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Low-order inviscid point vortex models have demonstrated success in capturing the
qualitative behavior of aerodynamic forces resulting from unsteady lifting surface
maneuvers. However, the quantitative agreement is often lacking for separated flows as
a result of the ambiguity in the edge conditions in this fundamentally unsteady process. In
this work, we develop a model reduction framework in which such models can be
systematically improved with empirical results. We consider the low-order impulse
matching vortex model in which, in its original form, Kutta conditions are applied at
both edges to determine the strengths of single point vortices shed from each edge. Here,
we relax the Kutta condition imposed at the plate's edges and instead seek the time rate of
change of the vortex strengths that minimize the discrepancy between the model-
predicted and high-fidelity simulation force histories, while the vortex positions adhere to
the dynamics of the low-order model. A constrained minimization problem is constructed
within an optimal control framework and solved by means of variational principles. The
optimization approach is demonstrated on several unsteady wing maneuvers, including
pitch-up and impulsive translation at a fixed angle of attack. Additionally, a stitching
technique is introduced for extending the time interval over which the model is
optimized.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

An improved understanding of the unsteady effects associated with high angle of attack maneuvers has great potential
for advancing the capabilities of modern flight systems. For example, by exploiting the leading edge vortex (LEV), an aircraft
may be able to realize increased lift or maneuverability by means of delayed stall. Despite recent advances in the field of
unsteady aerodynamics, however, low-order models for predicting the aerodynamic forces and moments are still
inadequate for designing reliable flight control systems for successfully conducting agile maneuvers. A primary contributor
to this shortcoming is a lack of low-dimensional aerodynamic models capable of reliably predicting forces and moments
over a wide-range of kinematics.

Low-order modeling of unsteady aerodynamics initially started with the work of Wagner (1925) and Theodorsen (1935).
These early studies established a precedent for analyzing such problems by decomposing the forces and moments on the
wing into contributions from circulatory (i.e., vortex induced) and non-circulatory (i.e., inertial reaction, or added mass)
effects. Many researchers have taken similar phenomenological approaches to modeling. For example, an assortment of
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Nomenclature

a semi-chord of plate
c chord of plate
Cd drag coefficient
Cl lift coefficient
Fx; Fy components of force
H optimization Hamiltonian
J objective function
K dimensionless pitch rate, _α0c=ð2UÞ
p optimization costate vector
Re Reynolds number
u optimization input vector
U speed of translation
x optimization state vector
xo optimization initial state vector

z complex coordinate, xþ iy, in physical plane
~z plate-fixed coordinates
zc plate centroid
zv position of vortex v in physical plane
zv0 position of the releasing edge of vortex v

α angle of attack
_α0 nominal dimensional pitch rate
Γv strength of vortex v

ϵ gradient descent threshold stopping criterion
ζ complex coordinate, ξþ iη, in circle plane
ζv position of vortex v in circle plane
θ angular coordinate in circle plane
κi gradient descent step size for parameter i
ν fluid kinematic viscosity
ρ fluid density
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vortex models have been developed to account for the shed vorticity through a multitude of simple vortex representations,
such as vortex sheets (Wagner, 1925; Theodorsen, 1935; Garrick, 1937; von Kármán and Sears, 1938; Krasny, 1991; Nitsche
and Krasny, 1994; Jones, 2003; Pullin and Wang, 2004; Shukla and Eldredge, 2007; Alben and Shelley, 2008), continuous
sequences of point vortices (Katz and Weihs, 1978; Jones and Platzer, 2000; Ansari et al., 2006; Ramesh et al., 2013; Xia and
Mohseni, 2013), or finite sets of point vortices with evolving strengths (Brown and Michael, 1954; Graham, 1980; Cortelezzi
and Leonard, 1993; Michelin and Llewelyn Smith, 2009; Wang and Eldredge, 2013).

Many of these classical potential flow models perform well for low angles of attack, but fail to provide reliable force
predictions when the angle of attack is increased to the point that the LEV plays a significant role. The impulse matching
model, a low-order variable-strength vortex model, has recently been developed to address this issue (Wang and Eldredge,
2013). The model, which makes use of a Kutta condition at the wing's leading and trailing edges in order to determine the
strengths of evolving point vortices, provides reasonable force predictions in many cases; however, the model still remains
inadequate for aerodynamic control and estimation. This is not entirely surprising, since the Kutta conditions are primarily
used due to the lack of a better model. In reality viscous and curvature effects play a significant role, especially at the leading
edge, thus making the Kutta condition an ill-suited model for maneuvers with LEV development.

It may be possible to circumvent these modeling deficiencies by synthesizing empirical data to construct a more reliable
alternative. For example, several researchers have successfully improved upon template models by tailoring them based on
relevant empirical data. In one such model, experimental force data is used to determine the strengths and positions of a set
of stationary point vortices (Pitt Ford and Babinsky, 2013). Similarly, Wong et al. (2013) implement a vortex-feeding model
to estimate the time-varying circulation of a wing from time-resolved measurements of the leading edge shear layer velocity
profile. Another example, from Brunton and Rowley (2011, 2013), makes use of an empirically determined Theodorsen
function to improve upon Theodorsen's classical lift model. Ramesh et al. (2012) augment a point vortex model with an
empirically determined leading edge suction parameter to govern vortex shedding from the leading edge of an airfoil.
Additionally, the method of indicial responses, considered in Leishman and Beddoes (1989) and more recently in Taha et al.
(2013), enables the construction of empirically guided models capable of reasonable force and moment predictions.

In the present work, we develop a general framework for exploiting empirical data to improve upon existing vortex
models. Specifically, we relax the Kutta conditions imposed at the leading and trailing edges of the impulse matching vortex
model (Wang and Eldredge, 2013) and instead determine the vortex strengths by minimizing the difference between some
model predicted and high-fidelity simulation metric (here, force). The minimization is constrained to ensure that vortices
move according to specified dynamical equations. Although the resulting model is not autonomous, it provides insight into
the deficiencies of the original model and may guide future model development.

