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It is well established that ying aircraft in formation can lead to improved aerodynamic
e�ciency. However, successfully doing so is predicated on having knowledge of the lead
aircraft’s wake position. Here, we develop a wake sensing strategy to estimate the wake
position and strength in a two-aircraft formation. The wake estimator synthesizes wing-
distributed pressure measurements, taken on the trailing aircraft, by making use of an
augmented lifting line model in conjunction with both Kalman-type and particle �lters.
The various estimation algorithms are tested in a vortex-lattice simulation environment,
thus enabling the e�ects of modeling error to be analyzed. It is found that biases in the
position estimates no longer arise if a particle �lter is used in place of the Kalman-type
�lters. Filter divergence is observed when the relative aircraft separations are held �xed.
This divergent behavior can be alleviated with the introduction of relative aircraft motions,
for example in the form of a cross-track dither signal.

Nomenclature

� Angle of attack
�l=0 Two-dimensional zero-lift angle of attack
�v Measurement noise standard deviation
�w Process noise standard deviation
�Cp Spanwise di�erential pressure coe�cient
� Lifting surface strength
�o Wake vortex strength

x Roll rate

y Pitch rate
b Wake vortex separation distance
~b Wingspan
c Chord length
kcal Calibration Vector
mo Two-dimensional lift-curve slope
vk Measurement noise vector, N (0; Vk)
wo Wake-induced upwash
wk Process noise vector, N (0;Wk)
x State vector
yo Wake lateral coordinate
z Measurement vector
zo Wake vertical coordinate
H Measurement Jacobian matrix
KL Airfoil constant, 1

2cmo

Mk Estimation covariance matrix
Vy Lateral velocity component
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Vz Vertical velocity component

I. Introduction

Flying aircraft in formation can lead to signi�cant fuel savings due to the reduction in induced drag
realized by the trailing aircraft. This method of drag reduction is contingent upon having the trailing
aircraft positioned properly within the upwash-�eld of the lead aircraft’s wake. The reduction in induced
drag arising from ying aircraft in formation is, to �rst order, attributed to the rotation of the resultant
force vector arising from the presence of the upwash-�eld associated with the lead aircraft’s wake.1,7 As
depicted in Figure 1, the induced angle of attack due to the lead aircraft’s upwash-�eld leads to a decrease
in induced drag (i.e. �D points in the direction of motion) and a small increase in lift. Many numerical and
experimental studies have veri�ed this reduction in drag.1,2, 7, 10

Figure 1: The upwash from the lead aircraft’s wake leads to a rotation of the resultant force on the trailing
aircraft. To �rst order, this rotation is responsible for the decrease in induced drag realized by ying in
formation.1,7 Baseline forces are drawn in black, induced e�ects are drawn in red, and formation forces are
drawn in blue.

In considering autonomous formation ight, most studies have relied upon relative aircraft position mea-
surements and previously acquired aerodynamic bene�t maps, based on relative aircraft position. These
approaches can operate reasonably well under ideal circumstances without subjugation to atmospheric dis-
turbances and aircraft maneuvers, but they are not robust under more realistic circumstances. Surely,
constructing the aerodynamic bene�t maps is more useful if they are referenced relative to the wake po-
sition. The reason approaches have not relied on this framework lies in the fact that, to date, no reliable
methods for wake estimation and sensing exist.

The technical objective of wake sensing is to obtain reliable estimates of the wake location based on
measurements taken from a suite of on-board sensors. The ultimate goal is to rely solely upon pre-existing
instrumentation; however, such a solution may not be physically possible. In the current development,
wing-distributed pressure sensors are used to extract the lead aircraft’s wake parameters. Since the wake’s
upwash-�eld is inherently distributed, the lead aircraft’s wake leaves an aerodynamic signature across the
trailing aircraft’s lifting surfaces. By assimilating measurements from wing-distributed sensors, the wake
signature can be used to back-out the wake location and other parameters of interest. The added advantage
of such an approach is its ability to provide basic insights into the role of the fundamental wake nonlinearity
associated with the upwash-�eld in the context of wake estimation. The wake estimation algorithm developed
here makes use of simple, but rich, aerodynamic models to reveal the fundamental aspects of the wake sensing
problem. We �nd that nonlinearities associated with the wake’s inuence on the trailing aircraft lead to
degraded �lter performance, under certain circumstances. Adopting more sophisticated nonlinear �ltering
paradigms and introducing aircraft dynamics helps mitigate some of these issues. The present work marks
the �rst time, to the authors’ knowledge, that distributed aerodynamic measurements have been synthesized
to successfully determine the wake parameters of a lead aircraft during formation ight.

