinear dynamics approach the linear dynamics
in this limiting case.

The nonlinearities are separated into different input-output functions 𝑝𝑖 = Δ𝑖 (v𝑖), 𝑖 ∈ N𝑛𝑝
that can be individually

characterized by sampled data. Their contributions to the nonlinear equations of motion appear via the signal
p = [Δ1 Δ2 · · · Δ𝑛𝑝

]T ∈ R𝑛𝑝 , which leads to the reformulation of (5) given by

𝛿 ¤x = A𝛿x + B1𝛿u + B2p, (6)
𝑝𝑖 = Δ𝑖 (v𝑖), 𝑖 ∈ N𝑛𝑝

, (7)
v𝑖 = (C𝑖𝛿x + D𝑖𝛿u) , 𝑖 ∈ N𝑛𝑝

, (8)

where the matrices C𝑖 and D𝑖 determine the inputs to the input-output functions Δ𝑖 . The higher order terms Δ𝑖 may be
determined in various ways. When analytical equations are available, the equation of motion may be decomposed into a
vector sum of 𝑛𝑝 equations

𝛿 ¤x = f (x, u) =
𝑛𝑝∑︁
𝑖=1

f𝑖 (x, u), 𝑖 ∈ N𝑛𝑝
, (9)

f𝑖 (x, u) = f𝑖 (x0, u0) +
𝜕f𝑖
𝜕x

����
(x0 ,u0 )

𝛿x + 𝜕f𝑖
𝜕u

����
(x0 ,u0 )

𝛿u + Δ𝑖 (x, u) (10)

= f𝑖 (x0, u0) + Ā𝑖𝛿x + B̄𝑖𝛿u + Δ𝑖 (x, u). (11)

Rearranging this equation yields a description of the nonlinearities in the form

Δ𝑖 (x, u) = f𝑖 (x, u) −
(
Ā𝑖𝛿x + B̄𝑖𝛿u + f𝑖 (x0, u0)

)
. (12)

Note that Ā𝑖 =
𝜕f𝑖
𝜕x and B̄𝑖 =

𝜕f𝑖
𝜕u . The sum partial derivatives are the same (i.e.,

∑
f𝑖 (x0, u0) = 0,

∑
Ā𝑖 = A and∑

B̄𝑖 = B). When analytical equations are available, the selection of f𝑖 , 𝑖 ∈ N𝑛𝑝
can be made such that each Δ𝑖 are

dependent on the least number of state and inputs allowing for tighter linear bounds on the nonlinearity. Use of too many
𝑛𝑝 however run the risk of untangling favorable cancellation and more computationally difficult to solve. Otherwise
if experimental data, such as drag coefficient from wind tunnel testing or analytical data such as lift coefficient from
CFD is available, they can be similarly incorporated as input-output data points of Δ𝑖 , 𝑖 ∈ N𝑛𝑝

. The samples are often
performed to span a grid space of sufficiently small interval and may be appended to approximate dynamics if needed.
Furthermore, it is assumed that knowledge of an equilibrium point x0 and u0 as well as the linearized model A and B is
available. This is similarly assumed for flight testing, as demonstrated in [12].

Assuming that a full-state measurement is available, a static controller of 𝛿u = K𝛿x is chosen. The closed-loop
equations can be written, without approximation, by substituting 𝛿u = K𝛿x into (6), (7), and (8), yielding

𝛿 ¤x = A𝛿x + B1K𝛿x + B2p, (13)
𝑝𝑖 = Δ𝑖 (v𝑖), 𝑖 ∈ N𝑛𝑝

, (14)
v𝑖 = (C𝑖𝛿x + D𝑖K𝛿x) , 𝑖 ∈ N𝑛𝑝

. (15)

A block diagram illustrating the closed loop system is shown in Fig.2(a).

B. Harmonic Dynamics
Harmonic excitation is often used for flight testing [12] of prototype aircraft for system identifications and stability

margin determination. These flight test maneuvers are executed by applying designed input time series to the aircraft
control inputs. Often times, these inputs are sum of harmonic signals with unique frequencies and phase shifts designed
to be mutually orthogonal both in time and in frequency domain. This harmonic excitation on the aircraft control inputs
are made in addition to the system feedback controller. The feedback controller is necessary for a nominally unstable
aircraft.

