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Adaptive control of flow separation based on online dynamic mode decomposition (DMD)
is formulated and implemented on a canonical separated laminar boundary layer via a
pulse-modulated zero-net mass-flux (ZNMF) jet actuator located just upstream of separa-
tion. Using a linear array of thirteen flush-mounted microphones, dynamical characteris-
tics of the separated flow subjected to forcing are extracted by online DMD. This method
provides updates of the modal characteristics of the separated flow while forcing is applied
at a rate commensurate with the characteristic time scales of the flow. In particular, online
DMD provides a time-varying linear estimate of the nonlinear evolution of the controlled
flow without any prior knowledge. Using this adaptive model, feedback control is then
implemented in which the Linear Quadratic Regulator gains are computed recursively.
This physics-based, autonomous approach results in more efficient flow reattachment
compared with commensurate open-loop control. Four Reynolds numbers are tested to
assess robustness, Rec = 0.9×105, Rec = 1×105, Rec = 1.1×105, and Rec = 1.25×105.
All controlled cases exhibit a significant reduction in mean separation bubble height,
requiring approximately 10 characteristic time periods to establish control.

1. Introduction

A common goal of active flow control is to drive a particular flow state to a more
favorable one with as little control effort as possible. This is often achieved by leveraging
inherent flow instabilities (Greenblatt & Wygnanski 2000). Active flow control can be
employed, for example, to increase lift and reduce drag, enhance mixing for efficient
combustion, or for aeroacoustic noise attenuation (Brunton & Noack 2015; Williams &
MacMynowski 2009; Gad-el Hak 2001). Due to the highly complex interactions inherent
in fluid flows, modal decomposition approaches aid in the design and implementation
of active flow control since the instabilities targeted often consist of discrete frequency,
spatio-temporal coherent flow structures (modes) (Kutz et al. 2016; Taira et al. 2017,
2019).

Most experimental flow control investigations employ parametric studies to identify
an effective control approach for specified flow conditions (Griffin et al. 2013; Raju et al.
2008; Seifert et al. 1993; Mittal et al. 2005; Yarusevych et al. 2006). However, the parame-
ter space for such an optimization can quickly become prohibitive. To aid in the control-
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design process, physical intuition can sometimes be leveraged to identify appropriate
parameters. Furthermore, recent progress in optimal disturbance theory and constrained
optimization provides additional mathematical tools for implementation of active flow
control (de Pando et al. 2017; Cossu 2014). However, the flow control approaches
described above are open-loop and designed for a specific uncontrolled baseline flow.
Depending on the nature of the flow, these approaches may not be robust to deviations
in the flow conditions. This can result in poor performance when control is employed at
off-design conditions or when significant disturbances are present. Robustness is improved
by implementing closed-loop control, which can be either model-free or can incorporate
estimates of the underlying dynamics.

Common model-free closed-loop control approaches include extremum and slope-
seeking feedback control (Ariyur & Krstic 2003), employing gradient-descent algorithms
that seek local extrema based on the response of the system output to slow input
sinusoidal perturbations. These approaches have been utilized in separation control
studies (Becker et al. 2007; Benard et al. 2010). An alternate model-free approach
employs downhill simplex optimization to estimate the control parameters for maximizing
the time-averaged lift-to-drag ratio of an airfoil (Cattafesta et al. 2009). More recently,
methods from machine learning have been employed in flow control, in which the
control design is framed as a regression problem and solved by genetic algorithms
without explicit knowledge of the dynamics (Duriez et al. 2017; Li et al. 2017; Wu
2018). Unfortunately, by design, current model-free approaches exhibit slow learning
and adaptation times relative to the fluid dynamic time scales.

Model-based, closed-loop control approaches are designed based on dynamical models
of the flow and circumvent learning times associated with their model-free counter-
parts. Conventional closed-loop control approaches usually involve linear estimates of
the underlying dynamics and utilize feedback to drive the system to a desired state. One
challenge with model-based approaches in flow control is that the dynamics may vary
significantly with initiation of control. Therefore, such approaches generally require in-
corporating knowledge of a wide range of input/output dynamics. Dynamical models can
be identified by input/output parameter sweeps using system identification techniques
(neural network, ARMARKOV, etc.) (Reese et al. 2016; Platt 1991; Akers & Bernstein
1997). Alternatively, a probabilistic approach can be adopted to model and control fluid
flows, such as cluster-based reduced order modeling (CROM) (Kaiser et al. 2014, 2017).
Reduced-order dynamical models can also be derived from the underlying flow physics
using a Galerkin projection (Noack et al. 2011). However Galerkin models, particularly
those accessible via physical experiments, are often susceptible to numerical instability
and become invalid if the system moves far from its uncontrolled base state.

Regardless of the modeling approach, the complex dynamics inherent in fluid flows
generally yield significant changes in the coherent structures and stability characteristics
under external forcing, possibly invalidating the model used for closed-loop control. This
difficulty is exacerbated by the fact that flow control is implemented to drive the flow to
a more desirable state that is significantly different than the uncontrolled baseline state.
Therefore, an effective closed-loop control strategy should ideally implement some form
of adaptation that quickly updates the dynamics in order to properly track deviations
from the baseline.

These issues give rise to several technical challenges for model-based closed-loop control
that responds on the same order as the time scales of the fluid system. First, an
appropriate sensing approach needs to be implemented to permit accurate estimation
of the relevant dynamical states with limited sensors. Second, the actuator must have
sufficient bandwidth and time response to ensure that it can excite the appropriate
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modes of the flow and respond rapidly to broadband control signals. Third, an accurate
yet simple reduced-order model of the underlying fluid dynamics is required to enable
adaptation to time-varying dynamics or flow conditions. Finally, an appropriate feedback
controller must be designed and implemented. While a general approach is currently not
in place to address these concerns, this work offers a potential solution for the specific
example of adaptive, closed-loop control of a laminar separation bubble (LSB) using
online dynamic mode decomposition (DMD) with control.

A pressure-gradient-induced LSB forms when a laminar boundary layer detaches from
a wall to form a shear layer due to a sufficiently strong adverse pressure gradient,
undergoes transition, and ultimately reattaches downstream to form a closed bubble.
LSBs may develop on laminar airfoils (Joslin 1998), low-pressure turbine blades (Hodson
& Howell 2005), small aerial vehicles (Mueller & DeLaurier 2003), and wind-turbine
blades (Sorensen 2011) and, in nearly all cases, have a detrimental effect on performance.

LSBs have been extensively studied for decades. Briefly, Gaster (1966) rigorously
examined the dynamics of pressure-induced LSBs on a semi-innite flat plate without
the additional complications of curved geometry and proposed a bursting criterion to
predict when a short bubble changes to a much longer one. Marxen & Henningson (2011)
described the complex physics associated with LSBs, such as the convective amplification
of high-frequency disturbances in the shear layer due to the Kelvin-Helmholtz instabil-
ity. They also offered distinguishing features between short and long bubbles, further
examining the mechanisms of bubble bursting in which vortex shedding ceases and low-
frequency flapping may occur. As a precursor to control, Michelis et al. (2017) examined
the response of a LSB to impulsive 2-D forcing with dielectric barrier discharge actuators
and found that impulsive forcing produces a wave packet, associated with rapid shrinkage
of the bubble in both upstream and downstream directions, with properties that are in
remarkable agreement with linear stability analysis. Their results supported earlier work
(Rist & Augustin 2006; Marxen & Risk 2010) that the disturbance input results in a
global change of the pressure gradient due to mean-flow deformation and drives the
bubble towards a more stable state.

Collectively, the prior work indicates that active control of the instabilities can pro-
vide effective control. Indeed, many studies have been conducted in which actuation
parameters are varied, and the performance is evaluated a posteriori (Seifert et al. 1996;
Seifert & Pack 1999; Glezer et al. 2005; Mittal & Kotapati 2006; Raju et al. 2008).
Several studies aimed at determining an optimal forcing frequency suggest forcing at the
most amplified shear layer instability frequency results in significant flow separation
mitigation (Yarusevych et al. 2006; Postl et al. 2011; Yarusevych & Kotsonis 2017;
Marxen et al. 2015). As noted above, the very goal of reducing the size of a separation
bubble by unsteady actuation means that the base state of the separated flow will undergo
significant deformation that will alter the instability characteristics (Marxen et al. 2015).
This scenario motivates adaptive closed-loop separation control in which the dynamical
model of the separated flow is updated automatically as actuation is applied. .

However, adaptive closed-loop separation control introduces additional complexities
related to dynamical model derivation, objective function specification, and state mea-
surement and estimation. Our previous work shows that dynamic mode decomposition
(DMD) accurately emulates the oscillatory characteristics of a separated flow (Hemati
et al. 2017; Deem et al. 2017). DMD was recently introduced in fluid dynamics for iden-
tifying spatially coherent flow structures from a set of either experimental or simulation
snapshot observations of various flow quantities (Schmid 2010; Rowley et al. 2009). In
this context, DMD provides a transition matrix that is a linear estimate of the mapping
between a current snapshot and the next snapshot in time. For the cases in which external
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forcing is acting on the dynamical system, such as with the zero-net mass-flux (ZNMF)
actuator upstream of separation in the present work, the conventional DMD algorithm
can be modified to incorporate actuation Proctor et al. (2016). The dynamic modes are
then the eigenvectors of the identified linear transition matrix. Since these flow dynamics
are typically described well by a low-dimensional subspace, rank-reduction techniques
can be performed to express a low-order representation of the dynamics with a small set
of dynamically relevant modes (Hemati et al. 2017; Rowley et al. 2009; Schmid 2010).

In order to leverage this capability in an adaptive, closed-loop control setting, a
new algorithm known as online DMD is employed, which efficiently updates the linear
transition model with control provided by DMD as soon as a new state measurement is
available (Zhang et al. 2019; Deem et al. 2017, 2018). Therefore, the variations in the
dynamics are represented as a time-varying linear system. Given a sufficiently small
number of sensors, this update step can be done at a rate that is faster than the
characteristic frequencies of the flow, allowing for real-time dynamical system estimates.
For the current study, the measurements used to identify the discrete linear model
provided by online DMD are unsteady surface pressure snapshots taken by a linear array
of thirteen surface-mounted microphones. This rapidly adapting linear system captures
both the modal structure of the flow and the transient evolution of the modes as actuation
is applied or as flow conditions change in real time. Using the linear model provided
by online DMD, standard linear optimal control methods are shown to be viable for
autonomous control of separated flow.

