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It is well established that flying aircraft in formation can lead to improved aerodynamic efficiency. However,

successfully doing so is predicated on having knowledge of the lead aircraft’s wake position. Here, a wake-sensing

strategy for estimating thewake position and strength in a two-aircraft formation is explored in a simplified proof-of-

concept setting. The wake estimator synthesizes wing-distributed pressure measurements, taken on the trailing

aircraft, bymaking use of an augmented lifting-line model in conjunction with bothKalman-type and particle filters.

Simple aerodynamicmodels are introduced in constructing the filter to enable fundamental wake-sensing challenges

to be identified and reconciled. The various estimation algorithms are tested in a vortex lattice simulation

environment, thus allowing the effects ofmodeling error to be analyzed. It is found that biases in the position estimates

no longer arise if a particle filter is used in place of the Kalman-type filters. Filter divergence is observed when the

relative aircraft separations are held fixed. This divergent behavior can be alleviated with the introduction of relative

aircraft motions, for example in the form of a cross-track dither signal.

Nomenclature

b = wake vortex separation distance
~b = wingspan
c = chord length
H = measurement Jacobian matrix
KL = airfoil constant, �1∕2� cmo

kcal = calibration vector
Mk = estimation covariance matrix
mo = two-dimensional lift-curve slope
Vy = lateral velocity component
Vz = vertical velocity component
vk = measurement noise vector, N �0; Vk�
wo = wake-induced upwash
wk = process noise vector, N �0;Wk�
x = state vector
yo = wake lateral coordinate
z = measurement vector
zo = wake vertical coordinate
α = angle of attack
αl�0 = two-dimensional zero-lift angle of attack
Γ = lifting surface strength
Γo = wake vortex strength
ΔCp = spanwise differential pressure coefficient
σv = measurement noise standard deviation
σw = process noise standard deviation
Ωx = roll rate
Ωy = pitch rate

I. Introduction

F LYING aircraft in formation can lead to significant fuel savings
due to the reduction in induced drag realized by the trailing

aircraft. This method of drag reduction is contingent upon having the
trailing aircraft positioned properly within the upwash field of the
lead aircraft’s wake. The reduction in induced drag arising from
flying aircraft in formation is, to first order, attributed to the rotation
of the resultant force vector arising from the presence of the upwash
field associated with the lead aircraft’s wake [1,2]. As depicted in
Fig. 1, the induced angle of attack due to the lead aircraft’s upwash
field leads to a decrease in induced drag (i.e., ΔD points in the
direction of motion) and a small increase in lift. However, it has been
shown by means of simplified linear analysis that 50% of the benefit
is lost if the wake cannot be tracked within 10% span [1]. Based on
this sensitivity to position within the wake, it is clear that accurate
estimates of the wake location are essential for successful drag
reduction in formation-flight missions.
Aircraft wake vortices and their contribution to induced drag

comprise a broad body of technical literature and research. The
review article by Spalart [3], and citations therein, summarize a
tremendous amount of knowledge on aircraft trailing vortices,
especially with regard to characterizing their formation, dynamics,
and decay. Another review article by Kroo [4] summarizes funda-
mental aspects of induced drag and various drag-reduction concepts
that take advantage of induced-drag physics. Additionally, an
excellent overview of wake vortex research involving transport
aircraft can be found in the article by Rossow [5].
The specific topic of formation-flying aerodynamics has been

examined from a variety of standpoints. For example, some inves-
tigators have considered the optimal downwash and lift distribution
of formation-flying wings [6], while others have focused on
approaches for the modeling and simulation of aircraft formations
[7,8]. Many groups have attempted to better characterize, by way of
wind-tunnelmeasurements, the effect of tip vortices andwake roll-up
on the trailing aircraft [9–13]. Numerous flight tests have also been
conducted to determine real-world feasibility and proof-of-concept
for formation-flyingmissions.Among these are the tests conducted at
NASA Dryden Flight Research Center in 2001 on F/A-18 aircraft
[2,14,15], as well as recent tests at Edwards Air Force Base in 2010
and 2012 on a formation of C-17 transport aircraft [16,17].
The issue of formation-flight control has also been the focus of

several investigations. Giulietti et al. [18] have studied various
aspects of formation-flight dynamics and control, while Campa et al.
[19] have considered the design and flight testing of nonlinear
formation control laws. There has also been much focus on real-time
formation optimization by means of extremum-seeking control [20–
23]. All of these studies consider formation aerodynamic effects
as a function of the relative position between aircraft. This is a
reasonable assumption for longitudinal separations on the order of a
few wingspans but deteriorates as this separation increases. Due to
safety restrictions, practical formation-flight missions will require
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significant longitudinal separations. This poses a problem to
approaches considered in these past studies, because the approaches
are not robust to atmospheric turbulence and wind gusts that will
most necessarily shift and modify wake characteristics in such a
manner as to invalidate any wake estimates based on relative aircraft
positions alone. Surely, constructing the aerodynamic benefit maps is
more useful if they are referenced relative to the wake position
directly.
The sensing and detection of wake vortices is not a new concept.