For stability analysis and synthesis, a harmonic excitation may be viewed as an exogenous signal in the existing
robust control framework [13]; however, this approach can be conservative as the input signal could take on any
frequency and phase. An alternate approach is taken here, where the harmonic signal is modeled through the use of
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Fig. 2 Block diagrams of (a) the closed-loop nonlinear system and (b) the closed-loop nonlinear system with a
harmonic excitation signal. Note that the harmonic excitation signal in (b) is modeled as the output of internal
harmonic dynamics and are encapsulated within the augmented LTI system denoted as G𝑠 .

appended states to the original state space. Each harmonic excitation signal is represented as the free-response output
of a two-state state-space system. For example, the signal ℎ(𝑡) = 𝐴1 sin(𝜔1 + 𝜙1) corresponds to the solution of the
ordinary differential equation ¥ℎ + 2𝜇𝜔1 ¤ℎ +𝜔2

1ℎ = 0, where 𝜇 = 0 and the initial condition 𝜷1 (0) is chosen appropriately
to match the amplitude and phase of the harmonic signal. This corresponds to the output of the state-space system

¤𝜷 =

[
0 1

−𝜔2
1 −2𝜇𝜔1

]
𝜷1, (16)

ℎ =

[
1 0

]
𝜷1. (17)

In this work, a small amount of decay or damping in the harmonic signal is introduced through the parameter 𝜇 > 0 to
aid with numerical computations. This damping value can be made very small to have minimal effect on the actual
harmonic signal, especially for the first few cycles when flight testing is performed.

For compactness in subsequent derivations, the equations (16) and (17) are expressed as

¤𝜷1 = S1𝜷1, (18)
ℎ1 = T1𝜷1, (19)

where T1 =

[
1 0

]
and S1 =

[
0 1

−𝜔2
1 −2𝜇𝜔1

]
.

Now consider a signal formed by the summation of 𝑛ℎ harmonic signals given by

ℎ = 𝐴1 sin(𝜔1 + 𝜙1) + 𝐴2 sin(𝜔2 + 𝜙2) + · · · + 𝐴𝑛ℎ sin(𝜔𝑛ℎ + 𝜙𝑛ℎ ). (20)

This signal h can be generated as the output of the state-space system

¤𝜷 = S𝜷, (21)
ℎ = T𝜷, (22)

where S = diag(𝑺1, 𝑺2, . . . 𝑺𝑛ℎ ), T = [T1 · · · T𝑛ℎ ] and 𝜷 = [𝜷T
1 · · · 𝜷T

𝑛ℎ
]T. The states-space representation of S

and T are not unique. A change of variable of variables of 𝜷̄ = 𝚷𝜷 is introduced as a means to improve numerical
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conditioning and weigh the effects of initial conditions that will be useful later in the control synthesis. The transformed
state-space system is

¤̄𝜷 = S̄𝜷̄, (23)
h = T̄𝜷̄, (24)

where S̄ = 𝚷S𝚷−1, T̄ = CℎT𝚷−1 and Cℎ = 1𝑐 maps the single-dimensional harmonic signal to a column matrix whose
𝑐𝑡ℎ entry is ℎ and all remaining entries are zero. The matrix Cℎ may be modified to incorporate more than one channel
as needed.

C. Control-Oriented Model with Harmonic Excitations
The control input to the nonlinear hypersonic model described by (6), (7), and (8) is augmented with the harmonic

excitation signal h as

𝛿u = K𝛿x + h = K𝛿x + T̄𝜷̄ (25)

The equation of motion in (6) can thus be rewritten as

𝛿 ¤x = (A + B1K)𝛿x + B2p + B1T̄𝜷̄. (26)

Augmenting the state vector to include the harmonic excitation states, the new state becomes z = [𝛿xT 𝜷̄
T]T, which

results in the augmented dynamics

¤z =

[
A + B1K B1T̄

0 S̄

]
z +

[
B2

0

]
p (27)

=

([
A B1T̄
0 S̄

]
+

[
B1K 0

0 0

])
z +

[
B2

0

]
p (28)

= (A𝑠 + A𝑘)z + B̂2p, (29)

where the matrices A𝑠 and A𝑘 are defined to separate the portions of the dynamics that depend on the control gain K
from those that do not.

The closed-loop equations of motion with harmonic excitation are described by

¤z = (A𝑠 + A𝑘)z + B̂2p (30)
𝑝𝑖 = Δ𝑖 (v𝑖), 𝑖 ∈ N𝑛𝑝

(31)

v𝑖 = E𝑖

[
(C𝑖 + D𝑖K) D𝑖T̄

]
z, 𝑖 ∈ N𝑛𝑝

, (32)

where the weighting matrix E𝑖 is introduced to normalize the vector v𝑖 such that the norm is not greater than 1. This
provide a more balanced weighting of each variable since some variables such as velocities 𝑉 are much higher in
amplitude compared to pitch angle 𝜃. Setting E𝑖 as a diagonal matrix with each entity being the inverse of the maximum
magnitude of the corresponding state is a reasonable weighting matrix. A block diagram illustrating the closed loop
system with embedded harmonic excitations is shown in Fig.2(b).

