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TOWARDS PREDICTIVE CONTROL WITH ATMOSPHERIC
ADAPTATION FOR MARTIAN ENTRY VEHICLES

Robert D. Halverson*, Ryleigh McGiveron†, Maziar S. Hemati‡, and
Ryan J. Caverly§

Atmospheric adaptation for Martian entry missions is a crucial aspect of guidance
and control schemes that takes into account density variations from a nominal atmo-
sphere model. This work considers the identification of a time-varying parameter
that defines the ratio between true atmospheric density with that of an approximate
model based on dispersed Mars-GRAM atmospheric data. A 3 degree-of-freedom
model is used that takes into account the important hypersonic entry coefficients, and
Monte Carlo simulations are performed to demonstrate the effect varying density
has on the entry trajectory profile. Two techniques for predictive modeling using a
least-squares estimation approach are introduced that provide static and time-varying
methods for estimating the true atmospheric density. It is found that the predictive
models provide an accurate estimate of the atmospheric density in the low portions
of the Mars atmosphere. Results presented in this paper will inform the development
of a predictive control scheme that incorporates an adaptive atmospheric model.

INTRODUCTION

This paper develops methods for real-time identification of the atmospheric model for a hyper-
sonic entry vehicle, which may be used in conjunction with predictive control in the highly uncertain
Martian atmospheric environment. Synthesizing a controller for a system operating in an uncertain
environment is challenging. It is critical to develop an accurate dynamic model to be used in offline
design and verification of guidance and control algorithms. Meanwhile, the environment in an EDL
(entry, descent, and landing) application is often stochastic, which greatly complicates the design
of guidance and control algorithms. The presence of uncertainty in the atmospheric qualities cou-
pled with the extremely low air density of the Martian atmosphere causes significant degradation in
landing precision.1

As of 2017, there were 21 total Martian landing attempts with several failing during launch or
cruise. Of the 16 that reached the planet’s sensible atmosphere, 8 were deemed successful landings
whereas the other 8 failed.2 These missions all required an autonomous guidance and control sys-
tem that was heavily reliant on an understanding of Mars’ atmospheric properties—primarily the air
density. The Martian atmosphere is not as well studied as that of the Earth’s,3 where there still exists
a heightened uncertainty regarding the qualities in a day-to-day and hour-to-hour timescale. Ensur-
ing dynamic stability and achieving precise, reliable targeted reentry is still a challenging problem
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Figure 1: Entry, descent, and landing cartoon representation. Altitudes are representative of a
nominal Martian EDL profile.

with significant room for improvement even close to home on Earth.4, 5 The low atmospheric den-
sity of the Martian atmosphere coupled with large environmental uncertainties (e.g., density, wind,
dust storms, etc.) provides a massive challenge when synthesizing a guidance and control method.

Several approaches to autonomous guidance and control for atmospheric EDL exist that aim to
deliver a precise landing. Legacy methods include either analytical or numerical predictor-corrector
algorithms for entry guidance.6 Recently, a convex predictor-corrector algorithm for entry guid-
ance was introduced that allows for flexibility in vehicle design including control inputs and vehicle
dynamics.7 Other examples that utilize convex optimization methods include minimum fuel tra-
jectory optimization via finite-dimensional second-order cone programming,8 or model predictive
control (MPC) techniques such as constrained,9 robust,10 or linear pseudospectral MPC.11 There
also exist many non-convex optimal control algorithms specific to a Mars pinpoint landing land-
ing mission.12, 13 Other recent work is specifically related to entry vehicle guidance and control
in uncertain environments.14, 15 Many of the EDL guidance & control solutions listed here focus
on improving either performance, or robustness to model uncertainty, but not both. Very few ex-
isting approaches are capable of simultaneously achieving high performance and robustness in the
presence of large amounts of environmental uncertainty.

A guidance trajectory is often developed offline using the nominal expected atmospheric density,
which is then used as a reference trajectory that is tracked by the vehicle’s control systems to lead
it towards a final desired latitude and longitude before deployment of the parachute. Entry vehicles
deploy parachutes as early as possible to provide a longer period of deceleration, however they
must reach an airspeed slow enough for the parachute to survive.16 In Mars EDL missions, this
usually takes place at an altitude of 10km. Given the limited control authority under parachute, the
deployment location should be reached as accurately and precisely as possible to set up the latter
descent and landing portions for success. See Figure 1 for a representation of the normal EDL
processes for a Martian landing.