We summarize the impulse matching model in Section 2, which will serve as the baseline vortex model for the
minimization procedure. The minimization problem is formulated in Section 3, which also details the method of solution
and the viscous vortex particle method used in acquiring “truth” data for the optimization procedure. In Section 4 we apply
the optimization procedure to two canonical wing maneuvers: (1) pitch-up and (2) impulsive translation at a fixed angle of
attack. Finally, in Section 5, we discuss some of the remaining challenges in vortex model optimization.
2. Vortex model overview

In the present section, we briefly introduce the impulse matching model for predicting the aerodynamic forces of a
pitching and/or translating airfoil. A more detailed development can be found in Wang and Eldredge (2013).
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The model formulation makes use of complex potentials, such that the infinitely thin plate can be mapped from the circle
plane (i.e., ζ ¼ ξþ iη) to the physical plane (i.e., z¼ xþ iy) via the Joukowski mapping, as depicted in Fig. 1. The complex
mapping for a plate of semi-chord a can be expressed as

zðζÞ ¼ zcþ ~zðζÞeiα; ð1Þ
where

~z ζð Þ ¼ a
2

ζþ1
ζ

� �
: ð2Þ

The plate is mapped from a circle of unit radius in the ζ-plane, that is, ζ¼ eiθ describes its surface for θ¼ ½0;2πÞ. The leading
edge is denoted by z10, which is located at ζ¼ 1 (i.e., ~z10 ¼ a). Similarly, the trailing edge is denoted by z20 which corresponds
to ζ¼ �1 (i.e., ~z20 ¼ �a).

Cumulative vorticity production is modeled by means of a point vortex of variable strength associated with each of the
salient edges. The vortex equations of motion in the presence of a body follow the impulse matching model, based on the
principle that any time variation of the strength of a point vortex should have no direct effect on the force (Wang and
Eldredge, 2013). The resulting equations of motion for the vortex system have the general form

dx
dt

¼ f x;u; tð Þ; ð3Þ

where x consists of the vortex coordinates and strengths, while u represents a vector of the time rate of change of the vortex
strengths.

For a flat plate with a leading and trailing edge, two developing vortices are considered in addition to any vortices
already existing in the flow. The strengths of these developing point vortices are determined by applying a Kutta condition
at each edge. This can be expressed as a set of constraints

hðx;u; tÞ ¼ 0; ð4Þ
which ensures that the flow remains finite at ζ10 ¼ 1 and ζ20 ¼ �1.
Fig. 1. Schematic of plate mapping to circle of unit radius in the ζ-plane.

Fig. 2. Comparison of the force histories for a pitch-up maneuver with reduced frequency K¼0.2, as defined in Section 4.1. Results correspond to the
Brown–Michael vortex model ( ), the impulse matching model ( ), the viscous vortex particle method ( ), and the experiments of Granlund et al.
(2010) ( ). Figure courtesy from Wang and Eldredge (2013).
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The capabilities of the impulse matching model are showcased in Wang and Eldredge (2013). Significant improvements
are made over the Brown–Michael vortex model, used in Eldredge and Wang (2010), for the same canonical maneuvers.
Fig. 2, adapted from Wang and Eldredge (2013), provides a comparison of both low-order models with respect to high
fidelity numerical results (Re¼ 1000) as well as experimental results (Re¼20 000). It is clear that there is still significant
room for making model improvements. In the next section, we develop an approach grounded in optimal control theory to
guide these efforts.

3. A variational approach to vortex model improvement

The impulse matching model leads to reasonable aerodynamic force predictions under many circumstances, but these
predictions are still inadequate for the purposes of aerodynamic control. In the present section, we seek to improve this
model by formulating a constrained minimization problem with free initial states. We outline the steepest descent
algorithm used in solving the optimization problem, and we discuss the high-fidelity computations used in determining the
true force histories against which the optimization is conducted.

3.1. Constrained optimization formulation

Here, we seek to improve the impulse matching model by relaxing the Kutta condition at both edges. With no conditions
imposed on the vortex strengths, we can determine the time rate of change of these strengths such that the model force
predictions more accurately represent the true aerodynamic forces observed. To do so, we consider the nonlinear
continuous-time optimal control problem with fixed initial and terminal times. We seek the optimal control history unðtÞ
and the optimal initial state xn

o that minimize the mean squared error between the true and the model-predicted force
histories, while adhering to the governing equations of the vortex model. That is, we seek the minimum cost

Jn ¼min
u;xo

Z tf

to
gðx;u; tÞ dt; ð5Þ

where

gðx;u; tÞ : ¼ ½Ftruex ðtÞ�Fmodel
x ðx;u; tÞ�2þ½Ftruey ðtÞ�Fmodel

y ðx;u; tÞ�2; ð6Þ

subject to the vortex evolution equations imposed by the impulse matching model

dx
dt

¼ f x;u; tð Þ ð7Þ

and the initial state

xðtoÞ ¼ xo: ð8Þ
The state and input vectors are defined, respectively, as

xðtÞ : ¼ ½ξ1 η1 ξ2 η2 Γ1 Γ2�TAR6 ð9Þ
and

uðtÞ : ¼ ½ _Γ1 _Γ2�TAR2; ð10Þ
where ζv ¼ ξvþ iηv corresponds to the position coordinates of vortex v in the circle plane, and _Γv denotes the rate of change
in the strength of vortex v. Here, the right hand side of the state update equation (7) follows the impulse matching model
for the vortex positions, while the strength propagation of each vortex v is determined from the control input _Γv. It is
emphasized that other vortex models may be used in lieu of the impulse matching model used here, and one could also
conceive other choices for the cost function.