IV. Control Synthesis
The proposed control synthesis method is presented in this section, starting with a description of the linear matrix

inequalities (LMI) conditions derived in [8] that guarantees closed-loop asymptotic stability of a nonlinear system with
norm bounds on the system’s nonlinearities. An extension of the result in [8] is then introduced as a means to provide a
transient bound the norm of the state, rather than simply ensuring asymptotic stability. Matrix inequality conditions
are then derived to explicitly account for harmonic excitation signals within these stability results, followed by LMI
relaxations that allows for an iterative control synthesis procedure to an otherwise bilinear matrix inequality problem.

6

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
in

ne
so

ta
 o

n 
Ja

nu
ar

y 
5,

 2
02

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
4-

15
89

 



A. Control Synthesis for Closed Loop Asymptotic Stability
The proposed control synthesis method is formulated starting from the stability theorem presented in [8], which is

stated in the following theorem.

Theorem IV.1. Consider the closed-loop system described by closed-loop system described by (13), (14), and (15),
where the perturbations satisfy the norm bounds ∥𝑝𝑖 ∥2 ≤ 𝛾𝑖 ∥v𝑖 ∥2, 𝑖 ∈ N𝑛𝑝

. Let W > 0 and 𝑟 > 0 be chosen such that
X𝑐 = E𝑛𝑥

(W) ⊆ X and U𝑐 = 𝑟B𝑛𝑢 ⊆ U, respectively. Then, the closed-loop system described by (13), (14), and (15) is
locally asymptotically stable in X𝑐, if there exist P ∈ S𝑛𝑥 , K ∈ R𝑛𝑢×𝑛𝑥 , 𝜏 > 0, and 𝜆𝑖 > 0, 𝑖 ∈ N𝑛𝑝

, such that P > 0,
P(A + B1K) + (A + B1K)TP PB2 𝚯

BT
2P 𝚲 0
𝚯T 0 𝚵

 < 0, (33)

[
𝜏2I K
KT W−1W−1

]
≥ 0, (34)

𝜏 ≤ 𝑟, (35)

where 𝚲 = −diag
(
𝜆1, . . . , 𝜆𝑛𝑝

)
and 𝚵 = −diag( 𝜆1

𝛾2
1
I, . . . , 𝜆𝑛𝑝

𝛾2
𝑛𝑝

I),𝚯 = [𝜆1𝚽1, . . . , 𝜆𝑛𝚽𝑛𝑝
], with 𝚽𝑖 = CT

𝑖
+ KTDT

𝑖
,

𝑖 ∈ N𝑛𝑝
.

Proof. See proof of Theorem 3.1 in [8].

Theorem IV.1 provides a means to certify asymptotic stability of an autonomous nonlinear system within a local
region. Although this was shown to yield a useful control synthesis method for sampled nonlinear systems in [8], it does
not provide any guarantees of what might occur to the closed-loop system state during the system’s transient response.
For example, the state may exit the sampled region E(W) for a period of time before returning and asymptotically
stabilizing to the equilibrium point. This is a limitation of Theorem IV.1 that is addressed in the following section.

B. Transient Bounds on the Closed-Loop System
LMI conditions to quantify the transient bounds on the state of an LTI system are described in [14, 15]. An extension

of these results to accommodate the nonlinear closed-loop system described by (13), (14), and (15) is described in the
following lemma.

Lemma IV.1. Consider the closed-loop system described by (13), (14), and (15), where the perturbations satisfy the
norm bounds ∥𝑝𝑖 ∥2 ≤ 𝛾𝑖 ∥v𝑖 ∥2, 𝑖 ∈ N𝑛𝑝

. The transient norm bound

W−1𝛿x(𝑇)




2 ≤ 𝜉


W−1𝛿x(0)




2 (36)

is satisfied if there exist P ∈ S𝑛𝑥 and 𝜉 ∈ R>0 such that P > 0, (33) and

WTPW − 𝜉1 ≤ 0, (37)[
WTPW 1

1 𝜉1

]
≥ 0. (38)

Proof. The non-negative function 𝑉 = xTPx defined and the proof of Theorem 3.1 in [8] is used with (33) to show that
¤𝑉 ≤ 0. Integrating both sides from 𝑡 = 0 to 𝑡 = 𝑇 , where 𝑇 ∈ R>0, yields 𝑉 (𝑇) ≤ 𝑉 (0) or x(𝑇)TPx(𝑇) ≤ x(0)TPx(0).
The inequality in (37) can be rewritten as P ≤ 𝜁W−TW−1. Applying the non-strict Schur complement to (38) results in
P ≥ 𝜁−1W−TW−1. Combining these results yields

