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Sub-critical transition to turbulence is often attributed to transient energy growth that
arises from non-normality of the linearized Navier-Stokes operator. Here, we introduce a
new dynamic mode shaping perspective for transient growth suppression that focuses on
using feedback control to shape the spectral properties of the linearized flow. Specifically,
we propose a dynamic mode matching strategy that can be used to reduce non-normality
and transient growth. We also propose a dynamic mode orthogonalization strategy that
can be used to eliminate non-normality and fully suppress transient growth. Further, we
formulate dynamic mode shaping strategies that aim to handle some of the practical chal-
lenges inherent to fluid flow control applications, namely high-dimensionality, nonlinearity,
and uncertainty. Dynamic mode shaping methods are demonstrated on a number of simple
illustrative examples that show the utility of this new perspective for transient growth
suppression. The methods and perspectives introduced here will serve as a foundation for
realizing effective flow control in the future.

I. Introduction

An ability to suppress transition to turbulence would enable dramatic reductions in skin-friction drag
in a variety of engineering systems, inevitably leading to efficiency and performance enhancements across
a broad range of application domains. In the context of wall-bounded flows, turbulent transition is often
initiated by a linear transient growth mechanism [1–12]. The linearity of this transition mechanism has
motivated numerous investigations on linear optimal and robust control strategies aimed at suppressing and
understanding transition [13–23]. Optimal and robust controller synthesis strategies simplify the controller
synthesis task by masking internal system design details from the user. Instead, the control engineer can
simply focus on a set of “design knobs” that weigh intuitive measures of performance (e.g., balancing input
energy with state-regulation error). In the context of fluid flow control, this simplification is greatly welcome,
owing to the high-dimensionality of the state-space. We do note, however, that this simplification comes
at a cost. By masking the internal system details from the user, optimal and robust controller synthesis
frameworks do not easily lend themselves to leveraging (nor elucidating) physical insights. To this end,
even with the simplifications that come with optimal and robust controller synthesis techniques, fluid flow
controller design can still be quite daunting. Appropriately tuning the controller to realize an adequate
control strategy remains something of an art.

Here, we propose an alternative perspective for flow control design—one that focuses on shaping the
spectral properties of the linearized Navier-Stokes operator directly. It is the non-normality of the linearized
Navier-Stokes operator that is responsible for transient growth [24]. While non-normality can be defined
in various equivalent ways [25–27], a convenient definition is based on whether or not the modes of the
operator are normal (orthogonal) to one another—i.e., if the modes are not orthogonal, then the operator
is deemed to be non-normal. The possibility of transient growth due to non-normality of eigenmodes can
be understood from a graphical comparison of the normal and non-normal systems shown in Figures 1(A)
and 1(B), respectively. While both linear systems are stable and begin with the same initial state ~x(t1),
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the non-normality of modal directions in Figure 1(B) gives rise to a future state ~x(t2) that has a larger
magnitude than it had at the initial time t1.

Linearly Stable
Non-Normal System

Linearly Stable
Normal System

A B
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x⃗(t2)

Figure 1: Non-normality between modes can lead to transient growth, even when individual modal components
ai(t)~φi are decaying. The normal system in (A) and the non-normal system in (B) both begin with the same initial
condition ~x(t1) and have the same stable eigenvalues; however, the state in (A) decays for all time, whereas the state
in (B) initially grows before it decays to the origin. The dashed line in the figure corresponds to the magnitude of
the state at the initial time t1.

Of course, in the context of linear systems, stability implies that the state will ultimately decay to the
origin; however, in the context of linearized fluid flows, transient growth allows disturbances to be amplified
in the short-term, which can trigger nonlinear instabilities and transition—i.e., once the state moves beyond
the basin of attraction, turbulent dynamics ensue [28]. It is also worth noting that the resulting transient
growth becomes more pronounced as the non-normality between modes increases, less pronounced as non-
normality decreases, and disappears completely in the case of normal modes. For instance, linearization
of the Navier-Stokes equations for three-dimensional channel flow yields the Orr-Sommerfeld-Squire (OSS)
operator. As Reynolds number (Re) increases, the modes of OSS become closer to parallel and transient
growth becomes more pronounced. As a result, at higher Re, it becomes more likely that transient growth
due to linear mechanisms will trigger the nonlinear processes that govern turbulent dynamics.

From this standpoint, it becomes apparent that a feedback control strategy aimed at mitigating transition
to turbulence should be aimed directly at inhibiting transient growth due to non-normality—an objective
that can be achieved by shaping the modes of the closed-loop system to be orthogonal to one another. One
can understand this notion in the context of the simple system of Figure 1: can feedback control be leveraged
to shape the non-normal system (B) into the normal system (A)? Indeed, addressing this general question
will be the focus of the present study. In particular, we will view the control problem from the standpoint of
a novel perspective for fluid flow control, which we call dynamic mode shaping. While some of the theoretical
work concerning dynamic mode shaping has been considered previously within the controls community—
under the name of eigenstructure assignment (ESA) [29, 30]—the present work addresses a number of issues
that currently stand in the way of leveraging the dynamic mode shaping perspective for fluid flow control.
In addition to our contributions toward a synthesis of dynamic mode orthogonalization controllers, we also
address challenges of high-dimensionality, nonlinearity, and uncertainty that will be essential for relevance
to practical fluid flow configurations.