Much research and technology development has focused on
detecting wake hazards in the airspace and on airport runways.
However, many such wake-detection tools require access to heavy,
expensive, and complex instrumentation, such as radar, lidar,
massive microphone and sodar arrays, and specialized acoustic
transducer configurations [24–29]. Despite significant advances
made for wake-hazard detection, these systems are primarily
designed for ground use. The systems available for in-flight use,
such as airborne lidar, remain impractical for operational use from
both a cost and weight standpoint. More practical onboard sensor
configurations, such as distributed pressure probes, have been
applied to characterizing wake encounters as a postprocessing step
[30–32]. Although these studies do not consider real-time
algorithms for wake detection, they do demonstrate some practical
instrumentation configurations that can be implemented for real-
time wake sensing.
Other approaches for real-time vortex detection have also been

considered in nonaircraft scenarios. For example, much work has
been conducted on Lagrangian data assimilation for vortex detection
in the atmospheric and oceanic sciences communities [33–35]. This
work provides useful insight into general vortex detection but
remains outside the scope of onboard wake sensing due to the need
for Lagrangian measurements, which are unavailable for operational
formation-flight missions. In 2003, Suzuki and Colonius [36]
developed a method for detecting a vortex in a channel. This work is
especially noteworthy due to its semblance to the approach taken in
the present study, in that an array of pressure sensors is used to
determine the vortex parameters of interest.
Despite all of the progress made in formation-flight research, it is

clear that, to date, no reliable and practical methods for onboardwake
estimation and sensing exist. Yet, knowledge of the wake location is
essential to the success of formation-flight missions for drag
reduction. As Blake and Multhopp [1] have shown, small deviations
from the truewake location can lead to large losses in the drag benefit,
thus indicating the absolute need for accurate and precise estimates of
the wake position. The goal of wake sensing is to obtain reliable
estimates of the wake location based on measurements taken from a
suite of onboard sensors. The ultimate goal is to rely solely upon
preexisting instrumentation; however, such a solution may not be
physically possible.
By studying the wake-sensing problem in a simplified proof-of-

concept setting, the present work attempts to identify and reconcile
fundamental challenges associated with the general wake-estimation
problem. The current development makes use of wing-distributed
pressure sensors to extract the lead aircraft’s wake parameters.
Because the wake’s upwash field is inherently distributed, the lead
aircraft’s wake leaves an aerodynamic signature across the trailing

aircraft’s lifting surfaces. By assimilating measurements from wing-
distributed sensors, the wake signature can be used to back out the
wake location and other parameters of interest. The added advantage
of such an approach is its ability to provide basic insights into the role
of the fundamental wake nonlinearity associated with the upwash
field. The wake-estimation algorithm developed here makes use of
simple, but rich, aerodynamic models to reveal the fundamental
aspects of the wake-sensing problem. In doing so, it is found that
nonlinearities inherent to the wake’s influence on the trailing aircraft
can lead to undesirable behaviors under certain circumstances. In the
present study it is shown that adopting more sophisticated nonlinear
filtering paradigms and introducing aircraft dynamics can help
mitigate some of these issues. The present work demonstrates that
distributed aerodynamic measurements can be synthesized to
successfully determine the wake parameters of a lead aircraft during
formation flight in real time, at least in the simple configurations
considered here.
The wake-estimation strategy is introduced and developed in

Sec. II. Considerations of aerodynamic modeling and model
integration with nonlinear estimation schemes are discussed.
Section III presents the resulting performance of thewake-estimation
strategy in a vortex lattice environment, followed by identification
and reconciliation of the causes of estimation bias and filter
divergence by means of empirical studies. Concluding remarks are
made in Sec. IV.

II. Estimator Design

In designing a reliable wake-estimation strategy, a representation
of the wake’s influence on the trailing aircraft must be considered.
This representation will rely upon a model for the lead aircraft and its
wake, as well as a model for the trailing aircraft’s aerodynamic
response due to the presence of this wake. The development of these
models relies heavily on simple vortex entities such as vortex lines
and horseshoes, which can be reviewed by the unfamiliar reader in
Moran [37] and Katz and Plotkin [38]. Upon constructing a
sufficiently realistic representation of the wake–aircraft interaction,
standard Kalman-type and particle-filtering approaches from
nonlinear filtering theory are invoked to define a suitable estimation
algorithm.
The current section begins by introducing a model for the lead

aircraft and its wake in Sec. II.A. Section II.B describes a lifting-line
representation for the trailing aircraft in the presence of the lead
aircraft’s wake. With the aerodynamic modeling complete, the
aerodynamic model is then integrated within the framework of
various nonlinear estimation schemes in Sec. II.C. Kalman-type
filters are considered, in addition to the particle filter. The various
details of thewake-estimation algorithms are discussed in the ensuing
subsections.