𝜉−1𝛿x(𝑇)TW−TW−1𝛿x(𝑇) ≤ 𝛿x(𝑇)TP𝛿x(𝑇) ≤ 𝛿x(0)TP𝛿x(0) ≤ 𝜉𝛿x(0)TW−TW−1𝛿x(0), (39)

which proves that 𝜉−1


W−1𝛿x(𝑇)



2
2 ≤ 𝜉



W−1𝛿x


2

2. Multiplying both sides of the inequality by 𝜉 and taking the square
root of the resulting expression completes the proof.

This theorem may be viewed an extension of IV.1 such that with a given K, W, 𝛾𝑖 , 𝑖 ∈ N𝑛𝑝
, the transient bound 𝜉

may be minimized by solving SDPs.
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C. Control Synthesis with Harmonic Excitation Inputs
In order to apply the transient bound result of Lemma IV.1 to the closed-loop dynamics with harmonic dynamics in

Section III.C, a slight modification is required. The additional harmonic states are accounted for explicitly within the
following theorem.

Theorem IV.2. Consider the closed-loop system described by (30), (31), and (32), where the perturbations satisfy
the norm bounds ∥𝑝𝑖 ∥2 ≤ 𝛾𝑖 ∥v𝑖 ∥2, 𝑖 ∈ N𝑛𝑝

. Let W > 0 and 𝑟 > 0 be chosen such that X𝑐 = E𝑛𝑥
(W) ⊆ X and

U𝑐 = 𝑟B𝑛𝑢 ⊆ U, respectively. Then, the harmonic-embedded closed-loop system described by (30), (31), and (32) is
locally bounded as 

W−1𝛿x(𝑇)



2
2 ≤ 𝜉2

(

W−1𝛿x(0)


2

2 +


𝜷̄(0)

2

2

)
(40)

if there exist P ∈ S𝑛𝑥 , K ∈ R𝑛𝑢×𝑛𝑥 , 𝜏 > 0, and 𝜆𝑖 > 0, 𝑖 ∈ N𝑛𝑝
, such that P > 0,

P(A𝑠 + A𝑘) + (A𝑠 + A𝑘)TP PB̂2 𝚯

B̂T
2P 𝚲 0
𝚯T 0 𝚵

 < 0, (41)

[
𝜏2I K
KT W−1W−1

]
≥ 0, (42)

𝜏 + 𝜓 ≤ 𝑟, (43)[
W̄TPW̄ CT

𝑠

∗ 𝜉1

]
≥ 0, (44)

W̄TPW̄ − 𝜉1 ≤ 0, (45)

where 𝚲 = −diag
(
𝜆1, . . . , 𝜆𝑛𝑝

)
and 𝚵 = −diag( 𝜆1

𝛾2
1
I, . . . , 𝜆𝑛𝑝

𝛾2
𝑛𝑝

I),𝚯 = [𝜆1𝚽1, . . . , 𝜆𝑛𝚽𝑛𝑝
], with 𝚽T

𝑖 = E𝑖 [C𝑖 +
D𝑖K D𝑖T̄], 𝑖 ∈ N𝑛𝑝

, W̄ = diag(W, 1) and C𝑠 = [1𝑛𝑥×𝑛𝑥
0𝑛𝑥×2𝑛ℎ ]. The variable 𝜓 = max( |ℎ|) encapsulates the

maximum magnitude of the harmonic wave.

Proof. The proof follows the proof of Theorem 3.1 in [8] with some modification. Defining the non-negative function
𝑉 = zTPz,P > 0, taking its time derivative, and using (30) yields

¤𝑉 =

[
z
p

]T [
PA𝑠 + AT

𝑠P + PB𝑠 + AT
𝑘
P PB̂2

∗ 0

] [
z
p

]
. (46)

The inputs and outputs of each Δ𝑖 can be rewritten as[
v
𝑝𝑖

]
=

[
E𝑖

[
(C3,𝑖 + D3,𝑖K) D3,𝑖T̄

]
0

0 1T
𝑖

] [
z
p

]
=

[
𝚽T

𝑖 0
0 1T

𝑖

] [
z
p

]
. (47)

With knowledge that 𝑝2
𝑖
≤ 𝛾2

𝑖
∥v𝑖 ∥2 is true point-wise in time for each Δ𝑖 , ∈ N𝑛𝑝

, this inequality can be written as[
v𝑖
𝑝𝑖

]T [
𝛾2
𝑖
1 0

0 −1

] [
v𝑖
𝑝𝑖

]
≥ 0. (48)