To solve the above minimization, we construct the Hamiltonian for this system (Bryson and Ho, 1975; Kirk, 2004; Speyer
and Jacobson, 2010)

H¼ gðx;u; tÞþpðtÞTfðx;u; tÞ; ð11Þ
where pðtÞAR6 represents the costate of the system, corresponding to the marginal cost of violating the system constraints.
We then seek the optimal input history unðtÞ and the optimal initial state vector xn

o such that the first order necessary
conditions for optimality are satisfied. That is, we solve

_x ¼ ∂H
∂p

x;u; tð Þ ¼ f x;u; tð Þ; ð12Þ

_p ¼ �∂H
∂x

x;u; tð Þ ¼ �∂g
∂x

x;u; tð Þ� ∂f
∂x

x;u; tð Þ
� �T

p tð Þ; ð13Þ
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with the optimality conditions

0¼ ∂H
∂u

x;u; tð Þ ¼ ∂g
∂u

x;u; tð Þþ ∂f
∂u

x;u; tð Þ
� �T

p tð Þ; ð14Þ

0¼ ∂J
∂xo

: ð15Þ

Minimizations with respect to both u and xo are conducted by means of the steepest descent algorithm, outlined in
Section 3.2.

3.2. Method of solution

The steepest descent algorithm, tailored to our problem of interest, consists of five steps as follows (Bryson and Ho, 1975;
Kirk, 2004; Speyer and Jacobson, 2010):
1.
 Uniformly discretize the time interval ½to; tf � into N equal subintervals and assume that the control takes the form of a
zero-order hold for an initial guess uði ¼ 0ÞðtÞ ¼ uði ¼ 0ÞðtkÞ, tA ½tk; tkþ1�; k¼ 0;1;…;N�1.
2.
 Apply the assumed control sequence uðiÞðtÞ to integrate the state equations forward in time from to to tf with the current
iteration of the initial conditions xð0Þ ¼ xðiÞ

o and store the state trajectory xðiÞðtÞ.

3.
 Apply both uðiÞðtÞ and xðiÞðtÞ to integrate the costate equations backward in time from tf to to, where the terminal value of

the costate is pðiÞðtf Þ ¼ 0.

4.
 Evaluate and store both ∂JðiÞ=∂xo and ∂HðiÞðtÞ=∂u, tA ½to; tf �.

5.
 Evaluate the stopping criterion and stop the iterative procedure when

∂HðiÞ

∂u

�����
�����¼

Z tf

to
½∂HðiÞðtÞ=∂u�T½∂HðiÞðtÞ=∂u� dt

� �1=2

rϵ

and

∂JðiÞ

∂xo

�����
�����¼

Z tf

to
½∂JðiÞ=∂xo�T½∂JðiÞ=∂xo� dt

� �1=2

rϵ;

where ϵ is a threshold value for the stopping criterion. Otherwise adjust the control sequence and parameter vector to

uðiþ1Þ tkð Þ ¼ uðiÞ tkð Þ�κu
∂HðiÞ

∂u
tkð Þ; k¼ 0;1;…;N�1

and

xðiþ1Þ
o ¼ xðiÞ

o �κxo
∂JðiÞ

∂xo
;

where κu and κxo are step sizes for the iterations in u and xo, respectively. Then set xðiÞ
o ’xðiþ1Þ

o and uðiÞ’uðiþ1Þ, and repeat
steps 2–5.

In the present implementation, we evaluate ∂f=∂x, ∂f=∂u, and ∂g=∂x by means of 8th-order central differences. Lower-
order schemes were attempted as well, but the 8th-order scheme was the most consistent scheme in producing cost-
minimizing results. The quantity ∂g=∂u is analytically zero by definition of the impulse matching model. Although we could
have discretized the control sequence by means of higher-order methods (e.g., higher-order interpolation or splines), we
choose to employ the zero-order hold in the present implementation for the sake of simplicity. In the gradient descent step,
we set κu �Oð10�3Þ and κxo �Oð10�3Þ and adjust the values according to Armijo's rule (Nocedal and Wright, 2006). That is,
we reduce the values of κu and κxo by half until the cost at the next iteration Jðiþ1Þ yields a value smaller than the cost at the
current iteration JðiÞ. Finally, the empirical data ðFtruex ; Ftruey Þ are interpolated to coincide with the time increments of the
optimization routine. The vortex model and the type of maneuver under consideration dictate the maximum value of
Δt ¼ tkþ1�tk, while numerical convergence and computational expense set a lower bound on Δt. By proceeding in this
manner, the optimal solution can typically be attained in Oð103Þ–Oð105Þ iterations of the algorithm, depending on the
quality of the initial guess, the extent of the optimization time window, and the type of maneuver being considered.

3.3. True force histories: high-fidelity viscous vortex particle simulation

In the above formulation, we have assumed the existence of true force history data (i.e., Ftruex and Ftruey ) with respect to
which we minimize the error of our model predictions. For the purposes of the present study, we incorporate data from
high-fidelity computations performed by way of the viscous vortex particle method (VVPM). The results of the VVPM
computations have been verified against the experimental data of Granlund et al. (2010) for the case of a pitching plate
(Wang and Eldredge, 2013). Details of the VVPM algorithm can be found in Eldredge (2007).
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4. Results and discussion

The present section reports the results of the optimized impulse matching model for the cases of the pitch-up of a plate
at steady traveling speed and an impulsively translating plate at a fixed angle of attack. We compare the results of the
optimized model with high-fidelity VVPM simulation data and with the original impulse matching model (i.e., with the
Kutta condition imposed at both the leading and trailing edges). We consider the pitch-up maneuver in Section 4.1 for
pitching maneuvers of varying rates. The impulsively translating plate is studied in Section 4.2 for three different fixed
angles of attack. In both cases, the optimization window begins after the plate has translated forward by 10% of a chord
length.