The design of the wake estimation algorithm is developed in Section II, beginning with aerodynamic
modeling then followed by model integration with nonlinear estimation schemes. In Section III, we present
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the resulting performance of several variations of the algorithm on formation ying aircraft con�gurations
simulated by a vortex lattice method. Conclusions and future directions are discussed in Section IV.

II. Estimator Design

In designing a reliable wake estimation strategy, a representation of the wake’s inuence on the trailing
aircraft must be considered. This representation will rely upon a model for the lead aircraft and its wake,
as well as a model for the trailing aircraft’s aerodynamic response due to the presence of this wake. The
development of these models relies heavily on simple vortex entities such as line vortices and horseshoe
vortices, which can be reviewed by the unfamiliar reader in Moran (1984) and Katz & Plotkin (2001). Upon
constructing a su�ciently realistic representation of the wake-aircraft interaction, standard Kalman-type
and particle �ltering approaches from nonlinear �ltering theory are invoked to de�ne a suitable estimation
algorithm.

In the current section, we begin by introducing a model for the lead aircraft and its wake in Section II.A.
Next, in Section II.B, we introduce a lifting line representation for the trailing aircraft in the presence of
the lead aircraft’s wake. With a model for the aerodynamic response established, we integrate our model
within the framework of various nonlinear estimation schemes in Section II.C. We consider Kalman-type
�ltering methods in addition to the particle �lter. The various details of the wake estimation algorithms are
discussed in the ensuing subsections.

II.A. Lead Aircraft and Wake Representation

The longitudinal separations experienced during formation ight missions are large enough to allow the wake
to roll-up completely, thus making a horseshoe vortex model a reasonable representation of the lead aircraft
and its wake. This can be further simpli�ed by neglecting the inuence of the bound vortex at large distances.
In doing so, the semi-in�nite horseshoe legs necessarily become in�nite line vortices, with strength (�o) and
separation distance (b) dictated by the lead aircraft’s weight and geometry, respectively. The expression for
the upwash-�eld associated with this vortex wake can be obtained by linearly superposing the upwash-�eld
associated with each in�nite line vortex individually,

wo(y; �o; yo; zo; b) =
�o(y � yo + b

2 )

2�[z2
o + (y � yo + b

2 )2]
�

�o(y � yo � b
2 )

2�[z2
o + (y � yo � b

2 )2]
: (1)

This nonlinear expression represents the wake’s direct inuence on the upwash-�eld as a function of the
wake parameters �o, yo, zo, and b (schematically de�ned in Figure 2). As will be seen, this nonlinear form
is the fundamental nonlinearity associated with wake estimation.

(a) Lead Aircraft Upwash-Field (b) Wake Vortex Coordinate System

Figure 2: (a) The upwash-�eld attributed to the lead aircraft is equivalent to that of a horseshoe vortex. (b)
The wake vortex system (blue) is de�ned with respect to the center of the trailing aircraft (gray). This wake
leaves an aerodynamic signature on the lifting surfaces of the trailing aircraft (red) in the form of measurable
quantities, such as distributions of di�erential pressure �Cp(y) or angle of attack �(y).
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II.B. Trailing Aircraft Representation

With the lead aircraft’s wake model established, it is now necessary to develop a mapping from the wake
parameters to the trailing aircraft’s aerodynamic response to the wake. This mapping is required for the
estimation procedure and, ideally, will be of low computational cost. The physics of the problem lends itself
to a classical lifting line approach, since we are only interested in studying slow time-scale (i.e. quasi-steady)
maneuvers. The lifting line model also has the advantage of being able to capture distributed aerodynamic
quantities through only a small number of Fourier modes, thus keeping the dimensionality of our model
small enough for real-time implementation in the future. Here, we augment the classical model with Eq. (1)
to accommodate the presence of a nearby wake.