As noted in [29], the solution to the pole placement problem of modern control theory is not unique,
which offers additional flexibility to the control designer to specify the shape of the closed-loop modes as well.
Although ESA is a familiar technique of modern control theory, the challenges associated with specifying
desirable spectral characteristics for a closed-loop system (i.e., closed-loop eigenvalues and eigenvectors) has
led control theorists to favor optimal and robust control methodologies, even with the demands of subsequent
controller tuning.

We note here, however, that the challenge of spectral specification is less daunting in the context of
transient growth suppression—at the very least we know that we should target an orthogonal set of closed-
loop modes. For a stable linear system, a set of orthogonal modes is a sufficient condition to guarantee
monotonic decay of trajectories. Further, although normality is not a necessary condition for monotonic
decay, examination of the pseudospectrum for a normal operator reveals desirable robustness properties
that make closed-loop orthgonalization an attractive choice for control in the context of uncertain systems.
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Perturbations to a normal operator yield well-behaved perturbations in eigenvalues; in contrast, non-normal
operators are prone to undesirable sensitivities to such perturbations [25]. Hence, although orthogonality
of eigenmodes is not a necessary condition for monotonic decay, normal operators have desirable robustness
properties and provide a desirable target for closed-loop dynamics.

Here, we formulate dynamic mode shaping controllers for closed-loop mode orthogonalization and in-
vestigate their utility for transient growth suppression. Beyond targeting desirable closed-loop modes, the
dynamic mode shaping framework can also be used in a pole placement capacity, allowing the designer to
prescribe the temporal response characteristics of a flow by specifying a set of desired closed-loop eigenvalues.

It is interesting to note that although pole placement has been considered in previous investigations
of flow control [31], the notion of dynamic mode shaping by eigenstructure assignment has never formally
been investigated in the context of fluid flow control. This last point comes as a big surprise given the
predominance of modal decomposition techniques for fluid flow analysis: for instance, beyond transition
control, the dynamic mode shaping framework to be developed and studied here is a natural one to consider
in the context of models based on dynamic mode decomposition (DMD), which considers the dynamics of
fluid flows in terms of the spectral properties of an approximate linear dynamical system that governs the flow
evolution [32, 34–39, 42]. The ubiquity of modal decomposition techniques for fluid flow analysis suggests
that dynamic mode shaping methodologies will offer a welcome perspective for flow control; practitioners
can apply the same familiar principles they already use to interpret fluid dynamic behaviors to the task of
designing reliable strategies for flow control and manipulation. The methods introduced here will inevitably
enable modal decomposition techniques, such as DMD, to be developed beyond flow analysis and diagnostic
techniques.

In the present study, we formulate and propose a number of controller synthesis strategies aimed at
suppressing transient growth. The strategies proposed here will build off one another—each addressing a
different practical challenge that establishes the necessary groundwork for ultimately realizing feedback fluid
flow control. In Section II, we present the foundations of controller synthesis for dynamic mode shaping. In
Section III, we show that the dynamic mode shaping framework can be used in a dynamic mode matching
capacity. We apply the dynamic mode matching controller synthesis method to match the spectral properties
of a non-normal system with the spectral properties of a system with a lesser degree of non-normality. In
Section IV, we propose and formulate a dynamic mode orthogonalization technique to eliminate transient
growth, when such a solution is admissible. We demonstrate the technique on a simple linear system and
briefly consider the robustness properties of the control method to modeling uncertainties. In Section V,
we extend the dynamic mode orthogonalization technique for controlling low-rank large-scale systems. We
show that controller synthesis can be performed efficiently by working with a low-order representation of the
system dynamics. Lastly, in Section VI, we introduce a nonlinear controller synthesis approach based on the
notion of Koopman invariant subspaces and Carleman linearization. This final approach enables transient
growth suppression in particular classes of nonlinear systems by means of dynamic mode shaping control.

II. Foundations of Dynamic Mode Shaping

Consider the finite-dimensional state-space representation of the linearized Navier-Stokes equations,

~̇x = A~x+B~u

~y = C~x,
(1)

where ~x ∈ Rn is the vector of flow state variables, ~u ∈ Rm the vector of actuator inputs, and ~y ∈ Rp the
vector of measured outputs. Here, A ∈ Rn×n is determined by the dynamical characteristics of the fluid flow,
B ∈ Rn×m is determined by the specific arrangement of actuators and their influence on the flow dynamics,
and C ∈ Rp×n is determined by the specific arrangement and type of sensors. In essence, (A,B,C) define
the given flow control configuration for a particular operating point.