A. Lead Aircraft and Wake Representation

The longitudinal separations experienced during formation-flight
missions are large enough to allow the wake to roll up completely,
thus making a horseshoe vortexmodel a reasonable representation of
the lead aircraft and its wake. This can be further simplified by
neglecting the influence of the bound vortex at large distances. In
doing so, the semi-infinite horseshoe legs necessarily become infinite
line vortices, with strength Γo and separation distance b dictated by
the lead aircraft’s weight and geometry, respectively. Because the
trailing aircraft is not expected to undergo wake crossings during the
wake identification segment of a formation-flight mission, a simple
Biot–Savart relation can be used to express the velocity induced by
each infinite line vortex at a point in space. Of course, a finite core
size can be introduced to regularize vortices if deemed necessary, but
this will not play a significant role in the estimator performance
considered in the present development. The expression for the
upwash field associated with the vortex wake can be obtained by
linearly superposing the upwash field associated with each infinite
line vortex individually:

Fig. 1 Rotation of resultant force on trailing aircraft due to lead
aircraft’s wake upwash. Drawn are the baseline forces, induced effects
(prefixed with△), and formation forces (denoted with primes).
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wo�y;Γo; yo; zo; b� �
Γo�y − yo � �b∕2��

2π�z2o � �y − yo � �b∕2��2�

−
Γo�y − yo − �b∕2��

2π�z2o � �y − yo − �b∕2��2�
(1)

This nonlinear expression represents the wake’s direct influence on
the upwash field as a function of the wake parameters Γo, yo, zo, and
b, as defined in Fig. 2. As will be seen, this nonlinear form is the
fundamental nonlinearity associated with wake estimation.

B. Trailing Aircraft Representation

With the lead aircraft’swakemodel established, it is nownecessary
to develop a mapping from the wake parameters to the trailing
aircraft’s aerodynamic response to it. The physics of the problem
lends itself to a classical lifting-line approach, because formation-
flying aircraft will likely only be subjected to slow time-scale (i.e.,
quasi-steady) maneuvers. The lifting-line model also has the
advantage of being able to capture distributed aerodynamic quantities
through only a small number of Fourier modes, thus keeping the
dimensionality of the model small enough for real-time implemen-
tation. Here, the classical model is augmented with Eq. (1) to
accommodate the presence of a nearby wake. Although more
sophisticated modeling approaches can be considered to begin with,
applying a lifting-line approach enables the effects of modeling error
to be studied by simulating estimator performance in a more
sophisticated setting (e.g., vortex lattice method).
Classical lifting-line theory represents the vorticity of thewing and

its associated wake by a spanwise distribution of horseshoe vortices.
The lifting-line integro-differential equations are then solved to
determine the strength distribution along the lifting line. This strength
distribution can then be used to compute other quantities of
aerodynamic interest. The classical form of the lifting-line equation
is [37]

Γ�y� � 1

2
U∞c�y�mo�y�

�
α − αl�0�y� −

1

4πU∞

I
− ~b∕2

dΓ∕dη
y − η

dη

�

(2)

with the boundary conditions

Γ�− ~b∕2� � Γ� ~b∕2� � 0 (3)

Equations (2) and (3) are only valid for a wing in free space
undergoing steady trimmed flight. If quasi-steady maneuvers in the
presence of wake vortices are to be considered, as in Fig. 3, one must
expand upon the expression just discussed by introducing additional
terms to the upwash distribution along thewing’s span. For example,
any vertical translational velocity Vz will introduce a uniformly
distributed downwash along the span. Additionally, rolling
maneuvers (i.e., rotations about the body-fixed x axis) will induce
a downwash proportional to the distance from the center of rotation
Ωxy). Here, it is assumed that the center of rotation is located at
midspan of the wing (i.e., yC:G: � 0). Finally, pitching maneuvers
(i.e., rotations about the body-fixed y axis) will introduce a

downwash proportional to the difference in position between the
wing’s center of gravity and the quarter-chord point Ωy�c1∕4�y�−
xC:G:�. For the purpose of the present discussion, it will be assumed
that c1∕4 − xC:G: is negligible, and thus, this termwill be ignored. This
assumption is also consistent with that of small sweep angles, which
is inherent in the use of lifting-line theory in the first place. Finally,
a term wo�y;Γo; yo; zo� is included to represent the upwash
distribution associatedwith the presence of a finite set of linevortices,
thus accounting for the presence of the wake.
The final form of this generalized lifting-line integro-differential

equation becomes

Γ�y� � KL�y�
�
U∞�α�y� − αl�0�y�� − Vz −Ωxy

�wo�y;Γo; yo; zo� −
1

4π

I
− ~b∕2

dΓ∕dη
y − η

dη

�
(4)

where KL�y� :� �1∕2�c�y�mo�y�, with the boundary conditions

Γ�− ~b∕2� � Γ� ~b∕2� � 0 (5)

In the approach taken here, this set of equations is solved by the
collocation method [37]. Once this integro-differential equation is
solved for the Γ�y� distribution, many other terms of interest easily
follow. For example, it can be shown that for a flat plate, the
distribution of differential pressure coefficient will take the form