Classical lifting line theory represents the vorticity of the wing and its associated wake by a spanwise
distribution of horseshoe vortices. The lifting line integro-di�erential equations are then solved to determine
the strength distribution along the lifting line. This strength distribution can then be used to compute other
quantities of aerodynamic interest. The classical form of the lifting line equation is6

�(y) =
1

2
U1c(y)mo(y)

"
�� �l=0(y)� 1

4�U1

I ~b=2

�~b=2

d�=d�

y � �
d�

#
; (2)

with the boundary conditions,
�(�~b=2) = �(~b=2) = 0: (3)

Eqs. (2) and (3) are only valid for a wing in free-space undergoing steady trimmed ight. If we wish to
consider quasi-steady maneuvers in the presence of wake vortices, we must expand upon the expression above
by introducing additional terms to the upwash distribution along the wing’s span. For example, any vertical
translational velocity Vz will introduce a uniformly distributed downwash along the span. Additionally,
rolling maneuvers (i.e. rotations about the body-�xed x-axis) will induce a downwash proportional to the
distance from the center of rotation 
xy). Here we assume the center of rotation is located at the mid-span
of the wing (i.e. yC:G: = 0). Finally, pitching maneuvers (i.e. rotations about the body-�xed y-axis) will
introduce a downwash proportional to the di�erence in position between the wing’s center of gravity and
the quarter-chord point 
y(c1=4(y) � xC:G:). For our purposes, we will assume c1=4 � xC:G: is negligible,
thus we will ignore this term. This assumption is also consistent with that of small sweep angles, which is
inherent in the use of lifting-line theory in the �rst place. We �nally include a term wo(y; �o; yo; zo), which
represents the upwash distribution associated with the presence of a �nite set of line vortices to account for
the presence of the wake.

Figure 3: The augmented lifting line model is constructed via the standard lifting line vortex system (purple)
with wake contributions resulting from a representative line vortex system (blue).

The �nal form of our generalized lifting-line integro-di�erential equation becomes,

�(y) = KL(y)

"
U1 [�(y)� �l=0(y)]� Vz � 
xy + wo(y; �o; yo; zo)� 1

4�

I ~b=2

�~b=2

d�=d�

y � �
d�

#
(4)

where KL(y) := 1
2c(y)mo(y), with the boundary conditions,

�(�~b=2) = �(~b=2) = 0: (5)
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The coe�cient KL(y) can be replaced with a calibration coe�cient, Kcal(y), to allow for better predictions
based on empirical data. Such a calibration allows the lifting line model to be used to predict �(y) and
associated aerodynamic quantities across the lifting surface of interest on an aircraft with multiple lifting
surfaces. Further discussion of the calibration procedure is presented in Section II.C.5.

In the approach taken here, Equations (4) and (5) are solved by the collocation method.6 Once this
integro-di�erential equation is solved for the �(y) distribution, many other terms of interest easily follow.
For example, it can be shown that for a at plate the distribution of di�erential pressure coe�cient will take
the form

�Cp(x; y) = �4
�(y)

�U1c(y)

�
c(y)

x
� 1

�1=2

: (6)

II.C. Wake Estimation Algorithm

Having developed the necessary aerodynamic models, a viable estimation strategy based on various nonlinear
estimation approaches can be developed. We �rst consider the class of Kalman-type algorithms due to their
computational simplicity and ability to handle process and measurement uncertainty. A second class of
estimators, utilizing particle �lters, is also implemented to better handle the nonlinearities associated with
the wake. All of the wake estimators developed in this work follow the same underlying approach (i.e.
synthesizing distributed aerodynamic measurements with the aid of our augmented lifting line model), but
do so by means of di�erent nonlinear stochastic estimation algorithms.

Each of the following sections highlights an important aspect of the overall wake estimation strategy.
We begin by de�ning the state and measurement vectors in Section II.C.1, followed by discussion of the
associated measurement and process noise in Section II.C.2. Some necessary details related to Kalman-
type and particle �lters are presented in Sections II.C.3 and II.C.4, respectively. Further reading for the
unfamiliar reading is cited in the respective sections of the two classes of algorithms. Regardless of the
speci�c algorithm employed, we must perform an out-of-formation calibration prior to operating the wake
estimator. Discussion of this process is presented in Section II.C.5. Finally, we discuss the speci�c aircraft
dynamics considered in Section II.C.6.

II.C.1. States and Measurements

For the current discussion, we decide upon the following de�nitions,

x :=

264 �o

yo

zo

375 2 R3 and z :=

266666664

�Cp1

...

�Cpi

...

�CpM

377777775
2 RM : (7)

Here, the states to be estimated are those associated with the relevant vortex parameters (see Figures 2 and
3)

1. The strength of the pair, �o, and

2. The lateral and vertical positions of the wake origin (i.e. the center of the vortex pair) relative to the
aircraft’s body-�xed coordinate system, (yo; zo).

Though we are mainly concerned with estimating the relative position of the wake, the associated vortex
strength is an additional, but necessary, parameter to be estimated. Future investigations may consider
other wake parameters, such as relative yaw angle and vortex spacing, as well.