The control approach implemented in this study consists of rapidly updating feedback
gains from a linear quadratic regulator (LQR) process as the linear system estimate
is updated by online DMD. In general, the resulting feedback control is not expected
to be optimal per se since the underlying dynamics are not linear and time invariant.
However, this is the set of optimal feedback gains for the current dynamical estimate.
Due to the computational requirements to solve the discrete algebraic Riccati equation,
the LQR feedback gain update rate is slower than the online DMD update rate, but still
sufficiently faster than the characteristic flow frequency. The resulting response of the flow
to control is characterised by time-resolved PIV and unsteady pressure measurements.

The next sections provide a detailed description of the experimental apparatus and
computational methods used in this work (sections 2, 3, and 4), followed by analysis
of the baseline separated flow characteristics in section 5. In section 6, the response of
the separated flow to open-loop control using periodic burst modulation is evaluated for
varying modulation frequency and actuator momentum coefficients to demonstrate the
receptivity of the flow to this actuation approach and to provide open-loop control results
to compare with the adaptive control approach. Then, the results of applying adaptive
closed-loop separation control are provided for varying actuator penalty parameters
in section 7. For comparison, control is applied using a non-adaptive offline-identified
dynamical model. For each case, running calculations of various turbulence quantities and
pressure fields are presented to identify the evolution of these quantities after control is
initiated, and the results are discussed. The transient evolution of natural reattachment
is evaluated by deactivating the imposed adverse pressure gradient. The turbulence and
pressure-field quantities for this case of natural reattachment are presented and compared
to those corresponding to reattachment by adaptive closed-loop control. Finally, to
demonstrate the robustness of this approach to varying flow conditions, control is applied
for varying Reynolds number.
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a) Experimental setup. b) Upstream BL profile.

Figure 1: a) Schematic of the flat plate model and flow separation system. The location of
the surface microphones are depicted by blue markers. b) Mean velocity profile upstream
of the separation point extracted by PIV measurements. The Blasius laminar boundary
layer solution is plotted for reference. x/c ≈ 0.3.

2. Experimental Setup

This experimental study utilizes the canonical separated flow configuration described
in Griffin et al. (2013), Hemati et al. (2016) and Deem et al. (2017) and is motivated
by the work of Na & Moin (1998) to remove curvature dependencies on boundary layer
separation. Here, a laminar boundary layer on a flat plate model separates due to an
adverse pressure gradient imposed by siphoning a portion of the freestream flow through
the ceiling of the wind tunnel test section and reinjecting it just downstream. This
section provides details regarding the experimental design, data collection, real-time
control system, and the methods used for processing and analyzing the results.

2.1. Wind Tunnel Facility and Experimental Model

Experiments were conducted in the Florida State Flow Control (FSFC) open-return
wind tunnel facility. The FSFC wind tunnel has a 9:1 inlet contraction and a square 30.5
cm test section with a length of 61.0 cm. Upstream of the contraction, flow conditioning
is accomplished by a honeycomb mesh and two anti-turbulence mesh screens. The
freestream turbulence intensity integrated above 4 Hz is u′/U∞ = 0.5%. The flat plate
model used in this study spans the entire width of the test section, has chord dimension
c = 40.2 cm and thickness w = 0.095c. The leading edge of the plate is a 4:1 ellipse, and
the trailing edge is square. A pitot-static probe mounted upstream of the model monitors
the freestream velocity, which is maintained at U∞ = 3.9± 0.1 m/s via a PID controller
to provide a chord Reynolds number of Rec = 105. A schematic of the plate with relevant
dimensions is shown in Figure 1-a.

A zero-net mass-flux suction/blowing tunnel ceiling boundary condition is imposed to
induce boundary layer separation on the top surface of the flat plate. A Mechatronics
Inc. MM28080H dc motor driven fan ingests a portion of the freestream fluid through an
acoustically treated perforated plate segment of the test section ceiling and then injects
this flow back into the test section through a return duct that is similarly acoustically
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Figure 2: Photograph and schematic illustration of the ZNMF actuator (adapted from
Griffin et al. (2013)). Dimensions are in mm. Lj is the length of the actuator slot and
Wj is the width of the actuator slot. The height of the actuator orifice is Hj = 2 mm.

treated. The ratio of the average suction/blowing velocity to that of the freestream is
0.16± 0.03.

The setup is designed to allow for the location and extent of the separation bubble
to vary by changing the location of the plate with respect to the ceiling duct. For the
current case, as discussed further below, a closed separation bubble is generated that
exhibits mean reattachment upstream of the trailing edge of the flat plate. The spanwise
uniformity of the separation region is assessed by surface flow visualization and PIV. The
separation point is estimated by PIV for several spanwise locations, subject to optical
access. From these data, the variation in the separation and reattachment locations along
the central 70% of the span exhibit a maximum deviation of 3% chord.

The mean velocity profile upstream of the separation point is extracted from 4800 PIV
snapshots and is plotted along with the Blasius boundary layer profile in Figure 1-b with
a spatial resolution of ∆x = 0.466 mm. The boundary layer thickness is δ = 3.7 mm,
and the shape factor is estimated as H = 2.67 ± 0.08 at x/c ≈ 0.3. Comparing this to
H = 2.59 for the Blasius boundary layer indicates that the boundary layer is laminar
upstream of separation and is subjected to a small favorable pressure gradient due to the
growing turbulent boundary layers on the wind tunnel walls.

2.2. Actuation

A rectangular slot, zero-net mass-flux (ZNMF) actuator is employed to force the
separated flow. The ZNMF jet sequentially ingests and expels surrounding fluid by
varying the volume of a cavity underneath the slot (Cattafesta & Sheplak 2011; Glezer
& Amitay 2002). Thus, there is zero time-average mass flux but a non-zero momentum
flux. The actuator orifice is 2 mm wide, is located upstream of the separation location at
x/c = 0.61 (the mean baseline separation location is x/c = 0.70), and spans the central
58% of the model. The actuator is comprised of four bimorph piezoelectric disks (APC
Inc., PZT5J, Part Number: P412013T-JB) that serve to vary the volume of the cavity
as an ac voltage is applied across the disks. The disks are mounted spanwise along the
lower surface of the cavity, and are numbered increasing from right to left (relative to the
freestream direction). The schematic of the actuator in Figure 2 shows relevant actuator
dimensions.

The disks are driven by a high frequency sine wave, modulated down to the natural
frequency range of the current separated flow. The choice of the high frequency carrier
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Figure 3: Velocity frequency response for driving amplitudes of 30 and 50 Vpp in the slot
center above Disk 1.

frequency is discussed in the next section. The actuator output is expressed in terms of
the momentum coefficient (Cµ), which is defined as

Cµ =
Aj v̄

2
rms

AsepU2
∞
. (2.1)

In this definition, Aj = Wj × Lj is the area of the actuator slot, and the separation
area is the baseline uncontrolled length of the mean separation region multiplied by S,
which is the span of the plate (Asep = Lsep × S). The velocity across the jet orifice is
measured by PIV during control experiments. For the actuator PIV measurements, the
rms velocity directly adjacent to the actuator orifice is spatially averaged over the slot
width to quantify the velocity fluctuations (v̄rms) through the actuator.

2.3. Actuator Characterization

Prior to conducting experiments, the output of the actuator is first determined when
driven by a sinusoid with various forcing frequencies and amplitudes. For characterization,
the rms velocity of the actuator is determined by constant-temperature hot-wire anemom-
etry, in which the hot-wire probe is placed at the center of the actuator slot above Disk
1. A Dantec 55P11 hot-wire probe with a wire diameter of 5 µm and length of 1.25 mm is
used. The hot-wire probe is calibrated before and after the actuator characterization for a
velocity range of 0 to 30 m/s, and a fourth-order polynomial is fit to the calibration data.
The hot-wire signal is sampled at 20480 Hz with a National Instruments PXI-4462 data
acquisition card. Figure 3 shows the VRMS response from the hot-wire probe centered
above Disk 1 when driving all four disks simultaneously. The frequency is stepped by 50
Hz from 50 to 2500 Hz. This test is repeated for two input amplitudes of 30 and 50 Vpp.

The hot-wire probe is then centered above the other three disks, and this test is
repeated for an input amplitude of 30 Vpp. Figure 4 provides the VRMS responses for
centering the hot-wire probe above each disk. These figures show two distinct resonant
peaks at the Helmholtz frequency of the cavity (near 700 Hz) and the diaphragm
resonance frequency (2100 Hz). Noting the output of the actuator is negligible below
about 500 Hz when driven by a sinusoid, a burst-modulated (i.e., square-wave modulated)
signal is selected to augment the output at low frequencies. While the largest output
can be produced by selecting a carrier frequency close to the Helmholtz frequency, this
approach is avoided because of the large acoustic pressure fluctuations that corrupt the



8 E. Deem, L. Cattafesta, M. Hemati, H. Zhang, C. Rowley, and R. Mittal

0 500 1000 1500 2000 2500
0

1

2

3

4

5
Disk 1
Disk 2
Disk 3
Disk 4

Frequency (Hz)

(m/s)

Figure 4: Velocity frequency responses in slot center above all four disks for a driving
amplitude of 30 Vpp.
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Figure 5: The spanwise variation of the rms velocity as measured by a hot-wire probe for
a 2050 Hz sine wave driving signal at 30 Vpp.

unsteady surface pressure sensor measurements Griffin (2013). Therefore, the carrier
frequency is chosen to be slightly below the diaphragm resonance frequency at fc = 2050
Hz to produce reasonable output while avoiding inevitable phase variations in diaphragm
motion associated with driving the actuators at a mechanical resonance frequency. This
choice also reduces the risk of actuator damage.