4.1. Pitching kinematics

The pitching wing to be studied in this work is drawn schematically in Fig. 3. A two-dimensional wing profile of chord c,
thickness 0.023c, and semicircular edges translates rectilinearly at speed Uo in an incompressible flow with density ρ and
kinematic viscosity ν. The wing undergoes a pitch-up maneuver at nominal angular velocity _αo from 01 to 901 about an axis
situated at the leading edge, with an angle of attack schedule, αðtÞ, prescribed to be a smoothed linear ramp, as in Wang and
Eldredge (2013). The nominal pitch rate, _αo, is specified via the dimensionless parameter K ¼ _αoc=ð2UÞ.

In the present study, we use high-fidelity VVPM data generated in Wang and Eldredge (2013). The Reynolds number,
Re¼ Uc=ν, is fixed at 1000 for all high-fidelity simulations. The resulting drag and lift are scaled conventionally by ρU2c=2 to
form coefficients Cd and Cl, respectively.

4.1.1. Pitching kinematics: K¼0.2
The drag and lift coefficients corresponding to the pitch-up maneuver of a flat plate are presented in Fig. 4 up to an angle

of approximately 451. The results of the optimized impulse matching model are presented alongside those of the high-
fidelity simulation (Re¼1000) and the impulse matching model with Kutta condition imposed at both edges. We see that
the optimized model performs significantly better than the original low-order model in reconstructing the force histories
(Jn ¼ 1:3� 10�3 after 104 iterations). The accuracy of the optimized model's force reconstruction is quite remarkable, given
Fig. 3. Schematic of pitching wing.

Fig. 4. Pitching plate (K¼0.2) drag and lift coefficient histories associated with the VVPM data ( ), the impulse matching model with Kutta conditions
imposed at both the leading and trailing edge ( ), and the optimized impulse matching model ( ).



Fig. 5. Pitching plate (K¼0.2) time rate of change of leading and trailing edge vortex strengths from the impulse matching model with Kutta conditions
imposed at both the leading and trailing edge ( ) and from the optimized impulse matching model ( ).

Fig. 6. Pitching plate (K¼0.2) leading and trailing edge vortex strengths from the impulse matching model with Kutta conditions imposed at both the
leading and trailing edge ( ) and from the optimized impulse matching model ( ).
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the fact that the low-order model possesses only six degrees of freedom, whereas the numerical simulation ultimately uses
on the order of 5�105 computational particles, each with three degrees of freedom. It is worth noting that we performed
the optimization procedure based on a variety of initial guesses, all of which yielded consistent solutions within numerical
error. Although the optimization problem is non-convex, this observation indicates that the extremal solution is a strong
local minimum. In the interest of reducing the convergence time, all of the results presented here are based on an initial
guess corresponding to the original Kutta model.

Figs. 5–7 present the inputs and states of the system corresponding to the optimized model compared with the values
resulting from the original model with Kutta conditions imposed. Fig. 5 presents the control input for both of these models,
showing visible differences in the trends of _Γ LEV and _ΓTEV. The time integrals of these inputs, the strengths themselves,
exhibit significant differences with the original model predictions (c.f., Fig. 6). We see that the Kutta condition tends to over-
predict the magnitude of the strength of both vortices. This is expected, since in reality there are viscous effects which
mitigate the flux of vorticity in the vicinity of either edge, as seen in the VVPM results presented in Fig. 8. This is especially
obvious at the leading edge where the LEV undergoes significant interaction with secondary vorticity of opposite sign. Fig. 7
presents the vortex trajectories in the physical plane. The difference in trajectories arises as a result of the difference in the
evolution of the vortex strengths.



Fig. 7. Pitching plate (K¼0.2) leading and trailing edge vortex trajectories from the impulse matching model with Kutta conditions imposed at both the
leading and trailing edge ( ) and from the optimized impulse matching model ( ).

Fig. 8. Pitching plate (K¼0.2) snapshots at α¼151, 301, and 451. The first column reports vorticity contours from the viscous vortex particle method
(VVPM), while the second and third columns present streamlines from the original impulse matching model with a Kutta condition imposed (IMM) and the
optimized impulse matching model (optimized IMM), respectively. Stagnation streamlines are drawn in bold. (a) VVPM (α¼151), (b) IMM (α¼151),
(c) Optimized IMM (α¼151), (d) VVPM (α¼301), (e) IMM (α¼301), (f) Optimized IMM (α¼301), (g) VVPM (α¼451), (h) IMM (α¼451) and (i) Optimized IMM
(α¼451),

M.S. Hemati et al. / Journal of Fluids and Structures 49 (2014) 91–11198
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Fig. 8 compares the streamlines of the optimized model with those of the original model at α¼151, 301, and 451 during
the pitching motion. The vorticity contours from the high-fidelity VVPM simulations are also included for comparison.
Inspection of the stagnation streamlines in the optimized model highlights the fact that the fore-wing stagnation point is slightly
aft of the leading edge in the optimized model, not at the leading edge as constrained by a Kutta condition. The breakdown of the
Kutta condition is expected for this maneuver since the flow structures in the vicinity of the leading edge do not resemble the
release of a “smooth” thin sheet of vorticity from that edge, as seen in the vorticity contour plot from VVPM.

Based on the observation that the leading edge stagnation point is located slightly aft of the leading edge, it is natural to
ask whether there is any advantage in imposing a modified Kutta condition. We examine this in a rudimentary manner by
imposing the leading edge stagnation point location at various points along the fore-section of the wing while keeping the
trailing edge stagnation point fixed at the trailing edge. We then compare the resulting forces from the impulse matching
Fig. 9. Lift and drag histories associated with a pitch-up maneuver (K¼0.2) using an impulse matching model with modified stagnation point
specifications. The solid lines represent “true” forces, while the dashed lines correspond to model-predicted results using different regularity conditions.
Only the leading edge stagnation point is varied here. The direction of the arrow corresponds to moving the leading edge stagnation point aftward, away
from the leading edge.