The proposed dynamic mode shaping strategy for transient growth suppression is best understood from
the standpoint of a modal representation of the flow response. Assuming A has n distinct eigenvaluesa µi
with associated eigenvectors ~ξi and reciprocal eigenvectors ~ρi, the sum of the individual modal dynamics

aModal decompositions and dynamic mode shaping can be employed in the case of confluent eigenvalues as well, though
additional considerations need to be made.
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yields a convenient expression for the system response,

~x(t) =

n∑
i=1

〈~ρi, ~x(0)〉eµit~ξi +

∫ t

0

n∑
i=1

〈~ρi, B~u(τ)〉eµi(t−τ)~ξidτ

~y(t) = C~x(t),

where 〈·, ·〉 denotes inner-product. The aim of dynamic mode shaping is to alter the spectral properties of
the linearized flow, such that the individual modal contributions result in desirable spatiotemporal response
characteristics for the full system. Moving the system eigenvalues from µi to λi will alter the temporal
nature of the flow; shaping the system modes from ~ξi to ~φi will alter the spatial response characteristics of
the flow; and shaping the reciprocal eigenvectors from ~ρi to ~ζi will modify the contribution of each mode
to the overall flow response. As we will show next, desired closed-loop spectral properties can be achieved
through a linear output feedback law of the form ~u = K~y = KC~x, with the static controller gain matrix
K ∈ Rm×p.

To see how we can shape the spectral properties of the closed-loop system via the feedback law ~u = K~y, we
begin by considering the eigendecomposition of the controlled (closed-loop) dynamics: (A+BKC)~φi = λi~φi,
for i = 1, . . . , n. By re-writing this eigendecomposition as,

[
A− λiI B

]
︸ ︷︷ ︸

Gi

[
~φi

KC~φi

]
= 0,

we immediately see that not all choices of closed-loop modes are admissible. The closed-loop mode ~φi

corresponding to the specified closed-loop eigenvalue λi will only be attainable if the vector

[
~φi

KC~φi

]
is in

the nullspace of Gi :=
[
A− λiI B

]
: i.e.,[

~φi

KC~φi

]
∈ N (Gi). (2)

The relationship in Eq. (2) highlights a key condition for modal admissibility and controller gain determi-
nation, which will be central to our approach here. In fact, given a flow control configuration (A,B,C)
and a self-conjugate set of allowable closed-loop eigenvaluesa {λi}, the relationship in Eq. (2) can be used
to yield a complete spectral characterization of all closed-loop system realizations. In the event that a de-
sired mode is not admissible, the “best” approximation of this mode can be achieved via projection onto
the admissible modal subspace, as depicted in Figure 2. The admissibility constraint in Eq. (2) can be
leveraged in determining admissibility conditionsb, both for dynamic mode matching and for dynamic mode
orthogonalization.

Admissible

Modal Subspace

Desired Mode

Desired Mode

Achievable Mode

Figure 2: Given a flow control configuration and desired set of closed-loop eigenvalues, not all closed-loop modes are
admissible; orthogonality and arbitrary shaping of modes may not be achieved exactly. A projection of the desired
mode onto the admissible subspace can be performed to determine the “closest” achievable mode.

aOnly controllable eigenvalues can be placed arbitrarily.
bThe closed-loop modes must form a self-conjugate set to ensure the system remains real-valued. The self-conjugacy require-

ments can be relaxed for complex-valued systems.
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In practice, one method for computing the admissible subspace of closed-loop modes and the necessary
controller gains for achieving these desired modes is based on the singular value decomposition (SVD) of Gi,

Gi = UΣ

[
Ṽi Vi

W̃i Wi

]T

,

where the last qi right-singular vectors form an orthonormal basis for N (Gi), such that

N (Gi) = span(

[
Vi

Wi

]
).

Hence, any admissible mode ~φi can be specified as a linear combination of columns of Vi—i.e., ~φi = Vi~αi,
where ~αi ∈ Rqi is a vector of coefficients and qi is the dimension of the associated admissible modal sub-
space. Further, in order to satisfy the constraint specified in Eq. (2), the following relation must also hold,
~ψi = KC~φi = Wi~αi. We can exploit this final expression to compute the controller gain required to achieve
a specified set of admissible closed-loop modes. In particular, define the matrix of admissible closed-loop
modes Φ and the associated auxiliary matrix Ψ needed to satisfy the nullspace constraint in Eq. (2),

Φ =
[
~φ1 ~φ2 · · · ~φn

]
=

[
V1~α1 V2~α2 · · · Vn~αn

]
, (3)

Ψ =
[
~ψ1

~ψ2 · · · ~ψn

]
=

[
W1~α1 W2~α2 · · · Wn~αn

]
, (4)

then the control gain K can be determined from the relation

KCΦ = Ψ. (5)

In the remainder of the manuscript, we consider the case of full-state feedback (i.e., C=I). We introduce
alternative strategies for transient growth suppression based on the dynamic mode shaping framework out-
lined here. In Section III, we make direct use of the dynamic mode shaping perspective for reducing the
degree of transient growth by means of dynamic mode matching. In Section IV, we build upon the dynamic
mode shaping perspective to formulate a dynamic mode orthogonalization control strategy, which is aimed
at eliminating transient growth. We also demonstrate robustness properties of the resulting dynamic mode
orthogonalization controller when applied to uncertain systems. Subsequently, in Section V, we show that
dynamic mode orthogonalization can be formulated using model-reduction techniques in the context of low-
rank large-scale systems. In Section VI, we extend these dynamic mode shaping approaches to controlling
nonlinear systems by appealing to the notion of Koopman invariant subspaces. To this end, we introduce a
new perspective for nonlinear feedback control based on our proposed linear controller synthesis techniques.