The spanwise uniformity of the actuator is addressed by traversing the hot wire along
the length of the slot while driving the actuator with a single sine wave at a frequency
of fc = 2050 Hz and amplitude of 30 Vpp. The rms velocity measured for varying span
is provided in Figure 5. The actuator output variation is within 16% for the central 84%
of the actuator slot. At the extreme edges of the actuator slot, the maximum variation
increases to 51%.

The momentum coefficient of the ZNMF jet actuator subject to a burst modulation
drive signal, illustrated in Figure 7, is plotted for varying modulation frequencies, in
which fb is stepped by 10 Hz. The shaded region depicts the 95% confidence intervals in
Cµ. For the burst modulated waveform, the carrier frequency (fc) sine wave is cycled on
and off at the burst frequency fb. The nominal duty cycle of the modulation is set to 50%.
However, in order to prevent spectral leakage and unanticipated high-frequency content,
the duty cycle can vary slightly from this value to ensure that an integer number of carrier
cycles exists within the burst period. The forcing frequency is nondimensionalized with
respect to the baseline separation bubble length and freestream velocity as

F+ =
fbLsep
U∞

. (2.2)
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Figure 6: Burst modulation waveform used for periodic actuation corresponding to 50%
duty cycle. In this case fc = 2050 Hz.
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Figure 7: Momentum coefficient with respect to varying forcing frequencies. The 95%
confidence intervals are depicted by the shaded region.

2.4. Unsteady Pressure Sensors

The unsteady pressure on the model surface is measured by an array of 13 flush-
mounted Panasonic WM-61A electret microphones. The diameter of the exposed mi-
crophone diaphragm of the WM-61A microphones is 2 mm, and the microphones are
mounted in the mid-span plane from x/c = 0.7 to x/c = 0.94 in increments of x/c = 0.02.
The microphones are powered by a 4 mA constant current source provided by an NI PXI-
4498 data acquisition card.

Previous work has shown that the microphones employed in this study are sensitive to
signal contamination from extraneous acoustic sources (Griffin 2013; Deem et al. 2017).
Contaminating sources include the acoustic signal generated by the actuator, the wind-
tunnel fan, and the separation-duct fan. One potential remedy for this is to perform
conditioned spectral analysis to remove the contaminating signals and account for mutual
contamination a posteriori (Deem et al. 2017; Bendat & Piersol 2011, 2013). However, for
real-time control, any contaminants must be filtered in a manner that is realizable within
the primary control loop. This study incorporates analog low-pass filters in addition to
digital filters within the control loop to remove unwanted high-frequency content and
also ac couple the signals. The filtered signals are digitized by an NI PXIe-6358 card at
a rate of 10 kHz. Furthermore, two additional reference microphones are mounted near
the separation-duct fan and on the floor of the wind tunnel to measure the coherence
function between each reference microphone and the surface mounted microphones, thus
enabling us to determine the severity of signal contamination.



10 E. Deem, L. Cattafesta, M. Hemati, H. Zhang, C. Rowley, and R. Mittal

2.5. Time-Resolved PIV

Both the separated flow and actuator slot regions are synchronously measured by Time-
Resolved Particle Image Velocimetry (TR-PIV). The laser sheet is oriented in the x-y
plane, slightly offset from mid-span with its optical axis parallel to the surface in order
to reduce reflections. The camera field of view has a streamwise extent from x/c ≈ 0.62
to x/c ≈ 1 and a height of y/c ≈ 0.13. Within the same plane, the actuator PIV region
is bounded by x/c ≈ 0.59 and x/c ≈ 0.63, and has a height of y/c = 0.087. Olive
oil droplets with nominal diameter of 1 µm introduced to the flow from a TSI 9307-6
atomizer are used for PIV seed particles (Melling 1997). The particles are illuminated
by a high rep rate Nd-YAG laser operating in a single pulse configuration and images of
the illuminated particles are acquired by a Phantom v1611 high speed camera. For the
baseline uncontrolled flow, the actuator slot is open, and the resolution of the images is
1280 × 800 pixels. Images are acquired at 5 kHz for at least 4800 frames. In this case, the
velocity vector fields are computed in between each image, so the effective PIV sample
rate is 5 kHz. Once images are acquired, image preprocessing and vector calculations are
performed using LaVision DaVis 8.4.0. A multi-pass cross-correlation algorithm is used
to determine the velocity vectors. The initial interrogation window size is 64 × 64 pixels,
and the final interrogation window size is 24 × 24 pixels with 75% overlap resulting in a
vector spacing of 0.73 mm.

For the control cases, the PIV images are acquired at a sample rate of 10 kHz to
enable synchronous measurements with the real-time control system. In this case, the
final interrogation window size is reduced to 16 × 16 pixels with 75% overlap resulting in a
vector spacing of 0.49 mm. The final interrogation window size of the higher magnification
actuator measurement region is 32 × 32 pixels with 75% overlap, resulting in a vector
spacing of 0.18 mm or approximately 11 measurement locations across the actuator slot.

In all cases, post-processing steps are as follows. Multivariate outlier rejection is first
employed to identify and eliminate outliers in each velocity field snapshot using the
method in (Griffin et al. 2010). The velocity data are low-pass filtered (with a cutoff
frequency of not less than 500 Hz) to remove high-frequency noise. Finally, the gappy
POD method described in Saini et al. (2016) is used to replace missing vectors to
enable estimation and analysis of instantaneous quantities, such as spanwise vorticity
and pressure from PIV. The uncertainty in each vector field measurement is calculated
using the correlation-statistics method for estimating PIV uncertainty (Wieneke 2015).
In order to propagate the uncertainty in each PIV vector to the various calculated
quantities referred to in this work, standard linear uncertainty propagation is employed.
See Deem (2018) for details regarding the estimation of uncertainties with 95% confidence
for this study, including the treatment of error correlation due to PIV interrogation
window overlap. The maximum uncertainty in the mean u-velocity and v-velocity is
approximately 0.5% and 0.4% of U∞, respectively. The largest uncertainty in the mean
vorticity is 2% of the maximum value of vorticity. The height of the separation region
is also estimated from the PIV results. The uncertainty in the separation height for the
baseline flow is approximately 0.5%.

2.6. Real Time Control Hardware

An NI PXIe-8880, a 2.3 GHz Intel Xeon 8−Core embedded controller, is employed for
state measurement, online model estimation, feedback gain calculation, and actuation
signal generation. The microphone signals are filtered by 8 KEMO VFBF35 and 5
Stanford Research model SR640 programmable low-pass filters and then simultaneously
sampled by an NI PXIe-6358 data acquisition card connected to the real-time controller.
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NI Veristand 2017 is used to develop the control-loop software. Online DMD (described
below) is coded in Simulink. A built-in discrete LQR function from LabVIEW 2017 is
used to calculate the LQR gains given the current system estimates from online DMD.
Finally, a code for generating the actuator signal is developed in Simulink. The analog
output signal to the actuator is produced by the NI PXIe-6358 card and routed to a Trek
PZD350 external amplifier and then to the piezoceramic disks. Once all of these codes
are compiled and appropriately mapped in Veristand, the final program is executed at a
specified sample rate on the real-time controller.

3. Dynamic Mode Decomposition

For the current study, variants of Dynamic Mode Decomposition (DMD) are employed
for baseline flow analysis and state-space model identification for real-time control. Given
many simultaneously sampled measurements of a particular dynamical process, DMD
provides a finite-dimensional discrete-time linear system that approximates the Koopman
operator (an infinite-dimensional linear description for nonlinear dynamical systems) that
evolves the dynamics one time step forward (Tu et al. 2014; Schmid 2010; Rowley et al.
2009; Williams et al. 2015).

The snapshot measurement vectors are denoted as xk. The transition matrix is denoted
ADMD and satisfies the approximate relation

xk+1 ≈ ADMDxk. (3.1)

Snapshot matrices are constructed from sequences of snapshot data column vectors as

X =

 | | |
x1 x2 · · · xn−1
| | |

 , Y =

 | | |
x2 x3 · · · xn
| | |

 . (3.2)

The previous snapshot matrix is denoted by X, and the current snapshot matrix
(denoted by Y) is the previous snapshot matrix shifted forward by one time step. Each
snapshot vector consists of m simultaneous measurements, and a total of n snapshots
are recorded. The snapshot matrices thus have dimension m× (n− 1).

The DMD transition matrix can be determined by multiplying the current snapshot
matrix with the pseudoinverse (denoted by +) of the previous snapshot matrix (Tu et al.
2014)

ADMD := YX+. (3.3)

In practice, a reduced problem is formulated by taking the singular value decomposition
(SVD) of the snapshot matrix X = UΣV ∗, in which ∗ denotes the complex conjugate
transpose. This result is substituted into (3.3) to yield

ADMD = Y[UΣV ∗]+ = YV Σ+U∗. (3.4)

DMD modes and eigenvalues are then related to the eigenvectors and eigenvalues of
ADMD. The number of DMD modes and eigenvalues will be min(m,n − 1). A modal
truncation can be performed, if it is expected that r < min(m,n−1) modes are required
to capture the important dynamics. This is achieved by truncating the SVD of X to
include only the first r singular values and associated left and right singular vectors, in
which a subscript r will denote a truncated matrix. From this, the reduced proxy system
matrix can be determined by

Ã = U∗rADMDUr = U∗rYVrΣ
+
r . (3.5)
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The non-zero DMD eigenvalues are given by λi, and are computed as the eigenvalues of
Ã. The DMD modes are computed by φi = Urwi in which wi is the ith eigenvector of Ã.
The frequency and growth rate for the ith mode is fi = fs∠λi/(2π) and gi = fs log |λi|.

DMD analysis of results derived from PIV measurements in this study are also
computed using the noise-robust Total-least-squares DMD (TDMD) algorithm presented
in Hemati et al. (2017). The TDMD procedure consists of a preprocessing step that
removes the asymmetric treatment of measurement noise inherent in the formulation of
DMD provided above (Hemati et al. 2017; Dawson et al. 2016). Furthermore, the TDMD
is combined with the sparsity-promoting DMD (SP-DMD) approach of Jovanović et al.
(2014) to enable a systematic study of the tradeoff between the quality of approximation
and the number of modes that are used. We refer to this combination as “SP-TDMD”.