ΔCp�x; y� � −4
Γ�y�

πU∞c�y�

�
c�y�
x

− 1

�
1∕2

(6)

C. Wake-Estimation Algorithm

Having developed the necessary aerodynamic models, a viable
estimation strategy based onvarious nonlinear estimation approaches
can be developed. First, Kalman-type algorithms will be considered
due to their computational simplicity and ability to handle process
and measurement uncertainty. Particle filters are also used to better
handle the nonlinearities associated with the wake. All of the wake
estimators developed in this work follow the same underlying
approach (i.e., synthesizing distributed aerodynamic measurements
with the aid of the augmented lifting-line model), but do so bymeans
of different nonlinear stochastic estimation algorithms.

a) Lead aircraft upwash field b) Wake vortex coordinate system

Fig. 2 Schematic representation of the lead aircraft's wake and its aerodynamic influence on the trailing aircraft.

Fig. 3 The augmented lifting line model.

AIAA Early Edition / HEMATI, ELDREDGE, AND SPEYER 3

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

C
A

L
IF

O
R

N
IA

 L
O

S 
A

N
G

E
L

E
S 

on
 F

eb
ru

ar
y 

5,
 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.6
11

14
 



Each of the following sections highlights an important aspect of
the overall wake-estimation strategy. The discussion begins by
defining the state and measurement vectors in Sec. II.C.1, followed
by a discussion of the associated measurement and process noise in
Sec. II.C.2. Some necessary details related to Kalman-type and
particle filters are presented in Secs. II.C.3 and II.C.4, respectively.
Regardless of the specific algorithm employed, an out-of-formation
calibration must be performed before operating the wake estimator.
Discussion of this process is presented in Sec. II.C.5. Finally, the
specific aircraft dynamics considered in this study are described in
Sec. II.C.6.

1. States and Measurements

For the current discussion, the following definitions are used for
the states x and measurements z:

x :�

2
4Γo
yo
zo

3
5 ∈ R3 and z :�

2
6666664

ΔCp1

..

.

ΔCpi
..
.

ΔCpM

3
7777775

∈ RM (7)

Here, the states to be estimated are those associated with the relevant
vortex parameters (see Figs. 2 and 3): 1) the strength of the pair Γo,
and 2) the lateral and vertical positions of the wake origin (i.e., the
center of the vortex pair) relative to the aircraft’s body-fixed
coordinate system �yo; zo�.
Though estimating the relative position of the wake is the central

concern, the associated vortex strength is an additional, but
necessary, parameter to be estimated. Previous studies showed
degraded estimator performance without the inclusion of this
additional parameter. This will be discussed further in Sec. III.A.
Future investigations may also consider other wake parameters, such
as relative roll and relative yaw angles.
In the current implementation, spanwise differential pressure

distribution is used as a measurement. The reason for this choice lies
in simplifying the estimator’s development process. Because theΓ�y�
distribution solved for within the lifting-line model is directly related
to ΔCp�y� via Eq. (6), the differential pressure distribution has been
chosen as the measurement within the current framework. Other
measurements, such as angle of attack distribution, may also have
merit. More importantly, the current algorithms are not restricted to
distributed measurements alone; however, the use of distributed
measurements allows valuable insights to be gained, so it is useful to
consider such approaches first. If estimators relying upon distributed
measurements lack in performance, then relying upon integrals over
these distributions will be even more lacking. Although the ultimate
hope is to rely upon existing onboard instrumentation exclusively for
measurement data, validation under the distributed measurement
framework must come first.

2. Measurement and Process Noise

The wake estimator to be designed is desired to be robust to both
measurement and process noise. As a result, such effects must be
accounted for within the estimation procedure. The Kalman-type and
particle-filtering algorithms already take such effects into account. In
the present development, the process noise is currently only
accounted for through the process covariance matrixWk ∈ R3×3. No
additive process noise is explicitly added within the system model.
Instead, process noise is implicitly introduced by means of model
mismatch between the estimator model and the simulation
environment. In an effort to keep the filter open, enforcement of
Wk > 0 is ensured. Because there is no process noise explicitly
introduced within the simulation framework, Wk can be considered
as a tuning parameter to be used in conditioning the filter for better
performance.
Unlike the process noise, the measurement noise is explicitly

introduced within the simulation. That is, the inputted measurement
is assumed to have a white-noise signal vk ∼N �0; Vk� added to it.

Here, it is assumed that the measurement has a “true” covariance of
V true
k ∈ RM×M when introducing noise to the measurement; however,

within the filtering framework,Vk is treated as a tuning parameter. As
such, Vk as defined within the context of the filter is not necessarily
equal to V true

k , and can be used to tune the filter.
Finally, the initial estimate for the vortex parameters is assumed to

be x̂o ∼N � �xo;Mo�. Again, the true estimate may have an initial
covarianceMtrue

o ∈ R3×3, butMo is treated only as a tuning parameter
within the context of the filter. That is, process noise is not explicitly
introduced within the simulations (i.e., Mtrue

o � 0); rather, it is
assumed that anymodeling error can be accounted for with a suitable
choice ofMo in the filter initialization.