Fig. 10. Pitching plate (K¼0.7) drag and lift coefficient histories associated with the VVPM data ( ), the impulse matching model with Kutta conditions
imposed at both the leading and trailing edge ( ), and the optimized impulse matching model ( ).



Fig. 11. Pitching plate (K¼0.7) leading and trailing edge vortex strengths from the impulse matching model with Kutta conditions imposed at both the
leading and trailing edge ( ) and from the optimized impulse matching model ( ).

Fig. 12. Pitching plate (K¼0.7) snapshots at α¼151, 301, and 451. The first column reports vorticity contours from the viscous vortex particle method (VVPM),
while the second and third columns present streamlines from the original impulse matching model with a Kutta condition imposed (IMM) and the optimized
impulse matching model (optimized IMM), respectively. Stagnation streamlines are drawn in bold. (a) VVPM (α¼151), (b) IMM (α¼151), (c) Optimized IMM
(α¼151), (d) VVPM (α¼301), (e) IMM (α¼301), (f) Optimized IMM (α¼301), (g) VVPM (α¼451), (h) IMM (α¼451) and (i) Optimized IMM (α¼451),

M.S. Hemati et al. / Journal of Fluids and Structures 49 (2014) 91–111100
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model. As seen in Fig. 9, specifying a fixed stagnation point location alone is not sufficient for improving the original impulse
matching model's force predictions. However, the results of the optimization procedure may inspire improved vortex
strength models that deviate from the assumed form of (4), currently based on the Kutta condition.
4.1.2. Pitching kinematics: K¼0.7
We now consider a more rapid pitch-up maneuver with K¼0.7, for which the lift and drag coefficient time histories are

presented in Fig. 10. Again, we see outstanding improvement compared to the original Kutta-based impulse matching model
(Jn ¼ 3:3� 10�3 after 104 iterations).

Fig. 11 shows the strength histories corresponding to each model. As in the previous case, the Kutta condition over-
predicts the magnitudes of these values. The discrepancy seems to be smaller for K¼0.7 than for K¼0.2 because the rapid
pitch-up allows less time for viscous effects to play a dominant role, and more of the force is thus due to non-circulatory
effects. This fact also accounts for the better accuracy of the force predictions from the original model for K¼0.7 (Fig. 10)
than for K¼0.2 (Fig. 4). Comparisons of the model streamlines and VVPM vorticity contours are presented in Fig. 12. We
report similar findings as with the K¼0.2 pitch-up, namely that the fore-wing stagnation point is actually slightly aft of the
leading edge in the optimized model. Additionally, this stagnation point tends to move about the fore-wing section
throughout the maneuver, never locking in to a single position.
4.2. Impulsive translation

In the previous section, we considered the performance of the optimized model for the pitching problem, for which the
aerodynamic forces consist of both inertial and circulatory contributions, and the leading-edge vortex develops in response to
both translation and rotation relative to the surrounding fluid. In the present section, we explore the optimized model's
performance in the simpler scenario of impulsive translation at a fixed angle of attack at Re¼ 1000. This motion results in an
infinitely large inertial reaction force at t ¼ 0þ , but at all subsequent times the force is due almost entirely to circulatory effects
(with the exception of drag at small angles, which is dominated by skin friction). For the purposes of the optimization, we
consider minimizing the mean squared error between force histories after the plate has translated forward by 10% of a chord.
We evaluate the optimized model for this problem at three different fixed angles of attack: 101, 451, and 901.
4.2.1. Impulsive translation: α¼101
The resulting forces from the optimized model for 101 angle of attack are presented in Fig. 13. We find improvements in

the lift reconstruction, but at the expense of the accuracy of the drag history. Since the impulse matching model does not
account for skin friction drag, which is a dominant component at low angles of attack, this behavior does not come as a
surprise. Such a viscous contribution would have to be accounted for separately, for example by incorporating the solution
of the Rayleigh problem.

The streamlines for the optimized and original models, as well as the vorticity contours from VVPM, are presented in
Fig. 14 for Ut=c¼ 0:2, 1.0, and 2.0. The stagnation streamline is overlaid in the vorticity contour plot for convenience.
Fig. 13. Impulsively translating plate (α¼101) drag and lift coefficient histories associated with the VVPM data ( ), the impulse matching model with Kutta
conditions imposed at both the leading and trailing edge ( ), and the optimized impulse matching model ( ).



Fig. 14. Impulsively translating plate (α¼101) at Ut=c¼ 0:2, 1.0, and 2.0. The first column reports vorticity contours from the viscous vortex particle method
(VVPM), while the second and third columns present streamlines from the original impulse matching model with a Kutta condition imposed (IMM) and the
optimized impulse matching model (optimized IMM), respectively. Stagnation streamlines are drawn in bold. (a) VVPM (Ut=c¼ 0:2), (b) IMM (Ut=c¼ 0:2),
(c) Optimized IMM (Ut=c¼ 0:2), (d) VVPM (Ut=c¼ 1:0), (e) IMM (Ut=c¼ 1:0), (f) Optimized IMM (Ut=c¼ 1:0), (g) VVPM (Ut=c¼ 2:0), (h) IMM (Ut=c¼ 2:0)
and (i) Optimized IMM (Ut=c¼ 2:0).