III. Reducing Transient Growth via Dynamic Mode Matching

In principle, transient growth can be eliminated by achieving an orthogonal set of closed-loop modes via
feedback control, as will be discussed in Section IV; however, such outcomes are not necessarily admissible for
a given flow control configuration. Here, we propose a dynamic mode matching strategy that aims to reduce
the degree of transient growth. (We describe the dynamic mode matching strategy first because it follows
from a direct application of dynamic mode shaping, introduced in Section II.) By noting that non-normality
decreases with decreasing Re, then it seems reasonable to investigate under what conditions it is possible
to reduce non-normality by controlling a high Re flow to “behave like” a lower Re flow. Indeed, if feedback
control can be used to shape the spectral properties of a high Re flow to match the spectral properties of a
lower Re flow, then the degree of non-normality and associated transient growth will be reduced.

To build intuition for this strategy, consider a simple non-normal system that has been used previously
to explain the role of non-normality in transient growth [5, 24] and to assess transient-growth-control strate-
gies [20]:

d

dt

[
x1

x2

]
=

[
−1/R 0

1 −2/R

][
x1

x2

]
+

[
1 0

0 1

]
~u, (6)
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where R is a parameter that acts like Re and ~u ∈ R2 is a vector of control inputs. As seen in the phase
portraits for this system (see Figure 3), non-normality increases as the parameter R increases. All three tiles
in Figure 3 are associated with non-normal systems; however, only trajectories in tile (c) can exhibit transient
growth, thus indicating that non-normality is not a sufficient condition for transient growth. Indeed, the
possibility of transient growth arises only beyond some threshold in the alignment of modal directions and in
the value of the parameter R. Based on these observations, the task of transient growth suppression for the
system shown in Figure 3(c) does not require modal orthogonalization; rather, the objective can be achieved
by shaping the closed-loop spectral properties of the system with R = 10 to match the spectral properties
of the system with R = 0.01 or R = 1, as in Figure 3(a) or (b), respectively. Dynamic mode matching
controllers for this purpose can be formulated through a direct application of the dynamic mode shaping
framework introduced in Section II: (i) determine the spectral properties of a desired low-R system, (ii) check
for admissibility within the context of the control configuration, then (iii) design a feedback controller to
match these spectral properties via dynamic mode shaping.

x1

x
2

(a) R = 0.01

x1

x
2

(b) R = 1

x1

x
2

(c) R = 10

Figure 3: Phase portraits for the non-normal system in (6) show that as the parameter R increases, the modal
directions (highlighted in red) approach one another, thus giving rise to the possibility of transient growth away
from the origin. Tiles (a) and (b) show that non-normality is not a sufficient condition for transient growth—
states beginning in the dashed circle remain in the dashed circle in both cases; however, beyond some threshold of
non-normality, trajectories can exit the dashed circle prior to decaying to the origin, as in tile (c).

As an example of dynamic mode matching, again consider the model system in Eq. (6), now with R = 500.
The goal is to reduce the degree of transient growth by matching the spectral properties of the uncontrolled
system with R = 100. To do so, we simply compute the target spectral properties by setting R = 100, then
perform dynamic mode shaping with these spectral properties as the target. For this example, the spectral
properties for the open-loop system with R = 100 are admissible, so the controller is able to successfully

match this exactly. The resulting control law ~u =
[
−0.008x1 −0.016x2

]T
yields the desired closed-loop

spectral properties and leads to a reduction in transient growth, as seen in the center tile in Figure 4.
Dynamic mode matching can be taken a step further: If desirable closed-loop spectral properties have

already been achieved for a system at a particular parameter value, then these same spectral properties
can be targeted for a different parameter value of interest with dynamic mode matching. As a simple
demonstration of this notion, consider again the simple system in (6). Further, suppose that our objective
is to design a control law that yields a set of orthogonal closed-loop modes without altering the system
eigenvalues. In Section IV, we formulate a general approach for synthesizing such a feedback control law.
For the simple system under consideration here, one simple strategy for synthesizing a control law that
guarantees closed-loop orthogonalization and unaltered eigenvalues, for any R, consists of two steps: (i) retain
the mode associated with the eigenvalue −1/R, then (ii) shape the remaining mode to yield an orthogonal

set. Following this approach yields a control law ~u =
[

0 −x1
]T

, which will yield orthogonal modes

with unaltered eigenvalues for all values of R. Interestingly, this result indicates that only a single input is
required for closed-loop orthogonalization; in fact, it appears that system controllability is not a necessary
condition for orthogonalizability! The open- and closed-loop responses for R = 100 are presented in Figure 4.
Although the resulting controller here may seem like an obvious choice for this simple system, the systematic
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approach to computing this controller by the dynamic mode shaping framework enables a means of realizing
an orthogonalizing controller in more complex scenarios for which a clear path to removal of non-normality
is not obvious.