3. Kalman-Type Filtering: Measurement Function Linearization

Kalman-type filters are one class of nonlinear estimation algorithm
in this study. In the interest of brevity, familiarity with Kalman-
type filtering is assumed. The reader is referred to Jazwinski [39]
and Speyer and Chung [40] for further details regarding such
algorithms. The present section only discusses computation of the
measurement Jacobian matrix H, which is required by Kalman-type
filtering algorithms. For the vortex parameters x just given, this takes
the form

H �

2
666666666664

∂ΔCp1

∂Γo

∂ΔCp1

∂yo

∂ΔCp1

∂zo
..
. ..

. ..
.

∂ΔCpi
∂Γo

∂ΔCpi
∂yo

∂ΔCpi
∂zo

..

. ..
. ..

.

∂ΔCpM
∂Γo

∂ΔCpM
∂yo

∂ΔCpM
∂zo

3
777777777775

∈ RM×3 (8)

In the current implementation, the measurement Jacobian is com-
puted numerically via first-order finite differences applied to small
perturbations about the nominal (estimated) state. This approach
simplifies future modifications to the filter model. For example, if
new measurements (i.e., not differential pressures) are desired, the
function hk�xk� is the only portion of the filter that will require
modification.

4. Particle-Filtering Procedure

The second class of nonlinear estimation algorithm considered in
this study is the particle filter (PF). PFs approximate the Bayesian
optimal filtering equations by means of Monte Carlo methods. The a
posteriori probability density is represented by a set of random
samples, or “particles,” with associated weights. As the number of
particles increases, the representation approaches the exact
functional description of the probability distribution [41].
As time progresses, the PF algorithm can lead to degeneracy due

to overweighting a few samples, leaving the remaining ones useless.
A common method of circumventing this issue comes in the form
of a “resampling” step. The sequential important resampling PF
algorithm implemented in the present study makes use of a simple
cumulative sum algorithm to resample particles at every time step.
Further details regarding particle filters and resampling algorithms
can be found in Ristic et al. [41].

5. Offline Calibration

Thus far, all of the algorithmic details for the wake estimator
have been established. The important step of ensuring that the
model implemented within the estimator matches up reasonably
well with reality still needs to be addressed. Thus, before “hooking
up” the filter, the lifting-line model within the filter needs to be
calibrated in an isolated flight configuration. That is, the lifting-line
model must be calibrated against the actual measurement data offline
to initialize the model for best performance. This is done by
determining a linear gain vector (kcal ∈ RM) to apply to the model
output:
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kcal :� � kcal;1 : : : kcal;i : : : kcal;M �T;

where kcal;i :�
zi;Measured

zi;LiftingLine

(9)

Calibration is important in the case of both simulation and flight
testing. Within the context of simulation, calibration allows the filter
to better account for variations between aerodynamic models used to
represent truth. For example, aerodynamic effects from the fuselage
and other blunt bodies, unaccounted for by the lifting-line model, can
be accommodated. Such calibration is also necessary for actual flight
implementation because, in addition to modeling inaccuracies,
unaccounted sensor biases may be present. In the case of pressure
transducers, for example, such biases can be caused from installation
or manufacturing errors. Calibrating the system offline introduces an
element of robustness to the model, because sensor biases can be
better accounted for.

6. System Dynamics

The relative aircraft motions between two formation-flying
aircraft, considered in the present study, are described in the present
section. The system dynamics studied in the current effort are simply
prescribed sinusoidal changes in the relative vertical and lateral
displacements between the wing and wake axes. Moreover, the
constant amplitude and frequency of the sinusoidal velocity bywhich
thewingmoves is assumed to be fully known (i.e., there is novariance
associated with these parameters). The vertical velocity of the wing
influences the induced drag and, therefore, the pressure measure-
ments. This is accounted for within the lifting-line implementation.
The lateral velocity is prescribed only for the purpose of “increasing
the observability” of the vortex pair. Such prescribed motions are
expected to increase the observability of the vortex pair because,
though hk�xk� is not necessarily invertible for all values of xk,
the prescribed motions are more likely to describe a set
�h1�x1�; : : : ;hk−1�xk−1�;hk�xk�� that can only be generated from a
unique set of vortex parameters.
The lateral and vertical velocity components of the wing are

denoted as Vy�tk� and Vz�tk�, respectively. For the purpose of
simulation, the wake is moved with respect to the aircraft rather than
the aircraft moved with respect to the wake. In doing so, upwash/
sidewash effects due tomotions of the lifting surfaces can be ignored.
This provides a greater opportunity for distinguishing the wake’s
upwash signature, because it is less likely to be “washed out” by the
presence of these additional disturbance fields. Thus, for purposes of
the estimator simulation, one may consider that the wing “sees” the
vortex pair move with equal but opposite velocity components,
ignoring all velocities due to motion of the solid bodies. Hence

y�k�1�o � y�k�o − Vy�tk�Δtk (10)

z�k�1�o � z�k�o − Vz�tk�Δtk (11)

where Δtk is the time period between sensor measurements. In other
words, the dynamical equations for this system can be written as