This work aims to address one specific and important challenge in a Martian entry mission—
imprecise knowledge of the true atmospheric density, and the capability to adapt to changes from a
nominal atmospheric model. This is known as atmospheric adaptation. Previous work for Mars at-
mospheric adaptation has included using Kalman filtering online with a Convex Predictor-corrector
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Entry Guidance algorithm,17 or other Kalman filtering techniques for drag-modulated spacecraft
for Earth reentry.18 This paper is a stepping-stone towards using predictive modeling methods via
parameter identification to approach the atmospheric adaptation problem. These methods can be
expanded to be used in conjunction with a model predictive control architecture to inform an up-
dated system model in real-time for use in the predictive control policy. Further, recent work has
identified the efficacy of including atmospheric adaptation schemes online with a predictive control
policy.19 The results presented in this paper offer a step towards providing a systematic EDL con-
trol method that does not simply acknowledge uncertainty, but accounts and corrects for it while
refining an environmental model.

This paper proceeds with a description of the simulation environment developed to support this
work both in data collection and analysis. Atmospheric qualities including density, wind, dust
storms, and dispersions on important values are generated via Mars-GRAM.20 A simple system
identification technique for density error estimation is introduced through a least-squares estimation
approach, called sliding window batch estimation. This static estimate technique is expanded into
time-varying predictive modeling through a fit to linear or nonlinear basis functions. The density
error estimation results and subsequent discussion are presented, and future work to extend these
results to be used in conjunction with a predictive control policy is described.

ENTRY VEHICLE DYNAMICS

This work considers a blunt-body entry vehicle in the Martian atmosphere, similar to that used in
previous NASA missions.1, 21 Generally, these vehicles are capable of modulating their bank angle
σ ∈ R, however this work only considers the ballistic trajectory of an entry vehicle in the Martian
atmosphere to test parameter identification techniques. For this reason, the bank angle is held to
σ = 0 for all time t. The dynamics of the entry vehicle are described in a Mars-fixed Cartesian
reference frame—a parameterization that is very common in powered-descent guidance literature
given its well-posed numerical scaling.8, 22, 23 The dynamics of the entry vehicle with this state
representation are the following:17

ṙ = v,
v̇ = aL + aD + ag − 2(ω×v)− ω×(ω×r), (1)

where r and v are the position and velocity vectors in a Mars-fixed frame in m and m/s, respectively,
ω is the angular velocity of Mars in rad/s, and aL, aD, and ag are acceleration vectors due to lift,
drag, and gravity, respectively. Regarding notation, boldface letters are representative of physical
vectors resolved in the Mars-fixed Cartesian reference frame. The cross operator, (·)× : R3 →
so(3), is defined as

a× = −a×
T
=

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 ,
where aT = [a1 a2 a3] and so(3) = {S ∈ R3×3 |S + ST = 0}.

The magnitude of lift and drag accelerations are computed as

L =
1

2m
ρACL||vrel||2, (2)

D =
1

2m
ρACD||vrel||2, (3)
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Figure 2: Relation of density and altitude forN = 3000 Monte Carlo runs from Mars-GRAM, both
(a) density and (b) density error vs. altitude.

where m is the mass of the entry vehicle in kg, ρ is the atmospheric density in kg/m3, A is the entry
vehicle reference area in m2, and vrel = v + w is the relative velocity of the vehicle to the wind
where w is the wind vector expressed in the Mars-fixed frame. The hypersonic coefficients CL and
CD are evaluated through the Newtonian flow theory for a blunted body. Given a constant angle
of attack, these coefficients will be constant. More details on these expressions can be found in
Ref. 17.

The direction of the drag acceleration is opposite that of the relative velocity, expressed as:

aD = −D vrel

||vrel||
.

Lift acceleration depends greatly on the bank angle σ, which becomes simplified via the assumption
of zero bank angle. Aerodynamic basis vectors, ê1 ∈ R3 and ê2 ∈ R3, are constructed via the
following:

ê1 =
r×vrel

||r×vrel||
,

ê2 =
v×relê1

||v×relê1||
,

which are used to solve for the direction of the lift acceleration as

aL = Lê2.