Fig. 15. Impulsively translating plate (α¼451) drag and lift coefficient histories associated with the VVPM data ( ), the impulse matching model with Kutta
conditions imposed at both the leading and trailing edge ( ), and the optimized impulse matching model ( ).
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Fig. 16. Impulsively translating plate (α¼451) at Ut=c¼ 0:2, 1.0, and 2.0. The first column reports vorticity contours from the viscous vortex particle method
(VVPM), while the second and third columns present streamlines from the original impulse matching model with a Kutta condition imposed (IMM) and the
optimized impulse matching model (optimized IMM), respectively. Stagnation streamlines are drawn in bold. (a) VVPM (Ut=c¼ 0:2), (b) IMM (Ut=c¼ 0:2),
(c) Optimized IMM (Ut=c¼ 0:2), (d) VVPM (Ut=c¼ 1:0), (e) IMM (Ut=c¼ 1:0), (f) Optimized IMM (Ut=c¼ 1:0), (g) VVPM (Ut=c¼ 2:0), (h) IMM (Ut=c¼ 2:0)
and (i) Optimized IMM (Ut=c¼ 2:0).

Fig. 17. Impulsively translating plate (α¼901) drag and lift coefficient histories associated with the VVPM data ( ), the impulse matching model with Kutta
conditions imposed at both the leading and trailing edge ( ), and the optimized impulse matching model ( ).
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Fig. 18. Impulsively translating plate (α¼901) leading and trailing edge vortex strengths from the impulse matching model with the Kutta condition
imposed at both the leading and trailing edge ( ), and the optimized impulse matching model ( ).

Fig. 19. Impulsively translating plate (α¼901) leading and trailing edge vortex trajectories from the impulse matching model with Kutta conditions
imposed at both the leading and trailing edge ( ) and from the optimized impulse matching model ( ).

M.S. Hemati et al. / Journal of Fluids and Structures 49 (2014) 91–111104
4.2.2. Impulsive translation: α¼451
The optimized model performs remarkably better when circulatory effects outweigh skin friction effects, as seen in the

force histories for the translating plate at α¼451 in Fig. 15. Despite the improvements attained through optimization
(Jn ¼ 3:1� 10�3 in 105 iterations), the quality of the force reconstruction begins to deteriorate after about one chord-length
of travel. The optimized model is able to capture this process, which is highlighted in bold in Fig. 16. However, the model
does not replace the pinched-off TEV with a new vortex. It is evident from the VVPM vorticity contours and stagnation
streamlines that the laminar separation bubble enclosing the LEV has burst at some point between Ut=c¼ 1:0 and 2.0. The
initiation of this bursting process coincides with the deterioration in the model force reconstruction. Agreement for longer
times would be enabled by initiating a new vortex from one or both edges.
4.2.3. Impulsive translation: α¼901
The case of a plate translating at 901 angle of attack results in excellent agreement between the optimized model and the

high-fidelity force curves (Jn ¼ 7:1� 10�5 in 105 iterations), as shown in Fig. 17. The lift coefficient from the optimized
model is slightly different from zero because we have not attempted to preserve symmetry during the optimization
procedure. This can be confirmed by considering the resulting streamlines in Fig. 20. Though symmetry constraints could be
imposed in the optimization problem formulation, doing so would take away from the generality of the approach.
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The vortex strengths remain quite close to the Kutta predicted results, as seen in Fig. 18. A close examination of Fig. 20
does not reveal any notable difference between the stagnation point locations of the original and optimized models. The
primary contributing factor in achieving better agreement in this configuration seems to be the initial positions of the edge
vortices (c.f., Fig. 19).

5. Remaining challenges and paths to enhancement

Despite the progress made on vortex model optimization in the present study, several challenges remain to be addressed.
In the present section, we address the issues of expanding the optimization time window and introducing subsequent
vortex shedding within the optimization framework.

5.1. Convergence for large time windows and early times

All of the optimization results presented for the pitch-up maneuver in the previous section spanned a truncated time
window. That is to say, the time window of optimization was not long enough to capture the full completion of the original
pitch-up to 901. Additionally, all of the optimizations of both pitch-up and impulsive translation were initiated when the
wing had translated forward by 10% of its chord. From the experience gained in conducting the optimization procedure, it
was determined that convergence was quite difficult for time windows larger than those reported. Moreover, if convergence
did result with an extended time window, the resulting solution was often unsatisfactory and yielded a larger error than
deemed acceptable.
Fig. 20. Impulsively translating plate (α¼901) at Ut=c¼ 0:2, 1.0, and 2.0. The first column reports vorticity contours from the viscous vortex particle method
(VVPM), while the second and third columns present streamlines from the original impulse matching model with a Kutta condition imposed (IMM) and the
optimized impulse matching model (optimized IMM), respectively. Stagnation streamlines are drawn in bold. (a) VVPM (Ut=c¼ 0:2), (b) IMM (Ut=c¼ 0:2),
(c) Optimized IMM (Ut=c¼ 0:2), (d) VVPM (Ut=c¼ 1:0), (e) IMM (Ut=c¼ 1:0), (f) Optimized IMM (Ut=c¼ 1:0), (g) VVPM (Ut=c¼ 2:0), (h) IMM (Ut=c¼ 2:0)
and (i) Optimized IMM (Ut=c¼ 2:0).
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For the early-time behavior, part of the challenge can be attributed to the singular nature of the evolution equations at
start-up. However, this does not fully account for the difficulty encountered, since acceptable results were difficult to attain
for optimizations considering any time window beginning before 10% chord of travel. This is not to say that such results are
impossible to attain; rather, the sensitivity of the results to the initial iteration of input history and parameter vector was too
high to yield an improved model for this early-time window. This issue is more general: due to the highly nonlinear model,
convergence is quite difficult for long time windows. In Section 5.2, we present a technique to address this concern, but first
we provide a physical explanation for the origin of this difficulty.