2
4Γo
yo
zo

3
5
k�1

�

2
4Γo
yo
zo

3
5
k

�

2
4 0

−Vy�tk�Δtk
−Vz�tk�Δtk

3
5 (12)

Although other aspects of the aircraft dynamics have not been
included here (e.g., roll and yaw kinematics), they will be considered
in future works. In the present study, only fundamental aspects of the
filter have been considered. As such, only parameters that are
expected to demonstrate the capabilities of the filter have been
included. Keeping the number of parameters to a minimum also
allows the study to be kept as intuitive as possible.

III. Performance Results

As previously mentioned, the classical lifting-line approach used
in designing the estimator can be replaced with more sophisticated
aerodynamic models (e.g., modern/extended lifting-line methods or
vortex lattice methods) in the future. However, the classical lifting-
line method was selected primarily due to its simplicity. Because the
current focus is on the assessment of an estimation algorithm, the
aerodynamic model must only be capable of capturing the class of
nonlinearity associated with the process. Classical lifting-line theory
is entirely capable of doing this; it also provides a simple framework
for tracking the influence of the fundamental wake nonlinearity on
the overall estimator dynamics.Additionally, by considering a simple
model at this time, the effects of modeling error can be studied
directly by simulating estimator performance in a more sophisticated
environment. Here, vortex lattice simulations of a generic aircraft
equipped with five wing-distributed pressure sensors (M � 5) have
been studied to assess the wake-estimation algorithm’s performance
characteristics. The simplest possible aircraft is chosen for the present
study because of the limitations associated with the classical lifting-
line approach in modeling sophisticated geometries such as sweep
and dihedral. Despite these limitations, the calibration procedure
described in Sec. II.C.5 is able to reduce the estimator’s sensitivity to
the presence of unmodeled features, such as horizontal and vertical
stabilizers.
Two main types of simulations are considered in the vortex lattice

results that follow: 1) static configuration, inwhich there is no relative
motion between the aircraft and wake, and 2) prescribed relative
motions, in which relative kinematics are prescribed between the
aircraft and wake a priori, thus introducing “dynamics.”
In both of these instances, the same aircraft/sensor configuration is

used (see Fig. 4). The level of noise associated with the sensor
measurements is also consistent in both cases. Process noise is not
present in the simulation, though a finite “truth” process noise is
assumed for use in tuning the estimator. The corresponding noise
levels are

σtruev � 1 × 10−5; σtruew � 1 × 10−3

where σtruew refers to the initial uncertainty in the estimate (i.e., Mo

discussed in Sec. II.C.2) and is currently treated as a tuning
parameter. Unless otherwise stated, the remaining estimator tuning
parameters have the following values:

σv � 7 × 10−3; σw � 3 × 10−2

Finally, all values are presented in dimensionless form, using wing
span, flight speed, and air density at 28,000 ft as factors for non-

Fig. 4 Vortex lattice simulation aircraft configuration. Collocation
points are denoted by○, while pressure sensors are denoted by □.
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dimensionalization. A list of the various cases studied is presented in
Table 1.

A. Two-Aircraft Static Configuration

Several simulation results for the case of no relative motions are
now presented. Case 1, presented in Fig. 5, provides a validation for a
simple case using an extended Kalman filter (EKF); thewake is close
to the trailing aircraft, thus leaving a relatively strong signature on it.
Based on both the estimation trajectory map and the error histories,
one can see that the estimator does a reasonable job zeroing in on the

relative wake location. The estimate of the wake strength, however,
does not perform as well. The error associated with the estimate of Γo
is on the same order of the quantity itself. An interesting point to note
is that this tends to be a common trend amongmost of the simulations
conducted. Several studies were previously conducted, albeit
briefly, on the effect of removing thewake strength Γo as a parameter
to be estimated (i.e., assuming Γo is fully known). Surprisingly, the
results of these simulations led to degraded estimator performance!
This can be explained by reflecting on the large amount of error
present in Γo when it is included as an estimation parameter. It
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Fig. 5 Case 1 simulation results. In a), ○ denotes the wake vortex core and + the wake center, the trailing (estimating) aircraft is drawn flying into
the page, with initial estimate • and estimation trajectory — — . In b) and c), solid lines denote estimates, dotted lines are 1-σ bounds, and dashed lines are
true values.