For the present discussion, we assume that a dynamic mode orthogonalization control law has al-
ready been realized for R = 100; then, the spectral properties of this orthogonalized closed-loop system
can also be targeted via dynamic mode matching. Indeed, the spectral properties for the orthogonalized
R = 100 system are admissible, and dynamic mode matching control successfully shapes the R = 500 sys-
tem to match this system structure exactly (see bottom tiles in Figure 4). The associated control law is

~u =
[
−.018x1 −x1 − 0.006x2

]T
.

This last example highlights an important point: while the pole placement problem can be incorporated
to match the temporal character of a low-Re flow (e.g., controlling a flow at Re=500 to match eigenvalues
of a flow at Re=100), doing so does not necessarily remove transient growth. However, by noting that the
solution to the pole placement problem is not unique, additional considerations with regards to associated
mode shapes can be made to target the transient response characteristics directly. Dynamic mode matching
also creates a means of reducing computational demands in controller realization: once an orthogonalizing
controller is realized by computationally demanding methods for one Re, the less computationally demanding
dynamic mode matching approach can be used to inform the design of a controller for a different Re.

Time
0 500 1000 1500 2000 2500 3000

x i

0

125

Open-Loop R=500

x
1
(t)

x
2
(t)

Time
0 500 1000 1500 2000 2500 3000

x i

0

25

Mode Matching to Open-Loop R=100

Time
0 500 1000 1500 2000 2500 3000

x i

0

1
Mode Matching to Orthogonalized R=100
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E
/E

o
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Time
0 500 1000 1500 2000 2500 3000

E
/E

o

0

320

Mode Matching to Open-Loop R=100

Time
0 500 1000 1500 2000 2500 3000

E
/E

o

0

1
Mode Matching to Orthogonalized R=100

Figure 4: Dynamic mode shaping can be used in a “model matching” capacity by shaping the spectral properties
of the closed-loop system to match the spectral properties of a different system. Here, we show three variations
of the response of the model system in Eq. (6) with R = 500. Individual state variable responses are plotted
on the left and associated energies on the right. (Top) The open-loop response exhibits relatively large transient
growth. (Center) Dynamic mode matching control is used to achieve closed-loop dynamics that match the open-loop
dynamics for R = 100, which exhibits a lesser degree of transient growth compared to the open-loop R = 500 case.
(Bottom) Dynamic mode matching control is used to suppress transient growth completely, by matching the closed-
loop dynamics to those achieved via dynamic mode orthogonalization for R = 100 (to be discussed in Section IV).
The initial condition for all state variables was set to unity here. Energy E(t) = ~x(t)T~x(t) is normalized by the initial
energy Eo = E(to) in the plots.

IV. Eliminating Transient Growth via Dynamic Mode Orthogonalization

Non-normality of the linearized Navier-Stokes operator has been shown to be a necessary condition for
sub-critical transition to turbulence [7]. Dynamic mode shaping offers a foundation for designing controllers
that eliminate this non-normality and yield orthogonal closed-loop modes, thus offering a means of inhibiting
transient growth and suppressing the linear mechanism for transition. Further, owing to the nature of the
pseudospectra associated with normal operators [25], the resulting controllers are expected to possess an
inherent robustness to modeling errors. Here, we formulate a feedback orthogonalization strategy based on
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mode shaping, then demonstrate the technique on a simple example.

IV.A. A Framework for Dynamic Mode Orthogonalization

Here, we extend the notion of dynamic mode shaping and present a framework for realizing an orthogonalizing
controller (or family of controllers), if one exists. The same framework can be used to realize an approximately
orthogonalizing controller as well, in the event that exact orthogonalization is not admissible for the particular
flow control configuration.

The condition for closed-loop orthogonalization can be asserted in terms of the expression for the ad-
missible set of closed-loop modes in (3). In particular, we constrain the Gram matrix of inner-products
associated with Φ to be diagonal—i.e., the closed-loop modes must be chosen from the admissible set such
that they are orthogonal. We will make use of the Euclidean inner-product here. Without loss of generality,
we assume that the state has been transformed such that a weighted inner-product can be expressed with
unit weighting. Then, the requirement for an orthonormal set of closed-loop modes amounts to ΦTΦ = I, or

~αT
1V

T
1 V1~α1 ~αT

1V
T
1 V2~α2 · · · ~αT

1V
T
1 Vn~αn

~αT
2V

T
2 V1~α1 ~αT

2V
T
2 V2~α2 · · · ~αT

2V
T
2 Vn~αn

...
...

. . .
...

~αT
nV

T
n V1~α1 ~αT

nV
T
n V2~α2 · · · ~αT

nV
T
n Vn~αn

 =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 . (7)

The matrix equation in (7) represents a system of n2 bilinear vector equations in the n unknown vectors
~αi; however, owing to symmetry of the Gram matrix, many of these equations will be redundant. In
general, the vectors ~αi will have different dimensions qi, determined by the dimension of the corresponding
admissible subspace. Thus, letting m =

∑n
i=1 qi, then (7) corresponds to a system of at most m(m + 1)/2

independent bilinear scalar equations in m scalar unknowns. A closer examination of (7) provides a means of
characterizing the existence and uniqueness of solutions. Such notions are essential for determining whether
an orthogonal set of closed-loop modes is admissible. Dynamic mode orthogonalization will be exactly
achievable if (7) admits at least one solution. In the event that (7) does not admit a solution, the condition
can be recast as a minimization problem that achieves an approximate solution corresponding to a set of
closed-loop modes that are “as close as possible to being orthogonal.”