One of the challenges with the later time behavior is the onset of vortex shedding. That is, there is an instant at which a
developing point vortex should have its strength frozen, and a new vortex initiated from the corresponding edge. It is
hypothesized that the vortex model would be able to better characterize the force response if a means of vortex shedding
were included in the optimization model. A framework for introducing shedding into the vortex optimization framework
will be discussed in Appendix A. However, this framework will highly depend upon the ability to treat early-time behavior.
In the next section, we present a general strategy for extending the time window by means of stitching optimization.
Fig. 22. Pitching plate (K¼0.2) drag and lift coefficient histories associated with the VVPM data ( ), the impulse matching model with Kutta conditions
imposed at both the leading and trailing edge ( ), and the stitch-optimized impulse matching model ( ).

Fig. 21. The decomposition of the full time domain, ½to; tf �, into two smaller windows, ½t1 ; t2Þ and ½t2; t3�. We currently assume that t1 and t2 are those
corresponding to the time window for the original model optimization. Here we show the ðK ¼ 0:2Þ pitch-up maneuver lift history corresponding to the VVPM data
( ), the impulse matchingmodel with Kutta conditions imposed at both the leading and trailing edge ( ), and the original optimized impulse matchingmodel ( ).
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5.2. Extending time windows via stitching

In the present section, we introduce a simple “stitching” method that can extend the time window of the optimization.
The main premise of the proposed method is to divide the full time window into several more manageable ones. For the
present study, we consider splitting the full time domain ½to; tf � into two time windows ½t1; t2Þ and ½t2; t3�, where
t1; t2; t3A ½to; tf � (c.f., Fig. 21). Defining the intervals in this way is less restrictive than requiring t1 ¼ to and t3 ¼ tf because
it enables us to construct the time windows with favorable convergence characteristics. The vortex optimization procedure
can then be applied to each of these time windows independently, coupled only by means of a continuity constraint on the
trajectory of the state vector (i.e., xðtþ2 Þ ¼ xðt�2 Þ). Such an approach is slightly less restrictive than the original procedure in
that it allows for discontinuities in the inputs at times corresponding to stitching instants (e.g., at t ¼ t2 in the present
example). Additionally, the approach does not enforce continuity in the co-state pðtÞ. In fact, the terminal value of the co-
state, for a given time window, is always set to zero. As such the resulting stitched solution is not a true solution to the
optimal control problem over the full time horizon. However, the stitching approach does lead to improved convergence
properties and model predictions, thus making the procedure a useful tool for such analyses.

The results of the stitching procedure are reported in Figs. 22–27. For both K¼0.2 and K¼0.7, we have chosen t1 and t2 to
correspond with the original vortex model optimization time windows considered in Section 4. We see that the later time
Fig. 24. Pitching plate (K¼0.2) leading and trailing edge vortex strengths from the impulse matching model with Kutta conditions imposed at both the
leading and trailing edge ( ) and from the stitch-optimized impulse matching model ( ).

Fig. 23. Pitching plate (K¼0.2) time rate of change of leading and trailing edge vortex strengths from the impulse matching model with Kutta conditions
imposed at both the leading and trailing edge ( ) and from the stitch-optimized impulse matching model ( ).



Fig. 25. Pitching plate (K¼0.7) drag and lift coefficient histories associated with the VVPM data ( ), the impulse matching model with Kutta conditions
imposed at both the leading and trailing edge ( ), and the stitch-optimized impulse matching model ( ).

Fig. 26. Pitching plate (K¼0.7) time rate of change of leading and trailing edge vortex strengths from the impulse matching model with Kutta conditions
imposed at both the leading and trailing edge ( ) and from the stitch-optimized impulse matching model ( ).
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behavior is improved from the original impulse matching model, though the second time window tends to have a larger
mean squared error than the first time window. This is expected since the triple ðt1; t2; t3Þ is chosen arbitrarily. The optimal
input history is shown alongside the strength history to demonstrate that the discontinuity in the input at t2 remains fairly
small and does not affect the smoothness of the strength of either vortex. It must be noted that the impulse matching model
is designed to allow such discontinuities in _Γv without reflecting them in the force.

6. Conclusions

In this work, we have formulated a systematic framework for vortex model improvement based on variational principles
and optimal control theory. We have demonstrated the optimization method's merits by demonstrating improvements to
the impulse matching model, developed by Eldredge and Wang, for reconstructing the forces resulting from the pitching
and/or translation of a two-dimensional plate. The force computations resulting from the optimized model match those
predicted by high-fidelity simulations remarkably well for most of the flows considered. When they did not, it was because
the underlying two-vortex model was insufficiently rich to capture the behavior (e.g., when the skin friction drag was a
dominant factor and for flows undergoing subsequent vortex shedding). Despite these issues, the optimized model



Fig. 27. Pitching plate (K¼0.7) leading and trailing edge vortex strengths from the impulse matching model with Kutta conditions imposed at both the
leading and trailing edge ( ) and from the stitch-optimized impulse matching model ( ).
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consistently predicted the forces better than the original impulse matching model for all the cases considered. Moreover, the
quality of the results obtained using only six degrees of freedom is impressive, considering that the fully resolved high-
fidelity simulations used between 105 and 106 degrees of freedom at Re¼1000.

Difficulties arose for convergence for early-time behavior as well as for extended time windows. In spite of the fact that
the early-time issues have yet to be resolved, a “stitching” methodology was devised to allow the optimization to progress
for extended time windows. The optimization framework developed here only represents a sample of the capabilities of the
vortex model improvement paradigm. For example, the present method can be extended to incorporate subsequent vortex
shedding during agile wing maneuvers, as discussed in Appendix A. Although we suggested techniques for accommodating
vortex shedding within the optimization framework, practical implementation will require a better handling of early-time
optimizations. Resolving vortex growth at early times remains the essential obstacle to be surmounted in the optimization,
at least in the case of rapidly maneuvering wings.