To ensure that 𝛿u = K𝛿x ∈ U𝑐 such that ∥𝛿u∥2 ≤ 𝜏 and knowing


W−1𝛿x




2 ≤ 1 for all 𝛿x ∈ X𝑐 yields

∥𝛿u∥2 = ∥K𝛿x∥2 =


KWW−1𝛿x




2 (49)

≤ 𝜎̄(KW)


W−1𝛿x




2 ≤ 𝜎̄(KW) (50)

where this can be equivalently expressed as 𝜏21 ≥ KWWKT and applying a Schur complement leads to (42). The next
equation (43) constrain the control effort and harmonic signal is within the sampling size of 𝑟 .
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Returning to the norm bound of Δ𝑖 , 𝑖 ∈ N𝑛𝑝
, multiplying both sides of (48) by (47) yields[

z
p

]T [
𝛾2
𝑖
𝚽𝑖𝚽T

𝑖 0
0 −1𝑖1T

𝑖

] [
z
p

]
≥ 0. (51)

Applying the Schur complement to (41) results in[
PA𝑠 + AT

𝑠P + PB𝑠 + AT
𝑘
P PB̂2

∗ 𝚲

]
−

[
𝚯

0

]
𝚵−1

[
𝚯

0

]T

< 0, (52)

which can be equivalently written as[
PA𝑠 + AT

𝑠P + PB𝑠 + AT
𝑘
P PB̂2

∗ 𝚲

]
−

𝑛𝑝∑︁
𝑖=1

[
−𝜆𝑖𝚽𝑖

𝛾2
𝑖

𝜆𝑖
𝚽T

𝑖 𝜆𝑖 0
0 0

]
< 0. (53)

Multiplying (53) on the left and right by
[
zT pT

]
and

[
zT pT

]T
, then substituting in (46) results in

¤𝑉 +
𝑛𝑝∑︁
𝑖=1

𝜆𝑖

[
z
p

]T [
𝛾2
𝑖
𝚽𝑖𝚽T

𝑖 0
0 −1𝑖1T

𝑖

] [
z
p

]
< 0. (54)

Knowing that 𝜆𝑖 > 0, 𝑖 ∈ N𝑛𝑝
and the inequality in (51) is satisfied, the S-procedure [15] implies that ¤𝑉 < 0.

Integrating ¤𝑉 < 0 from 𝑡 = 0 to 𝑡 = 𝑇 , where 𝑇 ∈ R>0, yields𝑉 (𝑇) ≤ 𝑉 (0) or z(𝑇)TPz(𝑇) ≤ z(0)TPz(0). Applying
the non-strict Schur complement, (44) can be rewritten as 𝜉−1W̄−TCT

𝑠C𝑠W̄−1 ≤ P. The constraint (45) can be rewritten
as P ≤ 𝜉W̄−TW̄−1. Combining these results yields

𝜉−1z(𝑇)TW̄−TCT
𝑠C𝑠W̄−1z(𝑇) ≤ z(𝑇)TPz(𝑇) ≤ z(0)TPz(0) ≤ 𝜉z(0)TW̄−TW̄−1z(0). (55)

Substituting W̄ = diag(W, 1) and C𝑠W̄−1 =

[
W−1 0

]
into (55), then multiplying by 𝜉 results in

𝛿x(𝑇)TW−TW−1𝛿x(𝑇) ≤ 𝜉2
(
𝛿x(0)TW−TW−1𝛿x(0) + 𝜷̄(0)T 𝜷̄(0)

)
, (56)

which completes the proof.

The result of Theorem IV.2 forms the basis of the proposed control synthesis method. Unfortunately, the constraints
of (41)-(45) cannot be solved as an SDP, as they include bilinear matrix inequalities in variables P, K, 𝜏, 𝜉 and
𝜆𝑖 , 𝑖 ∈ N𝑛𝑝

. To overcome this, the constraints are reformulated and/or relaxed into convex constraints that can be solved
as SDPs for controller synthesis. Sections IV.D and IV.E present the relaxations needed to formulate the proposed
iterative convex control synthesis method.