In the current implementation, we choose to use the spanwise di�erential pressure distribution as the
measurement. The reason for this choice lies in simplifying the estimator’s development process. Since
the �(y) distribution solved for within the lifting line model is directly related to �Cp(y) via equation (6),
we have chosen the di�erential pressure distribution as the measurement within the current framework.
Other measurements, such as angle of attack distribution, may also have merit. More importantly, the
current algorithms are not restricted to distributed measurements alone; however, the use of distributed
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measurements allows valuable insights to be gained, so it is useful to consider such approaches �rst. If
estimators relying upon distributed measurements lack in performance, then relying upon measurements
of integrals over these distributions (i.e. lumped quantities, such as forces and moments) will be even
more lacking. Although the ultimate hope is to rely exclusively upon existing on-board instrumentation for
measurement data, validation under the distributed measurement framework must come �rst.

II.C.2. Measurement and Process Noise

We wish to design a wake estimator that is robust to both measurement and process noise. As such, we
must model such e�ects within our estimator. The Kalman-type and particle �ltering algorithms already
take such e�ects into account. In our development, the process noise is currently only accounted for through
the process covariance matrix, Wk 2 R3�3. No additive process noise is explicitly added within the system
model. In an e�ort to keep the �lter open, we always set Wk > 0. Since there is no process noise explicitly
introduced within the simulation framework, Wk can be considered as a tuning parameter to be used in
conditioning the �lter for better performance.

Unlike the process noise, the measurement noise is explicitly introduced within the simulation. That
is, the inputted measurement is assumed to have a white-noise signal, vk � N (0; Vk), added to it. Here,
we assume the measurement has a \true" covariance of V true

k 2 RM�M when introducing noise to the
measurement; however, within the �ltering framework, we treat Vk as a tuning parameter. As such, Vk as
de�ned within the context of the �lter is not necessarily equal to V true

k , and can be used to tune the �lter.
We �nally assume that our initial estimate for the vortex parameters is x̂o � N (�xo;Mo). Again, the true

estimate may have an initial covariance M true
o 2 R3�3, but we choose to treat Mo only as a tuning parameter

within the context of the �lter. That is, we assume that any modeling error can be accounted for with a
suitable choice of Mo in the �lter initialization.

II.C.3. Kalman-Type Filtering: Measurement Function Linearization

Kalman-type �lters are one class of nonlinear estimation algorithm in this study. In the interest of brevity,
familiarity with Kalman-type �ltering is assumed. The reader is referred to Jazwinski (2007) and Speyer
& Chung (2008) for further details regarding such algorithms. In the present section, we only discuss
computation of the measurement Jacobian matrix, H, which is required by Kalman-type �ltering algorithms.
For the vortex parameters x given above, this takes the form,

H =

2666666664

@�Cp1

@�o

@�Cp1

@yo

@�Cp1

@zo
...

...
...

@�Cpi

@�o

@�Cpi

@yo

@�Cpi

@zo
...

...
...

@�CpM

@�o

@�CpM

@yo

@�CpM

@zo

3777777775
2 RM�3: (8)

For the current implementation, we choose to compute the measurement Jacobian numerically. This is
currently done via �rst order �nite di�erences applied to small perturbations about the nominal (estimated)
state.

II.C.4. Particle Filtering Procedure

The second class of nonlinear estimation algorithm considered in this study is the Particle �lter (PF).
Particle �lters approximate the Bayesian optimal �ltering equations by means of Monte Carlo methods. The
a posteriori probability density is represented by a set of random samples, or \particles", with associated
weights. As the number of particles increases, the representation approaches the exact functional description
of the probability distribution.8

As time progresses, the PF algorithm can lead to degeneracy due to overweighting a few samples, leaving
the remaining ones useless. A common method of circumventing this issue comes in the form of a \resam-
pling" step. The sequential importance resampling (SIR) PF algorithm implemented in the present study
makes use of a simple cumulative sum algorithm to resample particles at every time step. Further details
regarding particle �lters and resampling algorithms can be found in Ristic et al.8
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II.C.5. O�ine Calibration

Thus far we have established all of the algorithmic details for the wake estimator. We are now left with
the important step of ensuring that the model implemented within the estimator matches up with reality
reasonably well. Thus, prior to \hooking up" the �lter, the lifting line model within the �lter needs to
be calibrated in an isolated ight con�guration. That is, the lifting line model must be calibrated against
the actual measurement data o�ine in order to initialize the model for best performance. This is done by
determining a linear gain vector (kcal 2 RM ) to apply to the model output,

kcal :=
h
kcal;1 : : : kcal;i : : : kcal;M

iT
; where kcal;i :=

zi;Measured

zi;Lifting Line
: (9)