Acceleration due to gravity (ag) is calculated using the gravitysphericalharmonic.m
function in MATLAB, which utilizes the Mars GMM2B model.24 An order of 2 is used in cal-
culating the gravitational potential function, which captures the nominal gravitational acceleration
assuming a homogeneous central body plus one term in spherical harmonics (such as the J2 per-
turbation and other associated higher order terms).25 A higher gravitational order may be used for
high-fidelity simulations in order to capture a more accurate gravitational environment.

4



Figure 3: Relation of wind velocity and altitude between 10km and 125km for N = 3000 Monte
Carlo runs via Mars-GRAM. Sub-figures show East and North wind velocity components.

Atmosphere Modeling and Dispersions

The Martian atmosphere is modeled via Mars-GRAM20 to provide values of the atmospheric den-
sity ρ and the wind vector w, which are known to be highly uncertain. To visualize this uncertainty,
data from an N = 3000 Monte Carlo simulation are shown in Figure 2 and Figure 3. Mars-GRAM
is sampled at altitudes ranging from 10 km to 125 km to provide a discrete density and wind lookup
table with a spacing of 0.1 km. To recover a continuous data set for integration, a spline fit was used
for density, East wind, and North wind. Table 1 shows the important nominal values and dispersions
for the Mars-GRAM atmospheric simulations.

Parameter Value Parameter Value
Initial Altitude 125 km NR1 1234
Final Altitude 10 km INTENS 0.0

Latitude, Longitude 0◦, 0◦ zoffset 0 km
Date 6 August 2012 wlscale 10.0
Time 17:30:00 rpscale 2.0

Table 1: MarsGRAM parameter values

Figure 2 demonstrates the importance of taking into account density variance from an empirical
standpoint. It is clear that the density greatly varies at the lower altitudes, however, at higher alti-
tudes, the percent error is the greatest. The wind variation is also large, however this acts as a minor
disturbance as the maximum expected wind velocity has a magnitude of ||w||2 < 150 m/s, while the
nominal entry velocity magnitude is ||v||2 > 5500 m/s. Thus, wind is not as important of a driver
in the perturbations off of a nominal entry profile as density.

Monte Carlo Entry Simulations

In order to show the effect that uncertainty on the air density and wind velocity vectors has on the
nominal entry trajectory, several (N = 1000) Monte Carlo entry simulations are performed using
the dynamics in Eq. (1). These results are displayed in Figure 4. Each simulation includes the same
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(a) Complete Trajectory (b) Zoomed Trajectory

Figure 4: Entry trajectories from N = 1000 Monte Carlo simulations, where only atmospheric
density and wind velocity vectors were dispersed according to Mars-GRAM.

exact initial conditions and entry vehicle parameters, only varying the atmospheric density and wind
velocity vectors from their respective nominals along the entry profile.

Each simulation begins at 125 km in altitude and 0◦ Latitude and Longitude, facing due East
along the equator. An initial, constant flight path angle was defined as γ = −15.5◦ with an ini-
tial entry velocity of 5.85 km/s. This is chosen from the Mars Science Laboratory (MSL) entry
conditions.21 A constant entry angle of attack of α = −9◦ was also chosen to provide an entry
profile that is similar to historic flight trajectories.16 Normally the angle of attack is allowed (and
sometimes required) to change, however this work only considers the ballistic trajectory under no
control authority, and a constant angle of attack was deemed sufficient.

These Monte Carlo simulations display the importance of taking into account atmospheric de-
viations from the nominal. Given only dispersions on density and wind velocity vector per Mars-
GRAM, the standard deviation of downrange final positions at an altitude of 10 km is 3.93 km off of
a mean of 630.23 km for 1000 Monte Carlo runs of a ballistic trajectory simulation. This motivates
the requirement for atmospheric adaptation in guidance and control algorithms to estimate the true
atmospheric density in real time and account for it accordingly.