D. Control Synthesis via Relaxation
A key convex relaxation that is implemented for the purposed of control synthesis is the restriction that P be block

diagonal (i.e., P = diag(P11,P22) where P11 ∈ S𝑛𝑥 and P22 ∈ S2𝑛ℎ ). The inverse of P is thus also block diagonal,
R = P−1 = diag(R11,R22) where R11 = P−1

11 and R22 = P−1
22 . Applying a congruence transformation on (41) with

diag(P−1, 1), then using the change of variables R = P−1 and F = KR11 yields
A𝑠P−1 + P−1AT

𝑠 + A𝑘P−1 + P−1AT
𝑘

B̂3 P−1𝚯

∗ 𝚲 0
∗ ∗ 𝚵

 < 0 (57)


A𝑠R + RAT

𝑠 + A𝑘R + RAT
𝑘

B̂3 𝚯̃

∗ 𝚲 0
∗ ∗ 𝚵

 < 0, (58)
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where 𝚯̃ =

[
𝜆1𝚽̃1 . . . 𝜆𝑛𝑝

𝚽̃𝑛𝑝

]
, 𝚽̃T

𝑖 = E𝑖

[
C3,𝑖R11 + D3,𝑖F D3,𝑖T̄R22

]
, 𝑖 ∈ N𝑛𝑝

, and A𝑘R = diag(BF, 0).
Another relaxation is defined by setting 𝜆𝑖 = 𝜆 and applying a congruence transformation of diag(

√
𝜆1, 1√

𝜆
) as well

as the coordinate transformations R̄ = 𝜆R, F̄ = 𝜆F = KR̄11. This yields
𝜆(A𝑠R + RAT

𝑠 + A𝑘R + RAT
𝑘
) B̂3 𝚯̄

∗ 1 0
∗ ∗ 𝚵̄

 < 0 (59)


A𝑠R̄ + R̄AT

𝑠 + A𝑘R̄ + R̄AT
𝑘

B̂3 𝚯̄

∗ 1 0
∗ ∗ 𝚵̄

 < 0, (60)

where 𝚯̄ = [𝚽̄1 . . . 𝚽̄𝑛𝑝
], 𝚽̄T

𝑖 = E𝑖 [C3,𝑖R̄11 + D3,𝑖F̄ D3,𝑖T̄R̄22], A𝑘R̄ = diag(BF̄, 0) and 𝚵̄ = −diag( 1
𝛾2

1
1, . . . , 1

𝛾2
𝑛
1).

The LMIs of (58) and (60) are convex relaxations of the bilinear matrix inequality in (41) that are used to develop
the proposed iterative convex control synthesis method described in Section IV.F. Any solutions to the LMIs of (58)
and (60) are ensured to satisfy the bilinear matrix inequality of (41).

E. Controller Size Relaxation
Due to the change of variables and congruence transformations applied to (41) in Section IV.D, a corresponding

change needs to be performed on (42) for use within the proposed control synthesis method. First, a congruence
transformation with diag(1,R11) is applied to (42) and the change of variables 𝜖 =

√
𝜏 and F = KR11 are made, yielding[

𝜀I F
FT (W−1R11)T (W−1R11)

]
≥ 0, (61)

which is a bilinear matrix inequality with respect to R11 and ensures that 𝜎̄(KW) ≤
√
𝜀. Using the completion of

squares identity XTY+YTX ≤ XTX+YTY for X,Y ∈ S𝑛𝑥 and setting Y = 1, X = W−1R11 [14, 16], allows for the LMI[
𝜀I F
FT (W−1R11)T + (W−1R11) − 1

]
≥ 0, (62)

to be formulated, which implies the bilinear matrix inequality in (61).
Alternatively, a different relaxation of the bilinear term (W−1R11)T (W−1R11) for a given R11 can be performed by

linearizing the bilinear term about a feasible R110 , which is similar to the convex overbounding approach in [17]. We do
this by setting X = W−1R11 and Y = W−1R110 within the completion of the squares identity to yield the LMI[

𝜀I F
FT T1

]
≥ 0, (63)

where T1 = (W−1R11)T (W−1R110 ) + (W−1R110 )T (W−1R11) − (W−1R110 )T (W−1R110 ).
Finally, to express (42) in terms of the variables K and P, instead of F and R, we perform a congruence transformation

with diag (I,P11) and then a Schur complement to obtain
𝜀I K 0
KT T2 P11

0 P11 R−1
110

WWR−1
110

 ≥ 0, (64)

where T2 = W−1W−1R110P11 + P11 (W−1R110 )TW−1.

F. Iterative Control Synthesis Algorithm
Theorem IV.2 along with the relaxations presented in Sections IV.D and IV.E are used to formulate the following

proposed iterative controller synthesis method.
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1) Initialize W, 𝑟, 𝚷 and E𝑖 , 𝑖 ∈ N𝑛𝑝
to compute X𝑐 = E𝑛𝑥

(W) and U𝑐 = 𝑟B𝑛𝑢 . Compute S̄ and T̄ given the
frequency and amplitude of the expected harmonic excitation signals.