The oscillatory amplitude of the estimated DMD modes are of primary interest in the
control approach described later. As such, we determine the contribution of each DMD
mode to each snapshot using Ã and then compute the mean-squared value of each mode,
first in space for each snapshot and then in time for all snapshots, and normalize the
result by the maximum value to obtain a linear estimate of the relative importance of the
ith mode, denoted as σ2

DMD,i. The overall quality of the DMD analysis is compared to
the space-time POD using the “SPOD” algorithm of Towne et al. (2018), noting that the
space-time POD is not currently amenable to the online DMD used for estimation and
control. However, this may be possible in the future through variations on the streaming
SPOD algorithm (Schmidt & Towne 2019).

3.1. Online DMD

The DMD formulation provided above requires that every snapshot of X be readily
available in a computer’s RAM to compute the SVD. This allows for the a posteriori
dynamical analysis of a measurement ensemble from a linear system perspective. How-
ever, for the current case, the separated flow can experience significant deviations in its
dynamics as forcing is applied. Therefore, the transition matrix identified by DMD for
the baseline separated flow case may not be valid once actuation in implemented. Real-
time tracking of the separated flow dynamics will allow for more effective control. This is
accomplished in this work by Online DMD using an array of unsteady surface pressure
measurements (Zhang et al. 2019; Deem et al. 2017).

Online DMD provides an efficient method to update the DMD matrix when a new
snapshot becomes available. As a result, the variations in the dynamics are represented
as a time varying linear system. As long as the size of the snapshot is not too large, this
update step can be done at a rate that is faster than the characteristic frequencies of the
flow. This rapidly adapting linear system representation of the separated flow can then
be used to estimate future states for control.

Summarizing the method of Zhang et al. (2019), the definitions of the DMD transition
matrix (3.3) and the pseudoinverse X+ = XT [XXT ]−1, the formulation of online DMD
begins with defining two new matrices, Qk and Pk, to represent the current estimate of
the DMD transition matrix

Ak = YX+ = YXT [XXT ]−1 = QkPk, (3.6)

where the new matrices are defined as Qk := YXT and Pk := [XXT ]−1. If a new
snapshot (xk+1,yk+1) is appended to the snapshot matrix, the estimate for Qk and Pk
can be updated as
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Qk+1 = [Y yk+1][X xk+1]T = Qk + yk+1x
T
k+1, and

Pk+1 = ([X xk+1][X xk+1]T )−1 = [P−1k + xk+1x
T
k+1]−1.

The expression for Pk+1 is now in a form that can be computed by the Sherman-Morrison
formula,

Pk+1 = [P−1k + xk+1x
T
k+1]−1 = Pk − γPkxk+1x

T
k+1Pk. (3.7)

The scalar γ is defined as γ := 1/(1+xTk+1Pkxk+1). Therefore, given current estimates
of Qk and Pk, the DMD transition matrix is updated for each new snapshot by Ak+1 =
Qk+1Pk+1. After some substitution (see Zhang et al. (2019) for details),

Ak+1 = Ak + γ(yk+1 −Akxk+1)xTk+1Pk. (3.8)

As initial conditions, A0 can be initialized randomly, and P0 = αI such that the
parameter α is very large yielding P−10 ≈ 0 .

In order to discount the contribution of older snapshots on the current DMD estimate,
a weighting factor κ is introduced to smoothly diminish their influence. The weighting
factor acts on an ensemble of snapshot vectors as

χ =

 | | |
(
√
κ)n−1x1 (

√
κ)n−2x2 · · · xn−1

| | |

 , ψ =

 | | |
(
√
κ)n−1x2 (

√
κ)n−2x3 · · · xn

| | |

 .
The weighting factor is defined such that a desired half-life of η samples results in κ =
2−1/η. Setting the weighting factor low (κ → 0) aggressively attenuates old snapshots,
while setting the weighting factor close to unity (κ → 1) allows the old snapshots to
gradually decay. These weighted snapshot matrices are substituted into the definition of
DMD AW = ψχ+, and online DMD is carried out as before (Zhang et al. 2019) . The
end result is that the weighting factor adjusts the updated value of Pk+1 as

Pk+1 =
1

κ
(Pk − γPkxk+1x

T
k+1Pk). (3.9)

This approach is useful for real-time DMD estimates as long as the computational
effort required to update the DMD estimates remains low. Online DMD requires O(m2)
operations to update the DMD estimates (Zhang et al. 2019). Thus, this algorithm is
well suited to the surface pressure array measurements with m = 13 unsteady pressure
sensors in the present case, in contrast to streaming DMD which are beneficial for high-
dimensional data (Hemati et al. 2014, 2017). More information regarding the relative
time required for various DMD algorithms is provided in Zhang et al. (2019). It should
be noted that this approach is formulated for cases in which there is no external forcing.

3.2. Including control inputs

DMD can be implemented for control cases by appending the DMD matrix as shown
in (Proctor et al. 2016). For systems with no external inputs, current state observations
are only a function of the previous state. However, this is not the case when forcing is
introduced, and the natural state evolution should be separated from the influence of
actuation. In this case, the linear discrete-time system provided by DMD should be of
the form

xk+1 = ADMDxk +BDMDuk, (3.10)
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when provided state measurements xk and prescribed input signals uk. This can be
rewritten by appending the measurement matrix with the input array, resulting in

xk+1 = ADMDxk +BDMDuk =
[
ADMD BDMD

] [xk

uk

]
. (3.11)

This is rewritten in terms of the snapshot matrices as

Y = GDMD Ω, (3.12)

where GDMD :=
[
ADMD BDMD

]
and Ω :=

[
X U

]T
, in which U is a matrix of

the discrete input signals. This converts the problem back to the form of conventional
DMD, thus the appended DMD matrix (GDMD) is determined using an appropriate
DMD algorithm (online DMD in this case). This process is referred to as DMD with
control (DMDc) and more details are provided in Proctor et al. (2016). Online DMD is
then performed using the weighting factor to identify time varying estimates of the linear
transition matrix subject to actuation.

4. Closed-Loop Separation Control Approach

Since online DMD provides a linear representation of the evolution of the surface
pressure fluctuations, classical linear control methods may be viable for autonomous
feedback control. For example, if the objective is to suppress the pressure fluctuations,
the control input can be defined as a state feedback uk = −Kxk, and the linear dynamics
provided by online DMD can be expressed as

xk+1 = (A−BK)xk, (4.1)

in which A is the current discrete linear state dynamics and B is the current actuation
mapping matrix identified by online DMD. At this point, the Linear Quadratic Regulator
(LQR) method can be used to determine K for the current system estimate with respect
to a weighting term applied to the state and the actuator effort (Dorf & Bishop 2011).
As the flow is forced, A will likely vary. Therefore, the K matrix will need to be updated
accordingly. In general, this feedback term will not provide optimal control since the
underlying dynamics are time varying and nonlinear. However, this is the set of optimal
feedback gains for the current dynamical estimate provided by online DMD.

Using the discrete linear system representation provided by online DMD, LQR con-
troller feedback gains are computed and updated (not necessarily as frequently as the
online DMD updates). These feedback gains are then employed to attenuate the unsteady
pressure fluctuations within the separated flow region. The control signal is defined as a
negative feedback

uk = −KLQRxk. (4.2)

In which, KLQR is determined by minimizing the cost function

J =

∞∑
k=0

(
xTkQLQRxk + uTkRLQRuk

)
. (4.3)

See Dorf & Bishop (2011) for details. The choice of QLQR and RLQR selectively weights
the performance and actuator input terms in 4.3. The solution for KLQR is

KLQR = (RLQR +BTPRB)−1BTPRA, (4.4)

in which, PR is determined from the discrete-time algebraic Riccati equation,

PR = ATPRA− (ATPRB)(BTPRB +RLQR)−1(ATPRB)T +QLQR. (4.5)
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Figure 8: Average z-vorticity as computed from PIV snapshots. The black line denotes
the time-averaged ū = 0 contour. The red markers denote the probe locations from which
data are extracted for the coherence estimates in Figure 10.

This process is implemented using the LabVIEW linear quadratic regulator VI from the
control design and simulation module.

5. Analysis of the Baseline Separated Flow

This section provides baseline separated flow characteristics including estimates of
the spectral content of the flow from surface pressure measurements and full-field flow
evaluation from TR-PIV measurements. The TR-PIV measurements allow for estimation
of the unsteady pressure field determined via solution of Poisson’s equation. These results
are then compared to DMD analysis of the unsteady surface pressure measurements.

Figure 8 contains vorticity contours of the mean of PIV snapshots for the baseline
separated flow. The separation region is illustrated by the line of ū = 0, depicted as the
black dashed line. The length of the mean separation bubble is Lsep = 0.24c, and the
height is hsep = 0.017c.

5.1. Unsteady Pressure

The unsteady pressure fluctuations within the separated flow are recorded by micro-
phones that lie within the separated flow region and spectral content is estimated and
plotted with respect to the Strouhal number, nondimensionalized with respect to the
separation bubble length and freestream velocity,

StLsep
= fLsep/U∞, (5.1)

where Lsep = 0.24c for the baseline uncontrolled flow at Rec = 105.
The coherence between each reference microphone and select surface mounted micro-

phones are provided in Figure 9. The premultiplied spectra is also provided for each
reference microphone in Figure 9. The reference microphones are mounted near the
separation duct fan and on the floor of the wind tunnel. High coherence is exhibited
around 25 Hz (StLsep ≈ 0.62) between the surface mounted microphones and the
separation fan microphone. However, the spectrum of the separation fan microphone
exhibits a dominant peak at 175 Hz, but very little power near 25 Hz. This is due to the
fact that the separation fan consists of 7 blades, so the peak at 175 Hz corresponds to
the blade passage frequency of the fan, while 25 Hz is the rotation rate of the fan.

Broadband coherence exists between the tunnel floor microphone and surface array
microphones, with overall coherence decreasing as x/c increases. The primary coherence
bands are around 25 Hz and within the frequency range of the flow. The PSD of the
tunnel floor reference microphone shows significant content at the rotation rate of the
separation duct fan (25 Hz). Additionally, a peak at 120 Hz exists due to line noise.
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Figure 9: Coherence computed between select surface pressure microphones and the (a)
separation fan reference microphone and the (b) tunnel floor reference microphone. The
microphone location for each plot is denoted at the top left of the plot. The last graph
in each column provides the premultiplied power spectral density for each reference
microphone.
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Figure 10: Coherence between PIV v-velocity measurements and unsteady pressure data
from the separation duct reference microphone for several points within the separated
flow region. The probe locations are denoted by red markers in Figure 8.