In the present study, we compute a least-squares solution to (7) iteratively using the Levenberg-Marquardt
method [46]. In particular, we compute a locally minimizing solution for the coefficients vectors {~αi},

{~αi}opt = arg min
~αi

n∑
i=1

i∑
j=1

(δij − ~αT
i V

T
i Vj~αj)

2, (8)

where δij denotes the Kronecker delta function. Subsequently, the solution to (8) can be substituted into (5)
to compute the controller gain matrix K that achieves the associated set of orthogonal closed-loop modes.
Indeed, the resulting set of closed-loop modes will be exactly orthogonal when feedback orthogonalization is
admissible; otherwise, the solution will achieve modal orthogonality in a least-squares sense.

Next, we demonstrate the dynamic mode orthogonalization control strategy through a simple example.

IV.B. An example of dynamic mode orthogonalization

To validate the controller synthesis techniques described above for dynamic mode orthogonalization, we
consider a non-normal system that admits an orthogonal set of closed-loop modes. We construct B such
that rank(B) = n, which guarantees that the system is orthogonalizable. To see this, consider that the
non-normal operator A can be decomposed into a normal component An and a non-normal component Ann
as A = An + Ann. If rank(B) = n, then there will always exist a controller K = −B+Ann that makes the
closed-loop system matrix (A+BK) orthogonal. In fact, as is made clear here, an orthogonalizing controller
can be computed by means of alternative methods as well; however, we continue with this example simply
as a validation of the dynamic mode orthogonalization approach formulated here, which is more generally
applicable and useful for synthesizing orthogonalizing controllers in more complex scenarios.

In this example, we construct an arbitrary non-normal system, then compute a control law to orthogo-
nalize the closed-loop modes and to retain the open-loop eigenvalues in closed-loop. Specifically, the system
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considered has eigenvalues λi ∈ {−0.1,−0.2,−0.3,−0.4,−0.5} with,

A =


−20.34 −5.22 1.63 4.25 13.57

15.42 3.72 −1.20 −3.31 −10.46

−0.78 −0.17 −0.31 0.20 0.57

19.45 5.06 −1.54 −4.34 −13.12

−29.74 −7.90 2.44 6.32 19.77

 (9)

B =


0.10 −1.02 1.74 −1.92 −0.04

−0.52 −0.75 −0.57 0.42 −0.92

−0.12 1.37 −0.72 0.93 −1.39

−0.72 −0.51 0.67 −1.47 −0.92

−0.97 0.71 0.96 1.70 0.87

 . (10)

Applying the dynamic mode orthogonalization strategy described above will yield an orthogonalizing control
law. We note that an infinity of controllers exist here because B is non-singular; here, we report a locally
minimizing solution to (8),

K =


25.64 6.64 −1.89 −5.21 −17.35

−1.14 −0.33 0.15 0.09 0.79

30.18 7.88 −2.34 −6.35 −20.38

19.05 4.99 −1.46 −3.90 −12.84

−6.79 −1.76 0.44 1.41 4.63

 . (11)

(Note: Individual elements in the controller gain K are truncated to two decimal places for reporting purposes
here.) Quantifying non-normality as ‖ΦTΦ− I‖2, the controller reduces the level of non-normality from 3.99
in the open-loop system to 1.27 × 10−12 in closed-loop, indicating that the controller synthesis procedure
successfully achieves its objective. The open- and closed-loop responses for this system from unity initial
condition are shown in Figure 5. The time histories clearly show that transient growth is fully suppressed
by the orthogonalizing controller, as intended.
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Figure 5: The dynamic mode orthogonalzation controller successfully suppresses transient growth. The plots on
the left show individual state responses for the open- and closed-loop systems. Plots on the right show the transient
energy responses for the open- and closed-loop systems. The initial condition for each state variable is set to unity
here. Energy E(t) = ~x(t)T~x(t) is normalized by the initial energy E0 = E(t0) in the plots.

We next perform a brief study of the robustness properties of the orthogonalizing controller to modeling
uncertainties. The simple demonstration above assumes that the orthogonalizing controller is designed with
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exact knowledge of the system; however, this is seldom the case in practice. For non-normal operators,
eigenvalues can be highly sensitive to perturbations; however, eigenvalue sensitivity to perturbations of
normal operators are “well-behaved”—as is revealed by the pseudospectra of these operators [25]. Thus, an
orthogonalizing controller computed based on an inexact model A = Ā+ ∆A of the actual system Ā can be
expected to perform reasonably well when applied to the actual system. (Here, ∆A represents an unknown
modeling error.) Indeed, robustness to modeling uncertainties was part of the motivation for seeking an
orthogonalizing controller, rather than one that only suppresses transient growth.