ATMOSPHERIC ADAPTATION

The proposed atmospheric adaptation algorithms aim to identify the time-varying parameter, kρ,
which is the ratio between the observed and nominal atmospheric density. Specifically, this param-
eter is defined as

kρ =
ρobserved

ρnominal
,

where kρ is a dimensionless parameter that can be used to replace ρ in Equations (2) and (3) such
that ρ = kρρnominal. In this case, ρnominal is the mean density at each altitude as defined by Mars-
GRAM, which is commonly used as the nominal density profile for design of the initial guidance
trajectory for a Mars entry mission.
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The scaling parameter is used for atmospheric adaptation rather than directly identifying the
true density, as the latter spans several orders of magnitude throughout the entry profile. Using kρ
as a scaling on the nominal density allows for better numerical conditioning in the least-squares
estimation approaches outlined in this section, as well as for future work that could include Kalman
filtering techniques. Furthermore, much of the existing relevant atmospheric adaptation literature
aims to identify this parameter rather than the true density for the same reasons as defined here.17, 18

Two atmospheric adaptation algorithms are proposed. One is a ‘static’ estimate such that previous
data is used to back out an estimate of the parameter kρ at the current time. This estimate could
then be propagated forward and assumed constant for some time to provide a predictive model.
The second algorithm makes use of basis functions that are a function of altitude, which could be
propagated forward over some prediction horizon to provide a time-varying estimate. Ultimately,
each algorithm is expected to support predictive control by giving an accurate estimate of the air
density relative to the nominal.

Sliding Window Batch Estimation

This method for parameter estimation is rather intuitive—we use the known system dynamics to
estimate kρ through algebraic manipulation of the equations of motion. This is especially useful
if all other parameters are known to a high degree of accuracy, and if measurements of position,
velocity, and acceleration are available. We return to the equations of motion in Equation (1),
expanded to show the aerodynamic acceleration components:

v̇ =
1

2m
ρACL||vrel||2ê2 −

1

2m
ρACD||vrel||vrel + ag − 2(ω × v)− ω × (ω × r),

where ρ = kρρnominal is the actual atmospheric density. From here, we project the dynamic equa-
tions in the direction of the velocity vector and split the equation into parts that do and do not
depend on kρ (i.e., aerodynamic accelerations multiplied by kρ, and all other accelerations). After
some algebraic manipulation, the problem is written in the form Akρ = b, such that

vTk
[
CL||vrel,k||2ê2,k − CD||vrel,k||vrel,k

] 1

2m
ρnomA︸ ︷︷ ︸

ak

kρ

= vTk [v̇k − ag,k − 2(ω × vk)− ω × (ω × rk)]︸ ︷︷ ︸
bk

. (4)

This form is extremely useful for the simple parameter estimation problem, and allows for flexibility
in choosing the number of data points (n) one would like to use. Here, n defines the ‘bin size,’ where
a complete bin is defined as A = [a1 a2 · · · an]

T and similarly b = [b1 b2 · · · bn]
T. If n = 1,

the solution is simply solved as kρ = b
A . If n ≥ 2, the pseudo-inverse is used, such that

kρ = A+b = (ATA)−1ATb,

where A and b contain consecutive data points as defined above. If there is no measurement noise
and all parameters are known perfectly, this method will perfectly estimate the current kρ using a bin
size n = 1. Should more time steps be used, kρ will be a sliding average estimate using several data
points (hence ‘Sliding Window’). Using too large of a bin size, however, will cause the estimate to
lose some fidelity by being unable to capture smaller, faster variations in kρ.
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Figure 5: Sliding window batch estimation of density scaling parameter over the entire entry tra-
jectory. The ratio between the estimated and nominal densities, kρ, is shown alongside the true
values. Sliding window batch estimation is used with n = 10 time steps. Error due to simulated
measurement noise greatly affects the estimation at higher altitudes where the density is very low.

If uncertainty is present in measurements or other vehicle parameters, a bin size of n = 1 would
only capture the noisy measurements, and will be minimally useful. It is expected that as n in-
creases, the closer the estimate of kρ will be to the true value, however with diminishing returns.
This is same as the case with perfect measurements, where too large of a bin size will cause this
parameter estimation technique to be unable to capture smaller changes in atmospheric density from
the nominal. This indicates there is a trade-off with noise and losing fidelity/accuracy in estimat-
ing kρ, where the sensor qualities, guidance/control update frequency, and mission profile specifics
would need to be considered in a selection of the bin size. Ultimately, using more data points will
allow for a smoothing of the measurement noise.

