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Adaptive control of flow separation based on online dynamic mode decomposition (DMD)
is formulated and implemented on a canonical separated laminar boundary layer via a
pulse-modulated zero-net mass-flux (ZNMF) jet actuator located just upstream of separa-
tion. Using a linear array of thirteen flush-mounted microphones, dynamical characteris-
tics of the separated flow subjected to forcing are extracted by online DMD. This method
provides updates of the modal characteristics of the separated flow while forcing is applied
at a rate commensurate with the characteristic time scales of the flow. In particular, online
DMD provides a time-varying linear estimate of the nonlinear evolution of the controlled
flow without any prior knowledge. Using this adaptive model, feedback control is then
implemented in which the Linear Quadratic Regulator gains are computed recursively.
This physics-based, autonomous approach results in more efficient flow reattachment
compared with commensurate open-loop control. Four Reynolds numbers are tested to
assess robustness, Rec = 0.9×105, Rec = 1×105, Rec = 1.1×105, and Rec = 1.25×105.
All controlled cases exhibit a significant reduction in mean separation bubble height,
requiring approximately 10 characteristic time periods to establish control.

1. Introduction

A common goal of active flow control is to drive a particular flow state to a more
favorable one with as little control effort as possible. This is often achieved by leveraging
inherent flow instabilities (Greenblatt & Wygnanski 2000). Active flow control can be
employed, for example, to increase lift and reduce drag, enhance mixing for efficient
combustion, or for aeroacoustic noise attenuation (Brunton & Noack 2015; Williams &
MacMynowski 2009; Gad-el Hak 2001). Due to the highly complex interactions inherent
in fluid flows, modal decomposition approaches aid in the design and implementation
of active flow control since the instabilities targeted often consist of discrete frequency,
spatio-temporal coherent flow structures (modes) (Kutz et al. 2016; Taira et al. 2017,
2019).

Most experimental flow control investigations employ parametric studies to identify
an effective control approach for specified flow conditions (Griffin et al. 2013; Raju et al.
2008; Seifert et al. 1993; Mittal et al. 2005; Yarusevych et al. 2006). However, the parame-
ter space for such an optimization can quickly become prohibitive. To aid in the control-
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design process, physical intuition can sometimes be leveraged to identify appropriate
parameters. Furthermore, recent progress in optimal disturbance theory and constrained
optimization provides additional mathematical tools for implementation of active 
ow
control (de Pando et al. 2017; Cossu 2014). However, the 
ow control approaches
described above are open-loop and designed for a speci�c uncontrolled baseline 
ow.
Depending on the nature of the 
ow, these approaches may not be robust to deviations
in the 
ow conditions. This can result in poor performance when control is employed at
o�-design conditions or when signi�cant disturbances are present. Robustness is improved
by implementing closed-loop control, which can be either model-free or can incorporate
estimates of the underlying dynamics.

Common model-free closed-loop control approaches include extremum and slope-
seeking feedback control (Ariyur & Krstic 2003), employing gradient-descent algorithms
that seek local extrema based on the response of the system output to slow input
sinusoidal perturbations. These approaches have been utilized in separation control
studies (Becker et al. 2007; Benard et al. 2010). An alternate model-free approach
employs downhill simplex optimization to estimate the control parameters for maximizing
the time-averaged lift-to-drag ratio of an airfoil (Cattafesta et al. 2009). More recently,
methods from machine learning have been employed in 
ow control, in which the
control design is framed as a regression problem and solved by genetic algorithms
without explicit knowledge of the dynamics (Duriez et al. 2017; Li et al. 2017; Wu
2018). Unfortunately, by design, current model-free approaches exhibit slow learning
and adaptation times relative to the 
uid dynamic time scales.

Model-based, closed-loop control approaches are designed based on dynamical models
of the 
ow and circumvent learning times associated with their model-free counter-
parts. Conventional closed-loop control approaches usually involve linear estimates of
the underlying dynamics and utilize feedback to drive the system to a desired state. One
challenge with model-based approaches in 
ow control is that the dynamics may vary
signi�cantly with initiation of control. Therefore, such approaches generally require in-
corporating knowledge of a wide range of input/output dynamics. Dynamical models can
be identi�ed by input/output parameter sweeps using system identi�cation techniques
(neural network, ARMARKOV, etc.) (Reese et al. 2016; Platt 1991; Akers & Bernstein
1997). Alternatively, a probabilistic approach can be adopted to model and control 
uid

ows, such as cluster-based reduced order modeling (CROM) (Kaiseret al. 2014, 2017).
Reduced-order dynamical models can also be derived from the underlying 
ow physics
using a Galerkin projection (Noack et al. 2011). However Galerkin models, particularly
those accessible via physical experiments, are often susceptible to numerical instability
and become invalid if the system moves far from its uncontrolled base state.