Therefore, in order to remove the contamination due to the separation duct fan pressure
fluctuations at the rotation rate, a digital high pass filter is implemented with a cut-off
frequency of 28 Hz. The signal attenuation of this filter at 25 Hz is -6.4 dB.

The non-negligible coherence between the unsteady pressure sensors and the separation
fan rotation rate raises potential concerns regarding the flow’s possible response to these
small pressure disturbances. In order to evaluate whether the flow oscillations lock-on to
the fluctuations from the separation duct fan, the coherence between simultaneously
sampled PIV velocity measurements and the separation duct reference microphone
measurements are computed. This is shown in Figure 10 for several PIV vector locations
within the separated flow region. No lock-on is observed as the coherence does not exceed
0.27 over the energetic frequency range of the separated flow. Therefore the flow is not
significantly influenced by these extraneous disturbances.

Premultiplied spectra for these measurements are plotted with respect to Strouhal
number in Figure 11 to show the streamwise development of the frequency content of
the pressure fluctuations. For the plots shown, a total of 30 seconds of data acquired at
10 kHz are used to estimate the PSD. The number of samples used per block is 10,000
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Figure 11: Premultiplied power spectral density plots of the surface mounted microphone
array measurements. The microphone location for each plot is denoted at the top of the
plot.

resulting in ∆f = 1 Hz. A Hann window is used and the blocks are overlapped by 75%,
which results in a normalized random uncertainty of approximately 25%. These plots
show the streamwise growth of unsteady pressure content due to the Kelvin-Helmholtz
instability vortex evolution in a frequency range between StLsep = 1.50 and 2.30. The
dominant shear layer frequency identified by the power spectrum is StLsep = 2.12. This
content begins to decay before the mean reattachment region as the flow transitions to
turbulent flow, and spectral broadening occurs.

5.2. Time-Resolved PIV

PIV snapshots provide mean and turbulent quantities of the baseline flow field subject
to spatial resolution limitations. Since a high speed PIV system is utilized, the sample
rate of the velocity snapshots is much higher than the characteristic frequencies of the
flow. Thus, dynamical information can be extracted from the flow field data by space-
time POD, referred to here as simply POD, or by DMD. The TR-PIV datasets for the
uncontrolled, canonical separated flow (Rec = 105) studied here consist of n = 10 000
snapshots, each with 10 032 2-component vectors per snapshot such that m = 20 064 for
the modal analysis.

5.3. Analysis of the Baseline Flow

POD is applied to the TR-PIV snapshots of the baseline separated flow in order
to identify global dynamical characteristics of the baseline flow. Using the “SPOD”
algorithm of Towne et al. (2018) with ∆f = 4.88 Hz, a Hanning window, and 75%
overlap yields the modal energy spectrum in Figure 12(a), with the arrow indicating
increasing mode number. There is a broad peak in the spectrum at StLsep ≈ 2 in the
most energetic mode, and part (b) shows the real part of the streamwise vorticity of this
mode. This mode corresponds to large-scale vortical structures in the separated shear
layer that convect downstream over the surface of the plate.

The broad peak in the POD spectrum is consistent with the peak in the power spectra
from surface pressure measurements in Figure 11. These results indicate the TDMD
estimate can be rank-reduced. A rank-reduction level of r = 25 is used, which corresponds
to retaining over 99% of the fluctuating kinetic energy content. Figure 13 shows the DMD
eigenvalues plotted in the complex plain along with the relative modal power plotted
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Figure 12: POD of baseline uncontrolled TR-PIV velocity field. (a) POD modal energy
vs. Strouhal number and (b) real part of the dimensionless vorticity of the dominant
POD mode at St ≈ 2. Dashed contour lines are shown for negative values and solid
contour lines for positive values with an increment of 0.03.

with respect to Strouhal number. The eigenvalue plot shows that the dominant modes
extracted via TDMD are non-decaying and purely oscillatory (i.e., the eigenvalues lie
very close to the unit circle). This is expected due to the oscillatory, stable limit cycle
characteristics of the separated flow.

In addition, the highest modal power occurs at StLsep = 2.02, which agrees with
the POD analysis. This TDMD mode describes the most energetic component of the
shear layer limit cycle of the baseline separated flow. In Figure 14, the real part of
the DMD mode is visualized as vorticity contours. This mode is analogous to the
most energetic POD mode in Figure 12(b) as expected. Experimentation with the rank
reduction revealed no variation in the Strouhal number of the dominant mode or its
spatial structure. Indeed, nearly identical results were obtained with r as low as 10.

While performing TDMD on velocity field measurements by TR-PIV is valuable for
examining the dynamics of the velocity field, such an analysis is not currently feasible in a
real-time feedback control scheme. However, unsteady surface pressure measurements can
be acquired and processed much more efficiently, thereby enabling real-time estimation
of the separated flow dynamics. To this end, an estimate of the full pressure field is
first computed from the velocity field TR-PIV measurements. Then, SP-TDMD will be
applied to the pressure field snapshots in order to systematically examine the trade-off
between rank and the fidelity of the DMD approximation.

5.4. Pressure Field via Solution of Poisson’s Equation

In order to examine whether the dynamical characteristics of the separated flow are
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Figure 13: TDMD analysis of baseline uncontrolled TR-PIV velocity field with reduced
rank of 25.
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Figure 14: Real part of the dimensionless vorticity for the dominant TDMD mode at
St ≈ 2 with a reduced rank of r = 25. Same plot settings as in Figure 12(b).

attainable from unsteady surface pressure measurements, the evolution of the pressure
field is estimated by solving the Pressure-Poisson equation, which is then evaluated with
DMD. de Kat & Van Oudheusden (2011) demonstrate that time-resolved, planar PIV
can be used to estimate the pressure field snapshots of nominally two-dimensional flows.
From the Navier-Stokes equations for momentum conservation in incompressible flows,
the pressure gradient is determined by

∇p = −ρ
(
∂u

∂t
+ (u · ∇)u− ν∇2u

)
. (5.2)

Taking the divergence of equation (5.2) results in the Pressure-Poisson equation,
expressed using indicial notation as

∂2p

∂xi2
= −ρ

(
∂

∂xi

(
∂ui
∂t

)
+

∂

∂xi

(
uj
∂ui
∂xj

)
− ν ∂

∂xi

∂2ui
∂xj∂xj

)
. (5.3)

This is simplified by recognizing that the divergence of the velocity field is zero since
the flow is incompressible. Therefore, the unsteady and viscous terms are zero. Since
PIV measurements for the current study provide 2-component planar velocity fields, the
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Figure 15: Boundary conditions and domain for solution of the pressure-Poisson equation.

Laplacian of the pressure fluctuations is estimated assuming that there are no velocity
components or gradients in the z-direction

∇2pxy =
∂2p

∂x2
+
∂2p

∂y2
= −ρ

[(
∂u

∂x

)2

+ 2
∂u

∂y

∂v

∂x
+

(
∂v

∂y

)2
]
. (5.4)

Griffin (2013) has shown this is a reasonable assumption for the time-averaged flow
field using stereo-PIV in multiple spanwise measurement planes. To account for the
reduced validity of this assumption within the regions of increased turbulence and
three-dimensional mixing (de Kat & Van Oudheusden (2011)), the uncertainty of these
estimates within the turbulent region is elevated.

Regarding sampling requirements for computing the pressure field from time-resolved
PIV, de Kat & Van Oudheusden (2011) provided guidelines concerning the required
spatial and temporal resolutions. In particular, the interrogation window size needs to be
at least five times smaller than the flow structure of interest, while the sampling frequency
needs to be at least an order of magnitude higher than the frequency of interest. Both of
these conditions are satisfied for the large-scale vortical structures in the separated shear
layer.

In solving for pxy, partial derivatives are estimated using a second-order, central
difference scheme for interior points, and second-order, single-sided differences are com-
puted for Neumann boundary conditions at the edges of the domain. Assuming that
the upper boundary is outside the viscous and rotational regions of the flow but not
quite in the freestream and also that the mean velocity gradients are small, an extended
version of the unsteady Bernoulli equation is used as described by Eq. (9) in de Kat
& Van Oudheusden (2011). As shown in Figure 15, the lower boundary of the pressure
computation region is slightly above the flat plate surface due to reflections. For this
lower boundary, a zero pressure gradient is enforced in the vertical direction. The inlet
and exit boundary conditions satisfy the unsteady x-momentum equation (x-component
of (5.2)). The unsteady term in the momentum boundary condition is estimated via
central differences between two neighboring snapshots. The pressure computational grid
is thus a subset of the PIV measurement domain that consists of 206 × 43 uniformly
arranged points, the bounds of which are shown in Figure 15.

Sample results of this procedure are shown in Figure 16, in which mean-subtracted
pressure coefficient (Cp′) contours are plotted with synchronized vorticity fields at differ-
ent times, where τ = t/TSL is time normalized by the period of the shear layer dominant
frequency at StLsep = 2, and Cp′ is defined here as

Cp′ =
p− p̄
ρU2
∞/2

. (5.5)

These plots show that low-pressure regions are located near the centers of the vortices
in the separated shear layer. Applying POD to the pressure field snapshots reveals the
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Figure 16: Snapshots of vorticity superimposed with mean-subtracted Cp′ contours
computed from the 2-D PIV vector field. Negative Cp′ contours are depicted with an
increment of 0.05. Regions of low pressure convect with the vortices in the separated
shear layer with an average velocity of 0.55U∞.

quasi-periodic vortex train at St ≈ 2, as shown in Figure 17. Therefore, it is expected
that the convecting vortices will leave a traveling wave-like footprint on the surface of
the plate. Since real-time POD is not currently feasible, we will resort below to online
DMD, after using SP-TDMD of the pressure snapshots to assess how many modes (and,
hence, how many pressure transducers) are required for a reasonable approximation.
Figure 18 shows the results of using SP-TDMD on 300 Cp′ snapshots, a duration which
corresponds to ≈ 5 cycles of the dominant POD mode at St = 2. Defined in Jovanović
et al. (2014), the ‘performance loss’ quantifies the accuracy of the approximation versus
the number of modes used. With 100 modes, there is little loss of information, but the
performance gradually degrades with fewer modes. Below 10 modes, there is a clear
increase in performance loss above 50%. Part (b) of the Figure shows a close resemblance
of the DMD mode at St = 2.06 to that of the POD analysis in Figure 17.