To illustrate the robustness of dynamic mode orthogonalization controllers to modeling uncertainty, we
consider the orthogonalizing controller computed for the same system above. We apply the controller to
a disturbed version of the system Ā = A − ∆A, where each element of ∆A is drawn from N (0, σ2), with
σ2 = 0.05 min(|λi|). The controlled response from unity initial condition for each of the 200 realizations
is shown in Figure 6. Not only does energy decay monotonically for each realization, but the character of
the controlled system response is strikingly similar between system realizations. Although this simple study
does not serve as a comprehensive demonstration of robustness to modeling uncertainty, it does suggest that
the control scheme does not necessarily require an exact model to be successful.

Figure 6: The dynamic mode orthogonalization controller possesses some robustness to modeling uncertainty. The
orthogonalizing controller reported in 5 is applied to 200 perturbed versions of the original system, Ā = A − ∆A,
where ∆A ∼ N (0, σ2) and σ2 = 0.05 min(|λi|). Here, we present the energy response for each of these 200 realizations,
which have strikingly similar behavior. The initial condition for each state variable is set to unity for all 200 responses.
Energy E(t) = ~x(t)T~x(t) is normalized by the initial energy E0 = E(t0) in the plots.

V. Dynamic mode orthogonalization of low-rank large-scale systems

Upon discretization, the state dimension associated with a fluid flow tends to be quite large, which can
make controller synthesis by direct computation impractical (or, at least, undesirable) in many situations.
Dynamic mode orthogonalization can be applied in a more computationally tractable manner for certain
classes of high-dimensional systems. In particular, consider a large-scale discrete-time system,

~xk+1 = A~xk +B~uk, (12)

whose dynamics evolve on an r-dimensional subspace of the full n-dimensional state-space, where r < n.
Suppose that we have determined an orthogonal basis for this r-dimensional subspace. Then, a reduced-
order representation of the system dynamics can be obtained via the change of variables ~x = T~z, where
~z ∈ Rr and the r orthogonal columns of T ∈ Rn×r span the associated r-dimensional subspace:

~zk+1 = TTAT~zk + TTB~uk

= Ã~zk + B̃~uk.
(13)
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We would now like to show that a dynamic mode orthogonalization controller synthesized on the low-
dimensional representation in (13) can be used to yield a dynamic mode orthogonalization controller for the
original large-scale system in (12). To do so, we will consider designing a controller such that the dynamics
of the closed-loop system,

~xk+1 = (A+BK)︸ ︷︷ ︸
Acl

~xk, (14)

evolve on the same r-dimensional subspace as the open-loop system,

~zk+1 = (Ã+ B̃K̃)︸ ︷︷ ︸
Ãcl

~zk, (15)

where K̃ := KT . Note that the reduced closed-loop dynamics are related to the full dynamics as Ãcl = TTAclT .
It is straightforward to show that the full-order and the reduced-order closed-loop systems will share non-
zero eigenvalues, and that the associated modes of these systems are related as ~φ = T~θ, where ~θ is an
eigenmode of the reduced-order system. Then, it follows, that an orthogonalizing controller on the reduced-
order representation—if one exists—can be used to yield an orthogonalizing controller for the full-order
system. Indeed, if ~θTi

~θj = δij , then

~φTi
~φj = ~θTi T

TT~θj = ~θTi
~θj = δij . (16)

Hence, the low-dimensional system representation in (13) can be used to synthesize a dynamic mode orthog-
onalization control strategy for the large-scale system. The resulting control law for the input actuation can
be expressed equivalently in terms of the reduced-order state ~z or the full-order state ~x, as ~u = K̃~z = K̃TT~x.

As a simple demonstration, consider the low-rank large-scale system,

~xk+1 = T

[
−1.1718 −1.1384

3.8616 3.0218

]
TT~xk + T

[
−0.9835 0.3949

0.6006 1.3580

]
~uk, (17)

where ~x ∈ R250, ~u ∈ R2, and T ∈ R250×2 is a randomly chosen matrix with orthonormal columns. Using
the methods described above, we find that this system admits an orthogonal set of modes for all non-zero
eigenvalues. An orthogonalizing gain,

K =

[
−2.7577 −1.5115

−1.6172 −0.8584

]
TT, (18)

leads to full suppression of transient growth in closed-loop, as shown in Figure 7. It is important to note that
the above approach can also be applied to continuous-time systems as in (1) as well; however, in the context
of continuous-time systems, neither the open-loop nor the closed-loop response will decay to zero due to the
“constant forcing” effect of zero-eigenvalues—an artifact of the “low-rank” nature of the A-matrix and its
role in the continuous-time dynamics.

VI. Dynamic Mode Shaping in Nonlinear Systems

The dynamic mode shaping and dynamic mode orthogonalization perspectives offer a potential path for
suppressing transient growth in nonlinear systems without resorting to linearization. By choosing an appro-
priate change of coordinates, a nonlinear model may admit a finite-dimensional linear representation [47, 48].
Such ideas are the subject of research on the Koopman operator and data-driven Koopman spectral analy-
sis [36, 40–45]. Here, we demonstrate the utility of dynamic mode shaping for nonlinear controller synthesis
by way of a simple example.