Regardless of the modeling approach, the complex dynamics inherent in 
uid 
ows
generally yield signi�cant changes in the coherent structures and stability characteristics
under external forcing, possibly invalidating the model used for closed-loop control. This
di�culty is exacerbated by the fact that 
ow control is implemented to drive the 
ow to
a more desirable state that is signi�cantly di�erent than the uncontrolled baseline state.
Therefore, an e�ective closed-loop control strategy should ideally implement some form
of adaptation that quickly updates the dynamics in order to properly track deviations
from the baseline.

These issues give rise to several technical challenges for model-based closed-loop control
that responds on the same order as the time scales of the 
uid system. First, an
appropriate sensing approach needs to be implemented to permit accurate estimation
of the relevant dynamical states with limited sensors. Second, the actuator must have
su�cient bandwidth and time response to ensure that it can excite the appropriate
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modes of the 
ow and respond rapidly to broadband control signals. Third, an accurate
yet simple reduced-order model of the underlying 
uid dynamics is required to enable
adaptation to time-varying dynamics or 
ow conditions. Finally, an appropriate feedback
controller must be designed and implemented. While a general approach is currently not
in place to address these concerns, this work o�ers a potential solution for the speci�c
example of adaptive, closed-loop control of a laminar separation bubble (LSB) using
online dynamic mode decomposition (DMD) with control.

A pressure-gradient-induced LSB forms when a laminar boundary layer detaches from
a wall to form a shear layer due to a su�ciently strong adverse pressure gradient,
undergoes transition, and ultimately reattaches downstream to form a closed bubble.
LSBs may develop on laminar airfoils (Joslin 1998), low-pressure turbine blades (Hodson
& Howell 2005), small aerial vehicles (Mueller & DeLaurier 2003), and wind-turbine
blades (Sorensen 2011) and, in nearly all cases, have a detrimental e�ect on performance.

LSBs have been extensively studied for decades. Brie
y, Gaster (1966) rigorously
examined the dynamics of pressure-induced LSBs on a semi-innite 
at plate without
the additional complications of curved geometry and proposed a bursting criterion to
predict when a short bubble changes to a much longer one. Marxen & Henningson (2011)
described the complex physics associated with LSBs, such as the convective ampli�cation
of high-frequency disturbances in the shear layer due to the Kelvin-Helmholtz instabil-
ity. They also o�ered distinguishing features between short and long bubbles, further
examining the mechanisms of bubble bursting in which vortex shedding ceases and low-
frequency 
apping may occur. As a precursor to control, Micheliset al. (2017) examined
the response of a LSB to impulsive 2-D forcing with dielectric barrier discharge actuators
and found that impulsive forcing produces a wave packet, associated with rapid shrinkage
of the bubble in both upstream and downstream directions, with properties that are in
remarkable agreement with linear stability analysis. Their results supported earlier work
(Rist & Augustin 2006; Marxen & Risk 2010) that the disturbance input results in a
global change of the pressure gradient due to mean-
ow deformation and drives the
bubble towards a more stable state.

Collectively, the prior work indicates that active control of the instabilities can pro-
vide e�ective control. Indeed, many studies have been conducted in which actuation
parameters are varied, and the performance is evaluated a posteriori (Seifertet al. 1996;
Seifert & Pack 1999; Glezeret al. 2005; Mittal & Kotapati 2006; Raju et al. 2008).
Several studies aimed at determining an optimal forcing frequency suggest forcing at the
most ampli�ed shear layer instability frequency results in signi�cant 
ow separation
mitigation (Yarusevych et al. 2006; Postl et al. 2011; Yarusevych & Kotsonis 2017;
Marxen et al. 2015). As noted above, the very goal of reducing the size of a separation
bubble by unsteady actuation means that the base state of the separated 
ow will undergo
signi�cant deformation that will alter the instability characteristics (Marxen et al. 2015).
This scenario motivates adaptive closed-loop separation control in which the dynamical
model of the separated 
ow is updated automatically as actuation is applied. .