Calibration is important in the case of both simulation and ight testing. Within the context of simulation,
calibration allows the �lter to better account for variations between aerodynamic models used to represent
truth. Such calibration is also necessary for actual ight implementation because, in addition to modeling
inaccuracies, unaccounted sensor biases may be present. In the case of pressure transducers, for example,
such biases can be caused from installation or manufacturing errors. Calibrating the system o�ine introduces
an element of robustness to the model because sensor biases can be better accounted for.

II.C.6. System Dynamics

We consider relative aircraft motions between two formation ying aircraft in some of our studies, which
we describe in the present section. The system dynamics studied in the current e�ort are simply prescribed
sinusoidal changes in the relative vertical and lateral displacements between the wing and wake axes. More-
over, the constant amplitude and frequency of the sinusoidal velocity by which the wing moves is assumed
to be fully known (i.e. there is no variance associated with these parameters). The vertical velocity of the
wing inuences the induced drag and, therefore, the pressure measurements. This is accounted for within
the lifting line implementation. The lateral velocity is prescribed only for the purpose of \increasing the
observability" of the vortex pair. Such prescribed motions are expected to increase the observability of the
vortex pair because, though hk(xk) is not necessarily invertible for all values of xk, the prescribed motions
are more likely to describe a set [h1(x1); : : : ;hk�1(xk�1);hk(xk)] that can only be generated from a unique
set vortex parameters.

We denote the lateral and vertical velocity components of the wing as Vy(tk) and Vz(tk), respectively.
For the purpose of simulation, we choose to move the wake with respect to the aircraft rather than to move
the aircraft with respect to the wake. In doing so, we may ignore upwash/sidewash e�ects due to motions
of the lifting surfaces. This provides a greater opportunity of distinguishing the wake’s upwash signature
because it is less likely to be \washed out" by the presence of these additional disturbance-�elds. Thus, for
purposes of the estimator simulation, we can consider that the wing \sees" the vortex pair move with equal
but opposite velocity components, ignoring all velocities due to motion of the solid bodies. Hence,

y(k+1)
o = y(k)

o � Vy(tk)�tk (10)

z(k+1)
o = z(k)

o � Vz(tk)�tk: (11)

In other words, the dynamical equations for this system can be written as,264 �o

yo

zo

375
k+1

=

264 �o

yo

zo

375
k

+

264 0

�Vy(tk)�tk

�Vz(tk)�tk

375 : (12)

Although other aspects of the aircraft dynamics have not been included here (e.g. roll and yaw kinemat-
ics), we plan to consider these aspects in future works. In the present study, only fundamental aspects of
the �lter have been considered. As such, we have dealt only with parameters that are expected to represent
the capabilities of the �lter, while keeping things as intuitive as possible.

III. Performance Results

Vortex lattice simulations of a generic aircraft equipped with �ve wing-distributed pressure sensors (M =
5) have been studied to assess the wake estimation algorithm’s performance characteristics. The simplest
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possible aircraft is chosen for the present study because of the limitations associated with the classical lifting
line approach in modeling sophisticated geometries such as sweep and dihedral. We note that the classical
lifting line approach can be replaced with more sophisticated aerodynamic models (e.g. modern/extended
lifting line methods or vortex panel methods) in the future. However, the classical lifting line method was
selected due to its simplicity. Since the current focus is on the assessment of an estimation algorithm, the
aerodynamic model must only be capable of capturing the class of nonlinearity associated with the process.
Classical lifting line theory is entirely capable of doing this; it also provides a simple framework for tracking
the inuence of the fundamental wake nonlinearity on the overall estimator dynamics. By invoking this
simpler model, we are also able to study the e�ects of modeling error on the estimator dynamics by testing
the algorithm in a higher-�delity simulation environment, such as the vortex panel method in the present
work.