In order to test the parameter identification algorithm outlined above, noise is added to the posi-
tion, velocity, and acceleration vectors. Each state is appended with noise at each time step using
a multivariate Gaussian distribution with a specified mean and covariance. The standard deviations
include 100 m on position components, 10 m/s on velocity components, and 0.05 m/s2 on the accel-
eration components. Further, all results herein use the same dispersed density profile from a single
Monte Carlo run in Figure 2.

A bin size of n = 10 is used to demonstrate the sliding window batch estimation technique
over the entire entry profile. Each timestep has length ∆t = 0.1 seconds. Results are shown in
Figure 5. It is clear that this estimation technique did not perform well at altitudes over roughly
80 km, although atmospheric adaptation for guidance and control algorithms usually does not begin
until under 60 km, where the vehicle has greater control authority in the more dense portions of the
atmosphere.17

A closer view on this parameter identification technique is shown in Figure 6, where three differ-
ent bin sizes are used and compared between altitudes of 10 km and 60 km. It is seen that a bin size
of n = 1 often gives a very noisy result, primarily driven by the measurement noise at the single
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(a) n = 1 time step
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(b) n = 10 time steps
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(c) n = 30 time steps
Figure 6: Sliding window batch density estimation during entry where the ratio between the esti-

mated and nominal densities, kρ, is shown alongside the true values with (a) 1, (b) 10, and (c) 30
time steps. Only the latter portion (< 60km) of the trajectory is shown.

time step. A bin size n = 30 is able to smooth out this noisy result, however it tends to lag in its
estimation and cannot capture all of the fast changes in kρ. A bin size n = 10 seems to incorporate
the best qualities for small and large bin sizes, where noise in the estimated kρ is minimized while
also capturing the abrupt changes across altitude variations.

This technique is strongly capable of estimating accurate values of kρ at a specific point in time.
This estimate could be propagated forwards as a constant value across some prediction horizon and
still be beneficial at some points (e.g., at altitudes of 35–45 km), but otherwise the trend can widely
vary. The sliding window batch estimate could severely limit capabilities to predict future trends
given the simplicity of the static least-squares estimation approach.

Predictive Dual-Horizon Adaptation

A static estimate of the current scaling of true to nominal density is useful, however as one
aims to predict future trends of kρ, more sophisticated methods could be used to fit available data.
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Ultimately, a predictive modeling approach should be used through fitting previous data to certain
basis functions, which are to be propagated forwards in time. This leads to the proposed method
of predictive dual-horizon adaptation (PDHA). PDHA employs a simple and intuitive predictive
modeling approach for atmospheric adaptation. It is capable of collecting data from n timesteps in
the past, and propagate the expected kρ forwards m timesteps in the future (hence ‘dual-horizon’).

PDHA uses the same datasets as the sliding window batch estimation technique as defined in
Equation (4). However, the purpose is now to solve for the ‘best’ coefficients in a least-squares
sense for nonlinear basis functions that fit the trend of kρ in the given dataset. These basis functions
then can be given a set of altitudes expected in the future to be used to effectively update the model
available to a predictive control policy.

This method takes the form
AdiagΨ(h)Ξ = b,

where Adiag ∈ Rn×n is the data from the left-hand side of Equation (4), diagonalized, and b ∈ Rn

is defined by the right-hand side of Equation (4). The matrix Ξ = [ξ1 ξ2 . . . ξp]
T contains the

coefficients to be fit to the basis functions defined in Ψ(h) ∈ Rn×p. Specifically, Ψ(h) contains
the desired basis functions evaluated at the height corresponding to the data in A and b, where
ΨT =

[
ψ̂T(h1) ψ̂

T(h2) . . . ψ̂T(hn)
]
. This can be used to solve for the coefficients of the basis

functions in a least-squares sense such that

Ξ =
(
AdiagΨ(h)

)+ b, (5)

where again the pseudo-inverse is used to solve the non-square inverse operation. The solution of
Equation (5) provides the coefficients for basis functions—thus, a predictive model of the expected
air density deviation from the nominal is supplied through the solution of kρ(h) = ψ̂(h)Ξ.