2) Compute samples 𝑝𝑖 = Δ𝑖 (x, u) for x ∈ X𝑐 and u ∈ U𝑐 to compute the norm bounds 𝛾𝑖 , 𝑖 ∈ N𝑛𝑝
that satisfy (48).

3) Set 𝛾𝑖 to a very small value and solve for a feasible R, F and 𝜀 that satisfies the constraints (60), (62), R > 0, and
𝜀 > 0. If no feasible solution is found, return to Step 1) to adjust W, 𝑟 and/or 𝚷. Otherwise, set K = FP11.

4) Set P0 = W−1 and use K to solve for a feasible P, 𝜀 and 𝜆𝑖 , 𝑖 ∈ N𝑛𝑝
subject to (41), (64), P > 0, 𝜀 > 0 and

𝜆𝑖 > 0, 𝑖 ∈ N𝑛𝑝
. If no feasible solution is found, return to Step 1) to adjust W, 𝑟 and/or 𝚷. Otherwise, set

R0 = P−1.
5) Fix R0 and solve for R, 𝜀 subject to (58), (63), R > 0, 𝜀 > 0 that minimizes 𝜀. If no feasible solution is found,

return to Step 1) to adjust W, 𝑟 and/or 𝚷. Otherwise, set K = FP11.
6) If the stopping criteria (43) is met, minimize 𝜉 subject to (41), (64), (44), (45), P > 0, 𝜆𝑖 > 0, 𝑖 ∈ N𝑛𝑝

, then exit.
Otherwise, return to Step 4).

Although this iterative control synthesis algorithm is similar in nature to the control synthesis method presented
in [8], two key differences include 1) a guaranteed bound on the norm of the system state that must hold point-wise in
time, which ensures that the system does not leave the sampled region of the state-space and 2) exogenous harmonic
excitation signals are accounted for by the inclusion of internal harmonic dynamics.

V. Numerical Example
Numerical simulations are performed with the nonlinear hypersonic vehicle longitudinal model described in

Section III.A. Numerical results in this section are presetned for scenarios with and without external harmonic signals to
the elevator angle, 𝛿𝑒. The trim condition with states 𝑉0 = 9962ft/s, 𝛼0 = 2.3𝑜, 𝜃0 = 0.9768𝑜 and 𝑄0 = 0 and inputs
𝛿𝑒0 = 13𝑜 and Φ = 0.1294 is chosen.

The nonlinearities of the control-oriented modelare characterized by the following functions

f1 =
1
𝑚
𝑇 (𝛼,Φ) cos𝛼11, (65)

f2 =
−1
𝑚

𝐷 (𝑉, 𝛼)11, (66)

f3 = −𝑔 sin (𝜃 − 𝛼)11, (67)
f4 = ¤𝛼12, (68)
f5 = ¤𝑄(𝑉, 𝛼, 𝛿𝑒,Φ)14, (69)

such that f =
∑𝑛𝑝

𝑖
f𝑖 , as described in (10).The sampling region of X𝑐 × U𝑐 is defined as X𝑐 = E(W), with

W = diag(50, 0.05, 0.05, 0.05) and U𝑐 = 𝑟B with 𝑟 = 0.161. In this numerical example, the sampling of Δ𝑖 , 𝑖 ∈ N𝑛𝑝

is computed from the analytic control-oriented model in (12), though the methodology allows for the incorporation
of data from other sources, such as from a lookup table of CFD data. The weighting matrix E𝑖 , 𝑖 ∈ N𝑛𝑝

is chosen
such that ∥v𝑖 ∥2 ≤ 1, 𝑖 ∈ N𝑛𝑝

. The bounds computed for 𝚫 are 𝛾2
1 = 1.43682, 𝛾2

2 = 15.2734, 𝛾3 = 2.81978 · 10−5,
𝛾2

4 = 3.06664 · 10−9 and 𝛾5 = 0.00361895.

A. Region of Attraction without Harmonic Excitation
Without the addition of any harmonic excitation signals, the sequential SDP synthesis method described in [8] is

solved to obtain the controller. The transient bounds on the closed-loop response are then solved through the use of
Lemma IV.1, which yields 𝜉 = 1.935. This value of 𝜉 that is larger than one implies that with this synthesized controller,
while the states are guaranteed to converge to equilibrium from within X𝑐, there is a possibility the states may stray
outside of this set before returning back toX𝑐. This unfortunately violates the sampling of Δ𝑖 , 𝑖 ∈ N𝑛𝑝

, thus, invalidating
the quantification norm bounds 𝛾𝑖 , 𝑖 ∈ N𝑛𝑝

and any guarantees of closed-loop stability. However, the insight provided
by the transient bounds introduced in this work provide a guarantee that the states will remain within the sampled region,
provided that the initial conditions are within the set X★ ∈ 𝜉−1E(W) = 0.5168E(W). Local asymptotic stability is thus
guaranteed for the region of attraction X★ using the synthesized controller, which demonstrates the use of Lemma IV.1
as a tool for analysis purposes.
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Fig. 3 The harmonic excitation signals applied to the closed-loop numerical simulations performed in Section V.B.
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Fig. 4 Closed-loop results of the system states with 200 randomized sets of initial conditions from the numerical
simulations performed in Section V.B.