Two main types of simulations are considered in the vortex lattice results that follow:

1. Static con�guration|there is no relative motion between the aircraft and wake.

2. Prescribed relative motions|relative kinematics are prescribed between the aircraft and wake a priori,
thus introducing \dynamics"

In both of these instances, the same aircraft/sensor con�guration is used (see Figure 4). The level of noise
associated with the sensor measurements is also consistent in both cases. Process noise is not present
in the simulation, though a �nite \truth" process noise is assumed for use in tuning the estimator. The
corresponding noise levels are

�truth
v = 1� 10�5; �truth

w = 1� 10�3:

Unless otherwise stated, the estimator tuning parameters have the following values

�v = 7� 10�3; �w = 3� 10�2:

Finally, all values are presented in dimensionless form, using wing span, ight speed, and air density at
28,000 ft as factors for non-dimensionalization.

III.A. Two-Aircraft Static Con�guration

Several simulation results for the static con�guration (i.e. no relative motions) are presented below. Case 1,
presented in Figure 5 provides a validation for a simple con�guration using an extended Kalman �lter (EKF);
the wake is close to the trailing aircraft, thus leaving a relatively strong signature on it. Based on both the
estimation trajectory map and the error histories, we see that the estimator does a reasonable job zeroing
in on the relative wake location. The estimate of the wake strength, however, does not perform as well. An
interesting point to note is that this tends to be a common trend among most of the simulations conducted.
Several studies were previously conducted, albeit briey, on the e�ect of removing the wake strength �o as a
parameter to be estimated (i.e. assuming �o is fully known). The results of these simulations, surprisingly,
led to degraded estimator performance! As such, we will not consider such cases here. There are many
questions that this introduces, though such quandaries will be saved for future investigations.

Case 2 considers a con�guration with one and one-half wing spans of lateral separation and one wing span
of vertical separation. Two di�erent classes of nonlinear estimation algorithms were considered in this study:
(1) Kalman-type �lters and (2) particle �lters. The Kalman-type �lters consisted of an EKF, an iterated
Kalman �lter (IEKF), and a second-order Kalman �lter (SOEKF). These three Kalman-type �lters yielded
similar results (only EKF results are presented in the interest of brevity), all of which led to signi�cant
biases or �lter divergence depending on the initial estimates. The particle �lter alleviated the bias issues,
but divergence was still a problem. This indicates a potential unobservability that is not being handled
properly by the sensor con�guration, prompting need for further investigation.

III.A.1. Extended Kalman Filter

The EKF acting on Case 2, presented in Figures 6 and 7, reveals the presence of attractors in the estimation
error space. The position estimate follows a similar trajectory for several di�erent initial estimates and
always leads to the same biased position estimate. In one of the cases presented, the estimate actually
diverges! The wake nonlinearity and its associated observability structure are responsible for this behavior,
though further investigation is necessary to determine methods for circumventing this structure.
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Figure 4: Aircraft con�guration for the vortex panel simulation using �ve uniformly spaced wing-distributed
pressure sensors. Vortex panel collocation points are denoted by �, while the �ve uniformly spaced pressure
sensors are denoted by �. The lower �gure depicts the taper and sweep present in the vertical stabilizer as
well as the relative position of the tail to the main lifting surface. All other lifting surfaces are untapered
and unswept for the present study

III.A.2. Particle Filter

In implementing the PF for wake estimation, we set the following parameter values

Np = 1000; �v = 3� 10�4; �w = 1� 10�2:

The PF results, presented in Figures 8 and 9, demonstrate the greatest performance among the four
wake estimation algorithms studied. Because the PF propagates statistics through the vortex nonlinearity
directly, without relying upon successive linearizations, the biases due to small modeling errors are minimized.
However, as a result of system unobservability, the estimates continue to diverge along the magenta path.
Future work must focus on reconciling this unobservability issue.

III.B. Two-Aircraft with Relative Motions

The following section considers the e�ect of relative motion on the performance of the wake estimation
algorithm. It has been hypothesized that introducing relative motions between the aircraft and the wake
leads to improvements in the wake’s observability structure. As the aircraft moves closer to the wake,
the signature should become more pronounced. Thus, a time sequence of wake signatures should be more
revealing than a single wake signature with additive noise.

The prescribed relative motions are introduced as

xk+1 = Fkxk + �kuk
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where

Fk = IN�N

�k =

264 0 0

A1!1�t 0

0 A2!2�t

375
uk =

"
cos(!1t)

cos(!2t+ �)

#
:

In the interest of brevity, only the EKF results are presented here. Various values of A1, A2, !1, and
!2 are tested. The phase di�erence between the two channels is always chosen to be �=4 in the simulations
presented here. A simple example of the incorporation of kinematics is presented via Case 3 (equivalent
to Case 1, but with dynamics) in Figure 10. Although the estimate appears to lock in on the zo value in
terms of phase, the actual estimate has a periodic error value in steady-state. Though not apparent under
such weak forcing magnitude, the unforced channels (i.e. �o and yo) also have periodic values appearing in
steady-state.