Table 1 Specifications of the cases studied based on case number, wake parameters,
kinematics, and filtering algorithm

Case number Wake parameters �Γo; yo; zo� Kinematics Filtering algorithm

1 �0.03;−1; 0� Statica Extended Kalman filter
2a �0.03;−1.5; 1� Static Extended Kalman filter
2b �0.03;−1.5; 1� Static Particle filter
3 �0.03;−1; 0� A � 0.05, ω � 0.05 Extended Kalman filter
4a �0.03;−1.5; 1� A � 0.5, ω � 0.05 Extended Kalman filter
4b �0.03;−1.5; 1� A � 0.5, ω � 0.001 Extended Kalman filter

a“Static” refers to a configuration with no relative motions between aircraft and
wake, while cases with relative motions are defined with respect to the kinematic
parameters A and ω defined in Sec. III.B.
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turns out that much of the process uncertainty is lumped into Γo.
As a result, when it is removed as an estimation parameter, the
estimates of the wake coordinates are more greatly affected by these
uncertainties. Because the wake coordinates are the parameters of
interest in formation-flight applications, the poor estimate ofΓo is not
of great concern and is kept so as to improve the quality of �yo; zo�
estimates.
Case 2 considers a configurationwith one and one-half wing spans

of lateral separation and one wing span of vertical separation. Two
different classes of nonlinear estimation algorithms were considered
in this study: 1) Kalman-type filters, and 2) particle filters. The
Kalman-type filters consisted of an EKF (case 2a), an iterated
Kalman filter, and a second-order Kalman filter. These three Kalman-
type filters yielded similar results (only EKF results are presented in
the interest of brevity), all of which led to significant biases or filter
divergence depending on the initial estimates. Based on the resulting
bias and divergence from these studies, a particle filter (case 2b) was
also implemented in an effort to empirically determine the cause of
the bias and/or divergence. A particle filter is capable of passing
statistics through the wake nonlinearity directly, not relying on
linearizations as the Kalman-type filters do. This enables a study of
the effects of the nonlinear structure on estimator performance. Based

b) Estimate history c) Estimation error history

a) Estimate trajectory

1
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0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 50000 1000 2000 3000 4000 5000
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Fig. 6 Case 2a simulation results. In a),○ denotes the wake vortex core and + the wake center, the trailing (estimating) aircraft is drawn flying into the
page,with initial estimate • and estimation trajectory — — . In b) and c), solid lines denote estimates, dotted lines are 1-σ bounds, anddashed lines are true
values.
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Fig. 7 Case 2a results frommultiple initial estimates, where○ denotes a
wake vortex core and + the wake center, the trailing (estimating) aircraft

is drawn flying into the page, with initial estimates • and estimation
trajectories — — .
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on the vortex lattice simulations, the particle filter alleviated the bias
issues, but divergence was still a problem. This indicates a potential
unobservability that is not being handled properly by the sensor
configuration. Introducing relative motions between aircraft will be
shown to mitigate this divergence issue by modifying the observ-
ability structure of the wake.

1. Extended Kalman Filter

The EKF in Case 2a, presented in Figs. 6 and 7, reveals the
presence of attractors in the estimation error space. The position
estimate follows a similar trajectory for several different initial
estimates and always leads to the same biased position estimate. In
one of the cases presented, the estimate actually diverges! The wake
nonlinearity and its associated observability structure are responsible
for this behavior. Methods for handling this nonlinear and un-
observable structure are presented in the ensuing sections.

2. Particle Filter

The wake nonlinearity is a likely culprit leading to the biases in
some of the estimation results. By invoking a PF (case 2b), the
nonlinearity can be handled directly; if the PF gets rid of the bias and
divergence issues, it can be safely stated that the nonlinear structure of

the wake requires direct processing (i.e., linearizations are not
sufficient) to achieve favorable estimator performance. In imple-
menting the PF for wake estimation, the following parameter values
are used:

Np � 1000; σv � 3 × 10−4; σw � 1 × 10−2

The PF results, presented in Figs. 8 and 9, demonstrate the greatest
performance among the four wake-estimation algorithms studied.
Because the PF propagates statistics through the vortex nonlinearity
directly, without relying upon successive linearizations, the biases
due to small modeling errors are minimized. However, as a result of
system unobservability, the estimates continue to diverge along the
magenta path. In otherwords, the biases observed in theKalman-type
filters were caused due to the strong nonlinearity associated with the
wake’s influence, but the divergence is likely rooted in the
observability structure of the wake.

B. Two Aircraft with Relative Motions

The divergence issues arising in cases 2a and 2b are most likely
attributed towake unobservability. Because the PF also exhibited the
same divergent behavior, thewake nonlinearity cannot be blamed for
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Fig. 8 Case 2b simulation results. In a),○ denotes the wake vortex core and + the wake center, the trailing (estimating) aircraft is drawn flying into the
page,with initial estimate • and estimation trajectory — — . In b) and c), solid lines denote estimates, dotted lines are 1-σ bounds, anddashed lines are true
values.
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this shortcoming. To empirically verify that the observability
structure of the wake is responsible for divergence, the following
section considers the effect of relative motion on the performance of
the wake-estimation algorithm. It is hypothesized that introducing
relative motions between the aircraft and the wake can lead to
improvements in the wake’s observability structure, which should
aid in resolving filter divergence. As the aircraft moves closer to
the wake, the signature becomes more pronounced. Thus, a time
sequence of wake signatures should be more revealing than a single
wake signature with additive noise.
In the present study, only lateral dither signals are introduced.