Consider the nonlinear system,

d

dt

[
x1

x2

]
=

[
λ1x1 + ax22

λ2x2

]
+

[
1

0

]
u, (19)
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Figure 7: Dynamic mode orthogonalization suppresses transient growth in a low-rank large-scale system with
n = 250. (Top) The open-loop dynamics exhibit transient energy growth, whereas (Bottom) dynamic mode
orthogonalization completely suppresses transient energy growth. The underlying dynamics of the open-loop system
are governed by (17). The initial condition associated with these results was selected randomly. Energy Ek = ~xTk~xk
is normalized by the initial energy Eo = Ek=0 in the plots.

which was first used to demonstrate Koopman-based optimal control in [40]. This nonlinear system admits
a finite-dimensional linear representation in terms of the extended set of variables {yi} for i = 1, 2, 3, where
y1 = x1, y2 = x2, y3 = x22:

d

dt

 y1

y2

y3

 =

 λ1 0 a

0 λ2 0

0 0 2λ2


 y1

y2

y3

 +

 1

0

0

u. (20)

The linear representation admits an eigendecomposition, with eigenvalues (λ1, λ2, 2λ2) and corresponding
modes,

φλ1
=

 1

0

0

 , φλ2
=

 0

1

0

 , φ2λ2
=

 −a
0

λ1 − 2λ2

 .
Modes φλ1 and φλ2 always constitute an orthogonal pair; however, depending on the specific values of a, λ1,
and λ2, the third mode φ2λ2

can lead to non-normality, indicating that the uncontrolled nonlinear system
can exhibit transient growth.

Interestingly, the same dynamic mode shaping perspectives introduced previously can also be applied
here; by leveraging the linear representation of this nonlinear system, the dynamic mode shaping approach
is valid in this context. For example, transient growth exhibited by this nonlinear system can be eliminated
by applying dynamic mode orthogonalization in the space of extended variables {yi}. Of course, the linear
control law determined in this linear setting of Koopman observables can be transformed back into the
nonlinear setting, yielding a nonlinear control law that can be implemented on the original system. An
orthogonalizing nonlinear control law will be u = −ax22, which effectively acts to eliminate the term a from
the closed-loop system. Although this choice is, perhaps, obvious from the analytical expressions for the
modes of this system, the dynamic mode orthogonalization perspective provides a means of computing such
solutions in more complicated systems for which an orthogonalizing control law may not be as obvious.

Dynamic mode shaping can also be employed to shape the Koopman spectral properties of the nonlinear
system above. Let λ1 = −1/2, λ2 = −3/4, and a = 2, and suppose we wish retain the Koopman eigenvalues
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while shaping the closed-loop Koopman modes to be

φdesiredλ1
=

 1

0

0

 , φdesiredλ2
=

 0

1

0

 , φdesired2λ2
=

 1

0

1

 .
The nonlinear control law u = −3x22 that achieves this can be computed by invoking the dynamic mode
shaping approach on (20). A comparison of open- and closed-loop responses for this system are shown in
Figure 8.
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Figure 8: Dynamic mode shaping can be used to inhibit transient growth arising due to nonlinear mechanisms in
special classes of nonlinear systems. Here, we consider the exact finite-dimensional linear representation in Eq. (20) of
the nonlinear system in Eq. (19). (A) The open-loop response exhibits transient growth. (B) Dynamic mode shaping
control is used to inhibit transient growth by shaping the closed-loop modes in the extended space of observables.
For this demonstration, the control law is designed to keep the eigenvalues in this extended space unaltered. The
desired closed-loop modes are reported in the text.

VII. Conclusions

In this paper, we have introduced dynamic mode shaping as a promising feedback control technique for
use in fluid flow control applications. Indeed, dynamic mode shaping offers additional flexibility beyond
alternative linear control techniques for fluid flow control, allowing the user to prescribe both the tempo-
ral response characteristics (associated with system eigenvalues) as well as spatial response characteristics
(associated with system modes). Further, the dynamic mode shaping framework can be used to shape the
reciprocal modes (i.e., left-eigenvectors) of the closed-loop system as well, thus offering a means of altering
the contributions of individual modal dynamics to the overall fluid response.

The particular investigation here focused on developing dynamic mode shaping strategies for controlling
transient energy growth in linear systems—a phenomenon that arises due to system non-normality and
that is commonly associated with sub-critical transition to turbulence in various contexts. In particular,
we proposed two controller synthesis strategies: (1) a dynamic mode matching strategy aimed at reducing
transient energy growth by shaping the spectral properties of a system to match the spectral properties of a
“more desirable” system, and (2) a dynamic mode orthogonalization strategy aimed at suppressing transient

13 of 16

American Institute of Aeronautics and Astronautics Paper 2017-3160



energy growth by shaping a non-normal system to attain orthogonal closed-loop modes. Additionally, we
presented various techniques for addressing the usual challenges that arise in the context of fluid flow control:
high-dimensionality, nonlinearity, and system uncertainty. The proposed strategies were demonstrated on
simple examples to illustrate the utility and promise of the dynamic mode shaping perspective.

Although much remains to be done to make dynamic mode shaping suitable for practical fluid flow
control, the perspectives and methods introduced here promise to serve as a foundation upon which such
techniques can be further developed and refined. Owing to the predominance of modal analysis techniques
in fluid flow diagnostics, we believe that the dynamic mode shaping perspective will be a welcome tool to
add to the arsenal of fluid flow control techniques.
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