We �nd that the divergent behavior of the estimator, seen in Figure 7, can be eliminated under certain
kinematics (see Figure 11). However, the resulting converged estimate is far from the correct value. Figure
12 is presented to demonstrate the fact that kinematics does not guarantee convergence, as the simulation
leads to estimator divergence under the prescribed kinematics de�ned here.

The mitigation of divergence through relative motions between wake and aircraft motivates further study
in this area. Dynamics has an inuence on the observability structure of the wake, as previously explained.
As demonstrated in the results presented here, arbitrary motions are not enough to lead to performance
gains. The inuence of dynamics on system observability and estimator performance must be carefully
studied if vortex-based wake estimation is to be successful in practice.

IV. Conclusions

The current study has made much progress in understanding the nature of wake estimation and in devel-
oping a viable wake sensing strategy based on distributed aerodynamic measurements. Multiple attractors
have been identi�ed in the estimation error space associated with Kalman-type �lters acting on the wake
nonlinearity. Particle �lters have been shown to alleviate this resulting bias, though divergence issues asso-
ciated with the wake observability structure still remain an issue. Relative motions between the aircraft and
the wake can help reduce the issues with divergence, but do not alleviate estimation biases. Further study
of the e�ect of relative motions on the observability structure of the wake and on the performance of the
wake estimators is a necessary endeavor.

If future work leads to better wake observability via relative motions, it may be possible to use integrated
values of the aerodynamic quantities to say something about the wake parameters reliably as well. For
example, by integrating the pressure distribution, the forces and moments can be deduced. Since this is
a linear operation of the pressures, it remains a linear mapping of the wake nonlinearity. Hence, such an
approach will not change the underlying structure of the estimation problem in this respect. However,
by relying upon forces and moments, much of the signature associated with the wake is lost, and greater
complexity is introduced to the problem by reducing the �delity of the measurements to be incorporated.
The ultimate wake estimation algorithm will likely make use of both force and moment measurements as
well as distributed aerodynamic quantities in order to make reliable estimates of the wake location.

Though the e�ects of modeling error were studied by simulating the estimation strategy by means of
a vortex lattice method, some classes of modeling errors were ignored. Prior to implementing the present
estimation framework in physical experiments, it may be useful to consider the e�ects of wind gusts and
transients, as well as wake-shape deformations, on estimator performance. The panel-particle method’s abil-
ity to simulate the unsteady aerodynamics of multiple bodies and wakes will prove invaluable in conducting
such studies.3

Additional improvements to the current wake estimators will come in the form of more sophisticated
aerodynamic models. The present study only considers classical lifting line theory in the interest of simplicity.
It was deemed necessary to develop an understanding of the wake’s inuence on estimator performance at a
fundamental level, so it was decided to keep only as much sophistication as necessary to capture the essence
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of the wake nonlinearity without additional complexity. In the future, extensions to modern/extended lifting
line theory or to vortex panel methods will allow for added geometric complexity in the modeling of the
aerodynamics for general aircraft con�gurations. Both of these methods are analogous to classical lifting
line methods and operate on the wake nonlinearity in a similar manner to attain aerodynamic quantities of
interest. Though the computational demand of these methods is greater than that of the classical lifting line
method, several strategies exist for keeping the cost at a level amenable to real-time implementation. For
example, the collocation matrices associated with panel methods can be precomputed, assuming the aircraft
geometry itself does not undergo signi�cant changes. Additional approaches may rely upon table look-ups
for distributed aerodynamic quantities based on the set of vortex parameters; although, such methods tend
to su�er from large memory burdens associated with storing the aerodynamic tables.
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Figure 5: Static wake simulation results for xo = [0:03 � 1 0]
T

(Case 1) using the EKF estimator. In the
estimate trajectory map presented in (a), the vortex cores of the lead aircraft’s wake are denoted by blue
circles � and their center by a red circle �, the trailing (estimating) aircraft is drawn ying into the page
in black, with the initial estimate denoted by a green circle � and the estimate trajectory drawn as green
dashes ��.
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Figure 6: Static wake simulation results for xo = [0:03 � 1:5 1]
T