However, adaptive closed-loop separation control introduces additional complexities
related to dynamical model derivation, objective function speci�cation, and state mea-
surement and estimation. Our previous work shows that dynamic mode decomposition
(DMD) accurately emulates the oscillatory characteristics of a separated 
ow (Hemati
et al. 2017; Deemet al. 2017). DMD was recently introduced in 
uid dynamics for iden-
tifying spatially coherent 
ow structures from a set of either experimental or simulation
snapshot observations of various 
ow quantities (Schmid 2010; Rowleyet al. 2009). In
this context, DMD provides a transition matrix that is a linear estimate of the mapping
between a current snapshot and the next snapshot in time. For the cases in which external
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forcing is acting on the dynamical system, such as with the zero-net mass-
ux (ZNMF)
actuator upstream of separation in the present work, the conventional DMD algorithm
can be modi�ed to incorporate actuation Proctor et al. (2016). The dynamic modes are
then the eigenvectors of the identi�ed linear transition matrix. Since these 
ow dynamics
are typically described well by a low-dimensional subspace, rank-reduction techniques
can be performed to express a low-order representation of the dynamics with a small set
of dynamically relevant modes (Hemati et al. 2017; Rowleyet al. 2009; Schmid 2010).

In order to leverage this capability in an adaptive, closed-loop control setting, a
new algorithm known as online DMD is employed, which e�ciently updates the linear
transition model with control provided by DMD as soon as a new state measurement is
available (Zhang et al. 2019; Deemet al. 2017, 2018). Therefore, the variations in the
dynamics are represented as a time-varying linear system. Given a su�ciently small
number of sensors, this update step can be done at a rate that is faster than the
characteristic frequencies of the 
ow, allowing for real-time dynamical system estimates.
For the current study, the measurements used to identify the discrete linear model
provided by online DMD are unsteady surface pressure snapshots taken by a linear array
of thirteen surface-mounted microphones. This rapidly adapting linear system captures
both the modal structure of the 
ow and the transient evolution of the modes as actuation
is applied or as 
ow conditions change in real time. Using the linear model provided
by online DMD, standard linear optimal control methods are shown to be viable for
autonomous control of separated 
ow.

The control approach implemented in this study consists of rapidly updating feedback
gains from a linear quadratic regulator (LQR) process as the linear system estimate
is updated by online DMD. In general, the resulting feedback control is not expected
to be optimal per se since the underlying dynamics are not linear and time invariant.
However, this is the set of optimal feedback gains for thecurrent dynamical estimate.
Due to the computational requirements to solve the discrete algebraic Riccati equation,
the LQR feedback gain update rate is slower than the online DMD update rate, but still
su�ciently faster than the characteristic 
ow frequency. The resulting response of the 
ow
to control is characterised by time-resolved PIV and unsteady pressure measurements.

The next sections provide a detailed description of the experimental apparatus and
computational methods used in this work (sections 2, 3, and 4), followed by analysis
of the baseline separated 
ow characteristics in section 5. In section 6, the response of
the separated 
ow to open-loop control using periodic burst modulation is evaluated for
varying modulation frequency and actuator momentum coe�cients to demonstrate the
receptivity of the 
ow to this actuation approach and to provide open-loop control results
to compare with the adaptive control approach. Then, the results of applying adaptive
closed-loop separation control are provided for varying actuator penalty parameters
in section 7. For comparison, control is applied using a non-adaptive o�ine-identi�ed
dynamical model. For each case, running calculations of various turbulence quantities and
pressure �elds are presented to identify the evolution of these quantities after control is
initiated, and the results are discussed. The transient evolution of natural reattachment
is evaluated by deactivating the imposed adverse pressure gradient. The turbulence and
pressure-�eld quantities for this case of natural reattachment are presented and compared
to those corresponding to reattachment by adaptive closed-loop control. Finally, to
demonstrate the robustness of this approach to varying 
ow conditions, control is applied
for varying Reynolds number.
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a) Experimental setup. b) Upstream BL pro�le.

Figure 1: a) Schematic of the 
at plate model and 
ow separation system. The location of
the surface microphones are depicted by blue markers. b) Mean velocity pro�le upstream
of the separation point extracted by PIV measurements. The Blasius laminar boundary
layer solution is plotted for reference.x=c � 0:3.