B. Region of Allowable Initial Conditions with Harmonic Excitation
Three harmonic excitation signals with frequencies 𝜔 = {1, 2, 3} rad/s and amplitudes of 𝛿𝑒 = 0.15𝑜 are added to

the elevator input of the closed-loop system. The phase between the harmonic excirations are arbitrarily chosen as
𝜙 = {−88.8085𝑜,−177.6169𝑜,−266.4254} in the numerical results. Artificial damping of 𝜇 = 0.003 is applied to force
a small exponential decay of the harmonic signal. The resulting signal is shown Fig. 3 and represents the external
harmonic excitation applied to the elevator angle input 𝛿𝑒.

In Theorem IV.2, the bound on the region of allowable initial conditions E(W) depends not only on 𝜉, but also on
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Fig. 5 Closed-loop results of the system inputs with 200 randomized sets of initial conditions from the numerical
simulations performed in Section V.B.

𝜷̄(0)T 𝜷̄(0), indicating that the initial conditions of the harmonic signal plays a role in the bounding of the system states.
By setting 𝚷 = 0.1 · max(diag(𝜷))−1 = diag(38.1972, 38.1972, 38.1972, 19.0986, 38.1972, 12.7324) for the change
of coordinates, 𝜷̄(0)T 𝜷̄(0) = 0.03. This allows for tuning of the phase 𝝓 to minimize 𝜓. The algorithm in Section IV.F
is solved in MATLAB using YALMIP [18] and MOSEK [19], yielding a transient bound value of 𝜉 = 1.8824 and the
controller gain

K =

[
−0.0005 2.4608 0.5126 1.3894
−0.0028 0.1242 −0.9077 −0.5698

]
. (70)

Substituting this and


W−1𝛿x(𝑇)




2 = 1 into (40), the region of allowable initial conditions is found to be

X★ℎ = 0.5022E(W).
Numerical simulations are performed on the longitudinal hypersonic vehicle with 200 different randomized initial

condition within the set X★ℎ with the synthesized controller K and the harmonic excitation signal ℎ applied to the
elevator angle 𝛿𝑒. The inputs from both the controller and the harmonic signal are shown in Fig. 5 where 𝜓 = 0.3723𝑜.
This value is accounted for in the constraint described by (43).

C. Discussion
In the scenario of no external harmonic excitations, the synthesized controller provides a guarantee of closed-loop

asymptotic stability for the given region of attraction of X★ = 0.5168E(W), while still staying within bounds where the
nonlinearities are adequately quantified through quadratic constraints. When an external harmonic excitation is present,
asymptotic stability can no longer be guaranteed. Instead, a form of bounded output stability can be shown with the
region of allowable initial conditions X★ = 0.5022E(W). This is slightly smaller than the previous scenario due to the
need to account for the energy that the excitation signal adds to the system.
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VI. Conclusions
This paper presented a control synthesis method that ensures boundedness of a nonlinear system’s states in the

presence of harmonic excitation inputs, with only input-output knowledge of the system’s nonlinearities. This is
an extension of the synthesis method presented in [8], which did not provide any transient bounds on the system’s
closed-loop response and did not account for any exogenous signals. The incorporation of transient bounds and hamornic
excitation signals makes the proposed control synthesis amenable for hypersonic vehicle testing, as shown through
numerical simulation results. When applied to a hypersonic vehicle prototype testing, our proposed method could allow
for the vehicle to take on any harmonic excitation maneuvers within the boundary of E(W) and if for any reason this
boundary is exceeded, the flight computer could switch to use the synthesized controller K to return to the flight trim
condition. This could promote safe dynamic flight testing at the boundaries of the flight envelope, while to avoiding
instability.

Future work will examine the means of maximizing the region of allowable initial conditions E(W) and a more
automated way of choosing 𝑟, E𝑖 and 𝚷 when no solution is found. Other methods of relaxing the bilinear matrix
inequalities such as using penalty functions and parabolic relaxations will also be investigated as alternatives to the
iterative method presented in this paper.
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