(Case 2). The EKF estimator now takes
longer to converge and has a notable bias. In the estimate trajectory map presented in (a), the vortex
cores of the lead aircraft’s wake are denoted by blue circles � and their center by a red circle �, the trailing
(estimating) aircraft is drawn ying into the page in black, with the initial estimate denoted by a green circle
� and the estimate trajectory drawn as green dashes ��.
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Figure 7: Estimate trajectories associated with multiple initial estimates in Case 2. The green, cyan, gray
trajectories converge to the same biased estimate, while the magenta trajectory diverges. This behavior can
be attributed to the wake nonlinearity and its associated observability structure. In the estimate trajectory
map presented, the vortex cores of the lead aircraft’s wake are denoted by blue circles � and their center by a
red circle �, the trailing (estimating) aircraft is drawn ying into the page in black, with the initial estimates
denoted by circles of various colors and the corresponding estimate trajectories are drawn as dashed lines of
the same color.
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Figure 8: Static wake simulation results for xo = [0:03 � 1:5 1]
T

(Case 2). The PF estimator results in
signi�cant decrease in the resulting biases in position and strength estimates. In the estimate trajectory map
presented in (a), the vortex cores of the lead aircraft’s wake are denoted by blue circles � and their center
by a red circle �, the trailing (estimating) aircraft is drawn ying into the page in black, with the initial
estimate denoted by a green circle � and the estimate trajectory drawn as green dashes ��.
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Figure 9: Estimate trajectories associated with multiple initial estimates in Case 2. The green, cyan, gray
trajectories converge to the same biased estimate, while the magenta trajectory diverges. This behavior
can, again, be attributed to the wake nonlinearity and its associated observability structure. In the estimate
trajectory map presented, the vortex cores of the lead aircraft’s wake are denoted by blue circles � and their
center by a red circle �, the trailing (estimating) aircraft is drawn ying into the page in black, with the
initial estimates denoted by circles of various colors and the corresponding estimate trajectories are drawn
as dashed lines of the same color.
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Figure 10: Relative motion simulation results for xo = [0:03 � 1 0]
T

with A1 = 0:05, A2 = 0, !1 = 0:05
rad/s, and !2 = 0 rad/s (Case 3). Note �w = 1 � 10�3 for this case only. In the estimate trajectory map
presented in (a), the vortex cores of the lead aircraft’s wake are denoted by blue circles � and their center
by a red circle �, the trailing (estimating) aircraft is drawn ying into the page in black, with the initial
estimate denoted by a green circle � and the estimate trajectory drawn as green dashes ��.

17 of 19

American Institute of Aeronautics and Astronautics



−4 −2 0 2 4 6 8
−1

0

1

2

3

4

5

6

7

8

9

∆ y

∆
 z

 

 

Wake Origin Initial Estimate Estimate Trajectory

(a) Estimate Trajectory

0 2000 4000 6000 8000 10000
−1

−0.5

0

0.5

Γ
o
 

 

 

truth estimate 1−σ

0 2000 4000 6000 8000 10000
−5

0

5

  
y

o
  

  

0 2000 4000 6000 8000 10000
0

2

4

6

  
z

o
  

  

Iterations

(b) Estimate Time History

0 2000 4000 6000 8000 10000
−0.5

0

0.5

Γ
o
 

 

 

estimation error 1−σ

0 2000 4000 6000 8000 10000
−5

0

5

  
y

o
  
  

0 2000 4000 6000 8000 10000
0

1

2

3

  
z

o
  
  

Iterations

(c) Estimation Error Time History

Figure 11: Simulation identical to the static Case 2, but with relative motions prescribed as A1 = 0:5,
A2 = 0, !1 = 0:01 rad/s, and !2 = 0 rad/s (Case 4a). Note the prescribed kinematics in this case are able to
stabilize the estimation dynamics. In the estimate trajectory map presented in (a), the vortex cores of the
lead aircraft’s wake are denoted by blue circles � and their center by a red circle �, the trailing (estimating)
aircraft is drawn ying into the page in black, with the initial estimate denoted by a green circle � and the
estimate trajectory drawn as green dashes ��.
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Figure 12: Relative motion simulation identical to Case 4a, but with A1 = 0:5, A2 = 0, !1 = 0:001 rad/s, and
!2 = 0 rad/s (Case 4b). Note the prescribed kinematics in this case are unable to stabilize the estimation
dynamics. In the estimate trajectory map presented in (a), the vortex cores of the lead aircraft’s wake are
denoted by blue circles � and their center by a red circle �, the trailing (estimating) aircraft is drawn ying
into the page in black, with the initial estimate denoted by a green circle � and the estimate trajectory drawn
as green dashes ��.
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