This technique is applied to a few different snapshots of the same entry trajectory and density
profile as the sliding window batch estimator. In these examples, PDHA is tasked to fit to the previ-
ous n = 50 timesteps and propagate forwards m = 50 timesteps into the future. Each case herein
includes the same noise on the kinematic vectors as used in the sliding window batch estimation.
First, a linear fit is used such that ψ̂lin = [1 hi] where i denotes the height at each timestep in the
calculation. Figure 7 shows two examples of linear-fit snapshots. Figure 7a shows a case where
the propagated linear fit matches well with the actual kρ, and figure 7b shows a case where the
propagated linear fit diverges significantly after the measurement point. This result provides inter-
esting insight into the simple linear fit case, where there may be certain altitude bands within the
atmosphere where the trend in kρ is roughly linear, and other areas where such a linear fit is a poor
estimate.

Next, a quadratic fit is used such that ψ̂quad =
[
1 hi h

2
i

]
. Figure 8 shows two examples of

quadratic-fit snapshots, where again Figure 8a shows a good match of kρ with the propagated
quadratic fit and Figure 8b shows a case where the propagated quadratic fit diverges significantly
over the prediction horizon. A cubic fit could be used, however this omitted in this work so as to
avoid issues that arise with over-fitting. Regardless, the basis function matrix Ψ(h) would take the
same form, i.e., a cubic fit would be defined as ψ̂cubic =

[
1 hi h

2
i h3i

]
.

The results from snapshots of the proposed PDHA approach to predictive modeling are promis-
ing. Ultimately, it is expected that an estimate of kρ will be most useful in atmospheric adaptation
when it is close to the true value. However, when the prediction is far away from the true kρ, the
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(b) Poor linear fit
Figure 7: Two examples of a PDHA approach using linear basis functions, with 50 timesteps of

data propagated 50 timesteps forwards. The horizontal dashed line defines the current point in time
(i.e., above the line is data that is fitted and below is propagated forwards).
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(b) Poor quadratic fit
Figure 8: Two examples of a PDHA approach using quadratic basis functions, with 50 timesteps of
data propagated 50 timesteps forwards. The horizontal dashed line defines the current point in time
(i.e., above the line is data that is fitted and below is propagated forwards).

use of this prediction could actually hinder the performance of a predictive control approach. This
effect is exacerbated in the worst-case when the predicted kρ is greater than 1, but the true kρ is less
than 1.

PREDICTIVE MODELING ERROR ANALYSIS

This section takes a deeper dive into the prediction error uncovered when using sliding window
batch estimation or PDHA with different basis functions throughout the latter portion of the entry
trajectory. Figure 9 shows the error in kρ relative to the true value for a constant propagation,
and linear and quadratic fits for PDHA over the portion of the entry trajectory after 60 km. The
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Figure 9: Error in kρ estimate relative to the true kρ for (a) constant propagation from the sliding

window batch estimation, (b) a linear fit using PDHA, and (c) a quadratic fit using PDHA.

values plotted are defined as kρ,err = kρ,estimated − kρ,actual. A timestep of ∆t = 0.1 seconds is
used. Each fit uses 50 timesteps from the past to predict the value of kρ 50 timesteps in the future
(i.e., n = m = 50, or 5 seconds). In practice, this computation would likely be repeated each
timestep, however for the sake of clarity in the results presented, the propagated error is shown each
50 timesteps as repeated snapshots of the prediction.

Results from Figure 9 offer some insight into the quality of fit for each proposed method. How-
ever, a pure error presented in this way does not offer a full explanation of the predictive quality of
this estimate. It is important to take into account the direction in which the kρ scaling takes the new
density estimate. Should the estimated kρ scale the nominal density in the wrong direction (e.g., the
estimate gives kρ = 0.8 while the true value is kρ = 1.1), the atmospheric adaptation would hinder
the quality of the prediction compared to simply using the nominal air density.