Figure 19 shows the result of TDMD analysis on all of Cp′ snapshots using a reduced
rank of r = 13. The dominant mode has St = 1.92, and part (b) shows the real part
of this dominant Cp′ DMD mode. Note the close similarity to the dominant POD mode
in Figure 17. Inspection of the spatial distribution of the mode reveals nearly vertical
orientation of the structures, which implies that the separated flow modalities can indeed
be obtained from measurements provided by the streamwise array of surface mounted
microphones. The next section provides the results of analyzing these measurements.

5.5. Unsteady Surface Pressure DMD

Several studies have shown that effective separation control strategies are formed by
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Figure 17: Real part of the dominant POD mode at St ≈ 2 applied to n = 10 000
snapshots of the instantaneous Cp′ fields using the same settings as in Figure 12(b).
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Figure 18: Results of SP-TDMD on 300 Cp′ snapshots, which corresponds to 5 cycles of
the dominant mode. (a) There is a clear degradation in performance using less than 10
modes. (b) Dashed and solid contour lines are shown for negative and positive values,
respectively, using an increment of 0.025.
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Figure 19: TDMD analysis of baseline uncontrolled Cp′ field with reduced rank of 13.
Same plot settings in (b) as in Figure 18(b).
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Figure 20: DMD frequencies identified by online DMD with a retention factor of κ =
0.99995.

exploiting the most amplified frequencies of the Kelvin-Helmholtz instability. Identifying
dynamical characteristics of the separated flow (including the modality of the vortex
generation due to the Kelvin-Helmholtz instability) in real-time will enable feedback
control of flow separation. The results of section 5.4 show that performing DMD on
pressure field snapshots yields similar dynamical characteristics to that of velocity. Also,
section 5.1 shows that this dominant DMD mode frequency emerges as a peak in the
power spectrum of the surface microphone array. Due to this correspondence, and the
fact that these separated flow pressure modes likely leave a footprint on the surface
of the model, a profile representation of the DMD modes should be obtained from the
measurements of the surface pressure array microphones.

To confirm this, online DMD is performed on the simultaneously sampled surface
pressure data with the retention factor set to κ = 0.99995, such that 10% snapshot
attenuation occurs after τ = 35 shear layer shedding periods. This allows for the DMD
matrix to be updated with each new sample, while tracking temporal variations in
the measured dynamics. In other words, a time varying, linear model of the nonlinear
separated flow is provided in real time from surface pressure measurements.

Since the surface pressure microphone array is comprised of 13 sensors, 13 eigenvalues
will be available from the online DMD computation. This allows for a maximum of 6
distinct non-zero frequencies to be identified. Figure 20 shows the non-zero frequencies
computed from the identified DMD eigenvalues via online DMD.

The online DMD algorithm begins with a random initial estimate of the dynamics, then
the frequency estimates begin to settle after about τ = 10. The frequencies then appear
approximately converged after τ = 30. Four main frequencies exist, along with some
low frequency content. As with DMD of the flow field data, the dominant frequency
at StLsep = 1.97 due to the periodic shear layer vortex generation is captured. After
the startup transient has decayed, the other identified DMD frequencies exhibit some
wandering due to wind tunnel unsteadiness and measurement noise.

Since the DMD eigenvector estimates vary with each new sample provided to the
online DMD algorithm, a statistical evaluation of the spatial modes is possible. The
real part of the fluctuating surface pressure mode is plotted beneath the contour plot of
the corresponding mode extracted from the Poisson solver in Figure 19(b). The mode
estimate corresponds to the online DMD output for τ = 20 to 80, and the mean frequency
is StLsep = 1.97. The variability of the mode shape is indicated via error bars with a
length equal to the local standard deviation.

The dominant surface pressure DMD mode is clearly very similar to that estimated by
PIV and the pressure-Poisson solution. Near x/c = 0.8, the wavelength of this mode
is approximately λSL/c ≈ 0.06, which compares well to the shear layer wavelength
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Figure 21: Running calculation of the mean separation height to illustrate the transient
response of the flow to turning off the separation system. Each moving mean calculation
is comprised of 1250 PIV snapshots (approximately 10 shear layer periods).

evaluated near the surface of the flat plate from the pressure-Poisson solution (λSL/c ≈
0.058). Since the temporal frequency and spatial wavelength of the wavepackets that
describe the evolution of the Kelvin-Helmholtz vortex convection are provided by DMD,
the vortex propagation speed can be estimated from the two DMD estimates and the
POD. This is the phase velocity, and is evaluated for the surface pressure online DMD
results, the pressure-Poisson TDMD results, and the POD results as vp = λ× fDMD =
0.49, 0.46, 0.49, respectively. This agreement provides confidence in the online DMD
method.

5.6. Transient Characteristics of Unforced Reattachment

Before examining the impact of control, unforced reattachment is examined. In partic-
ular, by turning off the separation fan, the separated boundary layer gradually reattaches
as the suction and blowing flow through the roof decay, and a nominally zero pressure
gradient is reestablished. The duration of this process will be compared to that of forced
flow reattachment via active control. The mean separation height is computed via a
moving average of the flow field comprised of 1250 snapshots at 10 kHz that is shifted
by 10 snapshots recursively in time. This corresponds to an average of approximately
10 shear layer periods, shifted by 0.08 periods. This allows for visualizing the evolution
of the separation height as the flow reattaches once the separation system is turned off
while attenuating high-frequency noise. The result is shown in Figure 21, which indicates
via linear extrapolation that the flow is fully reattached after approximately 200 time
units.

6. Separated Flow Response to Periodic Forcing

The response of the separated flow subjected to periodic forcing is examined using
PIV. Two momentum coefficients are tested for a range of actuation frequencies. The
momentum coefficient is determined by computing the rms velocity as measured by PIV
averaged across the actuator slot. The burst modulation waveform is used for these cases
(see Figure 6). As before, the nominal duty cycle of the modulation is set to 50%, and
the forcing frequency is defined as

F+ =
fbLsep
U∞

. (6.1)

The forcing frequencies tested in this case span from F+ = 0.98 to 4.61, and the
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Figure 22: Normalized mean separation height plotted against input frequency. The
minimum mean separation height measured corresponds to forcing near the dominant
frequency identified by DMD, F+ ≈ 2. The baseline separation height of hsep/c = 0.0171
is denoted by the dashed gray line.

momentum coefficients tested are Cµ = 1.5 × 10−3 and Cµ = 1.7 × 10−3. For these
momentum coefficient estimates, the 95% confidence interval is 0.4% of the momentum
coefficient (Deem 2018). As a comparative performance metric, the height of the mean
reversed flow region is determined from PIV measurements for each forcing frequency
(i.e., an indication for the size of the separation bubble) and plotted in Figure 22. The
random uncertainty in the estimated separation height is 0.5% with 95% confidence.

Flow separation is significantly reduced over a broad range (F+ ≈ 1 to 2.5). F+ ≈ 2
corresponds to the dominant mode identified by POD and DMD. This corroborates
the results of prior literature which show that targeting the shear-layer frequency of
the separated flow is an effective strategy for reducing separation (Griffin et al. 2013;
Hemati et al. 2016; Marxen et al. 2015; Raju et al. 2008; Yarusevych & Kotsonis 2017).
Specifically, the greatest reattachment occurs for Cµ = 1.7 × 10−3, F+ = 1.91, with
hsep/c = 0.0056.

This illustrates that, for the goal of reducing the separation bubble height, the canonical
separated flow is receptive to periodic forcing from a ZNMF jet actuator. Achieving this
result in an autonomous manner for varying flow conditions is desired by utilizing this
actuation approach with adaptive feedback control. The following section contains details
regarding the implementation of such a controller and a discussion of its performance.

7. Adaptive Control of Separated Flow

Online DMD is implemented at 10 kHz using the unsteady pressure within the
separated flow region measured by the surface mounted, 13-element microphone array in
order to estimate a linear model of the dynamical system responsible for the separated
flow state evolution. This adaptive linear model is used in the control approaches
described below. Each element of the control loop is coded in either Simulink or LabVIEW
and compiled with NI Veristand 2017. The code is then deployed to an NI PXIe-8880 real-
time controller for state measurement, online model estimation, feedback gain calculation,
and actuation signal generation.

Prior to being digitized, the microphone signals are low-pass filtered at a cut-off
frequency of 500 Hz and ac-coupled at 1 Hz by external variable frequency low-pass
filters. This is accomplished with KEMO VFBF35 multi-channel filters and Stanford
Research Systems SR640 low pass filters to attenuate the acoustic signal associated with
the high frequency carrier sinusoid at 2050 Hz. The data acquisition rate is set to be 10
kHz for all control methods. For ZNMF actuation, the input waveform is multiplied by
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the carrier sine wave, amplified by a Trek PZD350 external amplifier, then sent to the
actuator piezo-disks as a single-input signal.

7.1. Adaptive Feedback Control

An adaptive negative feedback controller is implemented by recursively computing
LQR feedback gains for the current dynamical system estimate provided by online DMD
(see section 4). For each primary control loop, the actuation input (4.2) is computed as
the product of the LQR feedback gains with the surface pressure measurements.

As described in section 2.3, the ZNMF jet actuator operates by the modulation of
a carrier frequency (fc). Therefore, the input value from the feedback controller is
multiplied by the carrier sine wave before being provided to the actuator amplifier. Thus,
the input waveform to the ZNMF jet takes on the form

VZNMF,k = uk × sin(2πfctk). (7.1)

In this expression, u is the input computed from the feedback control loop and the
subscript k denotes iteration.