2. Experimental Setup
This experimental study utilizes the canonical separated 
ow con�guration described

in Gri�n et al. (2013), Hemati et al. (2016) and Deemet al. (2017) and is motivated
by the work of Na & Moin (1998) to remove curvature dependencies on boundary layer
separation. Here, a laminar boundary layer on a 
at plate model separates due to an
adverse pressure gradient imposed by siphoning a portion of the freestream 
ow through
the ceiling of the wind tunnel test section and reinjecting it just downstream. This
section provides details regarding the experimental design, data collection, real-time
control system, and the methods used for processing and analyzing the results.

2.1. Wind Tunnel Facility and Experimental Model

Experiments were conducted in the Florida State Flow Control (FSFC) open-return
wind tunnel facility. The FSFC wind tunnel has a 9:1 inlet contraction and a square 30.5
cm test section with a length of 61.0cm. Upstream of the contraction, 
ow conditioning
is accomplished by a honeycomb mesh and two anti-turbulence mesh screens. The
freestream turbulence intensity integrated above 4 Hz isu0=U1 = 0 :5%. The 
at plate
model used in this study spans the entire width of the test section, has chord dimension
c = 40.2 cm and thicknessw = 0 :095c. The leading edge of the plate is a 4:1 ellipse, and
the trailing edge is square. A pitot-static probe mounted upstream of the model monitors
the freestream velocity, which is maintained atU1 = 3 :9 � 0:1 m=s via a PID controller
to provide a chord Reynolds number ofRec = 105. A schematic of the plate with relevant
dimensions is shown in Figure 1-a.

A zero-net mass-
ux suction/blowing tunnel ceiling boundary condition is imposed to
induce boundary layer separation on the top surface of the 
at plate. A Mechatronics
Inc. MM28080H dc motor driven fan ingests a portion of the freestream 
uid through an
acoustically treated perforated plate segment of the test section ceiling and then injects
this 
ow back into the test section through a return duct that is similarly acoustically
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Figure 2: Photograph and schematic illustration of the ZNMF actuator (adapted from
Gri�n et al. (2013)). Dimensions are in mm.L j is the length of the actuator slot and
Wj is the width of the actuator slot. The height of the actuator ori�ce is H j = 2 mm.

treated. The ratio of the average suction/blowing velocity to that of the freestream is
0:16� 0:03.

The setup is designed to allow for the location and extent of the separation bubble
to vary by changing the location of the plate with respect to the ceiling duct. For the
current case, as discussed further below, a closed separation bubble is generated that
exhibits mean reattachment upstream of the trailing edge of the 
at plate. The spanwise
uniformity of the separation region is assessed by surface 
ow visualization and PIV. The
separation point is estimated by PIV for several spanwise locations, subject to optical
access. From these data, the variation in the separation and reattachment locations along
the central 70% of the span exhibit a maximum deviation of 3% chord.

The mean velocity pro�le upstream of the separation point is extracted from 4800 PIV
snapshots and is plotted along with the Blasius boundary layer pro�le in Figure 1-b with
a spatial resolution of �x = 0 :466 mm. The boundary layer thickness is� = 3 :7 mm,
and the shape factor is estimated asH = 2 :67 � 0:08 at x=c � 0:3. Comparing this to
H = 2 :59 for the Blasius boundary layer indicates that the boundary layer is laminar
upstream of separation and is subjected to a small favorable pressure gradient due to the
growing turbulent boundary layers on the wind tunnel walls.

2.2. Actuation

A rectangular slot, zero-net mass-
ux (ZNMF) actuator is employed to force the
separated 
ow. The ZNMF jet sequentially ingests and expels surrounding 
uid by
varying the volume of a cavity underneath the slot (Cattafesta & Sheplak 2011; Glezer
& Amitay 2002). Thus, there is zero time-average mass 
ux but a non-zero momentum

ux. The actuator ori�ce is 2 mm wide, is located upstream of the separation location at
x=c = 0 :61 (the mean baseline separation location isx=c = 0 :70), and spans the central
58% of the model. The actuator is comprised of four bimorph piezoelectric disks (APC
Inc., PZT5J, Part Number: P412013T-JB) that serve to vary the volume of the cavity
as an ac voltage is applied across the disks. The disks are mounted spanwise along the
lower surface of the cavity, and are numbered increasing from right to left (relative to the
freestream direction). The schematic of the actuator in Figure 2 shows relevant actuator
dimensions.