The optimization framework demonstrates the capabilities of a two-vortex model in accurately reproducing the force
histories of agile wing maneuvers. However, due to their non-autonomous nature, the resulting models are inadequate for
force prediction and controller design on their own. Instead, the optimized vortex models offer insights into the
shortcomings of the original vortex model and may guide improvements in future modeling efforts. Although we briefly
considered developing an autonomous model based on our findings in Section 4.1.1, progress remains to be made on
this front.

Ultimately, the model optimization framework developed here generalizes to other systems of interest, such as finite
aspect ratio wings. To take such a step, however, will require the appropriate vortex models to represent such flows.
Extensions to finite aspect ratio wings will likely expand upon unsteady modified lifting line (Jones, 1940; Dore, 1966) or
vortex panel models, augmented with the development and influence of the LEV.
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Appendix A. A framework for subsequent vortex shedding

In Section 5.2, we demonstrated a method for overcoming some of the convergence challenges associated with large
time windows. Despite this capability, it remains of interest to introduce a means of vortex shedding within the
optimization framework. Not only will this provide potential for improving the predictions over the stitch-optimized
results, but it also offers a means of gaining further physical insight into the nature of vortex shedding. We have already
discussed the need to better handle early-time behavior before a successful vortex shedding optimization can be conducted.
Nonetheless, we propose an approach for including vortex shedding such that it can be applied when the challenges
associated with vortex start-up are resolved.
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The problem of vortex shedding can be introduced into the current optimization framework by considering the shedding
instant as an optimization parameter. This can be viewed in the same manner as the time domain decomposition into
multiple time windows, as in the stitching case. However, now the second time window will follow the impulse matching
evolution equations in the presence of an additional vortex, with a constant strength, while the first time window is treated
as before. We will first consider the general framework of optimal model switching developed in Xu and Antsaklis (2004) in
Appendix A.1, then in Appendix A.2 we discuss how this framework can be used to introduce vortex shedding within the
optimization problem.

A.1. The optimal switching control problem

Consider the switched system consisting of the following subsystems:

_x ¼ f iðx;uÞ; f i:Rn � Rm-Rn; iA I : ¼ f1;2;…;Mg: ðA:1Þ
The optimal switching control problem consists of determining the optimal control input un, in addition to an optimal
switching sequence in tA ½to; tf � that specifies the sequence of active subsystems. This switching sequence is defined as

s : ¼ ððto; ioÞ; ðt1; i1Þ;…; ðtK ; iK ÞÞ; ðA:2Þ
where 0rKo1, tort1r⋯rtK rtf , and ikA I for k¼ 0;1;…;K . Here, ðtk; ikÞ denotes that at time tk the system switched
from subsystem ik�1 to subsystem ik for the time interval ½tk; tkþ1Þ (except when k¼K, for which the interval is ½tK ; tf �).

The optimal switching control problem can now be stated in the following manner. Consider a switched system
consisting of subsystems _x ¼ f iðx;uÞ, iA I. Given a fixed time interval ½to; tf � and a specified sequence of active subsystems
ðio; i1;…; iK Þ, find a continuous input uAU ½to ;tf � and switching instants t1;…; tK such that

J ¼
Z tf

to
gðx;uÞ dt ðA:3Þ

is minimized.

A.2. A framework to accommodate vortex shedding

In the spirit of the optimal switching control problem, we formulate a similar optimization problem for improving our
vortex model by accounting for the shedding of multiple vortices. To do so, consider the switched system consisting of the
following two subsystems, defined with respect to differing state and input vectors, ðx1;u1Þ and ðx2;u2Þ

_x1 ¼ f1ðx1;u1Þ; tA ½to; t1Þ; ðA:4Þ

_x2 ¼ f2ðx2;u2Þ; tA ½t1; tf �: ðA:5Þ
The switching sequence here is simply s¼ ððto; ioÞ; ðt1; i1ÞÞ since the subsystems will only switch once. We have intentionally
made a distinction between ðx1;u1Þ and ðx2;u2Þ in an effort to emphasize, from a modeling standpoint, the release of one
vortex “in exchange for” the introduction of another. The problem now is to determine the inputs u1 and u2, the initial
conditions on the states xo

1 ¼ x1ðtoÞ and xo
2 ¼ x2ðt1Þ, and the switching instant t1, such that

J ¼
Z t1

to
gðx1;u1Þ dtþ

Z tf

t1
gðx2;u2Þ dt ðA:6Þ

is minimized.
We can rewrite this last statement as

min
u1 ;u2 ;xo

1 ;x
o
2 ;t1

J ¼ min
u1 ;u2 ;xo1 ;x

o
2 ;t1

Z t1

to
gðx1;u1Þ dtþ

Z tf

t1
gðx2;u2Þ dt

� �
; ðA:7Þ

min
u1 ;u2 ;xo

1 ;x
o
2 ;t1

J ¼min
t1

min
u1 ;u2 ;xo1 ;x

o
2

Z t1

to
gðx1;u1Þ dtþ

Z tf

t1
gðx2;u2Þ dt

� �( )
; ðA:8Þ

min
u1 ;u2 ;xo

1 ;x
o
2 ;t1

J ¼min
t1

min
u1 ;xo1

Z t1

to
gðx1;u1Þ dtþmin

u2 ;xo
2

Z tf

t1
gðx2;u2Þ dt

( )
: ðA:9Þ

Though the original form should be used for practical implementation, writing the minimization in this form demonstrates
the equivalent nature of the problem to the optimization we have already considered. That is, this “switching” problem nests
two optimization problems with the same form we treated previously, with an additional parameter optimization for t1.

It should be noted that this framework can be extended arbitrarily to accommodate any number of vortex shedding
events. Of course the practicality of computing a solution for multiple shedding events may be a limiting factor. In addition
to convergence properties having a greater potential for being poor, the computational expense grows with the addition of
each switching event. Even if we ignore the detrimental effects of a larger time horizon to bring about more switching
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events, this statement remains true because each additional switching event requires an additional parameter optimization
on the switching instant tk.
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