The nominal loop rate of the pressure snapshot acquisition, online DMD estimation,
and input signal calculation is 10 kHz, which is more than 100 times faster than the
dominant frequency of the separated flow. Due to the computational expense of solving
the algebraic Riccati equation, the LQR feedback gains are updated every 40 primary loop
cycles. This results in updating the feedback gains at a rate of 250 Hz. The online DMD
weighting factor is set to κ = 0.99995 in order to compromise between fast time response
and attenuation of high-frequency noise. If time is non-dimensionalized with respect to
the dominant DMD mode frequency (fSL ≈ 81 Hz), 10% snapshot attenuation occurs
after τ = 35 characteristic periods.

The control performance is evaluated for varying values of the input penalty factor
RLQR. Since only one independent actuator is employed, RLQR is a scalar, and is varied
from RLQR = 0.1 to RLQR = 10 while QLQR is fixed at 20I. The mean separation height
for each case is shown in Figure 23(a). As RLQR is reduced, the penalty on actuator input
is reduced, which results in increasing Cµ and smaller bubble heights. For RLQR values
less than 1, the actuator gradually reaches its saturation limit. The value of the actuator
momentum coefficient is plotted for the various values of RLQR in Figure 23(b).

Figure 24 shows a pareto plot of mean separation bubble height versus momentum
coefficient for both the open-loop and adaptive closed-loop control cases. This plot shows
that the adaptive approach matches or exceeds the best performance of open-loop control.
In addition, the tradeoff between control performance and effort is clearly illustrated.
Together, Figs. 23 and 24 enable a comparison between the open-loop and adaptive
control cases. For example, an input penalty of RLQR = 2 results in Cµ = 1.3 × 10−3

and hsep/c = 0.0059, a bubble height that is only 5% larger than the best-performing
open-loop case that requires 30% higher Cµ = 1.7 × 10−3. These results indicate that
the adaptive approach is beneficial because it reduces the extent of the separation more
efficiently than open-loop control and achieves this in a rapid and autonomous manner.

Due to the unsteady nature of this adaptive control approach, the control input will
vary as the separated flow deforms under actuation and the model is updated. Variations
in the input signal are visualized as a spectrogram, shown for several cases in Figure
25. Each input ensemble is scaled by a Hann window prior to computing the spectral
estimates. The frequency resolution of the power spectrum is ∆f = 1 Hz, the total length
for each power spectral density estimate is 10000 samples, and a new PSD is evaluated
every 0.1 seconds (1000 samples). The time is nondimensionalized with respect to the
shear layer frequency identified by DMD of the baseline flow. From the spectrogram,
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Figure 23: a) Mean separation height and b) actuator input as RLQR is varied. The
smallest bubble height occurs for RLQR = 0.2. For RLQR < 1, the separation height
is hsep/c < 0.006. The baseline separation height of hsep/c = 0.0171 and the lowest
open-loop separation height of hsep/c = 0.0056 are denoted by the dashed gray line.
The momentum coefficient corresponding to this open-loop case is also provided (Cµ =
1.7× 10−3).

Figure 24: Mean separation bubble height plotted versus momentum coefficient for both
open-loop and adaptive closed-loop control.

as soon as the control is turned on (τ = 0), the input spectra contains primarily low
frequency content for the cases shown (actuation effort is large). Then, the actuation
signal exhibits a frequency between StLsep =1.5 and 1.8 for approximately 100 periods.
After this, the actuation signal is primarily broadband, spanning frequencies up to
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Figure 25: The frequency content of the actuation signal plotted with respect to
shear layer periods as a PSD spectrogram. This shows that the input signal exhibits
time-varying and broadband frequency content and takes on multiple frequencies
simultaneously.

StLsep = 3 for the most extreme cases. As expected, the total actuator power decreases
as RLQR increases.

Further attention will be given to the case in which RLQR = 0.5. The mean vorticity
field computed from 4800 PIV snapshots is provided in Figure 26. The recirculation
region is significantly reduced, with a mean separation height of hsep/c = 0.0037. The
momentum coefficient is estimated from the PIV measurements for this case as Cµ =
2.5× 10−3.

7.2. Moving Mean and Turbulence Quantity Evaluation

To visualize the transient response of the flow to LQR control, PIV acquisition is
triggered by the initialization of the controller, and moving statistical quantities are
computed from these data as in section 5.6. The moving mean separation height for the
adaptive LQR control case in which RLQR = 0.5 is shown in Figure 27-a. From this
plot, the mean separation height is significantly reduced after less than 10 characteristic
periods. However, since the time window used in the estimation of the moving mean is
also about 10 periods, it is reasonable to expect that reattachment occurs earlier than
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Figure 26: Average z-vorticity for separated flow subjected to adaptive LQR control as
computed from 4800 PIV snapshots. The recirculation region is denoted by line of ū = 0
depicted by the solid black line. For reference, the recirculation region of the baseline
separated flow is shown as the dashed orange line. For this case, RLQR = 0.5. This shows
that applying the adaptive feedback control using LQR gains significantly reduces the
size of the separation region.
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Figure 27: Running calculation of the mean separation height to illustrate the transient
response of the flow to adaptive LQR control for Rlqr = 0.5. This is computed from
estimating the mean within a time window of τ = 10 characteristic periods (ensembles
of 1250 PIV snapshots).

τ = 10, since this is the mean of the flow from τ = 5 to τ = 15. This reattachment is
much quicker than the unforced reattachment from section 5.6.

The moving turbulence quantities (u′u′, v′v′, and u′v′ ) are plotted in Figure 28 for
several instances for both the unforced reattachment and the adaptive separation control.
After 10 periods, the variance in the streamwise velocity is increased for the adaptive
control case, while the unforced reattachment exhibits gradual reduction in all fluctuating
quantities. However by 30 periods, the overall levels of turbulent fluctuations are reduced
compared to that of the unforced reattachment. This behavior suggests that the adaptive
control accelerates the occurrence of turbulent transition, which allows for enhanced
mixing with the freestream flow, re-energizing the boundary layer and reattaching the
flow. In contrast, the unforced reattachment gradually evolves to a fully attached, laminar
boundary layer.

7.2.1. Removing control

To evaluate the transient characteristics exhibited when control is removed and the
flow is allowed to return to the baseline separated flow conditions, PIV measurements are
triggered to acquire snapshots the moment control is disabled. From these measurements,
the running mean separation height is calculated as before. As shown in Figure 29, the
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Figure 28: Running calculation of the Reynolds stress components illustrate the evolution
of the turbulent stresses subject to unforced reattachment vs. adaptive control (RLQR =
0.5). This is computed over a time window of τ = 10 characteristic periods (ensembles
of 1250 PIV snapshots).

separation bubble height first overshoots its baseline value at 10 time units and oscillates
before before settling down after approximately 50 time units. This is slower and more
oscillatory in comparison with the establishment of control shown in Figure 27 and is
consistent with other studies that indicate that the overall time scale for separation can
be several times larger than that of reattachment (Amitay & Glezer 2006; Siauw et al.
2010).

7.3. Moving Mean Pressure Field Evaluation

Since a primary detriment of flow separation is the increased pressure drag, the effect
of control on a moving mean calculation of the pressure field is evaluated. This is
accomplished by estimating the pressure field from the mean pressure gradient term in
the Reynolds-decomposed Navier-Stokes equations as in van Oudheusden et al. (2007).
From the Reynolds-averaged Navier-Stokes equation, the gradient of the mean pressure
field is
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Figure 29: Running calculation of the mean separation height to illustrate the transient
response of the flow when adaptive control turned off. The moving mean is estimated
over a time window of τ = 10 characteristic periods (1250 PIV snapshots).
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Taking the divergence of this equation yields the mean pressure-Poisson equation.
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This is simplified by removing the entries that are zero by continuity
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The terms on the right hand side of this equation are computed from the PIV
measurements, for running ensembles of 1250 snapshots. The moving mean pressure field
is then solved for every 10 snapshots. For the interior points, a central difference scheme
estimates the Laplacian. For the boundaries of the domain, one-sided differences are
computed with Neumann boundary conditions enforced for the left (inlet), right (outlet)
and wall boundaries. Specifically, the streamwise mean pressure gradient as defined by
(7.2) is enforced for the inlet and outlet. At the wall, zero vertical pressure gradient
is enforced. Since this is a solution of the mean pressure field, a Dirichlet condition
is enforced along the entire top boundary such that the mean pressure is defined by
Bernoulli’s equation, assuming that this region has negligible viscous contribution. This
is in contrast to the boundary condition enforced for the instantaneous pressure field
calculation described earlier. The bounds of the pressure field computational domain are
illustrated in Figure 30.

The results of these computations are provided in Figure 31 for several instances.
Rapid pressure recovery is shown for the adaptive separation control case (RLQR = 0.5)
such that, by 30 periods, the low pressure is increased by roughly 70% compared to that
for the unforced reattachment. In order to better visualize the evolution of the pressure
field, a profile of the moving mean pressure field is extracted for each successive mean
pressure calculation at y/c ≈ 0.019. The location of this profile is depicted by the red
dashed line in Figure 31. Each extracted profile is arranged and plotted with respect
to time. This provides a contour map of the pressure profile as it evolves with time.
See Figure 32 for the plots of the pressure profiles for the unforced reattachment and



32 E. Deem, L. Cattafesta, M. Hemati, H. Zhang, C. Rowley, and R. Mittal

x/c

y/c

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Pressure solution domain

Dirichlet BC

Neumann BC

Neumann BC Neumann BC

0

0.02

0.04

Figure 30: Bounds of the region in which the moving mean pressure field is solved for by
the Pressure-Poisson equation.
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Figure 31: Moving calculation of the mean pressure field. This is computed from moving
time window of τ = 10 characteristic periods (ensembles of 1250 PIV snapshots). The
red dashed line depicts the location of the pressure profile extracted for Figure 32.

adaptive control respectively. As is indicated in Figure 32-b, the pressure recovers very
rapidly for the adaptive control, requiring only 10 periods for a significant reduction
in low pressure extent. In contrast, a much more gradual recovery is exhibited for the
unforced reattachment.