The disks are driven by a high frequency sine wave, modulated down to the natural
frequency range of the current separated 
ow. The choice of the high frequency carrier
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Figure 3: Velocity frequency response for driving amplitudes of 30 and 50Vpp in the slot
center above Disk 1.

frequency is discussed in the next section. The actuator output is expressed in terms of
the momentum coe�cient ( C� ), which is de�ned as

C� =
A j �v2

rms

AsepU2
1

: (2.1)

In this de�nition, A j = Wj � L j is the area of the actuator slot, and the separation
area is the baseline uncontrolled length of the mean separation region multiplied byS,
which is the span of the plate (Asep = L sep � S). The velocity across the jet ori�ce is
measured by PIV during control experiments. For the actuator PIV measurements, the
rms velocity directly adjacent to the actuator ori�ce is spatially averaged over the slot
width to quantify the velocity 
uctuations (� vrms ) through the actuator.

2.3. Actuator Characterization

Prior to conducting experiments, the output of the actuator is �rst determined when
driven by a sinusoid with various forcing frequencies and amplitudes. For characterization,
the rms velocity of the actuator is determined by constant-temperature hot-wire anemom-
etry, in which the hot-wire probe is placed at the center of the actuator slot above Disk
1. A Dantec 55P11 hot-wire probe with a wire diameter of 5� m and length of 1.25 mm is
used. The hot-wire probe is calibrated before and after the actuator characterization for a
velocity range of 0 to 30 m/s, and a fourth-order polynomial is �t to the calibration data.
The hot-wire signal is sampled at 20480 Hz with a National Instruments PXI-4462 data
acquisition card. Figure 3 shows theVRMS response from the hot-wire probe centered
above Disk 1 when driving all four disks simultaneously. The frequency is stepped by 50
Hz from 50 to 2500 Hz. This test is repeated for two input amplitudes of 30 and 50Vpp .

The hot-wire probe is then centered above the other three disks, and this test is
repeated for an input amplitude of 30 Vpp . Figure 4 provides the VRMS responses for
centering the hot-wire probe above each disk. These �gures show two distinct resonant
peaks at the Helmholtz frequency of the cavity (near 700Hz) and the diaphragm
resonance frequency (2100Hz). Noting the output of the actuator is negligible below
about 500 Hz when driven by a sinusoid, a burst-modulated (i.e., square-wave modulated)
signal is selected to augment the output at low frequencies. While the largest output
can be produced by selecting a carrier frequency close to the Helmholtz frequency, this
approach is avoided because of the large acoustic pressure 
uctuations that corrupt the
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Figure 4: Velocity frequency responses in slot center above all four disks for a driving
amplitude of 30 Vpp .

Figure 5: The spanwise variation of the rms velocity as measured by a hot-wire probe for
a 2050 Hz sine wave driving signal at 30Vpp .

unsteady surface pressure sensor measurements Gri�n (2013). Therefore, the carrier
frequency is chosen to be slightly below the diaphragm resonance frequency atf c = 2050
Hz to produce reasonable output while avoiding inevitable phase variations in diaphragm
motion associated with driving the actuators at a mechanical resonance frequency. This
choice also reduces the risk of actuator damage.

The spanwise uniformity of the actuator is addressed by traversing the hot wire along
the length of the slot while driving the actuator with a single sine wave at a frequency
of f c = 2050 Hz and amplitude of 30 Vpp . The rms velocity measured for varying span
is provided in Figure 5. The actuator output variation is within 16% for the central 84%
of the actuator slot. At the extreme edges of the actuator slot, the maximum variation
increases to 51%.

The momentum coe�cient of the ZNMF jet actuator subject to a burst modulation
drive signal, illustrated in Figure 7, is plotted for varying modulation frequencies, in
which f b is stepped by 10 Hz. The shaded region depicts the 95% con�dence intervals in
C� . For the burst modulated waveform, the carrier frequency (f c) sine wave is cycled on
and o� at the burst frequency f b. The nominal duty cycle of the modulation is set to 50%.
However, in order to prevent spectral leakage and unanticipated high-frequency content,
the duty cycle can vary slightly from this value to ensure that an integer number of carrier
cycles exists within the burst period. The forcing frequency is nondimensionalized with
respect to the baseline separation bubble length and freestream velocity as

F + =
f bL sep

U1
: (2.2)
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