These relative lateral motions are prescribed as

xk�1 � Fkxk � Λkuk

where

Fk � IN×N Λk �

2
4 0 0

Aω 0

0 0

3
5 uk �

�
cos�ωt�

0

�

with time quantities normalized by Δt, the time period between
subsequent sensor measurements. Because these tests address the
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Fig. 9 Case 2b results frommultiple initial estimates, where○ denotes a
wake vortex core and + the wake center, the trailing (estimating) aircraft
is drawn flying into the page, with initial estimates • and estimation
trajectories — — .
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Fig. 10 Case 3 simulation results. Note σw � 1 × 10−3 for this case only. In a), ○ denotes a wake vortex core and + the wake center, the trailing
(estimating) aircraft is drawn flying into the page, with initial estimate • and estimation trajectory — — . In b) and c), solid lines denote estimates, dotted
lines are 1-σ bounds, and dashed lines are true values.
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observability structure of thewake, only the EKF results with various
values of A and ω are presented here.
A simple example of the incorporation of kinematics is presented

via case 3 in Fig. 10. Although the estimate appears to lock in on the
zo value in terms of phase, the actual estimate has a periodic error
value in steady state. Though not apparent under such weak forcing
magnitude, the unforced channels (i.e., Γo and zo) also have periodic
values appearing in steady state.
Cases 4a and 4b consider different sets of lateral dither parameters,

leading to significantly different performance characteristics. It is
found that the divergent behavior of the estimator in cases 2a and 2b
(c.f. Fig. 7) can be eliminated under the kinematics prescribed in case
4a (c.f. Fig. 11). However, the resulting converged estimate is far
from the correct value. On the other hand, the kinematics prescribed
in case 4b (c.f. Fig. 12) continues to result in filter divergence, thus
demonstrating that prescribing kinematics does not guarantee
convergence. This clearly demonstrates that arbitrary motions alone
are not sufficient to yield performance gains. Although dynamics
have been shown to influence the wake’s observability structure,
further study is needed in this area. The influence of dynamics on
optimal system observability and estimator performance must be
carefully studied if vortex-based wake estimation is to be successful
in practice.
Additional factors to be considered in the optimal observability

problem include sensor array configurations and additional classes of

sensors. Such studies may require substitution of the lifting-line
model with more sophisticated models, such as extended lifting-line
or vortex lattice models, to handle additional geometric complexities
and multibody sensor distributions. These methods are analogous to
classical lifting-line methods and operate on thewake nonlinearity in
a similar manner to attain aerodynamic quantities of interest. Though
the computational demand of thesemethods is greater than that of the
classical lifting-line method, several strategies exist for keeping the
cost at a level amenable to real-time implementation. For example,
the collocation matrices associated with lattice methods can be
precomputed, assuming the aircraft geometry itself does not undergo
significant changes.Additional approachesmay rely upon table look-
ups for distributed aerodynamic quantities based on the set of vortex
parameters; however, suchmethods tend to suffer from largememory
burdens associated with storing the aerodynamic tables.
With a better handle of wake observability by means of these

proposed studies, it may be possible to use integrated values of the
aerodynamic quantities to say something about the wake parameters
reliably aswell. For example, by integrating the pressure distribution,
the forces and moments can be deduced. Because this is a linear
operation of the pressures, it remains a linear mapping of the wake
nonlinearity. The necessary conditions for successful wake sensing
will still include the conclusions made in the present study. However,
by relying upon forces and moments, much of the signature
associated with thewake is lost, and greater complexity is introduced
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Fig. 11 Case 4a simulation results. In a),○ denotes a wake vortex core and + the wake center, the trailing (estimating) aircraft is drawn flying into the
page,with initial estimate • and estimation trajectory — — . In b) and c), solid lines denote estimates, dotted lines are 1-σ bounds, anddashed lines are true
values.
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to the problem by reducing the fidelity of the measurements to be
incorporated. As a result, such an approach will require further
studies of observability optimization. The ultimate wake-estimation
algorithm will likely make use of both force and moment
measurements as well as distributed aerodynamic quantities to make
reliable estimates of the wake location.

IV. Conclusions

By focusing on simple wake and trailing aircraft representations,
the current study hasmademuch progress in understanding the nature
of wake estimation and in demonstrating a viable wake-sensing
strategy based on distributed aerodynamic measurements. Multiple
attractors have been identified in the estimation error space associated
with Kalman-type filters acting on the wake nonlinearity. Particle
filters have been shown to alleviate this resulting bias, though
divergence issues associated with the wake observability structure
still remain an issue in static formations. Wake observability can be
improved through relativemotions between the aircraft and thewake,
which helps alleviate the divergence issues encountered in static
formation. Further study of the effect of relative motions on the
observability structure of the wake and on the performance of the
wake estimators is a necessary endeavor.
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