7.4. Offline Model Identification

To illustrate the benefit of allowing the dynamical model to adapt as actuation is
applied, closed-loop control is implemented for a dynamical model that is identified
offline, from previously acquired data of the separated flow subject to open-loop control.
In this case, the actuation condition used to develop the dynamical model corresponds to
burst modulation forcing in which Cµ = 1.7×10−3 and F+ = 1.91. This is the actuation
signal that results in the largest reduction in separation height for all open-loop forcing
cases studied. Here, 10 seconds of surface pressure measurements are processed by online
DMDC with a weighting factor of 1 to provide a single offline estimate of ADMD and
BDMD. Then, LQR gains are computed for the identified dynamical system, which are
then utilized for feedback control. For this case, QLQR = 20I and RLQR = 0.5.

The mean vorticity for the non-adaptive control case is shown in Figure 33. This result
indicates that the separation region is shifted upstream slightly compared to the baseline
separation. However, this control approach is largely ineffective since the height and
extent of the separation region is essentially unchanged. This can be attributed to the
fact that, for online DMD to estimate the actuation mapping BDMD, the response to
actuator input must be observed. And, in this case, this open-loop actuation results in
the largest deviation from the baseline dynamics of all the open-loop tests. Therefore, the
actuation receptivity is likely significantly different for this deformed flow field, than for
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Figure 32: Evolution of moving mean pressure profile at y/c ≈ 0.019 for the a) unforced
reattachment case and b) adaptive separation control case (RLQR = 0.5). The x-axes for
these plots are aligned.
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Figure 33: Average z-vorticity for separated flow subjected to LQR control in which the
model is determined offline. The recirculation region is denoted by the line of ū = 0
depicted by the solid black line. For reference, the recirculation region of the baseline
separated flow is shown as the dashed orange line. This shows that the offline model
identification is not an appropriate approach for reducing the separation region.

the natural separated flow dynamics. Thus, adaptive models ensure that the dynamical
estimates and actuation mapping are current and accurate.

8. Evaluation of Closed-loop dynamic modes

Online DMD estimates the plant dynamics ADMD and BDMD that best describe the
evolution of the surface pressure measurements in a linear sense as in

xk+1 ≈ ADMDxk +BDMDuk. (8.1)

For the case in which feedback control is applied by gains identified by an LQR approach,
the next surface pressure snapshot can be approximated by

xk+1 ≈ (ADMD −BDMDKLQR)xk. (8.2)

The terms in the parentheses can be combined and describe the closed-loop dynamics

ACL = ADMD −BDMDKLQR, (8.3)
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Figure 34: Frequencies of the closed-loop eigenvalues a) determined by online DMD with
control by computing ACL = ADMD −BDMDKLQR and b) by direct estimation of the
closed-loop dynamics by online DMD (ADMD,CL). The frequency estimates for τ = 400
are provided for each plot for comparison.

such that xk+1 ≈ ACLxk. A plot of these closed-loop frequency estimates is provided
in Figure 34(a). Once control is established, the primary dynamically relevant frequency
reduces from approximately StLsep = 2 to StLsep = 1.4. The precise physical reason
for this change is unclear, but may be due in part to an observed ≈23% increase in
momentum thickness just usptream of separation (Morris & Foss 2003)

To validate the estimate of the control matrix BDMD provided by online DMD with
control, online DMD can be employed to estimate the closed-loop dynamics directly by
neglecting the input term uk and focusing only on the snapshot evolution as in equation
3.1. This dynamical system estimate will be referred to as ADMD,CL. In this manner,
online DMD should identify a matrix that is equivalent to the closed-loop mapping from
equation 8.3, such that xk+1 ≈ ADMD,CLxk. Any differences between ADMD,CL and
ACL can be attributed to errors incurred by estimating the response to actuation by
BDMD.

To begin comparing the differences in the characteristics from both closed-loop esti-
mates, the DMD frequencies computed from the closed-loop eigenvalues are evaluated.
The temporal evolution of these frequencies are provided in Figure 34 for the closed-loop
dynamics directly estimated by online DMD (ADMD,CL) and by computing ACL from
(8.3). For both estimation methods, the primary frequency is notably lower than that of
the baseline dynamics. This characteristic was also seen in the stability results of Marxen
et al. (2015) and Yarusevych & Kotsonis (2017). Also, both methods exhibit similar
variations for the lowest frequency up until roughly 150 periods. However, the extent
of the variation differs somewhat between the different estimation methods. Overall, the
characteristic frequencies identified between directly estimating the closed-loop dynamics
and computing ACL show good agreement, with only subtle differences, most notably
with respect to the near zero-frequency eigenvalue for ACL.
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Figure 35: Time-averaged z-vorticity for separated flow subjected to adaptive LQR
control computed from 4800 PIV snapshots. The mean recirculation region is denoted by
a solid black line corresponding to ū = 0. This shows that applying the adaptive feedback
control using LQR gains significantly reduces the size of the separation region.

9. Varying Reynolds Number

To assess the robustness of this adaptive control approach, the chord-Reynolds number
is varied, and control is applied using the same parameters as before. Three additional
Reynolds numbers are investigated by altering the freestream velocity: Rec = 0.9 ×
105, 1.1 × 105, and 1.25 × 105. The separated flow is induced in the same manner as
before, with the separation fan conditions fixed for all cases. Thus, the separation bubble
characteristics vary due to the altered freestream velocity. As the freestream velocity
increases, the extent of the baseline mean separation bubble is reduced since the higher
momentum flow inhibits separation for the same setting of the ceiling fan. This is depicted
in the flow fields provided in Figure 35-a. The change in mean flow structure results
in differing dynamical characteristics. The dimensional shear layer frequency tends to
increase with increasing Reynolds number. The dimensional frequency for each shear
layer mode is fSL = 70, 95 and 105 Hz, and the separation length is Lsep/c = 0.31, 0.23
and 0.18, for Rec = 0.9× 105, 1.1× 105, and 1.25× 105, respectively.

The response of each flow to adaptive separation control is provided as mean vorticity
fields in Figure 35-b. For each case, the mean recirculation region is significantly reduced
by the adaptive control approach. The input penalty is to RLQR = 0.5 for all three cases.
The transient response to the control method is provided as a running mean calculation of
separation height in Figure 36. As with the original case, approximately 10 characteristic
periods are required before the separation is significantly reduced.

10. Conclusions

Real-time, adaptive control is implemented to reattach separated flow in an au-
tonomous manner. Measurements of unsteady surface pressure are used to determine
a linear model of the flow that is allowed to update with each new measurement. This
allows the estimate of the dynamical system to update in real-time as forcing is applied
and new flow modes are excited or nonlinear deviations occur. This adaptive dynamical
estimate enables the use of linear closed-loop control techniques to efficiently reattach
the separated flow.

To provide a repeatable separated flow that is not dependent upon specific airfoil
curvature, separation is induced over a flat plate model in which the chord-Reynolds
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Figure 36: Running calculation of the mean separation height to illustrate the transient
response of the flow to adaptive separation control for varying Reynolds numbers. This
is computed from the mean of a time window of τ = 10 characteristic periods (ensembles
of 1250 PIV snapshots).

number of the primary experiments is 105 and Reδ ≈ 920 upstream of separation (x/c ≈
0.3). The flow is forced by a 2-D ZNMF jet in which the output is monitored by PIV
both near the jet exit, and within the separated flow region. By measuring the response
of the flow to periodic forcing, the most effective control is achieved when the modulation
frequency is near that of the frequency of the shear layer DMD mode.

Adaptive feedback control is then implemented in which LQR gains are recursively
computed as the model estimates change. Since this is not a linear time invariant system,
this is not optimal control per se, though it does provide the optimal control gains for the
current linear time invariant system estimate. PIV measurements show that the mean
separation region for this control case is significantly reduced. Comparing the efficiency
of the adaptive control approach to open-loop control indicates that approximately 30%
less actuation effort is required for a comparable reduction in the separation bubble
height. Furthermore, due to the quickly adapting model and feedback gain calculation,
this control approach allows for rapid flow reattachment. Less than ten characteristic
time units are required for the flow to reattach. Analysis of the temporal variation of
the power spectral content of the actuator signal indicates that the model adaptation
results in altered input characteristics as actuation is applied. Initially, the control input
exhibits primarily low frequency content, and eventually settles at a frequency that is
somewhat lower than the baseline shear layer frequency. At a later stage, the actuation
takes on a wider frequency range. This indicates that, once the separation region has
been reduced, broadband actuation is required to retain the low separation region of the
controlled flow.

By visualizing the estimation of the Reynolds stresses as the flow changes due to
forcing, the control approach stimulates the early destabilization of the coherent shear
layer vortices, leading to earlier turbulent transition. This allows for more efficient mixing
with the high-momentum freestream flow, re-energizing the boundary layer to facilitate
reattachment. Moving calculations of the mean pressure field are provided to show the
extent and rate at which pressure recovery occurs under adaptive control.

The deformation of the dynamics as forcing is applied is a primary motivator for the
use of adaptive control for reducing flow separation. This deformation is depicted by the
variation in the dynamic modes and eigenvalues of the flow. Analysis of the time varying
eigenvalue estimates indicates that the frequency of the primary DMD mode decreases as
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forcing is applied. This corroborates the results of Marxen et al. (2015) and Yarusevych
& Kotsonis (2017).

Since this approach does not require any prior information regarding the dynamical
characteristics of the flow, this approach is robust to varying flow conditions. Within
the constraints of the experimental apparatus, the Reynolds number was varied from
Rec = 0.9 × 105 to Rec = 1.25 × 105, and the adaptive control was applied to test
robustness to varying flow conditions. By altering the Reynolds number, the separation
bubble height and characteristic frequencies were varied. For all cases, the separation
bubble height was either significantly reduced or eliminated, thereby reducing the losses
incurred by boundary layer separation. Furthermore, no more than 10 characteristic
periods were required to significantly reduce the mean separation region.

Additional investigations beyond the scope of this work should include analysis of the
performance of this adaptive control approach to further separated flow conditions and
characteristics. Pertinent examples of this may include an open separation that does not
exhibit mean reattachment, which is analogous to leading-edge stall on an aerofoil, and
a separation of fully turbulent boundary layer.
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