A quantity to be used for investigating this sort of sign error is defined as Qρ = kρ − 1, such
that the magnitude and direction of error due to each predictive modeling technique can be better
understood. Results showing Qρ versus altitude from the constant fit propagation via the sliding
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Figure 10: Qρ vs altitude of a 50-timestep fit for (a) constant propagation from the sliding window

batch estimation, (b) a linear fit using PDHA, and (c) a quadratic fit using PDHA

window batch estimation and PDHA using linear propagation and quadratic propagation can be
found in Figure 10. This figure uses the same propagation techniques as used to generate data in
Figure 9. Finally, the results for Qρ using each of these techniques with a batch of 100 timesteps
used to predict kρ 50 timesteps in the future (i.e., n = 100 and m = 50) are shown in Figure 11.

Discussion

The implementation of the sliding window batch estimator performed extremely well with re-
gards to a static estimate through carefully-selected bin lengths, as seen in Figure 6. The primary
limitation of using this technique on a time-varying parameter with noisy data can clearly be miti-
gated through the use of the proper number of time steps. When this static estimate is propagated
forwards in the future, however, the fit may often suffer great errors. This error is attempted to be
mitigated through the use of time-varying basis functions in the PDHA methodology. The linear
fit and subsequent propagation seems to perform extremely well in the lower regime (< 30 km) of
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Figure 11: Qρ vs altitude of a 100-timestep fit for (a) constant propagation from the sliding window
batch estimation, (b) a linear fit using PDHA, and (c) a quadratic fit using PDHA

the atmosphere, however the fit in upper portions of the atmosphere tends to diverge quickly from
the true values of kρ. Finally, the quadratic fit sees similar divergence across most altitudes. This is
likely due to over-fitting of a limited amount of data and too-far of a forward propagation, however
this effect is significantly mitigated with a bin length of 100 timesteps used to fit.

The results in Figures 10 and 11 seem to imply that atmospheric adaptation using the predictive
modeling techniques proposed in this work only perform well for a small fraction of the entry
trajectory (altitudes < 30 km). While these approaches may only seem reasonable for the lower
portions of the atmosphere, this only tells part of the story. It is important to take into account the
time spent at different altitudes. As seen in Figure 1, the entry vehicle spends a significant portion
of the downrange trajectory within 25-15 km. This is also seen clearly in Figures 10 and 11, where
the updates to the propagated estimate are farther apart in upper portions of the entry trajectory,
even though the timestep length remains constant.

A supplemental result showing Qρ versus time since entry interface is shown in Figure 12. For
brevity, an example of only the linear propagated fit is shown, which is fit to n = 50 timesteps and
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Figure 12: Qρ vs time since entry interface of a 50-timestep fit for a linear fit using PDHA

a forward propagation of the same m = 50 timesteps. In this figure, it is clear that the PDHA
technique offers a great estimate of kρ over a large portion of the atmospheric entry. Specifi-
cally, the linear-fit predictive modeling gives accurate, time-varying estimates of kρ over the last
≈ 2 & 1/2 minutes of the entire 4-minute entry trajectory, in the portion of the atmosphere where
air density is the greatest throughout the entry trajectory where bank-angle control is most effective.

These results support the use of sliding window batch estimation and time-varying predictive
modeling via the PDHA methods for atmospheric adaptation in online guidance generation and
predictive control algorithms. The predicted models could update the model used in a predictive
control policy in real time according to the experienced environment. An understanding of current
density compared to the nominal ρ (used to develop the initial guidance trajectory) will likely lead
to improved performance in precision entry guidance control.

CONCLUSIONS

This work presents two intuitive methods for estimating the time-varying parameter that defines
the ratio of observed atmospheric density to a nominal model. A Martian entry simulation was
developed to gather perturbed density data and provide a time-history of entry trajectories. Monte
Carlo results for different density vs. altitude and entry trajectory profiles were provided. A slid-
ing window batch estimation technique was introduced that uses the entry equations of motion to
identify a static estimate of kρ, and a method for predictive dual-horizon adaptation was introduced
to provide a predictive estimate of air density. Results implied great potential for using forward
propagation and predictive modeling for the use in a predictive control approach in entry guidance
and control using atmospheric adaptation.

The techniques described in this work will be expanded through use of more sophisticated pre-
dictive modeling and system identification techniques. Further, the use of Kalman filtering will be
implemented in conjunction with the predictive modeling methods introduced here, to more explic-
itly take into account measurement noise. These atmospheric adaptation methods will be applied to
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entry guidance and control problems using model predictive control in order to update the environ-
ment model available to the control policy.
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